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Abstract 

Transportation disruption, a common source of business interruptions, can cause significant 

economic loss to a lean supply chain. This paper studies a lean, two-stage supplier-

manufacturer coordinated system where a sudden disruption interrupts the transportation 

network, creating delivery delays, and product quantity losses. We develop a model to 

generate a recovery plan after a sudden disruption occurrence, to minimize the negative 

impacts of the disruption. At the same time, given the computational intensity and problem 

complexity, three heuristics based on the delivery delay and fractional quantity loss caused by 

a sudden disruption are developed. We conduct a number of numerical experiments to 

validate our proposed solution methods, and a scenario-based analysis to test the model and 

analyse the impact of sudden transportation disruption under three disruption scenarios. The 

performance of presented heuristics against the Generalized Reduced Gradient method are 

compared. The results reveal that the proposed heuristics can generate a recovery plan 

accurately and consistently. 
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1. Introduction 

In a globally competitive business environment, a well-executed supply chain ï which is a 

network that seamlessly receives inputs or raw materials from suppliers, produces final 

products at its manufacturing facilities, and delivers them to customers through a distribution 

network (Paul et al. 2016a) ï is crucial to the conduct of business (Min et al. 2008; Wieland 

and Wallenburg 2013). An efficient supply chain not only promotes the operational 

performance of the firms, but also contributes significantly to building, sustaining, and 

winning competitive advantage (Hendricks and Singhal 2003; Asian et al. 2009; Tavakoli et. 

al. 2012; Somarin et. al. 2016; Somarin et. al. 2017a; Somarin et. al. 2017b).  

Today, firms and their attendant supply chains are increasingly being exposed to 

disruptions. Alcantara and Riglietti (2015) reported that 74% of the firms from 426 sampled 

organizations had experienced at least one disruption in their supply chain, with 6 to 20 

disruptions a year for 15% of the responding firms. Their survey also revealed the financial 

extent of supply chain disruptions, ranging from 50,000 to 500 million Euros. These 

disruptions not only reduce the operating income but also the return on sales and assets, and 

increase the production cost and level of inventory (Chowdhury et al. 2016; Y. Kim et al. 

2015). Moreover, supply chain disruptions are associated with an abnormal decrease in 

shareholder value (Hendricks and Singhal 2003). Besides financial loss, supply chain 

disruptions bring about many other negative outcomes for the firm such as reputation effects 

(27%), reduced productivity (58%), and lower projected revenue (38%) (Alcantara and 

Riglietti 2015). Indeed, the extant literature suggests that firms are prone to significant 

financial and reputational losses caused by supply chain disruptions (Wagner and Silveira-

Camargos 2012). Considering the severe impact of supply chain disruptions, academia and 

industry have extensively acknowledged supply chain disruption and its management 

approach (Ansaripoor et al. 2017; Asian et al. 2016; Blome and Schoenherr 2011).  

While the awareness of supply chain disruptions has grown, many firms remain 

exposed to particular types of supply chain disruptions, such as transportation disruption. A 

transportation disruption refers to a disruption in the transit of goods from one node to 

another (e.g. supplier to manufacturer) (Hishamuddin et al. 2013). Transportation disruption 

halts the flow of products between nodes whereas the other types of disruptions stop 

production (Hishamuddin et al. 2013). Besides, transportation disruption has its specificity, 

distinctive in that goods in transit are stopped, with all other operations of the supply chain 

intact (Wilson 2007). While such a disruption delays delivery to a destination, it may also 

damage the condition of the delivered products especially for the temperature sensitive 
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perishable items. Firms across all sectors of industry view transportation disruption to be a 

major risk, as it delays goods delivery and goods write-offs in their supply chains. The impact 

can be supply-chain wide (Giunipero and Eltantawy 2004), and cause havoc such as missed 

delivery deadlines, plant shutdowns, lost sales, and loss of customer goodwill (Guiffrida and 

Jaber 2008). For instance, in 2010, Kenyan farmers who air-freighted exports to Europe had 

to destroy over 400 tons of cut-flowers when they faced two days of flight cancellations, due 

to the eruption of an Icelandic volcano (Chopra and Sodhi 2014). Indeed, the possible 

disruption cases arising from delivery delays and quantity loss (i.e., only a delivery delay, 

only a portion of the quantity loss, and both delivery delays and some quantity loss) are 

practical and pertinent and it can so critical that it demands management attention. Already, 

industries in Asia are constantly bombarded with this phenomenon in each operating quarter. 

The sources of transportation disruptions can include natural disasters, labour 

disputes, terrorist attacks, and infrastructure failure (Wilson 2007). Transportation disruptions 

may increase in the near future because of the adverse weather events due to global warming 

as these events will certainly hamper the operating time window of shipping, air freighting, 

and rail transport (Chen et al. 2015). A major consequence of a transportation disruption is 

the delayed delivery to the customer. As a mitigation measure, some researchers have 

recently developed recovery models that consider delivery delays after a disruption 

(Hishamuddin et al. 2012, 2014; Xia et al. 2004). Another consequence of a transportation 

disruption is the loss in product quantity, which has been largely ignored in most previous 

studies. In this situation, the customer will receive a quantity (ranging from nothing to the 

almost entire lot) smaller than expected (Wilson 2007). This affects the production 

scheduling, especially for just-in-time delivery (Chen et al. 2013; Khazaei Pool et al. 2017a).  

According to an industry survey conducted by Alcantara and Riglietti (2015), 40% of 

the firms are concerned about transportation disruptions, while only about 9% of them are 

forming contingency (i.e. business continuity) plans for coping with transportation network 

disruptions. Admittedly, transportation disruptions are difficult to predict (Chen et al. 2013; 

Chowdhury et al. 2016; Wagner and Bode 2008; Khazaei Pool et al. 2017b). Hence, formal 

operational planning is needed to minimize the impact of sudden transportation disruptions. 

An appropriate recovery model can assist managers to formulate appropriate plans to manage 

the onset of sudden transportation disruptions. Doing so can help to manage profitability and 

reduce the losses. However, studies dealing with transportation disruptions especially using 

recovery plans has received relatively scant attention in the literature (Paul et al. 2016a). In 

particular, none of the transportation disruption recovery models developed thus far have 
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investigated a rolling production planning considering both delivery delay and proportionate 

quantity loss. Focusing mainly on the economic ordering problem (Choi et al. 2016a; Choi et 

al. 2016b), the work closest to our study in the literature considers only a delivery delay to 

develop a recovery ñorderingò plan in a different supply chain setting (Hishamuddin et al., 

2013). Inspired by this fact, our paper seeks to develop a robust recovery plan for responding 

to transportation disruptions in a supplier-manufacturer system, considering both 

consequences of a sudden transportation disruption, namely, delivery delay and partial 

quantity loss.  

