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Abstract—Brain-computer interfaces (BCIs) are used to assist
people, especially those with verbal or physical disabilities,
communicate with the computer to indicate their selections,
control a device or answer questions only by their mere thoughts.
Due to the noisy nature of brain signals, the required time
for each experimental session must be lengthened to reach
satisfactory accuracy. This is the trade-off between the speed
and the precision of a BCI system. In this paper, we propose
a unified method which is the integration of ensemble classifier,
dynamic stopping, and adaptive learning. We are able to both
increase the accuracy, as well as to reduce the spelling time of
the P300-Speller. Another merit of our study is that it does not
require the training phase for any new subject, hence eliminates
the extensively time-consuming process for learning purposes.
Experimental results show that we achieve the averaged bit rate
boost up of 182% on 15 subjects. Our best achieved accuracy is
95.95% by using 7.49 flashing iterations and our best achieved bit
rate is 40.87 bits/min with 83.99% accuracy and 3.64 iterations.
To the best of our knowledge, these results outperformed most
of the related P300-based BCI studies.

Index Terms—Brain-computer interface, subject-independent,
support vector machines

I. INTRODUCTION

Brain-computer interfaces (BCIs) are used to translate inten-
tions of users, especially those with severe motor impairments
such as amyotrophic lateral sclerosis (ALS) [1], [2], into
the system’s commands. BCIs primarily use electroencephalo-
grams (EEG), which is the electrical measurements on the
human scalp, as the main modality. Event-related potential
(ERP) is the dominant feature of EEG [3]. Generally, an ERP
is an electrical response produced by the human brain as a
reaction to a specific evoke or stimulus. On top of that, P300
[4] is one of the most robust components of ERP which had
been used in various BCI studies [5]–[16]. P300 responses
manifest as a positive voltage peak in EEG and presents
approximately 300 ms after the visual stimulus onset.

To better exploit the predominant aspect of P300, Farwell
first introduced the so-call P300-Speller (P3S) [17]. The
ultimate goal of P3S BCIs is to help people indicate their
choosing among the preset options on the computer screen.
The set of available images on the screen can be a matrix of
alphabetical letters or symbols from any language, or it can
even be a group of graphical images indicating people’s every
basic needs (food, light, hygiene, etc.,). We only care about the
stimulus timing rather than the meaning of the images or the
symbols on the screen. Therefore the set of user options can be
almost anything. Each symbol in that set is flashed sequentially

according to a specific flashing paradigm. In most 36-letter
P3S, each one-letter spelling session is usually conducted by a
fixed number of iterations. Each iteration consists of 12 letter
intensifications (or flashes), corresponding to 6 rows and 6
columns of the P3S. A signal timeline for a P3S is illustrated
in Fig. 1.

Since then, various developments and research were carried
out to boost up its performance, i.e, accuracy, speed, or bit
rate. These developments can be the modifications on stimulus
flashing paradigms [5]–[7], language model integration [8]–
[11], feature processing and frameworks [12]–[14], or classi-
fication algorithms [15], [16]. However, the original method
remains the same that the subjects focus their eyesight at one
desired option out of the offered set of letters appearing on
the screen, thereby to convey their spelling intentions.

As increasing iterations can improve the relatively low
signal-to-noise (SNR) ratio of P300 responses over time
and thereby increase the decision’s accuracy, they however
inevitably prolong the spelling session. To deal with this
trade-off, various dynamic stopping (DS) methods had been
proposed [1], [10], [18]–[22] to abruptly stop the flashing
paradigm at any moment, when a set of user-defined conditions
is satisfied. DS methods therefore can significantly reduce the
spelling time while also preserving the expected accuracy that
could be achieved by static stopping methods. We take a brief
summary on each approach as follows.

Lenhardt [19] used two thresholds as the real-time criteria
to dynamically stop the P3S. The first threshold represents the
sum score of all normalized letter candidate scores (or called,
the overall matrix brightness) over iterations. The average
matrix brightness over 36 letters was proved by them to
consistently decrease as the iteration increases. The second
threshold is the ratio between two highest scores of two letter
candidates.

Mainsah [1], [10], Clements [21], Kindermans [11], [22]
all used the similar DS method on different signal processing
frameworks. They implement the DS by updating the posterior
probabilities of each letter via a Bayesian interference scheme
after each iteration, given the classifier score history of the
previous iterations. Kindermans [11], [22] provided a com-
prehensive study on unsupervised and adaptive transfer learn-
ing [22] (or subject-independent classification with unlabeled
training data).

