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ABSTRACT 

Active suspension is now a well-tried technology in road vehicles. It has been installed on a 
HMMV and demonstrated to significantly improve performance in rough road conditions1. This 
capability presents an opportunity for improved mobility in off-road conditions. The challenge is 
to devise a means of translating the desired trajectory of the vehicle into commands to the 
suspension actuators and the traction motors in an optimal, or near optimal manner. In this paper 
we describe part of a software architecture that was developed to enable such performance from 
a six-wheeled vehicle with active suspension and independent wheel drives. The vehicle was a 
concept developed under the DARPA Unmanned Ground Combat Vehicle Program. 

1.   INTRODUCTION 

It has been demonstrated that active suspension can be used to reduce impact and vibration 
experienced by the driver and payload of an off-road vehicle traversing rough roads, and thereby 
allow greater speed with less driver stress1. What has not been explored is whether the active 
suspension capability can be used to improve vehicle performance over extreme terrain. The 
work reported here was done in the context of a robotic vehicle in which driver stress is not an 
issue. It also allows use of extreme attitudes, and rapid changes of attitude that might not be 
acceptable in a vehicle carrying humans. 

Given that the vehicle has an active suspension 
system, the question is how may it be used to 
improve performance in extreme terrain 
conditions? This becomes the problem of 
translating motion commands to the vehicle as 
a whole into force, position or rate commands 
to the wheel and suspension actuators, as 
illustrated in Figure 1. 

Of course, there is another relevant issue, 
which is the source of the position or rate 
commands on the vehicle as a whole. In a 
conventional vehicle they come from the driver 
via the control interface. The project described 
here was a robotic vehicle. The overall 
software and control architecture is described 
in Waldron et al.2. Briefly, the architecture 
used has three layers of which the upper layer 
generates action plans to be executed by the 
proprioceptive layer that is the subject of the 
present paper. 
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Figure 1: Vehicle coordinate system and motion degrees of
freedom. The reference frame is aligned with the horizontal
longitudinal axis of the body (x) and the vertical when the
vehicle is resting on a level plane with the suspension
positions neutral (z). Rotation about the x axis (θx) is
referred to as roll, about the y axis (θy) is referred to as
pitch, and about the z axis (θz) is yaw. Because of the non-
holonomic nature of the wheel-ground contact lateral (y)
displacement, or velocity, cannot be directly controlled. The
commandable degrees of freedom are, therefore, x, z, θx, θy,
θz. In order to control vehicle configuration, suspension
positions may be substituted for some of these degrees of
freedom.



 

The fundamental coordination principle that we attempt to implement in this work is 
minimization of the maximum ratio of tangential to normal contact force components among the 
wheel-ground contacts. The intended effect is to minimize the tendency toward slippage at any 
wheel. Of course, this assumes that the effective coefficients of friction at the wheel contacts are 
equal. A wheel contacting slippery mud may slip at a tangential to normal force ratio that is 
secure for the remaining wheels. Nevertheless since, as a practical matter, the soil properties at 
the wheel contacts are not a priori knowable, the above principle provides a serviceable 
compromise. 

Although some of the principles presented here have broader applicability, we will restrict the 
discussion to vehicles with wheels arranged in two planes of operation that have individual 
drives for all wheels, and one actively controlled degree of freedom in each wheel suspension. 

It is also assumed that sensors are installed to provide wheel torque and position or rate, two 
components of suspension force in the wheel plane, and suspension position. Likewise, an 
inertial measurement unit (IMU) mounted to the body of the vehicle with magnetometer and/or 
GPS correction of drift is assumed. Accelerometers mounted on the wheel hubs are also 
desirable to help correct for wheel dynamics. 

2   COMMANDED FORCE SYSTEM  

The commanded motions of the vehicle are compared to the actual motion of the vehicle body as 
measured by the IMU and used to generate a six axis rate error system that is then converted into 
a commanded acceleration system3. Multiplied into an inertia matrix this becomes an inertia 
force system that is combined with the vehicle weight to generate a six-axis commanded force 
system for the vehicle as a whole.  

The force system acting on the body is decomposed into two planar force systems based on the 
wheel planes on either side of the vehicle. This is done in a manner similar to that described by 
Waldron3. The solution is unique, subject to an assumption made about the distribution of lateral 
forces that cannot be controlled in this non-holonomic system. The details will not be repeated 
here. 

