
“© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

1

Subject-Independent ERP-based Brain-Computer
Interfaces

Kha Vo, Thuy Pham, Diep N. Nguyen, Eryk Dutkiewicz and Ha Hoang Kha

Abstract—Brain-computer interfaces (BCIs) are desirable for
people to express their thoughts, especially those with profound
disabilities in communication. The classification of brain pat-
terns for each different subject requires an extensively time-
consuming learning stage specific to that person, in order to
reach satisfactory accuracy performance. The training session
could also be infeasible for disabled patients as they may not fully
understand the training instructions. In this paper, we propose
a unified classification scheme based on ensemble classifier,
dynamic stopping, and adaptive learning. We apply this scheme
on the P300-based BCI, with the subject-independent manner,
where no learning session is required for new experimental users.
According to our theoretical analysis and empirical results, the
harmonized integration of these three methods can significantly
boost up the average accuracy from 75.00% to 91.26%, while
at the same time reduce the average spelling time from 12.62 to
6.78 iterations, approximately to two-fold faster. The experiments
were conducted on a large public dataset which had been used
in other related studies. Direct comparisons between our work
with the others’ are also reported in details.

Index Terms—Event-related potentials, EEG, P300-Speller,
brain-computer interface, dynamic stopping, adaptive learning.

I. INTRODUCTION

Farwell [1] first introduced a brain-computer interface (BCI)
called P300-Speller (P3S) to help people elicit spelling letters
only by their mere thoughts. A P3S exploits the characteristics
of visual P300 responses [2], [3], which are one of the most
dominant types of event-related potentials (ERP). Since then,
numerous developments had been carried out based on [1]
with the main targets of increasing the accuracy, or reducing
the experimental time.

There are various methods to improve the performance of
ERP-based BCIs. One of them is to optimize the classification
algorithm [4]–[6]. Other techniques focus on extracting the
relevant features of EEG signals [7], [8], to modify the visual
flashing paradigm [9]–[12], or to add language model plug-ins
[13]–[15] into the existing framework.

There had been studies of P3S on disabled subjects. Hoff-
mann [16] implemented a six-choice P3S on 5 disabled users,
using Bayesian Linear Discriminant Analysis (BLDA) as their
main classification method. Sellers performed a simple four-
choice P3S experiment on three amyotrophic lateral sclerosis
(ALS) patients. Mainsah [17] integrated a dynamic stopping

Kha Vo (anhkha.vo@student.uts.edu.au), Diep N. Nguyen
(diep.nguyen@uts.edu.au), Thuy Pham (thuy.pham@uts.edu.au) and E.
Dutkiewicz (e.dutkiewicz@uts.edu.au) are with the Global Big Data
Technologies Centre, University of Technology Sydney, Sydney, Australia.

Ha H. Kha (hhkha@hcmut.edu.vn) is with the Faculty of Electrical and
Electronics Engineering, Ho Chi Minh city University of Technology, VNU-
HCM, Ho Chi Minh City, Vietnam.

scheme into P3S and conducted the experiments on 10 ALS
subjects. Clements [18] analyzed the effects of wet and dry
sensors on 8 subjects with communication difficulties. Al-
though different in their frameworks, all of those mentioned
works shared a common result that the accuracy performing
on ALS or disabled subjects was much lower than those of
healthy ones. The reason is that P300 responses of disabled
or ALS patients are not as discriminative as those of healthy
subjects [16], [17], [19]. Another drawback of those mentioned
works is that each new user needs to perform an extensive
training stage for the system to recognize their individual brain
patterns, before actually testing it.

We are motivated by the idea that subject-independent BCI
systems are desirable, for both healthy and disabled subjects.
This would save a huge amount of time for new users and
make ERP-based BCIs more practical in real-life everyday use.
Indeed there had been a few notable approaches to fulfill this
idea, proposed by Kindermans et al. [20], [21], which used
no training samples to form the classifier. The weakness of
this method is that it performs poorly in terms of accuracy,
as compared to the methods with pre-trained classifiers. It
is also unnecessary to use no prior data to construct the
classifier, since the EEG datasets are abundantly available.
The right question for being solved in our case is that how
can we adapt the existing model with the new subject-specific
samples, rather than the question of how to form a classifier
from scratch during an on-line experiment.

In this paper, we propose a unified method of ensemble
classifier (EN), dynamic stopping (DS), and adaptive learning
(ADA). DS validates the classifier’s confidence about its deci-
sion to stop the flashing paradigm at any moment. The newly-
classified trials obtained by DS are exploited by ADA to adapt
the existing classifier to the current subject. Because ADA
requires a huge amount of computational resources during
the on-line scenario, EN comes to play as a very important
role to diminish this burden. Also, EN allows the classifier
to be subject-diverse (in other words, the pre-trained classifier
can be composed from multiple subjects). We also analyze
the correlation between theoretical analysis with empirical
observations to demonstrate the validity of our proposal.
Because most of the studies in the literature were performed
on different datasets and frameworks, we also re-conduct the
other methods using the same dataset and experimental setup
as in our approach. Therefore a reliable and direct comparison
between our work with the related studies is provided.

The rest of this paper is organized as follows: Section II
presents the ensemble classification framework implemented
on the P3S. Section III proposes two dynamic stopping criteria

2

Figure 1: The EEG signal timeline and row-column flashing paradigm.

for the flashing paradigm. Section IV describes the adaptive
learning method which is conducted in real-time after the
dynamic stopping stage. The dataset descriptions, experimental
results, discussions and comparisons with related studies are
presented in Section V. Finally, Section VI derives the paper’s
conclusions.

II. CLASSIFICATION METHODOLOGY

This section presents the main framework of our proposed
classification scheme. Basically, we have two main stages:
the learning (or training) stage to prepare the classifier in-
dependent to new subjects (as presented in Section II-C), and
the validation (or testing) stage to test their performance (as
presented in Section II-D). However we would like first to
summarize the general flow of our method in Section II-A
and present the dataset partitioning step in Section II-B.

A. Main Classification Framework

An example of the row-column flashing paradigm for the
P3S used in our work is presented in Fig. 1. In this figure,
the subject is focusing on the letter ’K’ of the P3S, hence the
target row is 2 and the target column is 11. Typically, the post-
stimulus feature vectors associated to row 2 and column 11,
denoted by x8 and x2 respectively, contain the P300 responses
approximately 300 ms after the target stimuli (shaded) onset.

The diagram of our main framework is shown in Fig. 2.
According to Fig. 2, the training (or learning) stage consists of
the following steps: (T1) Part of the learning data (as described
in more detail in Section V-C and Table I) is divided into P
partitions, denoted by Tp (as in Eq.(1)). (T2) The partitioned
data is used to construct P ensemble classifiers, as described
in Section II-C. (T3, T4) The remaining unused learning data
is fed as input for the grid search algorithm (as presented in
Algorithm 1) to search for DS parameters θ̃1 and θ̃2. (T5) The
resulted parameters are used as the dynamic stopping criteria
(as presented in Section III) for the validation stage.