Since most existing works implemented the Bayesian prob-
ability update process, we propose a DS method by using two
criteria calculated from the ensemble support vector machine



Figure 1: The timeline of signal stream and flashing paradigm of a one-letter spelling session. There are 15 iterations of 12 scramble flashes of 12 rows/columns,
in which there are 2 target and 10 non-target flashes. Ideally, there is a P300-response occurred approximately 300 ms after the onset of each target flash.
Each flash lasts for a duration of inter-stimulus interval (ISI). In the classification stage, each flash is associated with a feature vector beginning at the flash’s
onset. As there are 12 × 15 = 180 flashes in one session, we have the maximum of 180 post-stimulus feature vectors in a static stopping flashing paradigm.

(SVM) classifiers’ scores to estimate the confidence of the
whole classification scheme. The intuition behind our proposed
method is that our SVM-based DS criteria can suit the
real-time SVM adaptive learning technique. The integration
of ensemble SVM classifier, SVM-based DS method, and
SVM adaptive learning technique can significantly improve
the accuracy and reduce spelling time for subject-independent
experiments.

We conduct the experiments using 5 different classifica-
tion schemes, evaluated on a large multi-subject public P3S
datasets which had been used in various studies [11], [22],
[23]. The results show that our method can boost up the P3S
performance (in terms of higher accuracy and shorter time)
by a significant amount as compared to the related studies.
The main reason behind our superiority to other methods is
that adaptive learning allows the current classifier scheme to
get adapted with the new user. This adaptation leads to the
improvement of classification accuracy on the upcoming input
data.

The main contributions of this paper are:
• The first study to integrate ensemble classifier, dynamic

stopping and adaptive learning into one unified subject-
independent framework (as no training process is required for
new subjects).
• Propose a novel two-criterion analytic dynamic stopping

method, which is adaptive to most classification algorithms
which can generate real-valued scores, including SVM (used
in this paper).
• To provide detailed step-by-step algorithms for the real-

time DS method, the iterative grid search of DS parameters,
and the adaptive incremental learning update of P3S sessions.

The rest of this paper is organized as follows: Section II

presents the SVM ensemble framework. Section III proposes
the dynamic stopping method for the flashing paradigm and
the algorithm to obtain suitable dynamic stopping parameters.
Section IV describes the on-line adaptive learning methodol-
ogy, which is integrated together with the dynamic stopping
process. The dataset descriptions, experimental results, dis-
cussions and comparisons with related studies are presented in
Section V. Finally, Section VI derives the paper’s conclusions.

II. ENSEMBLE CLASSIFIER FRAMEWORK

Given a learning set L = {(xL,l, yL,l)}Nl=1 of N training
samples, where labels yL,l = −1 and yL,l = +1 are
given to P300 responses and non-P300 ones, respectively. The
conventional SVM [24] finds a hyperplane, characterized by
the parameters (wL, bL), then uses this hyperplane to classify
new test sample x as

f(x) = wT
Lx+ bL. (1)

Ensemble method [25] divides L into multiple partitions
L =

⋃P
p=1 Lp to construct P different classifiers fp (p ∈

{1, . . . , P}) and combines their scores to get the final decision
as

f(x) =

P∑
p=1

kpfp(x) =

P∑
p=1

kp(w
T
Lp
x+ bLp

), (2)

where kp is the classifier weights. With a fixed training data,
the ensemble method was theoretically proved to consistently
and considerably boost up classification performances [26].
This paper does not focus on the partitioning method, hence
we chronologically divided the training set into P separate
partitions with no overlaps between them.



Let xR(s, i) and xC(s, j) (where i, j ∈ {1, . . . , 6}) denote
the preprocessed post-stimulus vector associated to the flash
of row i and column j, respectively, during the s-th iteration.
Equivalent the SVM classifier as described in Eq.(1), the score
associated to one post-stimulus vector x (where x can stand
for either xR(s, i) or xC(s, j)), produced by classifier index
p, is computed as

fp(x) =
∑
i∈Lp

αiyiK(xi,x) + b, (3)

where xi, yi are the vectors and labels of the learning set Lp,
and αi are the evaluated SVM parameters corresponding to
Lp. In this paper, we implement the adaptive learning method
which uses newly-classified trials to reinforce the existing
SVM solution. Due to this reason, expressing the classifier’s
score as in the form of Eq.(3) is more appropriate for later
analysis than the compact form of Eq.(1). Section IV will take
more focus on the adaptive SVM scheme that is used in this
section.