The focus of this paper is to develop a model for a two-stage centralized supply chain 

(consisting of a supplier and a manufacturer) and generate a production recovery plan after 

the occurrence of a sudden transportation disruption. In particular, the concentration of 

present work is mainly on mitigating operational impacts/effects (rather than analyzing the 

transportation disruption as a cause itself) of theafter a sudden transportation disruption on 

manufacturing planning and scheduling in a two-stage centralized supply chain. Thus, the 

main objective of this paper is to generate a production recovery plan, which realistically 

considers both delivery delays and partial quantity losses, after the occurrence of a sudden 

transportation disruption.  

As the computational effort can be complex when solving a large-scale problem 

instance, therefore, to reduce the computational intensity and complexity involved in finding 

the optimal solution, three cost efficient heuristics are developed to approximate the optimal 

recovery plan under different scenarios. Two of the heuristics (partial quantity loss, and both 

delivery time delay and partial quantity loss) are specially developed for the problems 

introduced in this paper. Compared to the existing heuristics in the literature, which are 

mainly developed based on a multiple-step iteration method (Hishamuddin et al. 2013); a 

greedy approach, which has been successfully implemented in prior studies, is adopted (Paul 

et al. 2014c, 2015b, 2016a, 2016b). To ensure the accuracy of the proposed recovery policies 

and enhance the practicality of the developed model, we relax one of the main model 

assumptions (the fixed number of recovery cycles) and present two new heuristic procedures 

for determining the best number of recovery cycles in the event of transportation disruption. 

Testing our model through an intensive numerical study and conducting a scenario-

based analysis, it is shown that the proposed model can effectively help to manage sudden 

transportation disruptions, and hence enhance a firmôs operational performance. To further 

validate our approach, the heuristics solutions are compared against the standard Generalized 

Reduced Gradient (GRG) search algorithm. Besides assisting managers to formulate a 
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contingency recovery plan to manage transportation disruptions, this solution will equip 

managers for quick recovery from transportation disruptions, which in turn, will mitigate any 

disruption impact on a firmôs operational activities.  

The rest of the study is organized as follows. The literature review and problem 

description are presented in Sections 2 and 3 respectively. The model formulation and 

properties are found in Section 4. Section 5 presents the three heuristics. Section 6 contains 

the algorithm for the random experimentation. Section 7 compares the experimental results 

with the GRG method and describes the scenario-based analyses. Finally, Section 8 

concludes the paper.  

 

2. Literature review  

Clearly, a smooth and efficient supply chain operation is not assured, unless preparing for 

supply chain disruptions (Lu et al. 2017). Recently, three review papers published in supply 

chain risk and disruption management and reported different OR/MS models developed for 

managing supply chain risk and disruption (Fahimnia et al. 2015; Paul et al. 2016a; Snyder et 

al. 2016). Independently, Ho et al. (2015) conducted an extensive literature review and 

summarized the different types of disruptions and risks in the supply chain. However, to date, 

the topic of transportation disruption has received much less attention compared to the other 

types of supply chain disruptions.  

Unlike the strong assumptions made in the literature (Hishamuddin et al., 2013), 

transportation disruptions not only delay delivery from one node of a supply chain to another, 

but they may also damage the actual condition or some portion of the products. 

Transportation disruption is unique in its nature and can quickly affect an entire supply chain 

(Giunipero and Eltantawy 2004; Sharifkhani et al. 2016), leading to problems such as late 

deliveries, operations shutdown, lost sales, and loss of reputation (Guiffrida and Jaber 2008). 

Considering the severe impact of transportation disruptions, some studies have provided 

insights to such disruptions. For example, Giunipero and Eltantawy (2004) were the first to 

discuss transportation disruption albeit they did not offer any risk measurement or mitigation 

strategies to manage such disruptions. Later, Wilson (2007) investigated the effects on supply 

chain performance due to transportation disruption between two echelons of a five-echelon 

supply chain using system dynamics. That study considered four areas of transportation 

disruption: (i) disruption between the warehouse and the retailer, (ii) disruption between the 

tier one suppliers and the warehouse, (iii) disruption between the tier two and tier one 

suppliers, and (iv) disruption between the raw material suppliers and tier two suppliers. 
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Similarly, in our study, a two-stage supply chain with a focus on transportation disruption 

between a tier one supplier and a manufacturer is investigated.  

Though there is a lack of model-based research on transportation disruption, several 

earlier works have been found, which focus on developing models for other types of supply 

chain disruption recovery planning. Most of these studies have focused on three areas of 

supply chain disruptions: supply disruption, production disruption, and demand fluctuation 

(Ho et al. 2015). Recovery models to deal with supply disruptions are by far the most 

common (Paul et al. 2016a). Weiss and Rosenthal (1992) first developed an optimal 

inventory policy model for the economic order quantity inventory system, which may face 

disruptions in either supply or demand. Özekici and Parlar (1999) considered backorders to 

analyse a production-inventory model under random supply disruptions. Asian and Nie 

(2014) extended the concept to develop a win-win coordination mechanism for the contract 

between a buyer and a backup supplier when market demand is uncertain; and the main 

supplier is subject to supply disruptions. Pal et al. (2012) developed a model for a multi-

echelon supply chain, comprising two suppliers (a main and a backup supplier) delivering 

raw materials to a manufacturer, whereby the main supplier may face a random supply 

disruption and the secondary supplier is perfectly reliable but more expensive than the main 

supplier. Hishamuddin et al. (2013) also developed a recovery model to manage 

transportation disruption in a two-echelon supply chain. However, similar to the other 

aforementioned papers, that study focused on a supplier-retailer system to develop a recovery 

model for ñorderingò decisions by considering only delivery delays. In our paper, to develop 

a production-planning recovery model, both delivery time delay and partial quantity losses 

due to transportation disruptions are taken into account. Another aspect, which distinguishes 

our paper from the rest especially that of Hishamuddin et al. (2013), is our proposed greedy 

heuristics solution approach, which is different from the existing iterative based methods, and 

generates better and reliable results. 