The validation (or testing) stage consists of the following
steps: (V1) The test data is collected through the row-column
P3S flashing paradigm after each iteration (which equals to
12 trial vectors). (V2) The preprocessed vectors (as described

in Sec V-A) are scored by the ensemble scheme, as in Eq.(6)
and Eq.(7). (V3) The resulting scores are used to compute the
dynamic stopping variable θ1 and θ2, to perform the DS check,
as in Eq.(9). If the DS criteria are satisfied, the current letter
session is stopped and the output is shown. (V4) If the criteria
are not satisfied, an adaptive learning stage is implemented
(as presented in Section IV), and the next flashing iteration is
performed.

B. Dataset Partitioning

Since our purpose is to design a subject-independent system,
there is no learning sample required from the experimental
subjects. However, our approach is different from the unsu-
pervised method [20], [21]. We employ an off-line pre-trained
classifier first, then adaptively update it for the new user,
rather than constructing the classifier using only on-line sam-
ples. Therefore, the learning stage using the existing training
samples is desired. In this paper, we select support vector
machine (SVM) as the baseline learning algorithm, which
had been used in various BCI studies [22]–[25]. The reason
of choosing SVM, rather than some Bayesian probabilistic
approaches [16], [18], [26]–[28], is that we want to exploit
the computational strength to combine the dynamic stopping
check with the adaptive SVM update algorithm [29], [30] into
the existing ensemble partitioning framework. This integration
can significantly improve the performance as compared to
other methods, which will be presented in Section V.

We denote P training sets of P different subjects as

Tp =
{

(xp,i, yp,i) ∈ RD × {−1, 1}
}N
i=1

, (1)

where p ∈ {1, . . . , P}, xp,i are the preprocessed training
feature vectors of length D, yp,i are the binary labels or
classes (−1 for non-P300 responses and 1 for P300 responses),
and N is the number of training samples (of both classes) in
each training set. Hereinafter we call each training set Tp a
partition.

C. SVM Classifiers Learning Stage

SVM is a discriminative method dealing with binary clas-
sification problems [31]. In this section we would like to only

3

briefly review the SVM method in dual form. The further
usage of a real-time adaptive update algorithm for SVM will
be mentioned in Section IV.

Given P training partitions denoted by Tp, the classifier
solution (αp, bp) for partition p is obtained by solving the
following constrained optimization problem

min
0≤αi≤C

(1

2

∑
i,j∈Tp

αiαjyp,iyp,jK(xp,i,xp,j)

−
∑
i∈Tp

αi + b
∑
i∈Tp

yp,iαi

)
,

(2)

where [α1, α2, . . . , αN]T = αp and b = bp. In this paper,
we employ the homogeneous polynomial kernel K(xi,xj) =
xTi xj , and the quadratic solving program provided by [32].
Since C can be freely chosen and can heavily affect the
classification performance, we perform the leave-one-out cross
validation process [16] on P classifiers to determine the
optimum Cp for each partition to yield the best classification
performance on the ensemble training set. The possible values
for Cp are 0, 0.01, 0.02, 0.05, 0.1, 0.25, 0.5, 0.75, and 1.

For a new validation feature vector x, its classifier score
generated by partition Tp is computed by

fp(x) =
∑
i∈Tp

αiyiK(xi,x) + b. (3)

D. Validation Stage

Let the set of 12 preprocessed feature vectors of length D,
belong to the j-th iteration, denoted by

X(j) = {x12(j−1)+1,x12(j−1)+2, . . . ,x12j}. (4)

For each set X(j) we have the associated set of flash codes

L(j) = {`12(j−1)+1, `12(j−1)+2, . . . , `12j}, (5)

where `i ∈ {1, 2, . . . , 12} are the row/column labels as
depicted in Fig. 1.

We define the sum (on all p partitions) and accumulated
(after iteration j) row/column scores associated with each flash
code as

srow(j)
r =

P∑
p=1

∑
i′=1..12j
`i′=r

fp(xi′), (6)

scol(j)
c =

P∑
p=1

∑
i′=1..12j
`i′=c+6

fp(xi′). (7)

where r, c ∈ {1, 2, . . . , 6}.
After each iteration, a candidate pair of row/column which

yields the highest scores is derived to determine the letter
output:

r̂, ĉ = argmax
r,c

Mrc. (8)

where Mrc = M
(j)
rc = s

row(j)
r +s

col(j)
c (r, c ∈ {1, 2, . . . , 6}) is

the score matrix of all P3S letters. Unless stated, hereinafter
we refer srow

r as s
row(j)
r , and scol

c as s
col(j)
c for notational

convenience.

Figure 2: The main diagram of our proposed classification framework for a
one-letter P3S session.

III. DYNAMIC STOPPING

Our framework has the aspect that the final letter output is
decided based on every individual post-stimulus trial’s score
fp(x) of a specific preprocessed trial vector x. We exploit this
aspect, as well as the computational strength, to develop the
real-time stopping criteria. Instead of estimating the output
only after a fixed iteration, we propose a criteria checking
method to dynamically stop the flashing at any iteration, once
the classifier is sufficiently confident about its decision. We
propose two criteria, one based on the classifiers’ scores and
one based on the classifiers’ votes. Our DS method thereby
can be presented as follows: The flashing of a single letter
spelling session is terminated after a specific iteration once
both of the following criteria are met{

θ1 ≥ θ̃1
θ2 ≥ θ̃2

. (9)

A. Criterion 1

Let ∆srow(j) and ∆scol(j) denote the margin between the
highest and the second-highest scores of all rows/columns after
iteration j as

∆srow(j) = srow
r̂ −max

r 6=r̂
(srow
r), (10)

∆scol(j) = scol
ĉ −max

c 6=ĉ
(scol
c). (11)

We define θ1 as the parameter for qualifying criterion 1 as

θ1 =
∆srow + ∆scol

1/6× (
∑
r ŝ

row
r +

∑
c ŝ

col
c)

, (12)

where
ŝrow
r = srow

r −min
r′

(srow
r′), (13)

ŝcol
c = scol

c −min
c′

(scol
c′). (14)

The intuitive idea behind criterion 1 is that the ensemble
accumulated margin between two highest-scored row/column

4

candidates represents the confidence level of the classifier
about its decision.

Lemma 1. The expected value of θ1 increases with respect
to j.

Proof. Lemma 1 demonstrates the validity of criterion 1, as
the confidence of the classifier will increase with respect to
the number of iteration j. We can easily observe that the de-
nominator in Eq.(12) is the mean of scaled row/column scores
and stays as a constant with respect to j. With regards to the
nominator, we denote ∆s(j) (where ∆s(j) can stand for either
∆srow(j) or ∆scol(j)) as the subtraction between the avaraged
accumulated score of the target row (or column) response,
S+(j), and the maximum score among 5 averaged accumulated
scores of 5 non-target responses, S−(j)k , (k = 1 · · · 5), after j
iterations. Here, the index k of 5 non-target responses is not
necessarily relevant to the non-target row/column numbering
on the P3S, since we only concern about the probabilistic
properties of the general target and non-target scores. S+(j)

and S−(j)k can be decomposed into random samples s+i and s−i
of size j (i = 1 . . . j), respectively, drawn from some unknown
distribution with the expected values given by µ+, µ− and
variances given by σ+, σ−, respectively. According to the
central limit theorem, regardless of the distribution of s+i and
s−i , their sum, S+(j) and S

−(j)
k , tend towards a Gaussian

distribution

S+(j) ∼ N
(
µ+(j), σ+(j)

)
; S
−(j)
k ∼ N

(
µ−(j), σ−(j)

)
. (15)

As a result we can write the expected value of ∆s as

E[∆s(j)] = E[S+(j) −max
k

S
−(j)
k] = µ+ − E[max

k
S
−(j)
k].