The accumulated score of each row or column, performed
by P classifiers, after s iterations, is defined as

FR(s, i) =

s∑
t=1

P∑
p=1

fp(xR(t, i)),

FC(s, j) =

s∑
t=1

P∑
p=1

fp(xC(t, j)),

(4)

where i, j ∈ [1, · · · , 6].

III. DYNAMIC STOPPING METHOD

A. Proposed Conditions for Dynamic Stopping

During each spelling session, the desired letter can be
correctly elicited by using only a few first iterations when the
classifiers’ score is sufficiently confident about its decision,
hence dramatically reduce the spelling time. The confidence
level checking process is implemented continually after each
iteration, and is almost based on the Bayesian updating scheme
[1], [10], [11], [20]–[22]. However, since those schemes do not
work with our adaptive SVM, we propose a method which
based on the SVM scores. Our preliminary result had been
reported in [27]. In this paper, we make some modifications
to the criteria in [27] to better suits the real-time adaptive
SVM. As compared to [27], the DS criteria in this paper are
less computational. This is the desirable aspect for a real-
time system. Moreover, we also propose an analytical grid
search algorithm to obtain the optimal DS parameters. With
this algorithm one can specify the DS thresholds which can
yield pre-defined accuracies on purpose.

The candidate letter outputted by the classification scheme
is determine by a pair of row ĩs and column j̃s, which intersect
that letter on the P3S.

{̃is, j̃s} = argmax
i,j∈[1,··· ,6]

{FR(s, i) + FC(s, j)}.

Let θ̂1 and θ̂2 denote two thresholds to be compared with
for two conditions of the dynamic stopping method. We define
those two conditions as

• Condition 1:

θ1 =
FR(s, ĩs)− FR(s, îs) + FC(s, j̃s)− FC(s, ĵs)

1/6×
∑6
i,j=1(FR(s, i) + FC(s, j))

≥ θ̂1

(5)
where

{̃is, j̃s} = argmax
i,j∈[1,··· ,6]

{FR(s, i) + FC(s, j)}. (6)

and
{̂is, ĵs} = argmax

i,j∈[1,··· ,6]
i 6=ĩs;j 6=j̃s

{FR(s, i) + FC(s, j)}. (7)

• Condition 2:

θ2 = max
i,j

( P∑
p=1

vp(s, i, j)
)
/P ≥ θ̂2, (8)

where vp(s, i, j) = 1 if i = argmaxi′
∑s
t=1 fp(xR(t, i

′), j =
argmaxj′

∑s
t=1 fp(xC(t, j

′) ; and vp(s, i, j) = 0 otherwise.

B. Estimation of θ̂1 and θ̂2
We conduct an iterative grid search on the learning set to

estimate the optimal values for dynamic stopping parameters
θ̂1 and θ̂2. For each pair of θ1 and θ2, an associated accuracy
A(θ1, θ2) is generated. We can specify a desire accuracy
reduction a as compared to the maximum accuracy, and then
conduct the search to achieve the corresponding dynamic
stopping parameters. Let S(a) denote the set of parameters
which result in the maximum accuracy reduced by the margin
of a% as

S(a) = {(θ1, θ2)|A(θ1, θ2) ≥ max
θ′1,θ

′
2

A(θ′1, θ
′
2)− a}. (9)

The optimal values for θ̂1 and θ̂2 associated to the accuracy
reduction a can be obtained as

θ̂1, θ̂2 = argmin
(θ1,θ2)∈S(a)

{A(θ1, θ2)}, (10)

The grid search result is shown in Fig. 2. The tuning range
for θ2 is [0, . . . , 1] as maxi,j θ2 =

∑
pmaxi,j vp(s, i, j)/P =

(
∑
p 1)/P = 1. Similarly, the tuning range for θ1 can be

obtained by calculating lims→∞ θ1. However since the tuning
range for θ1 is fixed, we can omit the specification for the
tuning range of θ2, as we can iteratively increase θ2 with step
η2 from 0 until the maximum accuracy is obtained. The step
η1 and η2 for increasing θ1 and θ2 can be freely chosen. In this
paper, we select η1 = 0.2 and η2 = 0.25 through empirical
observation. The algorithm of the iterative grid search method
is presented in Algorithm 2.

