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ABSTRACT

Endoscope 3D motion tracking plays an irreplaceable role for
computer-assisted endoscopy systems development. Without
such tracking, it is impossible to synchronize pre- and intra-
operative images in a reference coordinate frame. Currently
available methods are comprised of video-based and elec-
tromagnetic tracking. These methods limit to either video
image artifacts or inaccurate sensor measurements and dy-
namic errors. This paper proposes two modified evolutionary
computation algorithms: (a) adaptive particle swarm opti-
mization (APSO) and (b) observation-boosted differential
evolution (OBDE), to augment current endoscopic camera
motion tracking. The experimental results demonstrate that
our modified algorithms, which combine endoscopic video
images with sensor measurements to estimate endoscope
movements, can improve tracking accuracy from 4.8 mm to
2.9 mm. OBDE outperforms APSO for endoscope tracking.

Index Terms— Endoscope tracking and navigation, evo-
lutionary computation, particle swarm optimization, differen-
tial evolution, computer-assisted interventions

1. INTRODUCTION

Endoscope, which is commonly integrated with a video cam-
era at its distal tip, is a widely used medical instrument during
minimally invasive surgery. Physicians usually insert the en-
doscope into the body cavity (e.g., bronchus or colon) through
natural orifices (e.g., mouth or nose) to directly observe and
examine the interior of the body cavity. Under the endoscope
with two-dimensional (2-D) video images, physicians also
perform surgical procedures of interventions and treatment,
e.g., a biopsy procedure that either takes a small sample of
suspicious tumors for pathological analysis or removes sam-
ples of precancerous regions. However, during these proce-
dures, it is difficult to determine the location (position and
orientation) of the endoscope distal tip or its integrated video
camera in the body cavity. Recently three-dimensional (3-D)
endoscopic camera motion tracking has been introduced to
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solve the location problem of the endoscope tip. Such track-
ing seeks to locate the endoscopic camera at a spatial coor-
dinate reference system, e.g., pre-operative image coordinate
system of computed tomography (CT) scanners.

Current tracking methods use either endoscopic camera
video images or an electromagnetic (EM) tracking device to
estimate the 3-D endoscopic camera pose or location with
position and orientation in the CT image coordinate system.
Based on endoscopic video images, 2-D/3-D image registra-
tion is performed to align these video images to the 3-D CT
images that are used to generate 2-D virtual rendering images
by surface or volume rendering techniques [1]. The EM track-
ing device uses a miniature position sensor attached at the en-
doscope tip to measure the endoscopic camera motion. By
calibrating the EM tracker and the 3-D CT volume, these mo-
tion measurements with six degrees of freedom (6DoF) posi-
tion and orientation parameters can be transformed to the CT
image coordinate system [2]. However, EM trackers have two
main limitations: (1) inaccurate EM sensor measurements
due to tissue deformation, particularly respiratory motion, and
(2) dynamic errors because of magnetic field distortion. The
motivation of this work is to address these limitations of EM
trackers by using evolutionary computation.

Evolutionary computation, which is generally a family
of artificial intelligence, uses biological evolution, e.g., mu-
tation and natural selection, to solve dynamic optimization
problems [3]. Its algorithms, particularly particle swarm
optimization (PSO) and differential evolution (DE), with a
meta-heuristic or stochastic optimization property, are in-
creasingly introduced to various practical applications, such
as image segmentation and object recognitions. This work
employs the PSO and DE algorithms to tackle the limita-
tions of EM trackers. Since the performance of PSO and DE
depends heavily on their operators and evolutionary factors,
we proposed adaptive particle swarm optimization (APSO)
and observation-boosted differential evolution (OBDE). The
main contributions of this works are two-fold: (1) PSO and
DE algorithms were modified with improved performance,
(2) the performance of APSO and OBDE was fully compared
with applications to endoscopic camera motion tracking.



2. APPROACHES

Evolutionary computation usually generates a population X
of potential or random solutions (or called individuals) X =
{xi,g ∈ RD}i=1,2,··· ,N, g=1,2,··· ,G (where N is the popula-
tion size, G is the generation number, and D is the dimension
of individual or vector xi,g) and propagates the population at
each iteration (also called generation g) to approximate the
optimal solution of global and stochastic optimization prob-
lems. Operation and selection are two primary forces to drive
evolutionary computation. It is operation that evolves individ-
uals by using different strategies, which lead to the difference
between APSO and OBDE, as discussed as follows.