(16)
The variances of S+(j) and S−(j)k decreases when their sample
size of them (j) increase as

(σ+(j))2 = Var
[1

j

j∑
i=1

s+i

]
=

1

j2

j∑
i=1

Var[s+i] =
(σ+)2

j
,

(σ−(j))2 = Var
[1

j

j∑
i=1

s−i

]
=

1

j2

j∑
i=1

Var[s−i] =
(σ−)2

j
.

The effect of the reduction in the variance of S+(j) does
not affect ∆s(j) as its mean is independent from its variance
(µ+(j) = µ+, µ−(j) = µ−). However S

−(j)
k does affect

the mean of maxS
−(j)
k by its variance reduction. As in [],

maxS
−(j)
k is Gumbel-distributed with its probability density

function given by

f
maxS

−(j)
k

(x) =
1

σ−(j)
exp(

x− µ−(j)

σ−(j)
) exp(− exp(

x− µ−(j)

σ−(j)
).

The corresponding expected value of maxS
−(j)
k is

E[max
k

S
−(j)
k] = µ−(j) + γσ−(j) = µ− + γ

(σ−)√
j
, (17)

where γ ' 0.5772 is the Euler-Mascheroni constant. With
regards to Eq.(17), since µ−, σ−, and γ are all constants,
then E[maxk S

−(j)
k] decreases with respect to j. As a result,

E[∆s(j)] increases, hence E[θ1] also increases with respect to
j.

B. Criterion 2

We define the accumulated score of row r or column c,
which is validated on partition p after j iterations as

srow(j)
r,p =

∑
i′=1..12j
`i′=r

fp(xi′), (18)

scol(j)
c,p =

∑
i′=1..12j
`i′=c+6

fp(xi′). (19)

where r, c ∈ {1, 2, . . . , 6}. Let V (j)
rc denote the voting count

for the letter on row r and column c as

V (j)
rc =

∑
p

v(j)p (r, c) (20)

where v(j)p is the voting function of classifier p

v(j)p (r, c) =

1, if r, c = argmax
r′,c′

(s
row(j)
r′,p + s

col(j)
c′,p)

0, otherwise
. (21)

Criterion 2 is characterized by the parameter θ2 which is
defined as

θ2 =
max
r,c

V (j)
rc

P
. (22)

Intuitively, criterion parameter θ2 represents the number of
constituent classifiers voting for the same output letter, which
is also increasing with respect to j as similar to θ1.

Lemma 2. For any n ∈ {1, . . . , P − 1}, the probability
Pr(θ2 ≥ n) increases with respect to j, and limj→∞ θ2 = 1.

Proof. Let r* and c* denote the true target row and col-
umn, then it can be observed that v(j)p (r∗, c∗) is Bernoulli-
distributed with probability ρp for value 1 and 1 − ρp for
value 0, where ρp is the probability of correct output letter,
produced by classifier fp, validated on one iteration. As a
result, the sum of v(j)p (r∗, c∗) over P classifiers, V (j)

r∗c∗ , has
the Poisson binomial distribution with the expectation given
by

E[V
(j)
r∗c∗] =

P∑
p=1

ρ(j)p , (23)

where ρ(j)p is the accumulated probability of the correct output
letter after j iterations.

As limj→∞ ρ
(j)
p = 1 ∀p when r = r∗, c = c∗. Then V

(j)
r∗c∗

converges to P over j as

lim
j→∞

E[V
(j)
r∗c∗] = lim

ρ
(j)
p →1

P∑
p=1

ρ(j)p = P. (24)

C. Estimation θ̃1 and θ̃2 through dynamic training

We also perform an estimation for θ̃1 and θ̃2 based on the
learning sets Tp. Our aim is to provide a reliable method
to obtain the criteria parameters which satisfy our specific
desirable accuracy. The parameters are obtained through an
extensive grid search analysis with respect to the changes in
θ̃1 and θ̃2.

5

Let Ap(θ̂1, θ̂2) denote the accuracy when performing the
validation stage on set Tp with a pair of parameters θ̃1 = θ̂1
and θ̃2 = θ̂2. Let S(a) denote the set of parameter pairs which
can attain the optimal accuracy decreased by a margin of a%.
The set S(a) can be presented as

S(a) = {(θ̂1, θ̂2)|A(θ̂1, θ̂2) ≥ max
θ′1∈R1

θ′2∈R2

A(θ′1, θ
′
2)− x}, (25)

where

A(θ̂1, θ̂2) =
1

P

P∑
p

Ap(θ̂1, θ̂2). (26)

The tuning range of θ̂2, denoted by R2, drops within the
interval [0, . . . , 1], as

max
i,j

θ2 =

P∑
p=1

max
r,c

v(j)p (r, c)/P = (

P∑
p=1

1)/P = 1. (27)

We can also find the tuning range for θ̂1, denoted by R1,
by computing lim

j→∞
θ1, but this is unnecessary. Since R2 is

found, for each specific value of θ̂2 we can perform the search
by iteratively increasing θ̂1 until the maximum accuracy is
achieved. The step for iteratively increasing θ̂1 and θ̂2, denoted
by η1 and η2 respectively, is freely chosen (i.e., η2 = 0.25,
and η1 = 0.2).

To obtain the least possible iterations (for fastest perfor-
mance), a unique corresponding pair of θ̃1, θ̃2 can be achieved
by

θ̃1, θ̃2 = argmin
(θ̂1,θ̂2)∈S

{A(θ̂1, θ̂2)}. (28)

The algorithm of the iterative grid search method is pre-
sented in Algorithm 1.