On recent supply disruption recovery models, Hishamuddin et al. (2014) applied the 

backorders and lost sales concept for managing supply disruptions in a two-stage single-

supplier, single-retailer supply chain. The study was extended by Paul et al. (2014b) and 

(Paul et al. 2016b), who developed a recovery model for managing supply disruptions in a 

three-stage supply chain. They considered backorders, lost sales, and outsourcing options to 

generate optimal recovery plans. Other recent works related to developing supply disruption 

mitigation strategies can be found in Yang et al. (2009), Li et al. (2010), Shao and Dong 

(2012), Chung et al. (2015), Guo et al. (2013), Zhang et al. (2013), Hu et al. (2013), Yan et 
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al. (2014), Pal et al. (2014), Ray and Jenamani (2016), Do et al. (2016), Faghih-Roohi et al. 

(2015), Mogre and D'Amico (2016), and Li et al. (2015). Readers interested in supply 

disruption management are referred to Snyder et al. (2016) and Paul et al. (2016a, 2017).  

As mentioned, in developing the recovery models, several studies have focused on 

production disruption, also known as process disruption. For instance, Xia et al. (2004) 

developed a general disruption management approach for a two-stage production and 

inventory control system that incorporated a penalty cost for the deviations of the revised 

plan from the original. They divided the disruption interval as follows: pre-disruption, in-

disruption, and post-disruption, to eke out a detailed analysis of the disruption effects. Later, 

Hishamuddin et al. (2012) extended the study to develop a recovery plan from a single 

production disruption for a single stage production-inventory system. This was further 

extended to a real-time disruption recovery plan from both single and multiple production 

disruptions for single-stage (Paul et al. 2013, 2015b), two-stage (Paul et al. 2014c), and three-

stage (Paul et al. 2015a) production-inventory systems. They incorporated backorders, lost 

sales and/or outsourcing options to generate the recovery plan and developed some solution 

heuristics. Other studies (Baghalian et al. 2013; Kim 2013; Tang et al. 2012) have considered 

demand fluctuations when formulating a supply chain recovery model. Paul et al. (2014c) 

have applied a real-time recovery concept on a supplier-retailer coordinated system for 

managing demand fluctuations under backorders and lost sales. 

Though delivery delays and quantity losses are the most common consequences of a 

sudden transportation disruption, our survey highlights that no study has so far developed a 

recovery model for production planning where both delivery delays and fractional quantity 

loss simultaneously occur (Hishamuddin et al. 2012; Wilson 2007). To fil l this research gap, 

we focus on a two-stage supplier-manufacturer supply chain and develop a model to generate 

a production recovery plan after the occurrence of a sudden transportation disruption. Both 

delivery delays and fraction of quantity losses resulting from a sudden transportation 

disruption are considered, and both backorders and lost sales are applied. Further, given the 

considerable cost of commercial software and in order to reduce the computational intensity 

and complexity involved in finding the optimal solution, we develop three heuristics to 

approximate the optimal recovery plan. The recovery plan under all possible disruption 

scenarios arising from delivery delays and quantity loss (i.e. only a delivery delay, only a 

portion of the quantity loss, and both delivery delay and some quantity loss) are generated.  

From what we know, this is the first model, which develops a recovery model in a 

two-stage supplier-manufacturer coordinated system considering both delivery delays and 
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fractional quantity loss due to a sudden transportation disruption. We apply the heuristics on 

a number of test problems, which are generated randomly using a uniform distribution. The 

heuristics solutions are compared with those obtained by the GRG method for 100 random 

test problems. Further, a random experimentation is designed to analyse the effect of 

randomly generated disruption events that are not known a priori. A detailed sensitivity 

analysis is performed to explain the usefulness of the developed model. After comparing and 

validating our proposed heuristics, we analyse the results for different types of disruption 

scenarios. To this aim, the scenarios from all possible consequences led by sudden 

transportation disruptions are randomly generated and categorised as low, medium, and high. 

The main contributions of this paper can be summarized as follows: 

i. Develop a new mathematical formulation to manage sudden transportation disruptions, 

which cannot be predicted in advance. The model considers both delivery delays and 

partial quantity loss as the consequences of a sudden transportation disruption.  

ii.  Propose three heuristics for generating recovery plans for a sudden transportation 

disruption. The recovery plans are generated after the occurrence of a disruption 

covering a finite number of upcoming periods on a real-time basis to minimize the 

total loss due to disruptions. 

 

3. Problem Description  

Our research seeks to formulate a mathematical model for an efficient recovery plan under a 

sudden transportation disruption where both delivery delays and quantity losses exist. In this 

research, a two-stage supplier-manufacturer coordinated supply chain system is considered. 

Under normal conditions, such this system can be coordinated by continuous batch 

production (Sarker and Khan 1999) and a joint Economic Production Quantity (EPQ) model 

(Banerjee 1986). Figure 1 presents an ideal system where no transportation disruption occurs 

and, hence, the optimal batch quantities (ὗᶻ and ήᶻ) are found from the EPQ model. When 

the supplier completes a batch production of ὗ, the batch is delivered to the manufacturer 

through the transport network. We consider the supplierôs set-up time (Ὓ ) and idle time (Ὕ) 

between two consecutive production batches. Once the manufacturer receives a batch, he 

starts to make the final product to satisfy downstream customer annual demand (Ὀ . Let 

ή denote the manufacturerôs lot size, which is assumed to be completely delivered to the 

customer. A coordinated (supplier-manufacturer) system is considered, where N = number of 

units of raw materials required for producing one unit final product ï can be obtained from 
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Bill of Materials (BOM). Hence, the batch production of ὗ can be expressed as ὗ  ὔή. 

The manufacturer has set-up time (Ὓ ) and idle time (Ὕ ) between two consecutive batches.  

In such a lean production environment, a sudden transportation disruption can 

interrupt the fragile flow of raw materials and cause delayed delivery and/or quantity loss. 

The main target is then to revise the current inventory and production plans after the 

occurrence of a transportation disruption, known as the recovery plan, so that the negative 

impacts can be minimized.  

Raw material supplier

Manufacturer

Customer

Time

Time

Q

q

Ps

Pm

Tis+Sts

Tim+Stm

 

Fig. 1: Ideal two-stage supply chain 

In Figure 2, the dotted line represents the recovery plan after a sudden transportation 

disruption which mimics a delayed delivery of time (Ὕ) and a fraction of quantity loss (Ὢ). 

