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Abstract—This paper proposes a neuro-sliding mode 
multivariable control approach for the control of a powered 
wheelchair system. In the first stage, a systematic decoupling 
technique is applied to the wheelchair system in order to 
reduce the multivariable control problem into two independent 
scalar control problems. Then two Neuro-Sliding Mode 
Controllers (NSMCs) are designed for these independent sub-
systems to guarantee system robustness under model 
uncertainties and unknown external disturbances. Both off-line 
and on-line trainings are involved in the second stage. Real-
time experimental results confirm that robust performance for 
this multivariable wheelchair control system under model 
uncertainties and unknown external disturbances can indeed 
be achieved.      

I. INTRODUCTION 
smart powered wheelchair system consists of two 

control levels known as supervisory control level and 
drive control level. The supervisory level generates control 
commands based on the information from sensory systems 
and user intention. These commands are sent to the drive 
control level, which drives the wheelchair’s actuators 
directly, to perform smart tasks such as obstacle avoidance 
and path following [1].  

Various advanced control strategies for the driver control 
level have been developed including digital control 
technique [2] and neural control technique [3]. However, 
none of these techniques have treated powered wheelchairs 
as a multivariable system. As a consequence, the above 
control strategies would not be optimal when the operating 
environment for the wheelchairs is rough and nonlinear.  

In term of robustness, Sliding Mode Control (SMC) has 
been proven to be insensitive to parameter changes and 
external disturbances. However, it has two disadvantages: 
chattering phenomenon and requirement of a an exact 
model, which is used to calculate an equivalent control and a 
corrective control [4]. To solve these problems,  online 
neuro-sliding mode control method presented in [5] uses  
neural networks based on sliding mode control to estimate 
both equivalent control and corrective control for nonlinear 
systems. Nevertheless, updating laws for this corrective 
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control are still complicated in this particular method. 
This paper extends the advanced robust control technique 

presented in our previous work [6] by using improved 
neuro-sliding mode control method. The technique 
developed in this study includes two stages. In the first 
stage, a systematic decoupling technique [7] is utilised to 
decompose the wheelchair into two independent scalar 
systems. In the second stage, two NSMCs are designed for 
these two independent scalar systems to guarantee the 
robustness under external disturbances and model 
uncertainties. Two steps are adopted for the design of these 
NSMCs to achieve fast dynamic responses. At first, off-line 
trainings are conducted for two NSMCs to obtain nominal 
weights. Then, these weights are used as initial weights in 
on-line training for dealing with unknown external 
disturbances.  

The paper is organized as follows. In the next section, 
neuro-sliding mode control design is presented. An 
advanced decoupling technique using neuro-sliding mode 
control method is described in Section III. Real-time 
experimental results and discussions are shown in Section 
IV. The conclusion is given in the section V. 

II. NEURO-SLIDING MODE CONTROL DESIGN 

A. Sliding mode control design 
Consider an uncertainty system with external unknown 

disturbances in the following form: 
( )
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where nRx ∈ is system state vector, Ru ∈ is control input 
nxnRA∈ is system matrix, 1nxRB ∈ is input matrix 

and xnRC 1∈ . nxnRA∈Δ and 1nxRB ∈Δ present uncertainties, 
)(td is external disturbance and 1nxR∈Θ .  

The sliding surface is defined as:  
( )xxhehs d

TT −==                       (2.2) 

where dx is desired state vector and ( )Tnhhh ...1=  is 
given for s=0. From equation (2.2), the dynamic equation is 
cast into the error equation as follows: 

( ) ( ) )(tduBBxAAxe d Θ−Δ+−Δ+−= &&       (2.3)                      
Let Lyapunov candidate function be selected as below: 

25.0 sV ⋅=                            (2.4) 
If the derivative of the Lyapunov candidate function is 

chosen as follows: 
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 )(ssignsV ⋅⋅−= δ&                       (2.5) 
whereδ is positive scalar and sign(.) is defined in (2.11a), 
then according to Lyaponov theorem, the dynamic system is 
global stable.                                     