IV. ADAPTIVE LEARNING UPDATE

A. SVM Updating Methods for Streaming Data

This section briefly review the primal SVM method which
has been mentioned in Section II, but in the dual form. The
SVM dual form problem [24] is desirable for the adaptive
learning technique which will be described in Section IV-B.

Let L = {(xL,l, yL,l)}N1

l=1 denote the initially given learning
set of N1 training samples, and T = {(xT ,t, yT ,t)}N2

t=1 denote



(a) Accuracy

(b) Iterations needed

Figure 2: The iterative grid search result for the estimation of θ̂1 and θ̂2.

Algorithm 1 Real-time dynamic stopping algorithm for one
letter spelling session

1: Input: θ̂1, θ̂2
2: Output: s, ĩs, j̃s
3: Initialization: s← 0, smax
4: while DYNAMIC FLAG 6= 1 do
5: if s ≤ smax then
6: s← s+ 1
7: Compute FR(s, i), FC(s, j) (as in Eq.(4))
8: Compute θ1, θ2 (as in Eq.(5) and Eq.(8))
9: if (θ1 ≥ θ̂1) and (θ2 ≥ θ̂2) then

10: DYNAMIC FLAG ← 1
11: end if
12: else DYNAMIC FLAG ← 1
13: end if
14: end while
15: Stop flashing, compute ĩs, j̃s (as in Eq.(6))
16: return s, ĩs, j̃s

the testing set of N2 samples, and N = N1+N2. The optimal
solution for L, denoted by {α,b}, is obtained by solving the
following dual quadratic program

min
0≤αi≤C

1

2

∑
i∈L

∑
j∈L

αiαjyiyjK(xi,xj)−
∑
i∈L

αi + b
∑
i∈L

yiαi.

(11)
In this paper we employ the SVM solver provided by [28].
To obtain the appropriate regularization parameter C in the
problem above, we conduct the leave-one-partition-out cross-
validation on the learning set (where the possible values for C
are 0.01, 0.05, 0.1, 0.25, 0.50, 0.75, and 1.00). In other words,

Algorithm 2 Iterative grid search for θ̂1, θ̂2
1: Input: a
2: Output: θ̂1, θ̂2
3: Initialization: η1, η2
4: θ1 ← 0, θ2 ← 0, Amax ← 0, STOP FLAG ← 0, S ← ∅
5: while STOP FLAG 6= 1 do
6: for θ2 = 0 : 1 (step η2) do
7: Compute and save A(θ1, θ2)
8: if A(θ1, θ2) > Amax then Amax ← A(θ1, θ2)
9: end if

10: end for
11: if A(θ1, 0) = Amax and A(θ1, 0) = A(θ1−η1, 0) then
12: STOP FLAG ← 1; θ1,max ← θ1
13: end if
14: θ1 ← θ1 + η1
15: end while
16: for each θ1, θ2 do
17: if A(θ1, θ2) ≥ Amax − a then add (θ1, θ2) to S
18: end if
19: end for
20: Search for θ̂1, θ̂2 in S (as in Eq.(10))
21: return θ̂1, θ̂2

each training partition has its own regularization parameter
C which yields the highest accuracy validated on the other
partitions.

In an adaptive learning method, one needs to use the existing
hyperplane solution of the learning set L to find the optimal
solution for the combined set C = L ∪ T , denoted by {α̂, b̂}.
The label yt of T is first obtained by estimating xt from
{α, b} based on the SVM framework as

yt = f(xt) =
∑
i∈L

αiyiK(xi,xj)+b,∀j ∈ {N+1, . . . , N+n},

(12)
where [α1, . . . , αN ]T = α and K(·, ·) is the kernel. In
this paper we adopt the homogeneous polynomial kernel
K(xi,xj) = x

T
i xj .