After the occurrence of a transportation disruption, the production-inventory plans are revised 

for a finite number of upcoming periods, which is known as the recovery time window (Paul 

et al. 2014c). Within this recovery time window, the plan will revise both the lot sizes of the 

supplier and manufacturer (ὢ and ὣ respectively) to minimize the effects of the 

transportation disruption.  

In practice, the most common consequence of a disruption is delivery delays to a 

customer. To overcome this consequence, a few researchers developed recovery models 

considering delivery delays after a disruption (Hishamuddin et al. 2012, 2014; Xia et al. 

2004). Another significant consequence of a transportation disruption is quantity loss, which 

can range from 0% to 100% of the lot (Wilson 2007). In this case, the customer will receive 

less than expected and as a result, the production plan will be distorted. Hence, it is important 

to simultaneously consider both consequences (delivery delays and quantity loss) while 

developing a recovery plan after a sudden transportation disruption. To make the model 

realistic, both delivery delay and quantity loss are considered: 
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i. Delivery delay: The raw materials are delivered to the manufacturer with a delay 

(Ὕ), which is equal to the disruption duration. 

ii.  Quantity loss: There is a fraction (Ὢ) of quantity loss due to the disruption, set as 

(0, 1) of the delivery lot. The fraction of loss could be anything between 0 and 1, 

hence, 0 means no loss and 1 means 100% loss.  

 

Raw material supplier

Manufacturer

Time

Time

Q

q

Ps

Pm

Tis+Sts

Tim+StmTd

X1

X2

Y1

Y2
Y3

X4
X3

Ideal plan

Recovery plan
 

Fig. 2: Recovery plan after the occurrence of a transportation disruption 

While both factors are direct consequences of a sudden transportation disruption, the 

extent to which each of them affects the trade-off between backorders and lost sales costs is 

different. In other words, given the several existing interdependencies among the model 

parameters and depending on the consequence of the transportation disruption (i.e., delivery 

delay and/or quantity loss), supply chain actors behave differently towards the recovery 

planning problem. Inspired by above facts, the purpose of this study is to develop the 

recovery planning solutions (revising the production and inventory planning) that can be 

implemented to hedge against the backorders and lost sales risks under sudden transportation 

disruptions. To characterize the complexity of the described decision making problem, three 

scenarios are considered that cover all possible cases led by a sudden transportation 

disruption: (i) only a delivery delay (Ὕ , (ii ) only a fraction of quantity loss (Ὢ), and (iii ) 

both a delivery delay and a partial quantity loss (both Ὕ and Ὢ).  

Future supply chain plans are revised after an occurrence of a disruption for the three 

scenarios. Our main objective in all the scenarios is to minimize the total cost within the 

recovery time window subject to the production, supply, demand, delivery, and time 

constraints.  
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4. Model formulation 

We now formulate the mathematical models for both the ideal and recovery plans. In the 

ideal plan, a joint EPQ model and the optimal batch sizes are determined by minimizing the 

total holding and set-up costs. For the recovery plan, however, additional backorders and lost 

sales costs are considered as recovery policies within the recovery time window. To provide a 

better demonstration, the major associated costs of sudden transportation disruptions are as 

follows.  

i. Backorders: If the system is disrupted, the backorders represent the portion of 

demand that cannot be fulfilled at the scheduled time but will be delivered at a later 

date when they are available (Paul et al. 2014c). This policy utilizes the idle times 

within the recovery time window to satisfy the unfulfilled demand. 

ii.  Lost sales: When the system is incapable of filling demand after a disruption and 

customers do not wait for stock to be replenished, demand is lost (Paul et al. 2014c). 

The following notations are used in our paper for the mathematical models. 

ὗ Supplier lot size 

ή Manufacturer lot size 

Ὀ Annual demand (Quantity/year) 

ὔ Number of raw material units required to produce one unit of final product 

ὖ  Production rate of manufacturer (Quantity/year)ȟὖ Ὀ 

ὖ Production rate of supplier (Quantity/year)ȟὖ ὔὈ 

Ὄ  Holding cost per unit per year for supplier ($/unit/year) 

Ὄ  Holding cost per unit per year for manufacturer ($/unit/year) 

Ὓ Set-up cost for supplier ($/set-up) 

Ὓ Set-up cost for manufacturer (including a fixed pre-determined transportation cost 

from supplier to manufacturer) ($/set-up) 

Ὓ  Set-up time of supplier (year) 

Ὓ  Set-up time of manufacturer (year) 

Ὕ  Idle time between two consecutive lots for supplier (year) 

Ὕ Idle time between two consecutive lots for manufacturer (year) 

Ὕ Delivery delay (year) 

Ὢ Fraction of quantity loss 

Ὗ  Quantity lost Ὢή 

ὢ Revised lot size of supplier in cycle Ὥ in the recovery plan 
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ὣ Revised lot size of manufacturer in cycle Ὥ in the recovery plan 

ὄ  Backorder quantity in cycle Ὥ in the recovery plan 

Ὠ  Delay in delivery in cycle Ὥ to customer in the recovery plan 

ὲ Number of cycles in the recovery time window 

ὲͅάὥὼ Maximum number of cycles in the recovery window 

ὄ Unit backorder cost ($ per unit per year) 

ὒ Unit lost sales cost ($ per unit) 

To make the models tractable and to obtain insightful results, the following assumptions 

are made: 

i. A single item is produced in the system. 

ii.  The productions rates (ὖ and ὖ) are greater than the demand rate. 

iii.  There is no inventory buffer and safety stock in the system, i.e. a truly lean system. 

iv. The recovery plan begins after the occurrence of a disruption in transportation. 

v. No emergency sourcing is possible. 

vi. Partial delivery is acceptable. 

To develop and analyse the recovery plans in a supply chain, without losing 

generality; it is assumed that a single item is produced in the system (Hishamuddin et al. 

2012, 2013; Xia et al. 2004). Following previous studies (Hishamuddin et al. 2012) it is 

assumed that the production rates exceed the demand rate. We also assume that there is no 

inventory buffer / safety stock as their cost is too expensive. In the recovery plan, it is 

considered that sudden disruptions can happen in a transportation network and to make the 

disruption recovery meaningful in practice, the recovery plan will be generated just after a 

transportation disruption is experienced. In short, the recovery plan is reactive and generated 

in real-time. We consider both backorder and lost sale policies to recover from a sudden 

transportation disruption, which are also widely used in both the literature and in practice 

(Hishamuddin et al. 2012; Paul et al. 2014c). It is assumed that emergency outsourcing is not 

possible as it is expensive and partial delivery is acceptable to make the recovery plan 

optimal. Finally, it is assumed that the manufacturer decides on the number of periods in the 

recovery time window. We later relax this assumption and present two heuristic procedures 

for determining the best number of recovery cycles in the event of transportation disruption. 