Taking derivative of (2.4) and equating it to (2.5), the 
following equation is obtained:  

 )(ssignsss ⋅⋅−=⋅ δ&                       (2.6)                                               
 The time derivative of s can be obtained from (2.1) and 
(2.2) is given below: 

( ) ( ) )(tdhuBBhxAAhxhs TTT
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 From (2.6) and (2.7), the control input signal can be 
obtained as: 

)()()( tututu ceq +=                         (2.8)                                  

where )(tueq is the equivalent control given by: 
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and )(tuc is the corrective control given by: 
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Because of the sign(.) function, the corrective controller in 
(2.10) exhibits high frequency oscillations known as 
chattering phenomena. A shifted sigmoid function, g(.), 
described in (2.11b), is used to eliminate this effect.  
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B. Neuro-sliding mode control design  
Due to uncertainties and unknown external disturbance, 

equivalent control in (2.9) and corrective control in (2.10) 
may not be directly calculated. Two NSMCs employed to 
estimate two control signals are described in the Figure 2.1. 
The equivalent control is computed by the Equivalent 
Neural Network (ENN). Meanwhile, the corrective control 
is computed by the Corrective Neural Network (CNN). 
Since the ENN keeps the plant states on the sliding surface 
s=0, the CNN is trained to drive the plants state back to 
sliding surface if they are out of the surface. 

Both ENN and CNN are chosen as a three-layer feed-
forward neural network shown in Fig 2.2 and Fig 2.3. 
Estimated equivalent control and estimated corrective 
control can be calculated as in (2.12) and (2.13) as follows: 
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where ( ).g  is defined in (2.11) and the neural network 
parameters are described in Figure 2.2 and Figure 2.3. 

 
To estimate the value of the equivalent control and the 

corrective control, the training processes use iterative 
steepest descent algorithm to minimize the mean square 
errors between actual values and desired values, defined in 
(2.14). 
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The weight adaptation laws for the ENN aimed at 
minimizing E are in following equations: 

( ) ( )( ) jueqeq
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In (2.15), the equivalent control equ is unknown, but the 

characteristic of eqeq uu ˆ− and the sliding surface s is similar 

[5].  Thus, the sliding value s can be used instead of using 
eqeq uu ˆ− . 

The equation (2.15) can be rewritten as follows: 

( )( ) ju
j

j YoutUnetgks
W
EW 21

2
1 −⋅⋅=

∂
∂−=Δ ηη      (2.16) 

Similarly, the weights between input-layer and hidden-
layer of the ENN can be updated as follows: 
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Figure 2.1: The control structure 
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Figure 2.2: The equivalent neural network structure  

 
Figure 2.3: The corrective neural network structure 



  

The weight updating laws for the CNN to minimize the 
cost function J can be written in equation (2.18). 
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where 0>η and 0>μ are learning rate.  
Assume that  

0)()( >⋅Δ+ BsignBBsign                     (2.19) 
Because vector h is changed online so that the cost 

function J defined in (2.14) converges to zero, K in (2,10) 
can be calculated from the nominal model as: 
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III. ADVANCED DECOUPLING CONTROL OF THE WHEELCHAIR  

A. Decoupling design of the wheelchair system 
To simplify the control design, decoupling technique is 

used to cast a multivariable problem into scalar problems. In 
[6], the triangularization technique is used to construct the 
desired decoupler D(s) for the wheelchair nominal model 
Go(s) as in the equation (3.2): 
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The obtained decoupled transfer function matrix is 
triangular-diagonal-dominant (TDD) as follows: 
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 Now, we try to diagonalize the triangular matrix )(sP  by 
choosing pre-compensator V(s) as follows: 
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Then, the diagonalized model of the wheelchair can be 
obtained in the simplified form:                              
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B. Neuro-Sliding Mode Control design of the wheelchair 
system 
After being decoupled, the wheelchair is decomposed into 

two scalar systems required to design two NSMCs (Figure 
3.1). Two control design steps needed for each independent 
subsystem are described the Figure 3.2. 