Algorithm 1 Iterative grid search for θ̃1, θ̃2
1: Input: a
2: Output: θ̃1, θ̃2
3: Initialization: η1, η2
4: θ̂1 ← 0, θ̂2 ← 0, Amax ← 0, STOP FLAG ← 0, S ← ∅
5: while STOP FLAG 6= 1 do
6: for θ̂2 = 0 : 1 (step η2) do
7: Compute and save A(θ̂1, θ̂2)
8: if A(θ̂1, θ̂2) > Amax then Amax ← A(θ̂1, θ̂2)
9: end if

10: end for
11: if A(θ̂1, 0) = Amax and A(θ̂1, 0) = A(θ̂1−η1, 0) then
12: STOP FLAG ← 1;
13: end if
14: θ̂1 ← θ̂1 + η1
15: end while
16: for each θ̂1, θ̂2 do
17: if A(θ̂1, θ̂2) ≥ Amax − a then add (θ̂1, θ̂2) to S
18: end if
19: end for
20: Search for θ̂1, θ̂2 in S
21: return θ̂1, θ̂2

Algorithm 2 On-line incremental learning update for continual
P300 spelling sessions

1: Initialization: k ← 0,α← αL, b← bL
2: while USER STOP 6= 1 do
3: Implement flashing paradigm of the k-th session
4: Implement Dynamic Stopping
5: Obtain s, ĩs, j̃s using solution (α, b)
6: Input: USER STOP (1 for stop)
7: Assign new labels for yT ,t according to ĩs, j̃s
8: Add new N2 = s × 12 samples to T =
{(xT ,t, yT ,t)}N2

t=1

9: Increment solution (α, b)← ISVM(L,α, b, T)
10: end while

IV. ADAPTIVE LEARNING

Adaptive learning (AL) is a method of continually incorpo-
rating new test samples that have been classified during the
on-line experiments into the existing classifier. In our study,
the existing classifier is already learned from the training
data (hence we call it semi-supervised learning), rather than
constructed from scratch (unsupervised learning). Although
P300 responses differ in subjects [3] (i.e, shapes, latency),
they however possess some similar patterns as compared to
the noisy non-target responses. As a consequence, updating
the classifiers that have been already trained is more feasible
and efficient than to construct them from scratch with no
prior knowledge. This method can make the classifier that was
trained on different subjects to get adapted with the ongoing
subject’s patterns, thereby increase the classification accuracy.
The arising problem of AL is that we do not know if the
new samples’ label are correctly classified, as if we wrongly
label them they can negatively affect the existing classifier.
As a result, the effects of AL are heavily governed by the
performance of the DS method. The influence and relationship
of DS and AL are further discussed in Section V-F and Section
V-G.

There have been various approaches on adaptive SVM [29],
[30], [33], [34]. We employ the method that was inspired by
[29] because it was well-developed to integrate new training
samples without re-solving the quadratic program over the
whole training set. It also has the high capability to be
embedded into our proposed real-time framework. As reported
in [30], the outstanding saving in computational costs of this
method is the key benefit to our proposed method.

Suppose we need to integrate the set of N1 newly-classified
test trials, denoted by T , into the existing SVM solutions that
were learned from p sets (Tp) of N training samples. The
conventional approach is to aggregate the new test samples
into the training set and re-solve the constrained convex
SVM optimization problem. However this method is expen-
sively computational as its complexity (of inverting the kernel
matrix) is O((N + N1)3). Cauwenberghs [29] proposed an
incremental method by adding new samples from T , one at
a time, into the existing solution {αp, bp}, by analytically
tuning the solution to retain the Kuhn-Tucker conditions on
all samples. In short, the method attempts to find the final

6

solution {αp,new, bp,new} of the set Tp∪T that can be expressed
in terms of {αp, bp} and the samples of T as

(αp,new, bp,new) = ISVM(Tp,αp, bp, T). (29)

In this paper, we assign new labels for new validation
samples of T based on the letter decision of the whole previous
letter session, rather than the individual output of each vector.
The benefit of this approach is that once the letter of the
previous session is correctly classified, it will increase the next
session’s performance. However, a misclassified letter may
negatively affect the accuracy of later sessions. This effect
will be discussed in Section V-F.

The number of samples in T may vary from 1 to 15
iterations (corresponding to 12 samples to 180 samples),
depending on the DS performance of the previous session.
Algorithm 2 presents the detailed updating process after each
spelling session. The computational time required for this
process will be further discussed in Section V-B.

V. EXPERIMENTS AND DISCUSSION

A. Signal Preprocessing

A single post-stimulus signal, associated with a flash, is
666.67 millisecond long, and consists of 160 samples per
channel. We employ a 4-th order Chebyshev bandpass filter
at [0.1 20] Hz for each individual trial. After decimation,
each post-stimulus preprocessed vector xi∀i (as mentioned in
Section II) has the length of 140 samples (14 samples × 10
channels).

During the learning stage, each decimated vector xi is
normalised based on all N vectors in the learning set Tp, as
mentioned in Section II-B as

xi,normalized =
xi − x̄
σx

, (30)

where

x̄ =
1

N

N∑
k=1

xk, (31)

and

σx =

√√√√ 1

N − 1

N∑
k=1

|xk − x̄|2. (32)

During the validation stage, as we do not have any knowl-
edge on the normalisation scale of a new input vector x, it
is important for the classifier to memorize the normalisation
parameters x̄ and σx obtained from the learning stage. As a
result the new validation vector x will be normalised using
Eq.(30).

B. Influence of Partitioning on Adaptive Learning

Fig. 4a and Fig. 4b illustrate the evolution of the time
needed for updating the existing classifiers with respect to
the number of new learning samples (from 12 samples to
180 samples). Each plot consists of 4 different line graphs
associated to different numbers of existing samples in the
classifier pool (i.e., 540, 1080, 1620, and 2160). Without
partitioning, the AL updating time drastically increases with

20 40 60 80 100 120 140 160 180

New learning samples

0

2

4

6

8

10

12

14

16

18

T
im

e
 (

s
)

 540 samples (1 partition)

1080 samples (1 partition)

1620 samples (1 partition)

2160 samples (1 partition)

(a) Time vs. new learning samples, with no partitioning. 4
lines indicate 4 different numbers of existing samples in the
available classifier solution.

20 40 60 80 100 120 140 160 180

New learning samples

0

2

4

6

8

10

12

14

16

18

T
im

e
 (

s
)

 540 samples (3 partitions)

1080 samples (3 partitions)

1620 samples (3 partitions)

2160 samples (3 partitions)

(b) Time vs. new learning samples, with partitioning. 4
lines indicate 4 different numbers of existing samples in the
available classifier solution.

1080 2160 3240

Existing learning samples

0

5

10

15

20

25

30

35

T
im

e
 (

s
)

1 partition

2 partitions

3 partitions

4 partitions

6 partitions

(c) Time vs. existing samples in the classifier solution and
classifier partitions.

Figure 4: Time needed to perform adaptive learning stage with various
settings.

respect to the number of new learning samples, as shown in
Fig. 4a. For instance, to integrate 180 new samples into 1080
existing samples, we need roughly 5 seconds. But with the
same number of new samples it takes over 17 seconds to
integrate them into 2160 existing samples. However, just by
dividing the 2160 existing samples into 3 partitions (720 each)
as shown in Fig. 4b, we can drastically reduce the AL time
from 17 seconds to 8 seconds. This proves the huge benefit
of partitioning in terms of AL time reduction.