 

4.1 Ideal plan model 
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To better present the research problem, we first focus on an ideal situation where no 

disruption affects the transportation network. In the ideal state, a continuous batch production 

system (Sarker and Khan 1999) is considered, and the optimal lot size is determined by using 

the EPQ model (Banerjee 1986). Following the literature, holding and set-up costs for the 

supplier and manufacturer are considered. The associated cost equations are presented in Eqs. 

(1) ï (5). We then determine the optimal lot sizes for the manufacturer and supplier by Eqs. 

(6) and (7), respectively. Further, the idle time between two consecutive batches for both the 

supplier and the manufacturer are defined by Eqs. (8) and (9). 

Supplier holding cost Ὄ        (1) 

Supplier set-up cost Ὓ        (2) 

Manufacturer holding cost Ὄ        (3) 

Manufacturer set-up cost Ὓ       (4)  

Total cost (Ὕὅ) Ὄ Ὓ Ὄ ὛȢ     

With ὗ ὔή, the total cost function can be derived as follows: 

Total cost (Ὕὅ) Ὄ Ὓ Ὄ Ὓ     (5) 

Under a centralized system and to achieve economies of scale in distribution of raw 

material and finished productsô expenses, we assume that the manufacturer is responsible for 

transportation and delivery operations. Hence, for each manufacturerôs production run, a 

fixed major set-up cost (3) is considered, which includes some minor set-up cost 

components as well as a pre-determined fixed transportation cost per shipment from the 

supplier to manufacturer, regardless of quantity of items ordered. This is a reasonable 

assumption and consistent with existing relevant studies in literature (Chen and Chen, 2005; 

Daskin et al., 2005).  

To minimize the total cost, we set Ὕὅ π. 

After taking derivatives and some simplifications, the optimal manufacturer lot size is 

derived as Eq. (6). 

ή  .         (6) 

Optimal supplier lot size, ὗᶻ ὔή       (7) 

Idle time between two consecutive lots for supplier, Ὕ Ὓ   (8) 
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Idle time between two consecutive lots for manufacturer, Ὕ Ὓ  (9) 

 

4.2 Mathematical model for recovery plan 

We develop a mathematical model to generate the recovery plan after the occurrence of a 

sudden disruption in transportation. Similar to the ideal plan, the key equations for the 

different costs are first determined and the model is formulated as a constrained mathematical 

programming problem. To better capture the transportation disruption economic impacts, two 

additional costs are considered, namely, backorders and lost sales, under the recovery plan. 

The backorders cost is defined as the unit backorder cost multiplied by the backorder units 

and the associated time delay (Paul et al. 2015a). The lost sales, however, is determined as 

the unit lost sales cost multiplied by the lost sales units (Paul et al. 2015a). To be consistent, 

the structure of ñset-upò and ñholdingò costs are considered to be the same as the ideal 

scenario, where the transportation cost is incorporated in the manufacturerôs set-up costs as 

one of the fixed cost components. However, in contrast to the ideal plan, the focus here is on 

minimizing the total cost of the supplier and the manufacturer during the recovery plan 

window.  

The different costs under the recovery plan are calculated as follows: 

Set-up cost at supplier Ὓὲ       (10) 

Holding cost at supplier Ὄὢ Ὄὢ Ễ Ὄὢ  

В ὢ       (11) 

Set-up cost at manufacturer Ὓὲ      (12) 

Holding cost at manufacturer Ὄὣ Ὄὣ Ễ Ὄὣ  

В ὣ      (13) 

Lost sales cost ὒ όὲὭὸί ὴὶέὨόὧὩὨ Ὥὲ ὭὨὩὥὰ ὴὰὥὲόὲὭὸί ὴὶέὨόὧὩὨ Ὥὲ ὶὩὺὭίὩὨ ὴὰὥὲ  

ὒὲή В ὣ        (14) 

Backorder cost ὄ ὄzὥὧὯέὶὨὩὶ όὲὭὸίὨzὩὰὥώ 

ὄВ ὣὨ        (15) 

where 

Ὠ Ὕ
ὣ

ὖ

ή

ὖ
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Ὠ ÍÁØ
ή

Ὀ
ȟὝ

ὣ

ὖ

ὣ

ὖ
Ὦ ρί

Ὦ ρή

Ὀ

ή

ὖ
ȠᶅὭ ρȢ 

The objective function (total cost function) is derived in Eq. (16) by adding the all the 

cost presented in Eqs. (10) ï (15). In such a problem setting, the manager attempts to actively 

revise the production plan and effectively satisfy the customersô demand. A critical question 

then arises after the occurrence of a transportation disruption is: how to minimize the 

expected cost function, which is now subject to the supply, production, demand, and delivery 

constraints, during the recovery time window. These constraints are presented by Eqs. (17) ï 

(24). 

ὓὭὲὢȟὣ Ὓὲ В ὢ Ὓὲ В ὣ ὒὲή В ὣ ὄВ ὣὨ

          (16) 

subject to constraints (17) ï (22), 

ὢ ὗ          (17) 

В ὢ ὲὗ Ὗὔ        (18) 

В ὣ ὲή         (19) 

ὢ ὗ ὖ άὭὲὝȟὝ ȠᶅὭ ρ      (20) 

ὣ ή ὖ άὭὲὝȟὝ ȠᶅὭ ρ      (21) 

ὢ,ὣ πȠᶅὭ.         (22) 

To make mathematical models tractable, focus on the main aspects of our research 

objective, and obtain insightful results, we assume that the system has enough truck capacity 

to deliver the raw materials from the supplier to manufacturer. This assumption can be 

justified by knowing the fact that, in our model setting, the disruption consequence is actually 

quantified in terms of the transported batch size and, hence, the truck capacity has no direct 

impact on the decision making process. 

Constraint (17) presents the supplierôs lot size constraint for the first cycle. 

Constraints (18) and (19) present the total production for the supplier and manufacturer 

respectively. Constraints (20) and (21) present the supplierôs and manufacturerôs lot sizes for 

each cycle in the recovery window. Finally, Constraint (22) presents the non-negativity 

constraints. 