2.1. Adaptive Particle Swarm Optimizer

In PSO, the i-th individual or vector xi,g−1 at generation g−1
is evolved to xi,g at generation g on the basis of speed ai,g and
inertia weight ω (to control previous speed ai,g−1) by

xi,g = xi,g−1 + ai,g, (1)

ai,g = ωai,g−1+µ1η1(bi−xi,g−1)+µ2η2(c−xi,g−1), (2)

where µ1 and µ2 are acceleration constants, η1 and η2 yield
the uniform distribution with the interval [0, 1], bi is the best
solution obtained by the i-th individual so far, and c is the
global best solution from population B = {bi}Ni=1. After
iteration g, bi and c are updated in terms of fitness f (·):

bi =

{
xi,g iff(xi,g) > f(bi)
bi otherwise

, (3)

c = arg max
bi∈B

f(bi). (4)

The performance of PSO depends on parameters ω, µ1

and µ2, speed ai,g−1, and fitness f (·). During the standard
PSO, parameters ω, µ1 and µ2 are fixed constants and speed
ai,g−1, and fitness f (·) do not involve the current observation
information. Our idea of modifying PSO is to employ the cur-
rent observation information to determine speed ai,g−1, and
fitness f (·) and adaptively compute ω, µ1 and µ2. Suppose
ok be the current observation of one dynamic system at time
k, we compute these variables with respect to ok:

f(xi,g) = p(ok|xi,g), ai,g−1 = Γ(ok,ok−1), (5)

µ1 =
2p(ok|bi)

p(ok|bi) + p(ok|c)
, µ2 =

2p(ok|c)

p(ok|bi) + p(ok|c)
, (6)

where function Γ computes the speed between ok and ok−1.
To adaptively control ω, we first define spatial distribution

factor γg−1 at generation g−1 on the basis of average distance
di,g−1 from xi,g−1 to all the other individuals:

di,g−1 =
1

N − 1

N∑
i=1,i6=j

‖xi,g−1 − xj,g−1‖ . (7)

Based on maximal and minimal distances (dmax, dmin) from
{di,g−1}Ni=1 and average distance dc between global best c
and {xi,g−1}Ni=1, distribution factor γg−1 is computed by:

γg−1 = (dc − dmin)/(dmax − dmin), γg−1 ∈ [0, 1]. (8)

Since ω was suggested to range within the interval [0.4, 0.9]
to weighting the global and the local searching abilities [4],
we use distribution factor γg−1 and fitness f(xi,g−1) to adap-
tively calculate inertia weight ω for speed ai,g by:

ω =
2

2 + 3 exp(−1.28(p(ok|xi,g−1) + γg−1))
, (9)

which shows a novel strategy to automatically control ω.

2.2. Observation-Boosted Differential Evolution

In DE, three operations are usually performed: (1) mutation,
(2) crossover, and (2) selection. The DE performance depends
on the mutation operator. Such an operator determines mutant
vector vi,g for individual or vector xi,g at generation g by:

vi,g = xi,g +mi

ṽi,g︷ ︸︸ ︷
(c− xi,g) +mi

v̂i,g︷ ︸︸ ︷
(xr1i ,g

− xr2i ,g
), (10)

where mi denotes the mutation factor and indexes r1i r2i
are mutually exclusive integers chosen randomly from set
{1, · · · , i−1, i+1, · · · , N}. The mutation operator in Eq. 10
brings good convergence performance during optimization
since global best individual c was involved. However, best
individual c might lose the population’s diversity and lead to
unstable convergence. To tackle this problem, we modify this
operator by current observation ok and two mutant factors:

vi,g = xi,g + αiΓ(ok,ok−1)︸ ︷︷ ︸
observation

+m̃iṽi,g + m̂iv̂i,g, (11)

m̃i =
2p(ok|c)

p(ok|xi,g) + p(ok|c)
, m̂i =

2p(ok|xi,g)

p(ok|xi,g) + p(ok|c)
,

(12)
where random number αi controls the keep of the current ob-
servation and yields an uniformly distribution: αi ∈ [0, 1].

After mutation, we perform a binomial crossover opera-
tion to determine trial vector ui,g = {u1i,g, · · · , uDi,g} using
vectors xi,g = {x1i,g, · · · , xDi,g} and vi,g = {v1i,g, · · · , vDi,g}:

uji,g =

{
vji,g if (δ ≤ Cr) or (j = jr)

xji,g otherwise
, (13)

where random number δ ∈ [0, 1], integer jr is randomly se-
lected from set {1, 2, · · · , D}, and crossover rate Cr checks
whether uji,g is copied from vji,g and is computed by:

Cr =
p(ok|xi,g) + p(ok|vi,g)

2
. (14)



The selection operator updates population {xi,g}Ni=1 to
{xi,g+1}Ni=1 at generation g + 1 from {xi,g}Ni=1 ∪ {ui,g}Ni=1

in accordance with their fitness values:

xi,g+1 =

{
ui,g if f(ui,g) ≥ f(xi,g)
xi,g otherwise

. (15)