7

38.89

40.74

46.30

53.70

64.81

72.22

74.07

77.78

77.78

38.89

40.74

46.30

53.70

64.81

72.22

74.07

77.78

77.78

38.89

40.74

46.30

53.70

64.81

72.22

74.07

77.78

77.78

61.11

61.11

61.11

62.96

70.37

74.07

75.93

77.78

77.78

61.11

61.11

61.11

62.96

70.37

74.07

75.93

77.78

77.78

θ̂2 = 0 0.25 0.5 0.75 1

θ̂1 = 0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(a) ENS-2 accuracy

35.19

37.04

42.59

48.15

59.26

66.67

74.07

74.07

75.93

35.19

37.04

42.59

48.15

59.26

66.67

74.07

74.07

75.93

48.15

48.15

48.15

50.00

59.26

66.67

74.07

74.07

75.93

72.22

72.22

72.22

72.22

74.07

74.07

75.93

75.93

75.93

72.22

72.22

72.22

72.22

74.07

74.07

75.93

75.93

75.93

θ̂2 = 0 0.25 0.5 0.75 1

θ̂1 = 0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(b) ENS-3 accuracy

38.89

40.74

46.30

59.26

64.81

72.22

72.22

74.07

75.93

38.89

40.74

46.30

59.26

64.81

72.22

72.22

74.07

75.93

44.44

46.30

50.00

59.26

64.81

72.22

72.22

74.07

75.93

70.37

70.37

70.37

72.22

72.22

74.07

74.07

75.93

75.93

75.93

75.93

75.93

75.93

75.93

75.93

75.93

75.93

75.93

θ̂2 = 0 0.25 0.5 0.75 1

θ̂1 = 0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(c) ENS-4 accuracy

38.89

42.59

48.15

55.56

62.96

66.67

64.81

68.52

68.52

44.44

48.15

50.00

57.41

64.81

66.67

64.81

68.52

68.52

55.56

55.56

55.56

57.41

62.96

64.81

66.67

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

70.37

θ̂2 = 0 0.25 0.5 0.75 1

θ̂1 = 0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(d) ENS-6 accuracy

2.54

2.69

3.50

5.37

7.48

9.19

10.69

13.17

14.11

2.54

2.69

3.50

5.37

7.48

9.19

10.69

13.17

14.11

2.54

2.69

3.50

5.37

7.48

9.19

10.69

13.17

14.11

6.11

6.11

6.39

7.15

8.39

9.91

11.41

13.31

14.24

6.11

6.11

6.39

7.15

8.39

9.91

11.41

13.31

14.24

θ̂2 = 0 0.25 0.5 0.75 1

θ̂1 = 0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(e) ENS-2 iterations

2.39

2.56

3.15

4.13

6.30

8.11

10.83

12.28

13.26

2.39

2.56

3.15

4.13

6.30

8.11

10.83

12.28

13.26

3.50

3.50

3.70

4.44

6.65

8.33

10.83

12.31

13.28

9.15

9.15

9.15

9.17

9.81

10.59

12.09

12.91

13.80

9.15

9.15

9.15

9.17

9.81

10.59

12.09

12.91

13.80

θ̂2 = 0 0.25 0.5 0.75 1

θ̂1 = 0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(f) ENS-3 iterations

3.28

3.33

4.02

5.20

7.07

9.04

11.57

12.78

14.15

3.28

3.33

4.02

5.20

7.07

9.04

11.57

12.78

14.15

3.65

3.70

4.31

5.35

7.11

9.09

11.72

12.78

14.15

8.94

8.94

9.28

10.15

10.41

10.93

12.39

13.43

14.20

13.28

13.28

13.28

13.52

13.56

13.59

13.93

14.13

14.69

θ̂2 = 0 0.25 0.5 0.75 1

θ̂1 = 0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(g) ENS-4 iterations

2.48

2.69

3.56

5.06

7.00

9.35

11.15

12.91

13.80

3.00

3.17

3.74

5.28

7.20

9.39

11.15

12.91

13.80

7.07

7.17

7.37

7.81

8.70

10.31

11.81

13.17

14.07

13.22

13.22

13.22

13.22

13.22

13.69

13.80

14.28

14.78

14.28

14.28

14.28

14.28

14.28

14.46

14.46

14.50

14.80

θ̂2 = 0 0.25 0.5 0.75 1

θ̂1 = 0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(h) ENS-6 iterations

Figure 3: The accuracies and corresponding number of iterations of 4 schemes conducted on the learning set with different values of dynamic stopping
parameters θ̂1 and θ̂2.

One desired job in our proposed method is to determine the
appropriate number of samples and partitions of the existing
ensemble classifier to best fit the AL stage. Typically, a P3S
gives the subjects a short break (from 5 to 10 seconds) between
letter sessions to help them relax and find the next target letter
to focus. This break time can be exploited by the AL stage
to update the classifier between sessions. As a result each AL
stage must not last too long (i.e., over 10 seconds). Assuming
the worst performance is performed by the DS stage (i.e., we
need the maximum of 15 iterations to output the decision),
we plot the average time needed (in seconds) to integrate 180
new samples (15 iterations) into 1080, 2160, and 3240 existing
samples of the classifier, as shown in Fig. 4c. It is observed
from the figure that using 3240 existing samples is not an
option, since it takes longer than 10 seconds in all partitioning
schemes. On the other hand, when updating 1080 and 2160
existing samples (with partitioning), the AL time is below 5
seconds and 10 seconds, respectively, which satisfies our break
time criterion. We choose 2160 to be the fixed number of
learning samples, as more existing samples undoubtedly result
in better performance. As a result, we make further analysis on
the accuracies and iterations of different partitioning schemes
using 2160 samples, as described in Table I.

C. Data Sets

In this paper, we conduct our analysis on the Akimpech
dataset [35]. As compared to the other public P3S datasets,
Akimpech contains a large number of subjects (26, as com-
pared to 1 of [36], 2 of [37], or 9 of [16]). This advantage
allows us to carry out our extensive numerical analysis with
strong probabilistic aspect. Moreover, each subject in the

TABLE I: CLASSIFICATION SCHEMES’ SETTINGS. P IS THE NUM-
BER OF TOTAL PARTITIONS (EACH PARTITION HAS LEARNING
SAMPLES OF ONLY 1 SUBJECT), L IS THE NUMBER OF LEARNING
LETTERS USED IN EACH PARTITION. THE SUBJECTS ARE NAMED AS
REPORTED IN [35]. THE NUMBER OF SAMPLES FOR EACH SCHEME
IS 2160, EQUALS TO 12 LEARNING LETTERS.

Scheme P L Learning Subjects
ENS-2 2 6 ACS, APM
ENS-3 3 4 ACS, APM, ASG
ENS-4 4 3 ACS, APM, ASG, ASR
ENS-6 6 2 ACS, APM, ASG, ASR, CLL, DCM

Akimpech dataset also conducted a large number of experi-
ments (27-39 letters). Each letter session is 15-iteration long.

We use the data of 12 learning subjects (namely, ACS,
APM, ASG, ASR, CLL, DCM, DLP, LGP, ELC, JCR, FSZ,
GCE) of the Akimpech dataset to implement the learning
process. The first phase is to construct four classifiers (ENS-
2, ENS-3, ENS-4, ENS-6) from the first six subjects (ACS,
APM, ASG, ASR, CLL, and DCM), as presented in Table I.
The data of six other subjects (with 9 letters each) are used
to evaluate the DS parameters θ̃1 and θ̃2.

The resulting parameters are then used to validate the large
test set of the other 14 validation subjects (FSZ, GCE, ICE,
IZH, JLD, JLP, JMR, JSC, JST, LAC, LAG, PGA, WFG,
XCL), with 12 to 24 letters per subject.