The next task is to decompose each of the planar force systems into appropriate force and torque 
commands to the suspension and traction actuators, while attempting to at least approximate the 
minimax ratio of tangential to normal force principle. In order to do this it is first necessary to 
know the locations of the contacts between the wheels and the ground. Here we replace the 
actual contact, distributed over an area, by the point at which the line of action of the resultant 
contact force penetrates the tire. This point is what we refer to as the contact point. It is projected 
into the mid-plane of the wheel. The contact normal is assumed to lie along the line joining the 
contact point to the wheel axis in that plane. The normal force component is directed along that 
line directed from the contact to the axis. It may never be negative. That is, the contact only 
supports a compressive normal component. If a negative normal component is calculated it 
indicates that the vehicle is unstable and may overturn. 

The tangential component of the contact force is, of course, directed normal to the contact 
normal through the point of contact in the wheel plane. 

 



3   CONTACT POINT LOCATION 

There are actually two methods available for location of the contact point. The first is from the 
sensed wheel force data. Since we assume that two components of suspension force in the wheel 
plane, and wheel torque, are sensed, and the wheel weight, inertia and state of motion is known, 
it is possible to compute the line of action of the contact force. Thus, the contact point is 
identified by the intersection of that line with the tire (Figure 2). There are, in fact, two 
intersection points, but the correct one is, in principle, easily identified by applying the 
requirement that the normal component be positive. 

The second approach is kinematic9, and depends on the ability to sense vehicle attitude and 
motion, and the suspension position. The position of the vehicle reference frame relative to a 
fixed frame is sensed by the IMU. The position of the suspension and wheel relative to the 
vehicle reference frame is sensed by resolvers, encoders, or other suitable position sensors. 
Application of the coordinate transformation between the vehicle frame and the fixed frame to 
these positions gives the positions of wheel and suspension relative to the fixed frame. 

Likewise, we compute the six axis velocity of the vehicle body from IMU data, and transform 
into the fixed frame. The velocity of the suspension relative to the vehicle body, and the angular 
velocity of the wheel relative to the suspension are sensed and used to compute the velocity of 
the wheel axis, O, and the angular velocity of the wheel relative to the fixed frame. 

 Since we have no control over velocity components normal to the wheel plane, we work with 
the velocity components in the wheel plane: vOx, vOz and (using the coordinate system of Figure 
1). vOx and vOz are the velocity components relative to a fixed reference frame of a point in the 
wheel plane that is fixed relative to the body coordinate frame. There is a unique point in the 
wheel, located in the wheel mid-plane, that is at rest relative to the fixed frame. That is the 
instantaneous center, I, 
of motion of the wheel 
shown in Figure 2. If the 
wheel is rolling without 
slipping on the ground, I 
will be located at the 
point of contact between 
wheel and ground. In 
general, it is not located 
at the point of contact, 
and its displacement 
from that point can be 
used to compute the slip 
of the wheel relative to 
the ground. The contact 
point lies at the 
intersection of the line 
IO with the wheel 
circumference, and the 
normal component of the 
contact force lies along 
the contact normal, IO. 

Figure 2:   Wheel-ground contact geometry.  The contact point, P, can be located
either by identifying the line of action, l, of the contact force, and finding its intersection
with the wheel circumference, or by locating the instantaneous center, I, of motion of
the wheel relative to the ground. P lies at the intersection of line OI with the wheel
circumference. 
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The vector, ρ, that locates I from point O is found from 

 
ρ =

ω × vO

ω 2
. 

The velocity, vs, of slip between the wheel and ground can then be calculated from 

 vs = ω × r − ρ( ) 
where r is the vector from O to P. 

A fully three dimensional calculation is also possible, using the kinematic geometry of screw 
systems4. That formulation is more complex, but provides information on lateral slip, which may 
be useful. 

4   FORCE ALLOCATION 

It is now necessary to compute a set of contact forces at each of the wheels on each side of the 
vehicle that add up to the commanded resultant force. For the subject vehicle with six wheels, 
allocating the contact forces among the three wheels on one side of the vehicle is an 
underdetermined problem. This is also true for vehicles with eight, or more wheels. The methods 
described below are perfectly general and may be applied in those cases. 

In the general case we attempt to apply the principle discussed above: minimizing the maximum 
ratio of the tangential to normal contact force components, to resolve the under-determinacy. 
There are a number of possible approaches to doing this, at least approximately. However, it is 
important to remember that whatever method is used the calculation must be performed in every 
update cycle, typically at greater than 100 Hz, and the result must be usable as a control input.  