Finally, after the G-th iteration in optimization, global
best solution c of using the DE algorithm is determined by:

c = arg max
xi,G∈{xi,G}Ni=1

p(ok|xi,G). (16)

2.3. Applications to 3-D Endoscopic Camera Tracking

Endoscope tracking is to continuously estimate the current
camera pose with position and orientation in the CT image
coordinate system. Suppose that tk denotes the endoscopic
camera position and quaternion qk represents the endoscopic
camera orientation. In evolutionary computation of APSO
and OBDE, xi,g becomes xk

i,g that is a seven-dimensional
vector (D = 7) including position tk and quaternion qk:

xk
i,g =

(
tk qk

)
= (tkx, t

k
y , t

k
z , q

k
0 , q

k
1 , q

k
2 , q

k
3 ), (17)

where tkx, tky , tkz are the position in the x-, y-, and z-axes of
the CT coordinates and (qk0 )2 + (qk1 )2 + (qk2 )2 + (qk3 )2 = 1.

The inputs of endoscopic ca mare tracking are endoscopic
camera video sequences, EM sensor measurements, and the
CT images. Current observation ok include endoscopic video
image õk and EM sensor measurement ôk at time k. The
CT images are used to generate 2-D virtual rendering image
I(xk

i,g) corresponding to individual xk
i,g using volume render-

ing techniques. During iterations, Γ(·) in Eqs. (5) and (11) is
computed using EM sensor measurements ôk and ôk−1:

Γ(ôk, ôk−1) = ôk − ôk−1, (18)

Fitness value f(·) of each individual xk
i,g is calculated by:

f(xk
i,g) = p(õk|xk

i,g) = s(õk, I(x
k
i,g)), (19)

where intensity similarity s(õk, I(x
k
i,g)) between video image

õk and virtual rendering image I(xk
i,g) is defined as [5]:

s(õk, I(x
k
i,g)) =

(2ξkξi + C1) (2δk,i + C2)

(ξ2k + ξ2i + C1) (δ2k + δ2i + C2)
, (20)

where δk,i is the correlation between images õk and I(xk
i,g);

ξk and ξi are the mean intensity values; δk and δi are the
intensity variances, and C1 and C2 are two constants.

Finally, the APSO- or OBDE-based tracking outputs the
best estimate for current endoscopic camera pose (tk∗ q

k
∗):(

tk∗ q
k
∗
)

= xk
∗ = arg max

{xk
i,g}Ni=1

p(õk|xk
i,g). (21)

3. RESULTS AND DISCUSSION

We evaluate APSO- and OBDE-based tracking methods on
six datasets of endoscopic videos and EM sensor measure-
ments. We manually generated ground truth for these datasets
and compute position and orientation errors between camera
pose estimates and ground truth. We also define the visual
quality as the similarity of video images and their correspond-
ing 2-D virtual rendering images generated using camera pose
estimates in the CT images. We compare four methods: (1)
Mori et al. [6], directly combining EM sensor measurements
and endoscopic video images to estimate camera motion, (2)
Soper et al. [2], a hybrid method of using endoscopic video
images and EM sensor measurements with Kalman filtering,
and (3) APSO, and(4) OBDE, as discussed in Section 2.

Table 1 quantifies tracking position and orientation errors,
processing time, and visual quality of using different meth-
ods. Fig. 1 plots examples of the tracking results. Fig. 2 vi-
sually compares virtual rendering images of using the four
methods. All these experimental results demonstrate that two
modified evolutionary computation algorithms of APSO and
OBDE improve the tracking performance. We attribute such
an improvement to the introduction of the current observation
information of endoscopic video images and EM sensor mea-
surements for evolutionary computation. The population with
individuals was evolved on the basis of the current observa-
tion of the EM sensor that can positively guide individuals to
approximate the best solution for the current endoscopic cam-
era pose. Furthermore, evolutionary parameters, which were
automatically on the basis of the fitness of each individual
in APSO and OBDE, were beneficial to avoid the premature
convergence of evolutionary computation. Additionally, the
fitness of individuals was also computed on the basis of the
current observation (video image) of the endoscopic camera.

In summary, we modified two evolutionary computation
algorithms of APSO and OBDE that were boosted by obser-
vation information in stochastic optimization or dynamic sys-
tems. With application to 3-D endoscopic camera tracking,
we demonstrated that observation-based evolutionary compu-
tation provides a more accurate and robust tracking method.
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Fig. 1: Examples of plotted tracking errors, processing time per frame, and visual quality of using different methods.
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