With transportation disruption, the centralized planner aims to minimize the risks of 

backorders and lost sales via the recovery plan. Specifically, the manufacturer and supplier 

need to consider their constraints and make their best decisions at post-disruption on the 

following. What are the optimal lot sizes in a recovery time window to minimize the impact 
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of the disruption? Taking the above decision, the supply chain members establish a practical 

recovery plan, which enables them to effectively respond to the market demand and minimize 

the overall expected cost of the system.  

As mentioned, to eliminate the cost of a commercial solver software and reduce the 

computational intensity and complexity involved in finding the optimal solution, we develop 

a heuristic approach, which can accurately approximate the optimal recovery plan. To fulfil 

this intention, the focus is put on finding the model properties by developing a few properties, 

which enable us to develop the heuristics and design the experimentation. 

 

4.3 Model properties 

So far, our focus has been on describing the system and formulating the problem using a 

constrained mathematical programming model. Now, we turn our attention to the recovery 

policy under each of the three possible disruption scenarios, described in Section 3. The 

special conditions of each disruption scenario are considered to characterize some of the main 

properties of the optimal solution. This will help us to better understand the trade-offs 

between the backorders and lost sales costs made under different situations.  

Property 1: Lost sales will be more attractive in the optimal solution if  ὄ Ὕ ὒ and 

backorders will be more attractive if ὄ Ὕ ὒ. 

Proof: After a disruption, the delay time is Ὕ within the recovery time window. In this 

situation, the unit backorder cost is ὄ Ὕ, whereas the unit lost sales cost is ὒ. In order to 

develop an effective recovery plan, one must trade-off between the backorders and lost sales 

costs. So, if ὄ Ὕ ὒ, lost sales will be more attractive than the backorders in the optimal 

solution and if ὄ Ὕ ὒ, then backorders will be more attractive. 

(a) For both delivery delay (╣▀  and a partial  quantity loss (█) 

Property 2: When backorders are more attractive, the recovery plan will incorporate only 

backorders if Ὕ ὲ ÍÉÎὝȟὝ  and both backorders and lost sales if Ὕ

ὲ ÍÉÎὝȟὝ . 

Proof: After a sudden transportation disruption has occurred, we have: Unfulfilled demand

Ὗ  and disruption duration = Ὕ. Therefore, the utilizable idle time in a cycle is equivalent 

to ÍÉÎὝȟὝ . 

Knowing that there are ὲ cycles in the revised plan, the total utili sable idle time in the revised 

planning window is ὲ ÍÉÎὝȟὝ . Moreover, the minimum time needed to recover is 
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Ὕ . As a result, if  Ὕ ὲ ÍÉÎὝȟὝ , the production process is capable to 

recover the total loss time by using only the idle timeslots. Hence, the recovery plan will 

incorporate only backorders. If Ὕ ὲ ÍÉÎὝȟὝ , the production process is 

incapable of recovering by using the idle timeslots. Hence, it will incorporate lost sales as 

well, so the recovery plan will incorporate both backorders and lost sales. 

(b) For only delivery delay (╣▀  

Property 3: When backorders are more attractive, the recovery plan will incorporate only 

backorders if Ὕ ὲ ÍÉÎὝȟὝ  and both backorders and lost sales if Ὕ ὲ

ÍÉÎὝȟὝ . 

Proof: Same as Property2. 

(c) For only a partial  quantity loss (█) 

Property 4: When backorders are more attractive, the recovery plan will incorporate only 

backorders if  ὲ ÍÉÎὝȟὝ , and both backorders and lost sales if   ὲ

ÍÉÎὝȟὝ .  

Proof: Same as Property 2. 

The above properties will  enable us to simplify the solution process as we present 

some heuristics to approximate an optimal decision. 

 

5. Solution approaches 

In this Section, we develop three heuristics for solving the disruption problems and two 

approaches for determining ὲ if it is unknown. 

5.1 Proposed Heuristics 

We now consider the important properties obtained from the above properties and develop 

three heuristics for managing sudden transportation disruptions in the supply chain. Focusing 

on the particular consequences of a sudden disruption, the heuristics are developed separately 

for different scenarios as follows: 

i. Heuristic 1: when the disruption consequence is only a delivery delay ╣▀ 

First, a heuristic for managing transportation disruption with the consequence of only a 

delivery delay denoted by  Ὕ is developed. In Step 1, the variables in the ideal plan are 

determined. The delivery delay time is given as the input in Step 2. If  ὄ Ὕ ὒ, the 

recovery plan is determined from Step 3, which involves only lost sales, as presented in 

Property 1. If ὄ Ὕ ὒ, the recovery plan is determined using Step 4, which involves both 
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backorders and lost sales, as shown in Property 3. Step 5 determines the different costs as 

well as the backorders and lost sales quantities. The results are recorded in Step 6. Finally, 

Step 7 terminates the program. The above steps are described as follows. 

Step 1: Determine the variables of the ideal plan using Eqs. (6) ï (9). 

Step 2: Input disruption duration  Ὕ   in the heuristic. 

Step 3: If ὄ Ὕ ὒ, then we would have  

ὢ ὗ 

ὢ ὗ Ὕ ὖ ὔ 

ὢ ὗȠᶅὭ ρȟς 

ὣ
ή

ὖ
Ὕ ὖ  

ὣ ήȠᶅὭ ρȢ 

Step 4: If ὄ Ὕ ὒ, then we would have 

If Ὕ ὲ ÍÉÎὝȟὝ , 

ὢ ὗȠᶅὭ 

ὣ ήȠᶅὭȢ 

If Ὕ ὲ ÍÉÎὝȟὝ , 

ὢ ὣ ὔȠᶅὭ 

ὣ ή 

ὣ ή Ὕ ὲ ÍÉÎὝȟὝ ὖ  

ὣ ήȠᶅὭ ρȟςȢ 

Step 5: Determine the different costs as well as the backorders and lost sales quantities. 

Step 6: Record results. 

Step 7: Stop. 

 

ii.  Heuristic 2: when the disruption consequence is a partial quantity loss (█) 

The steps of Heuristic 2 where the disruption only affects the delivery quantity are described 

as follows: 

Step 1: Determine the variables of the ideal plan using Eqs. (6)-(9). 

Step 2: Input of the partial damaged quantity (Ὢ) in the heuristic. 