Several different types of force allocation algorithm have been studied, or applied on past 
systems. It is possible, with relatively minor linearization, to formulate the spatial force 
allocation problem as a linear programming problem5, 6. The resulting solutions are very near 
optimal, and this approach has been used as a baseline against which to measure the 
performances of alternative algorithms. When specialized to the planar system considered here 
no approximation is needed. The solution is optimal under the assumptions used. However, to 
the author’s knowledge been implemented on a vehicle. The reasons are two. First the open, 
iterative character of the algorithm 
creates difficulties in the design of 
software that must run on uniform, rapid 
update cycles. Second, for linear 
programming problems of this 
dimension, the appropriate solution 
algorithm is the Simplex algorithm. It is 
the nature of this algorithm that the 
solution jumps from vertex to vertex of a 
polyhedral solution space.  The resulting 
force commands exhibit discontinuities 
characterized as “chatter” which makes 
them undesirable as servo system 
commands. 
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Figure 3: Geometric form of the zero interaction force
condition. The components, FT of the contact forces at the points Pi
and Pj along the line PiPj must be equal for every pair of contact
points in the system. 



 

The Adaptive Suspension 
Vehicle7, used an algorithm 
based on requiring that the 
interaction force between any 
pair of feet be zero. This 
algorithm was shown to be 
isomorphic with, but much more 
computationally efficient than, 
Moore-Penrose pseudo-
inversion of the system 
Jacobian8. That is, it has the 
effect of minimizing the 
Euclidean Norm of the contact 
force magnitudes. Despite the 
fact that this was a legged 
system and we are presently 
discussing wheeled systems, the 
optimality criterion is the same, 
leading to the same algorithmic 
alternatives. 

Geometrically, the zero interaction force condition is as shown in Figure 3. It means that the 
components of the contact forces at any two wheels along the line joining the contact points are 
equal. Imposing this condition removes any tendency of pairs of wheels to work against each 
other. As has been demonstrated, it leads, via a straightforward geometric argument, to an 
elegantly simple set of equations that can be computed with great efficiency in real time (Kumar 
and Waldron, 1988). 

Here the contact force, Fi, that must be generated at contact point i is given by the equation 

 Fi = Sk × ri −ρ( ) 
where, as shown in Figure 4, ri is the position, relative to the vehicle reference frame, of contact 
point i, ρ is the position of point A, called the force center, and S is the field intensity. 

The vector, ρ, and the intensity, S can be computed from the magnitude and line of action of the 
resultant force, R, and the locations of the contact points via the following equations: 

 
S =

T − r × R
nIG

, ρ = r +
k × R

nS  
Here T is the moment of the resultant force, R, about the origin, r  is the location of the centroid 
of the n contact points, and IG is their moment of inertia about that centroid. 

An alternative approach that can be applied to the present planar model is the simple principle 
that all contact forces are parallel, and parallel to the commanded resultant. The magnitudes of 
the contact forces are distributed linearly in proportion to their position normal to their direction, 
as shown in Figure 5. 
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Figure 4: Force allocation using the zero interaction force principle. The
magnitudes of the contact forces, Fi are proportional to the distances of the
contact points from a force center, A, and the contact forces are directed normal
to  the vectors from A to the contact points. 



 

Both the zero interaction force 
algorithm and the linear force 
distribution algorithm are, 
however, sub-optimal5 with 
respect to minimizing the ratio of 
tangential to normal force. They 
approach optimality, in this sense, 
in moderate terrain. Indeed, in 
cruise conditions the linear force 
distribution algorithm is optimal 
from a different viewpoint. It 
represents the most nearly 
uniform distribution of contact 
forces that yet sums to the 
commanded resultant. This is 

important in the sense of minimizing the sinkage of the wheels into the soil, and hence 
minimizing the soil work and effective resistance, leading to greater range for given fuel weight. 
It is likewise, optimal in weak soil conditions in the sense of minimizing the tendency of contact 
failure. 

In more extreme terrain both these criteria may perform poorly. The reason this happens is 
illustrated in Figure 6, which shows the mechanics of two locomotion elements in contact with a 
step obstacle: admittedly an extreme example. The example is the zero interaction force 
criterion, but a very similar argument can be 
applied to the linear force distribution criterion. 
Equalizing the components of the contact forces 
along the line joining the contact points in this case 
produces a very large ratio of tangential to normal 
force at one contact, with the traction forces at the 
two contacts actually being opposed to one 
another. 