B. Incremental SVM

Incremental SVM (ISVM) learning [28] takes approach-
ing classified samples as the new training data to adjust
the available classifier parameters without re-conducting the
optimization problem on the whole training set, which is
expensively computational. ISVM is an on-line method which
takes one new training sample at a time and increment the
existing hyperplane solution, as long as the Kuhn-Tucker
conditions are satisfied on all data samples (including the old
and new points). Considering ISVM as a black box which
takes αL, bL as the existing solution input (obtained from
L), and T as the incremental set, we can briefly defined this
method as

(αT , bT ) = ISVM(L,αL, bL, T ) (13)

In our implementation of ISVM on the proposed P300
framework, the feature vectors which were classified during



the s-th iteration are used to increment the SVM solution for
the (s+1)-th iteration. It should be noticed that the labels of
the newly-classified vectors are determined by the row/column
candidates ĩs, j̃s, rather than the vector-by-vector classifica-
tions achieved from the s-th iteration. The on-line incremental
learning method is presented in detail in Algorithm 3.

Algorithm 3 On-line incremental learning update for continual
P300 spelling sessions

1: Initialization: k ← 0,α← αL, b← bL
2: while USER STOP 6= 1 do
3: Implement flashing paradigm of the k-th session
4: Implement Dynamic Stopping (as in Algorithm 1)
5: Obtain s, ĩs, j̃s using solution (α, b)
6: Input: USER STOP (1 for stop)
7: Assign new labels for yT ,t according to ĩs, j̃s
8: Add new N2 = s × 12 samples to T =
{(xT ,t, yT ,t)}N2

t=1

9: Increment solution (α, b)← ISVM(L,α, b, T )
10: end while

V. EXPERIMENTS AND DISCUSSION

This section describes the experimental settings, including
a brief review on the dataset, classification schemes, prepro-
cessing techniques, evaluation metrics, experimental results,
and comparisons between our approach with the others.

A. Data sets

The Akimpech dataset [29] consists of P300-based EEG
signals of 30 subjects. Each subject has 15 letters sessions
for training and 12-24 sessions for testing. Each session is
composed of 15 iterations. The inter-stimulus interval is 125
ms. We use the data of the first 9 subjects (ACS, APM, ASG,
ASR, CLL, DCM, DLP, DMA, ELC) for the training purposes
and 15 subjects (FSZ, GCE, ICE, IZH, JLD, JLP, JMR, JSC,
JST, LAC, LAG, LGP, PGA, WFG, XCL) for evaluation. The
data from each training subject is used as one constituent
classifier for the ensemble scheme. The data was recorded
at the sampling rate of 256 Hz with 10 channels (Fz, C3, Cz,
C4, P3, Pz, P4, PO7, PO8, Oz).

TABLE I: CLASSIFICATION SCHEMES’ SETTINGS

Scheme
Learning
Subjects

Samples/
Partition Partitions Ensemble Adaptive

DS3 3 1620 1 No No
DS9 9 4860 1 No No
EN3 3 540 3 Yes No
EN9 9 540 9 Yes No
ADA 3 540 3 Yes Yes

B. Classification Schemes

The single classifier DS3 is learned from the mixed learning
samples of 3 subjects ACS, APM, and ASG. Similarly, DS9
is learned from the mixed samples of all 9 training subjects
as described in Section V-A. Both DS3 and DS9 do not
involve the adaptive learning. EN3 and EN9 are the ensemble

schemes which use the same learning data as in DS3 and
DS9, respectively, although both EN3 and EN9 also do not
involve the adaptive learning. ADA is the fully-integrated
scheme involving ensemble classifier, dynamic stopping, and
adaptive learning which use the same learning data as DS3
and EN3. The details of the mentioned classification schemes
are presented in Table I.

C. Signal Preprocessing

Prior to any learning or testing stage, we perform some
preprocessing techniques on the raw EEG dataset. Each post-
stimulus trial has the length of 66.67 ms, equivalent to 160
discrete samples per channel. The extracted feature vectors are
decimated and filtered by the 4-th order band-pass filter with
the cut-off frequencies of 0.1 and 20 Hz. After decimation
each vector has the size of 14 samples/channel × 10 channels
= 140 samples. Then each decimated and filtered vector is
normalized into the interval of [−1, 1].

D. Evaluation Metrics

We use three metrics for evaluating the BCI performances
of our proposed schemes, namely, the accuracy (A), number
of iterations (or iterations) and theoretical bit rate (BR). The
accuracy is simply computed as the number correctly classified
letters over the total T spelled letters per subject

A = (correct characters)/T.