D. Grid Search Result

Fig. 3 illustrates the expected accuracy and number of itera-
tions validated from the learning stage using different values of
DS parameters θ̃1 and θ̃2. Generally, the numbers of iterations
vary very slightly given a specific pair of DS parameters over
the 4 schemes. Similarly, the expected accuracies heat maps

8

TABLE II: THE GRID SEARCH RESULTS OF 4 CLASSIFICATION
SCHEMES USING 3 INPUT VALUES OF a = 0, a = 5, AND a = 10
AS IN ALGORITHM 1

Scheme a θ̃1 θ̃2
Expected
Accuracy

Expected
Iteration

ENS-2
0 1.75 0.50 77.78 13.17
5 1.25 0.75 74.07 9.91
10 1.00 0.75 70.37 8.39

ENS-3
0 1.50 0.75 75.93 11.70
5 0.50 0.75 72.22 9.15
10 1.25 0.25 66.67 8.11

ENS-4
0 0.50 1.00 75.93 13.28
5 1.25 0.25 72.22 9.04
10 0.25 0.75 70.37 8.94

ENS-6
0 0.50 0.75 70.37 12.32
5 1.25 0.00 66.67 9.35
10 1.00 0.00 62.96 7.00

of the 4 schemes are also similar as they never reach above
80%. From Fig. 3, we extract the searching results for θ̃1 and
θ̃2 given the expected accuracy reduction a (as in Algorithm
1), as shown in Table II.

E. Validation Stage Performance
In our paper, the term Accuracy for each subject is simply

computed as

Accuracy =
correct classified letters

total letters spelled
,

and the term Iteration of a subject is the number of iterations
taken averaged over all his/her spelling letters. The term
MaxTime is defined as the maximum AL time (in seconds)
for a subject taken over all the spelling sessions. Using those
3 evaluation metrics, we present the average Accuracy, average
Iteration, and average MaxTime taken on all validation subjects
(as described in Section V-C) in Table III.

It should be noticed that given the existing 2160 samples of
the classifier at the beginning, we should not employ AL for
all approaching testing sessions, as the classifier size will be
excessively accumulated which leads to increasing AL time.
Since each subject has 12 to 24 letters to validate, we only
use their first 0, 2, 4, 6, or 8 new letter sessions for the AL
stage, then analyze the changes in accuracies and iterations
with respect to the numbers of new letters learned. As shown
in Table III, for all input values of a, there are huge leaps
in accuracies when employing the AL process. For instance,
when Letters for AL equals 2 (a = 0) we can increase the
accuracy from around 80% to around 90% in all 4 schemes
ENS-2, ENS-3, ENS-4 and ENS-6. However when increasing
the letters for AL, the accuracies increase more slowly and the
iterations also drop more slowly in all schemes (for a = 0 and
a = 5), but the AL time increases much faster. This effect is
not desirable in our real-time system. For that reason we only
need to use the AL stage for a very first few letters (optimally
2 to 4 letters) of a new subject, which can balance between
the accuracy and AL time.

F. Influence of Expected Accuracy Parameter a of the Grid
Search Algorithm

When using a low expected accuracy parameter (a = 10),
it is observed from Table III that the accuracies do not

TABLE III: CLASSIFICATION RESULT TAKEN AVERAGE ON ALL
VALIDATION SUBJECTS.

a = 0
Letters for AL 0 2 4 6 8

ENS-2
Accuracy 79.20 90.98 92.74 94.89 95.96
Iteration 12.71 11.31 10.47 9.87 9.25
MaxTime 0.00 6.52 9.82 11.27 13.18

ENS-3
Accuracy 83.11 93.99 96.27 96.18 96.58
Iteration 11.87 9.23 8.22 7.84 7.61
MaxTime 0.00 3.48 6.01 6.92 8.52

ENS-4
Accuracy 81.89 89.90 90.87 90.04 89.46
Iteration 12.16 6.63 5.50 4.90 4.60
MaxTime 0.00 3.45 4.79 4.92 5.97

ENS-6
Accuracy 82.75 88.30 86.10 83.93 81.83
Iteration 12.73 6.14 5.14 4.50 4.29
MaxTime 0.00 3.50 4.95 5.42 6.24

a = 5
Letters for AL 0 2 4 6 8

ENS-2
Accuracy 75.72 86.04 90.58 91.21 92.32
Iteration 9.84 8.18 7.81 6.80 6.47
MaxTime 0 4.24 7.28 9.85 10.23

ENS-3
Accuracy 80.76 84.98 85.09 85.43 83.21
Iteration 8.78 5.81 4.70 4.19 3.92
MaxTime 0.00 2.12 3.27 4.08 4.15

ENS-4
Accuracy 76.30 84.70 87.83 89.25 90.12
Iteration 8.95 6.81 6.47 6.09 6.02
MaxTime 0.00 2.81 4.65 5.95 7.15

ENS-6
Accuracy 75.91 86.00 88.63 87.15 87.24
Iteration 8.75 6.75 6.59 6.20 6.01
MaxTime 0.00 3.12 4.60 6.31 7.26

a = 10
Letters for AL 0 2 4 6 8

ENS-2
Accuracy 71.48 79.86 84.53 86.46 87.41
Iteration 8.26 6.66 6.12 5.26 5.28
MaxTime 0.00 3.25 5.70 8.10 8.94

ENS-3
Accuracy 77.94 88.82 88.96 90.09 90.94
Iteration 8.56 7.17 6.53 6.09 6.04
MaxTime 0.00 2.86 4.70 5.61 6.62

ENS-4
Accuracy 76.18 77.67 70.89 68.93 69.51
Iteration 8.31 3.83 3.29 2.98 2.90
MaxTime 0.00 1.94 2.33 2.48 2.62

ENS-6
Accuracy 68.19 78.87 73.26 76.25 76.38
Iteration 6.63 5.61 4.94 4.72 4.56
MaxTime 0.00 2.17 3.34 5.51 5.86

increase but fluctuate (in ENS-4 and ENS-6) with respect to
the number of AL letters. The explanation for this effect is
that the performance is hugely influenced by the correctness
of the previous classified letters. A wrongly-classified letter
will negatively affect the existing classifier and cause the
deterioration in accuracies of the following sessions. The safe
tuning range for a is therefore quite narrow (from 0 to 5).
If the highest accuracy is desired, a = 0 is the optimal
choice, whereas a = 5 will slightly decrease the accuracies
but also reduce the number of iterations significantly. This
choice depends on user-purposed system specifications.

G. Influence of DS and AL on the Performance of Each
Subject

Fig. 5 plots the subject-wise performance of all schemes
using 4 AL letters with a = 0. Each individual point on the
plots represents the classification performance (accuracy and
iteration) of one subject. The ellipses are drawn to represent
the average region (of all points) of a specific setting on the
plot. As shown, we achieve a significant reduction in iterations

9

0 5 10 15

Iterations

0

20

40

60

80

100
A

c
c
u
ra

c
y
 (

%
)

Without AL

With AL (4 letters)

(a) ENS-2

0 5 10 15

Iterations

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

Without AL

With AL (4 letters)

(b) ENS-3

0 5 10 15

Iterations

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

Without AL

With AL (4 letters)

(c) ENS-4

0 5 10 15

Iterations

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

Without AL

With AL (4 letters)

(d) ENS-6

Figure 5: The subject-wise results for all test subjects using different input values of dynamic stopping parameters θ̂1 and θ̂2. Each individual point represents
the performance of one subject. The ellipses represents the average area of each scheme, with the centers of the ellipses are the mean and the radii are the
standard deviations of the accuracy and iterations on the whole scheme.

in all schemes. The regions of AL points are narrower,
implying that the performances of all subjects will converge to
a specific accuracy and iteration given a fixed setting. There are
points (without AL) over the subplots which have extremely
poor accuracies (below 60%). This problem is caused by the
mismatch between the brain patterns of the validation subject
and the learning subjects. However with adaptive learning, this
problem is solved.