Step 3: If ὄ ὒ, then we would have 

ὢ ὗȠᶅὭ 

ὣ ρ Ὢή 
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ὣ ήȠᶅὭ ρȢ 

Step 4: If ὄ ὒ, then we would have 

If  ὲ ÍÉÎὝȟὝ , 

ὢ ὗ 

ὢ ὣ ὔȠᶅὭ ρ 

ὣ ρ Ὢή 

ὣ ή
Ὗ

ὲ ρ
ȠᶅὭ ρȟςȢ 

If   ὲ ÍÉÎὝȟὝ , 

ὢ ὗ 

ὢ ὣ ὔȠᶅὭ ρ 

ὣ ρ Ὢή,ὣ ή ÍÉÎὝȟὝ ὖȠᶅὭ ρȢ 

Step 5: Determine the different costs as well as the backorders and lost sales quantity. 

Step 6: Record results. 

Step 7: Stop. 

iii.  Heuristic 3: when the disruption consequence is both a delivery delay (╣▀) and 

a partial quantity loss (█). 

The steps of Heuristic 3 where both a delivery delay and partial quantity loss exist are as 

follows: 

Step 1: Determine the variables of the ideal plan using Eqs. (6)-(9). 

Step 2: Input disruption duration (Ὕ) and fraction of damaged quantity (Ὢ) in the heuristic. 

Step 3: If ὄ Ὕ ὒ, then we would have 

ὢ ὗȠᶅὭ 

ὣ ÍÉÎ Ὕ ὖȟρ Ὢή,ὣ ήȠᶅὭ ρȢ 

Step 4: If ὄ Ὕ ὒ, then we would have 

If Ὕ ÍÉÎὝȟὝ , 

ὢ ὗ 

ὢ ὣ ὔȠᶅὭ ρ 

ὣ ρ Ὢή,ὣ ή Ὗ ,ὣ ήȠᶅὭ ρȟςȢ 

If ÍÉÎὝȟὝ Ὕ ς ÍÉÎὝȟὝ , 

ὢ ὗ 
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ὢ ὣ ὔȠᶅὭ ρ 

ὣ ρ Ὢήȟὣ ή , ὣ ή , ὣ ήȠᶅὭ ρȟςȟσȢ 

If (ὲ ρ ÍÉÎὝȟὝ Ὕ ὲ ÍÉÎὝȟὝ , then 

ὢ ὗ 

ὢ ὣ ὔȠᶅὭ ρ 

ὣ ρ Ὢή,ὣ ή ȠᶅὭ ρȢ 

If Ὕ ὲ ÍÉÎὝȟὝ , 

If Ὕ ὲ ÍÉÎὝȟὝ , then 

ὢ ὗ 

ὢ ὣ ὔȠᶅὭ ρ 

ὣ ρ Ὢή 

ὣ ή
ὲ ÍÉÎὝȟὝ Ὕ

ὲ ρ
ὖȠᶅὭ ρȢ 

If Ὕ ὲ ÍÉÎὝȟὝ , then 

ὢ ὗ 

ὢ ὣ ὔȠᶅὭ ρ 

ὣ ρ Ὢή,ὣ ή
ȟ ȟ

ὖȠᶅὭ ρȢ 

Step 5: Determine the different costs, the backorders, and lost sales quantity. 

Step 6: Record the results. 

Step 7: Stop. 

 

5.2 Determination of ▪ if it is unknown 

In this Section, we propose a heuristic procedure for determining the best number of recovery 

cycles in the event of transportation disruption. The procedure is as follows. 

i. Determination of ▪ for a delivery delay 

The steps for determining number of recovery cycles for a delivery delay are presented as 

follows. 

Step 1: if ὄ Ὕ ὒ 

Determine ὲͅάὥὼ = 
 ȟ
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Step 2: for ὲ = ρ to ὲͅάὥὼ 

Run the approach developed in heuristic 1 and calculate backorder and lost sales cost using 

(14) and (15) for each ὲ. 

Step 3: choose ὲ for minimum total cost 

Step 4: if ὄ Ὕ ὒ 

ὲͅάὥὼ = 0 

Backorder cost = 0 

Lost sales cost = ὒ Ὕ ὖ  

Step 5: stop 

ii.  Determination of ▪ for a partial quantity loss 

The steps for determining number of recovery cycles for a partial quantity loss are presented 

as follows. 

Step 1: if ὄ ὒ  

Determine ὲͅάὥὼ = ρ
 ȟ   

 

Step 2: for ὲ = ὲ ρ to ὲͅάὥὼ 

Run the approach developed in heuristic 2 and calculate backorder and lost sales cost using 

(14) and (15) for each ὲ. 

Step 3: choose ὲ for minimum total backorder and lost sales cost  

Step 4: if ὄ ὒ 

ὲͅάὥὼ = 0 

Backorder cost = 0 

Lost sales cost = ὒ Ὢή 

Step 5: stop 
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6. Random experimentation 

For a fair comparison between our proposed approach and those found in the extant literature, 

the prior similar studies (Paul et al. 2014c, 2015b, 2016b) are used as benchmarks in order to 

choose the justifiable ranges and values for the model parameters. Hence, the following range 

of disruption parameters are applied for the random experimentation: Ὕ  [0.0001, 0.08]; 

Ὢ  (0, 1).  The random experiments are then constructed by using the following steps: 

Step 1: Input all data for the ideal plan. 

Step 2: Determine ή, ὗ, Ὕ and Ὕ  for the ideal plan. 

Step 3: Generate a random disruption situation 

a. For only a delivery delay Ὕ 

Generate a random number for Ὕ 

Run Heuristic 1 

b. For both a delivery delay Ὕ and a fraction of quantity loss Ὢ 

Generate random number for Ὕ and Ὢ 

Run Heuristic 2 

c. For only a fraction of quantity loss Ὢ 

Generate a random number for Ὢ 

Run Heuristic 3 

Step 4: Repeat Step 3 1,000 times for each disruption situation. 

Step 5: Record results. 

Step 6: Stop. 

All the heuristics and experiments were coded in MATLAB R2015b, and were executed on 

an Intel core i7 processor with a 3.40 GHz CPU and 8 GB RAM.  

 

7. Computational experiments and results 

In this Section, we conduct rigorous computational experiments to illustrate our findings and 

evaluate the performance of the proposed heuristics methods in comparison to the GRG 

solution. The problem setting that is designed for the numerical study conducted under ideal 
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and recovery conditions is described in Section 7.1. To present further insights, a significant 

number of randomly generated test problems are experimented. In Section 7.2, we compare 

our results with the solutions obtained from the GRG method. A scenario-based analysis is 

presented in Section 7.3. We further conduct a sensitivity analysis in Section 7.4 where the 

impact of the delivery delay and partial quantity loss on the model costs are investigated 

through separate random experimentations. Finally, a detailed numerical analysis, with a 

special focus on the cases where number of cycles in the recovery time window is unknown, 

is performed in Section 7.5. 