The bit rate per trial B is computed from the accuracy A
and the total of possible spelled letters in the P3S L = 36 as

B = log2 L+A log2A+(1−A) log2
1−A
L− 1

(bits/trial). (14)

The theoretical bit rate (BR) is taken into account for
measuring P3S communication speed as:

BR = B/(s× ISI× 12/60) (bits/min)

where s is the number of flashing sequences, ISI is the inter-
stimulus interval.

E. Experimental Results

We implement the experiments on 5 proposed schemes
(Table I) using the 9 selected pairs of dynamic stopping
parameters θ̂1 ∈ {0.3, 0.5, 0.7} and θ̂2 ∈ {0.5, 1.0, 1.5}. The
averaged result of all subjects on each parameters pair is
shown in Table II. Notice that θ̂1 = 1.5 and θ̂2 = 0.7 are
also the parameters obtained from the iterative grid search
method as presented in Algorithm 2, with input a = 0.
The influence of ensemble method is demonstrated in the
accuracy improvement between DS3 and EN3 (accuracy rises
from 65.31% to 74.03%), or between DS9 and EN9 (accuracy
rises from 70.01% to 84.89%). However there are also rises
in flashing iterations from DS3 to EN3 (5.96 to 8.56), and
from DS9 to EN9 (5.69 to 9.35), which we really do not
expect to happen. This problem causes a slight reduction in
the resulted bit rates from DS3 to EN3 (16.50 to 14.08), as
well as from DS9 to EN9 (19.32 to 16.18). The most valuable



TABLE II: CLASSIFICATION RESULTS USING DIFFERENT VALUES OF DYNAMIC STOPPING CRITERIA θ̂1, θ̂2 . THE ITERATIVE GRID SEARCH
(ALGORITHM 2) WITH INPUT a = 0 YIELDS θ̂1 = 1.50, θ̂2 = 0.70; WITH a = 5 YIELDS θ̂1 = 1.00, θ̂2 = 0.50; AND WITH INPUT a = 10
YIELDS θ̂1 = 1.00, θ̂2 = 0.30.

DS Criteria Accuracy (%) Iterations Bit rate (bits/min)
θ̂1 θ̂2 DS3 DS9 EN3 EN9 ADA DS3 DS9 EN3 EN9 ADA DS3 DS9 EN3 EN9 ADA

0.50 0.30 44.13 52.65 56.83 69.59 62.06 1.86 1.87 4.10 3.70 2.27 28.20 37.28 19.23 29.46 39.98
0.50 0.50 44.37 52.65 64.70 85.35 63.30 1.87 1.87 4.81 7.96 2.49 28.39 37.28 20.13 19.18 37.64
0.50 0.70 44.13 52.65 80.78 89.65 83.99 1.86 1.87 9.72 11.88 3.64 28.20 37.28 14.32 14.01 40.87
1.00 0.30 70.15 72.53 71.11 77.80 83.19 5.98 5.28 6.75 6.01 4.25 18.46 22.07 16.72 21.76 34.42
1.00 0.50 69.87 72.53 72.83 86.87 83.66 5.97 5.28 7.24 8.74 4.32 18.38 22.07 16.21 18.01 34.16
1.00 0.70 70.15 72.53 81.59 89.65 86.53 5.98 5.28 10.46 11.99 4.68 18.46 22.07 13.53 13.87 33.38
1.50 0.30 81.83 84.85 78.50 87.19 92.85 9.99 9.93 10.57 10.16 7.34 14.23 15.22 12.55 15.59 24.15
1.50 0.50 81.87 84.85 79.83 88.80 94.44 9.97 9.93 10.91 11.05 7.03 14.27 15.22 12.50 0.30 26.03
1.50 0.70 81.32 84.85 80.10 89.14 95.95 10.19 9.93 12.46 12.66 7.49 13.80 15.22 11.01 13.01 25.20

Average 65.31 70.01 74.03 84.89 82.89 5.96 5.69 8.56 9.35 4.83 16.50 19.32 14.08 16.18 30.06
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(a) θ̂1 = 1.5, θ̂2 = 0.5
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(b) θ̂1 = 0.5, θ̂2 = 0.7
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(c) θ̂1 = 1.0, θ̂2 = 0.7

Figure 3: The subject-wise results for all test subjects using different input values of dynamic stopping parameters θ̂1 and θ̂2. Each individual point represents
the performance of one subject. The ellipses represents the average area of each scheme, with the centers of the ellipses are the mean and the radii are the
standard deviations of the accuracy and iterations on the whole scheme.

is the significant improvements in both accuracy and iteration
of ADA. Averagely, ADA boost up nearly 20% in accuracy
while also reduce spelling time from 5.96 to 4.83 iterations.
Combining these two improvements, we retrieve a huge leap
from 16.50 to 30.06 in bit rate, which is nearly equivalent to
a two-fold increase.