H. Comparisons with Related Studies

We have re-implemented the method used in other related
studies [17], [18], [26], [27], [38]–[40], using the equivalent
classifier and dataset as specified in our work. Our target is
that we want to provide a most reliable comparison between
our work with the others. The comparison is shown in Table
IV.

Overall we outperformed the others in both accuracy and
iterations. Liu et al. [39] took the sum over the last 3
iterations of row/column candidates and compared them with
the threshold N × d, where N is the free parameter and d
is the average distance of target responses to the classifier
solution, derived from the training set. We employed their
method using N = 1. Jin et al. [40] used 2 dynamic stopping
parameters. N1 is the number of consecutive iterations which
output the same letter, and N2 is the beginning iteration to start
checking N1. As suggested in [40] we conducted their method
using N1 = 2 and N2 = 3. More recently, a probabilistic
approach for DS stage was used in [17], [18], [26], [27],
[38]. Although those mentioned studies have different research
problems, they however were employed using the similar DS
method first proposed by [27]. This method calculates the
probability of each letter candidate after each iteration via a
Bayesian updating basis and compares them to the threshold t.
To make a comparison with our method we also re-conducted
their approach in our schemes, using t = 0.95.

VI. CONCLUSION

In this paper we have provided a complete solution to
integrate ensemble classifier, dynamic stopping, and adaptive
learning based on the SVM scheme to boost the performance

TABLE IV: COMPARISON OF OUR STUDY AND RELATED STUDIES,
CONDUCTED ON THE SUBJECT-INDEPENDENT BASIS.

Method Setting Accuracy (%) Iterations

[17], [18], [26], [27], [38]
ENS-2 60.85 6.56
ENS-3 64.07 4.84
ENS-4 65.24 4.90
ENS-6 65.65 5.06

[39]
ENS-2 52.63 3.00
ENS-3 57.90 3.00
ENS-4 52.55 3.05
ENS-6 61.23 5.32

[40]
ENS-2 48.95 9.36
ENS-3 56.41 8.82
ENS-4 47.56 9.45
ENS-6 51.45 8.64

Our method
ENS-2 95.96 9.25
ENS-3 96.58 8.52
ENS-4 90.87 5.50
ENS-6 88.30 3.50

of event-related potential BCI, especially on the subject-
independent basis. Our experimental results suggest that, in-
stead of achieving the average (taken over 4 schemes with
a = 0) accuracy of 75.00% with 12.62 iterations for each
spelling session, we can boost the accuracy up to 91.26%
with just 6.78 iterations. The trade-off for this improvement
is the huge computational resources for updating the existing
classifier. However, with thorough benchmarking and analysis,
we also propose a method to achieve the most appropriate dy-
namic stopping parameters and adaptive learning settings. As
a consequence, under our control the additional computation
does not affect the system since the free time between letter
sessions is efficiently exploited. To emphasize the merit of
our proposal, we also re-implement the methods from related
works using the same subject-independent setting as in ours.
Our method outperformed most of the related studies in terms
of accuracy as well as speed. For future work, a more efficient
performance can be achieved by employing a language model
into our framework, or by conducting a selection process of
EEG channels.

REFERENCES

[1] L. A. Farwell and E. Donchin, “Talking off the top of your head:
toward a mental prosthesis utilizing event-related brain potentials,”

10

Electroencephalography and Clinical Neurophysiology, vol. 70, no. 6,
pp. 510–523, 1988.

[2] S. Sutton, M. Braren, J. Zubin, and E. R. John, “Evoked-Potential
Correlates of Stimulus Uncertainty,” Science, vol. 150, no. 3700, p. 1187,
1965.

[3] T. W. Picton, “The P300 wave of the human event-related potential,” J.
Clin. Neurophysiol., vol. 9, pp. 456–479, 1992.

[4] H. Cecotti and A. Graser, “Convolutional Neural Networks for P300
Detection with Application to Brain-Computer Interfaces,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3,
pp. 433–445, 2011.

[5] H. Cecotti, M. P. Eckstein, and B. Giesbrecht, “Single-Trial Classifi-
cation of Event-Related Potentials in Rapid Serial Visual Presentation
Tasks Using Supervised Spatial Filtering,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 11, pp. 2030–2042, 2014.

[6] G. Dornhege, B. Blankertz, G. Curio, and K. R. Muller, “Boosting bit
rates in noninvasive EEG single-trial classifications by feature combi-
nation and multiclass paradigms,” IEEE Transactions on Biomedical
Engineering, vol. 51, no. 6, pp. 993–1002, 2004.

[7] H. I. Suk and S. W. Lee, “A Novel Bayesian Framework for Dis-
criminative Feature Extraction in Brain-Computer Interfaces,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 2, pp. 286–299, 2013.

[8] T. Yu, Z. Yu, Z. Gu, and Y. Li, “Grouped Automatic Relevance
Determination and Its Application in Channel Selection for P300 BCIs,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 23, no. 6, pp. 1068–1077, 2015.

[9] R. C. Panicker, S. Puthusserypady, and Y. Sun, “An Asynchronous P300
BCI With SSVEP-Based Control State Detection,” IEEE Transactions
on Biomedical Engineering, vol. 58, no. 6, pp. 1781–1788, 2011.

[10] K. Tobias and K. Andrea, “Beyond maximum speed—a novel two-
stimulus paradigm for brain–computer interfaces based on event-related
potentials (P300-BCI),” Journal of Neural Engineering, vol. 11, no. 5,
p. 056004, 2014.

[11] E. Yin, T. Zeyl, R. Saab, T. Chau, D. Hu, and Z. Zhou, “A Hybrid Brain-
Computer Interface Based on the Fusion of P300 and SSVEP Scores,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 23, no. 4, pp. 693–701, 2015.

[12] G. Townsend, J. Shanahan, D. B. Ryan, and E. W. Sellers, “A general
P300 brain–computer interface presentation paradigm based on perfor-
mance guided constraints,” Neuroscience Letters, vol. 531, no. 2, pp. 63–
68, 2012.

[13] W. Speier, C. Arnold, J. Lu, A. Deshpande, and N. Pouratian, “Integrat-
ing Language Information With a Hidden Markov Model to Improve
Communication Rate in the P300 Speller,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 22, no. 3, pp. 678–684,
2014.

[14] W. Speier, C. Arnold, and N. Pouratian, “Integrating language models
into classifiers for BCI communication: a review,” Journal of Neural
Engineering, vol. 13, no. 3, p. 031002, 2016.