 

 
Step1: Off-line training scheme: The diagonal model in 

(3.5) is used to train two corresponding NSMCs so that their 
weights converge to nominal values, implies that control 
design specifications are satisfied.   

 
Step2: On-line training scheme: The obtained weights 

are then assigned to two NSMCs to reject uncertainties and 
external disturbances of the whole system. 

IV. REALTIME EXPERIMENTAL RESULTS AND DISCUSSIONS 
The algorithms described in the previous sections were 

implemented in ANSI C LabWindow CVI 8.5. The 
sampling time is selected as: Ts = 20 ms. 

Define a multilayer feed-forward with n input nodes, m 
hidden nodes and o output nodes as {n,m,o}. The ENN and 
CNN structure of the NSMC 1 are {2,3,1} and {2,1,1} while 
that of the NSMC 2 are {2,3,1} and {2,1,1}. 

The learning rates of NSMC 1 are chosen as 
05.0;8.0 == μη while the learning rates of NSMC 2 are 

chosen as 03.0;65.0 == μη . The value 1K and 2K are 
directly calculated from (3.4) with 035.0=δ . Ku =1 for both 
NSMCs. 
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Figure 3.1: Advanced decoupling control structure 

 
Figure 3.2: The flow chart for two kinds of training schemes.



  

Results: 
At the beginning, off-line training scheme is executed for 

the decoupled two scalar systems (see equation (3.5)) to get 
nominal weights of the two neuro-sliding mode controllers 
NSMC 1 and NSMC 2. 

As a result, the nominal weights of the NSMC 1 for linear 
velocity loop are obtained as follows: 
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 The nominal weights of the NSMC 2 for angular velocity 
loop are: 
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Then, online-training scheme with trained NSMCs is 
implemented and applied in two real-time experiments. 

As a result, in the first experiment, the wheelchair tracks a 
circle with radius 1 m (v=0.377 m/s; ω =0.38 rad/s). Figure 
4.1 shows the reference and actual experimental trajectories 
and the closed-loop responses of two decoupled loops. 
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Figure 4.1 Circular tracing task. 
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Figure 4.2 Adaptive line tracing - NSMC method 
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Figure 4.3 Adaptive line tracing - old method 

In the second experiment, we test robust tracking 
performance of the designed wheelchair system under 
external disturbance for a line tracing task. Specifically, a 
person weighted 60 kg artificially generates external 
disturbances by pulling the wheelchair at t=10s, releasing it 
at t=20s, and pulling it again at t=30s. In this experiment, the 
wheelchair runs on the wooden surface at first at t=20s, then 
it runs on the carpet.  

Figure 4.2 shows the closed-loop responses of linear 
velocity and angular velocity.  A comparison study is also 
performed by repeating the experiment for the controller 
which we proposed in [6]. Figure 4.3 is the responses with 
the use of the control method in [6]. 

Discussions 
Figure 4.1 shows the closed-loop responses satisfy control 

design requirements with settling time Ts ≤2.5 s and no 
overshoot. It also demonstrates that the two velocity loops 
can be controlled independently by the two NSMCs without 
coupling effects. Compared to Figure 4.3, Figure 4.2 shows 
that NSMC achieves a significant improvement in the sense 
of how it can substantially suppress external disturbances by 
using online learning algorithm.  

V. CONCLUSION 
In this paper, we have come to extend our advanced 

robust technique in [6] for the control of a wheelchair 
system. First, the multivariable system is decoupled 
completely into two scalar subsystems by using a pre-
compensator. Two NSMCs are then designed independently 
for the two subsystems based on the combination of neural 
network design and sliding mode theory. This good 
combined method can guarantee the robustness of the closed 
loop system under uncertainties and unknown external 
disturbances. Real-time experiment results confirm that 
robust performance for the multivariable wheelchair control 
system has been achieved.  
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