The subject-wise results of 4 selected parameter pairs are
shown in Fig. 3. We exclude the display for DS9 and EN9
since they use more (three-fold) learning samples as compared
to DS3, EN3, and ADA. According to Fig. 3, although EN3
can improve the accuracy (as compared to DS3), it also causes
the instability in performance, as presented in the broad areas
of EN3. On the other hand, ADA always achieves the highest
accuracies as well as the lowest iterations in all subjects, as
compared to both DS3 and EN3. The ADA areas are narrower,
demonstrating that ADA is much more stable than EN3.

F. Comparison with Related Studies

Kindermans et al. [22] proposed a combined method of
dynamic stopping, transfer learning and language model which
can also be adapted to novel subjects. Their approach is
totally different to ours in terms of classification algorithm,
adaptive learning and dynamic stopping method. However
they also implemented their work on the Akimpech dataset,
hence we are able to perform direct comparison (in terms of
accuracy and iteration) between our study and theirs. Using
the dynamic stopping and transfer learning scheme, they
obtained the accuracy of 93.33% with 6.3 iterations. In this

paper, our best case is 95.95% accurate with 7.49 iterations
(θ̂1 = 1.5, θ̂2 = 0.7). For comparison, our approach attains
better accuracy with a slightly higher number of iterations.
Lenhardt [19] conducted their subject-dependent experiments
using their own data set on the 36-letter P3S. When combining
the DS method into their approach, they achieved the bit rate
boost of +40.6% at the approximate accuracy of 80%±5%.
In our work, we obtained the two-fold bit rate boost of
+87.69% but with much higher accuracy (95.95%), although
we implement the subject-independent classification rather
than subject-dependent scheme.

The other works which were mentioned in the literature [1],
[10], [11], [21], [30] were not implemented on the Akimpech
dataset, as well as not on the subject-independent basis.
However, they all have the same dynamic stopping method
of Bayesian approach, which was first proposed by [30].
Therefore for a more direct comparison between our proposed
method with theirs, we have re-implemented their methods
on the Akimpech dataset (using scheme DS3) with subject-
independent manner that was used in our paper. The com-
parison is presented in Table III. According to Table III, our
proposed method significantly outperformed the mentioned
works in terms of averaged accuracy on 15 validation subjects,
although we also require the approximate number of iterations.

VI. CONCLUSION

We have proposed a novel framework to integrate ensemble
classifier, dynamic stopping, and adaptive learning into the



TABLE III: COMPARISON BETWEEN OUR METHOD WITH THE RE-
LATED STUDIES ON THE SUBJECT-INDEPENDENT MANNER. THE
DS PARAMETER OF THE BAYESIAN APPROACH IS THE CHARACTER
PROBABILITY THRESHOLD [30], WHILE OUR DS PARAMETER IS a
IN ALGORITHM 2.

Method DS parameter Accuracy (%) Iterations

Bayesian
[1], [10], [11], [21], [30]

0.90 63.18 4.19
0.95 64.07 4.84
0.99 69.93 6.32

Our method
0 95.95 7.49
5 83.66 4.32
10 83.19 4.25

subject-independent P300-based BCI, which requires no train-
ing stage for new subjects. The experimental results conducted
on the multi-subject dataset show that our proposed method
can both increase the accuracy and reduce the spelling time.
Generally, we can obtain the bit rate boost of nearly two-
fold while attaining over 90% accuracy. The trade-off for this
boost is the additional computational burden for the system.
Due to the limit scope of this paper, we do not bring into
account the analysis of computational cost. Further analysis to
be investigated are the effects of tuning the dynamic stopping
criteria on the adaptive learning performance, and the effects
of ensemble classifier dividing scheme.
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