[15] W. Speier, C. W. Arnold, A. Deshpande, J. Knall, and N. Pouratian,
“Incorporating advanced language models into the P300 speller us-
ing particle filtering,” Journal of Neural Engineering, vol. 12, no. 4,
p. 046018, 2015.

[16] U. Hoffmann, J.-M. Vesin, T. Ebrahimi, and K. Diserens, “An efficient
P300-based brain–computer interface for disabled subjects,” Journal of
Neuroscience Methods, vol. 167, no. 1, pp. 115–125, 2008.

[17] B. O. Mainsah, L. M. Collins, K. A. Colwell, E. W. Sellers, D. B. Ryan,
K. Caves, and C. S. Throckmorton, “Increasing BCI communication
rates with dynamic stopping towards more practical use: an ALS study,”
Journal of Neural Engineering, vol. 12, no. 1, p. 016013, 2015.

[18] J. M. Clements, E. W. Sellers, D. B. Ryan, K. Caves, L. M. Collins,
and C. S. Throckmorton, “Applying dynamic data collection to improve
dry electrode system performance for a P300-based brain–computer
interface,” Journal of Neural Engineering, vol. 13, no. 6, p. 066018,
2016.

[19] E. W. Sellers and E. Donchin, “A P300-based brain-computer interface:
Initial tests by ALS patients,” Clinical Neurophysiology, vol. 117, no. 3,
pp. 538–548, 2006.

[20] P.-J. Kindermans, D. Verstraeten, and B. Schrauwen, “A Bayesian Model
for Exploiting Application Constraints to Enable Unsupervised Training
of a P300-based BCI,” PLOS ONE, vol. 7, no. 4, p. e33758, 2012.

[21] K. Pieter-Jan, T. Michael, M. Klaus-Robert, and S. Benjamin, “Inte-
grating dynamic stopping, transfer learning and language models in

an adaptive zero-training ERP speller,” Journal of Neural Engineering,
vol. 11, no. 3, p. 035005, 2014.

[22] N. Jrad, M. Congedo, R. Phlypo, S. Rousseau, R. Flamary, F. Yger,
and A. Rakotomamonjy, “sw-SVM: sensor weighting support vector
machines for EEG-based brain–computer interfaces,” Journal of Neural
Engineering, vol. 8, no. 5, p. 056004, 2011.

[23] A. Rakotomamonjy and V. Guigue, “BCI Competition III: Dataset II-
Ensemble of SVMs for BCI P300 Speller,” IEEE Transactions on
Biomedical Engineering, vol. 55, no. 3, pp. 1147–1154, 2008.

[24] Y. Li, C. Guan, H. Li, and Z. Chin, “A self-training semi-supervised
SVM algorithm and its application in an EEG-based brain computer
interface speller system,” Pattern Recognition Letters, vol. 29, no. 9,
pp. 1285–1294, 2008.

[25] M. Spuler, W. Rosenstiel, and M. Bogdan, “Adaptive SVM-Based
classification increases performance of a MEG-Based brain-computer
interface (BCI),” in Proceedings of the 22nd international conference
on Artificial Neural Networks and Machine Learning - Volume Part I,
(Lausanne, Switzerland), pp. 669–676, Springer-Verlag, 2012.

[26] P. J. Kindermans, H. Verschore, and B. Schrauwen, “A Unified Proba-
bilistic Approach to Improve Spelling in an Event-Related Potential-
Based Brain-Computer Interface,” IEEE Transactions on Biomedical
Engineering, vol. 60, no. 10, pp. 2696–2705, 2013.

[27] C. S. Throckmorton, K. A. Colwell, D. B. Ryan, E. W. Sellers, and
L. M. Collins, “Bayesian Approach to Dynamically Controlling Data
Collection in P300 Spellers,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 21, no. 3, pp. 508–517, 2013.

[28] B. O. Mainsah, L. M. Collins, and C. S. Throckmorton, “Using the
detectability index to predict P300 speller performance,” Journal of
Neural Engineering, vol. 13, no. 6, p. 066007, 2016.

[29] G. Cauwenberghs and T. Poggio, “Incremental and decremental support
vector machine learning,” 2000.

[30] C. P. Diehl and G. Cauwenberghs, “SVM incremental learning, adap-
tation and optimization,” in Proceedings of the International Joint
Conference on Neural Networks, 2003., vol. 4, pp. 2685–2690 vol.4,
2003.

[31] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for
Optimal Margin Classifiers,” in Proceedings of the 5th Annual Workshop
on Computational Learning Theory (COLT ’92), July 27-29, 1992,
Pittsburgh, PA, USA (D. Haussler, ed.), pp. 144–152, ACM Press, New
York, NY, USA, 1992.

[32] L. o. Bottou and C.-J. Lin, “Support Vector Machine Solvers,” in
Large Scale Kernel Machines (L. o. Bottou, O. Chapelle, Dennis, and
J. Weston, eds.), pp. 301–320, MIT Press, 2007.

[33] M. Palaniswami and A. Shilton, “Adaptive support vector machines
for regression,” in Neural Information Processing, 2002. ICONIP ’02.
Proceedings of the 9th International Conference on, vol. 2, pp. 1043–
1049 vol.2, 2002.

[34] R. Herbrich and J. Weston, “Adaptive margin support vector machines
for classification,” in 1999 Ninth International Conference on Artificial
Neural Networks ICANN 99. (Conf. Publ. No. 470), vol. 2, pp. 880–885
vol.2, 1999.

[35] O. Y.-S. and, L. Bougrain, C. Saavedra, E. Bojorges, and G. Gen-
tiletti, “P300-speller public-domain database.” http://akimpech.izt.uam.
mx/p300db, 2011.

[36] M. Kaper, P. Meinicke, U. Grossekathoefer, T. Lingner, and H. Ritter,
“BCI competition 2003-data set IIb: support vector machines for the
P300 speller paradigm,” IEEE Transactions on Biomedical Engineering,
vol. 51, no. 6, pp. 1073–1076, 2004.

[37] B. Blankertz, K. R. Muller, D. J. Krusienski, G. Schalk, J. R. Wolpaw,
A. Schlogl, G. Pfurtscheller, J. R. Millan, M. Schroder, and N. Bir-
baumer, “The BCI competition III: validating alternative approaches
to actual BCI problems,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 14, no. 2, pp. 153–159, 2006.

[38] B. O. Mainsah, K. A. Colwell, L. M. Collins, and C. S. Throckmorton,
“Utilizing a Language Model to Improve Online Dynamic Data Col-
lection in P300 Spellers,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 22, no. 4, pp. 837–846, 2014.

[39] L. Tao, G. Leslie, G. Shangkai, and H. Bo, “An online brain–computer
interface using non-flashing visual evoked potentials,” Journal of Neural
Engineering, vol. 7, no. 3, p. 036003, 2010.

[40] J. Jing, Z. A. Brendan, W. S. Eric, B. Clemens, H. Petar, W. Xingyu,
and N. Christa, “An adaptive P300-based control system,” Journal of
Neural Engineering, vol. 8, no. 3, p. 036006, 2011.