 An algorithm based on the theory presented here, 
while restricted in the vehicle architectures to 
which it is applicable, much more nearly 
approaches optimality for locomotion in extreme 
terrain. The solution will be developed 
geometrically. However, the resulting equations, 
while quite different to those produced by the zero 
interaction force approach, are similarly simple 
and conducive to efficient, real-time solution.  
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Figure 6: The zero interaction force condition
applied to a pair of feet in contact with a step obstacle.
The resulting contact forces are far from optimal. The
friction angle at point Pi is very large, and is actually
opposed by that at point Pj. 
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Figure 5:   Linear contact force distribution produced by the zero
interaction force condidtion applied to a planar force system. 



5 TWO-POINT CONTACT 

When only two points are in contact the basic geometry is as shown in Figure 7. Since the forces 
R, Fi and Fj form a three force set they must be concurrent. That is, the lines of action of Fi and 
Fj must intersect on the line of action of R. 

If we draw the circle that passes 
through the two contact points and 
the intersection of the contact 
normals, as shown on  Figure 7, 
the angle subtended at all points on 
the circumference of that circle by 
the line P1P2 is the same. This 
ensures that, if the lines of action 
of the contact forces intersect at 
the intersection of the line of 
action of the commanded force, R, 
with this circle, the angles, φ, are 
equal. Of course the tangent of φ is 
the ratio of the tangential to the 
normal contact force component. 
Thus, the criterion becomes 
minimizing the maximum value of 
φ over all the contacts. 

If the concurrency point is moved 
outward along the line of action of 
R, beyond the circle, the angle at 
one contact decreases, while that at 
the other increases. The same 

happens if the concurrency point is moved inward to the interior of the circle. Thus, the solution 
shown in Figure 7 is, in fact, the minimax solution, namely that solution that minimizes the 
maximum value of the friction angles. 

6 THREE OR MORE CONTACT POINTS 

In the case of vehicles with three or more wheels per side there will, in general, be more than two 
wheels in contact with the ground at any given time. This presents an even more under-
determined problem. A theory of force allocation can be developed based on fundamentals 
similar to those used for the two contact case above3. Space does not permit detailed presentation 
of that solution here. However, the result is that the optimal strategy is to identify the two 
contacts that are best placed to provide traction and to unweight all other wheels. The contact 
forces at those two remaining contacts are allocated according to the two contact point solution 
derived above. Heuristically, traction force is developed from friction, which is proportional to 
normal contact force. Since normal contact force is a result of vehicle weight, or more generally 
the combination of weight and inertia force, it is bounded. Therefore it makes sense to 
concentrate that load at the contacts that are able to generate the most traction from it. Since the 
minimum number of contacts that can generate a given resultant is two, the optimal solution is to 
apply all load to the best two contacts. 

R

n
jt

j

F
j

n
i

t
i

F
i

φ

φ

P
i

P
j

Figure 7: Geometric solution of the minimax problem for two contact
points 



7   DISCUSSION 

The tactic of placing all the resultant force on one side of the vehicle upon the two wheels best 
located to generate traction, and of unweighting all other wheels on that side, optimizes the 
available traction. However, on uneven terrain the choice of the two wheels best located to 
generate traction will change quite frequently, with resulting radical changes in wheel loading. 
This produces the same kind of step changes in the force commands, or “chatter” that was noted 
above with respect to solution by linear programming. This is hardly surprising, since both 
solution methods are, in principle, optimal for the planar force allocation problem. The method 
discussed here can be viewed as a closed form solution that is equivalent to the iterative linear 
programming solution. 

The drastic changes in loading required by the traction maximizing solution are undesirable from 
several points of view. They can be de-stabilizing because of the difference between static and 
kinetic friction coefficients, that is not modeled in the derivation of the algorithm. Further, the 
large swings in commanded wheel torque and suspension load would necessarily be hard on 
mechanical components. Thus, we have the necessity of filtering the force commands to ease the 
transitions between loading regimes. That, in turn, moves the algorithm away from optimality. 

We have extensively studied the behavior of the traction maximizing algorithm in simulation. 
Figure 8 is a frame from an ADAMS simulation of the UGCV vehicle crossing a large obstacle 
of random profile. As might be expected, use on moderate terrain is problematic because of 
relatively frequent changes in loading regimes and singularity of the solution that occurs if the 
terrain approximates a plane. Therefore, it is necessary to use either the zero interaction force 
solution, or that of Figure 5, for all but severe terrain conditions. We continue to explore the 
issue of when it is most appropriate to switch to the traction maximizing algorithm, and vice-

Figure 8: A frame from an ADAMS simulation of the UGCV vehicle traversing rough, random terrain. This was a
test in simulation of the traction maximizing algorithm discussed in this paper. 



versa. We also are seeking ways of filtering the commanded force system that will be compatible 
with the dynamics of the system. 
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