 

7.1 Numerical examples for the ideal and recovery plans 

We first focus on the ideal plan problem i.e. no disruption in the system. Although the values 

for the key parameters in our experiments are randomly generated, to prevent production of 

non-meaningful results, it is guaranteed that the selected parameter values and ranges do not 

cause too trivial and non-practical cases (Paul et al. 2014c, 2015b, 2016b). 

Ὀ 100,000, ὖ 240,000, ὖ 120,000, ὔ=2, Ὄ 0.5, Ὄ 0.8, Ὓ 80, Ὓ 120, Ὓ  

0.0008, and Ὓ 0.0006. 

 

Table 1: Sample instance for each disruption situation 

Instance number Consequence Parameter 

1 Only delivery delay Ὕ  0.05 

2 Only partial quantity loss Ὢ  0.60 

3 Both delivery delay and partial quantity loss 
Ὕ  0.04 

Ὢ  0.30 

 

 

Using the above parameter values and from Eqs. (6) and (7), the EPQ for both the 

manufacturer and supplier is determined. Subsequently, the total annual holding and set-up 

costs of the system is determined (here, $7,746). Finally, an ideal time between two 

consecutive lots for the supplier and manufacturer is found by using Eqs. (8) and (9), 

respectively. Our results for the ideal plan are listed as follows. 

ὗᶻ  10,328 units; ήᶻ  5,164 units; Ὕὅ $7,746; Ὕ  0.0078 year; Ὕ  0.0080 year. 
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Table 2: Recovery plan for the sample instances 

Instance 

number 
Recovery plan 

Total 

backorders 

cost 

Total lost 

sales cost 
Total cost 

1 

ὢ 10,328 

ὢ  7,696 

ὢ  10,328 

ὢ 10,328 

ὢ 10,328 

ὣ  5,164 

ὣ 3,848 

ὣ  5,164 

ὣ  5,164 

ὣ  5,164 

10,995.7 13,160.2 26,066.9 

2 

ὢ  10,328 

ὢ  11,878 

ὢ  11,878 

ὢ 11,878 

ὢ  11,878 

ὣ 2,066 

ὣ  5,939 

ὣ  5,939 

ὣ  5,939 

ὣ  5,939 

1,105.8 0 3,289.1 

3 

ὢ 10,328 

ὢ  10,270 

ὢ 10,270 

ὢ 10,270 

ὢ 10,270 

ὣ  3,615 

ὣ  5,135 

ὣ  5,135 

ὣ  5,135 

ὣ  5,135 

4,611.7 16,652.2 23,209.6 

 

After characterizing the ideal plan, we turn our attention to the decision-making 

problem under the recovery plan, where a sudden disruption affects the transportation system. 

The values of the input parameters are set as ὄ 20, ὒ 10, and ὲ 5 according to the initial 

tests. To obtain the insights, a significant number of random disruption instance problems is 

used and a computational experiment is performed. For a sample result presentation, we 

focus on an exemplary instance for each disruption consequence (see Table 1). 

The results for three sample instances are shown in Table 2, which shows the 

recovery plan, total backorders, lost sales cost, and total supply chain cost during the 

recovery time window. Both backorders and lost sales appear in instances 1 and 3, while only 

the backorders cost is presented in instance 2. Following the properties developed in Section 

4.3, this can be explained by the fact that although the optimal recovery plan incorporates 

both backorders and lost sales, it is capable to revise the plan by using only backorders. The 



25 

reason and condition for incorporating the backorders and lost sales will be investigated in 

Sections 7.3 and 7.4 through a scenario-based analysis and sensitivity analysis. 

 

7.2 Results comparison 

To evaluate the quality of the solutions of three presented heuristics, the GRG non-linear 

method is used as a benchmark. GRG is a standard solution technique for solving constrained 

non-linear mathematical programming problems (Gabriele and Ragsdell 1977). To design our 

experiments, the following options in the GRG method is considered: 

Convergence: 0.0001, Derivatives: forward, Population size: 100, Random seed: 0, 

Constraint precision: 0.000001. 

Then, the results obtained from both the heuristics and GRG method are compared for 

a reasonable number of random test problems. To this end, we determine the average 

percentage of deviation of the results by using Eq. (23), which is commonly used in the 

literature (Paul et al. 2014c, 2015b, 2016b). 

Average percentage of deviation: 

В
ȿ       ȿ

   
ρππϷ.   (23) 

Here, ὓ denotes the number of test problems. 

The results obtained from our heuristics were compared against the GRG non-linear 

method using Excel solver for 100 random disruption test problems. The test problems are 

generated from a random uniform distribution by varying the disruption data. In this 

comparison experiment, the average percentage of deviation, which was calculated through 

Eq. (23), for the results obtained from the two approaches, is 0.0017%. This deviation is 

negligible, due probably to the rounding of the values of the decision variables. On the 

consistency of the solutions, the results are analysed by changing the data on delivery delay 

and fraction of quantity loss, as shown in Figures 3 and 4, respectively. For all ranges of data, 

our heuristic approaches produce consistent results compared to the GRG method. In 

addition, the solution time of both approaches is negligible albeit our proposed approach is 

easier to implement. This shows the effectiveness of the proposed solution. 
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Fig. 3: Comparison of total cost with changing delivery delay time 

 

 

 

Fig. 4: Comparison of total cost with changing fraction of quantity loss 

 

7.3 Scenario-based analysis 

After comparing and validating our proposed heuristics, the results for the different types of 

disruption scenarios are analysed. To this end, we randomly generate the scenarios from all 
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possible consequences arising from sudden transportation disruptions and categorise them as 

low, medium, and high profile, as shown in Table 3. 

50 random test problems are generated by using a uniform probability distribution for each 

category and consequence to analyze the results. The values of the other parameters are hold 

constant as presented in Section 7.1.  

 

Table 3: Scenarios of transportation disruption 

Category 
Consequence 

Delivery delay Quantity loss Delivery delay and quantity loss 

Low Ὕ = [0.0001, 0.03] Ὢ = [0.0001, 0.4] Ὕ = [0.0001, 0.03]; Ὢ = [0.0001, 0.4] 

Medium Ὕ  = [0.03, 0.06] Ὢ = [0.4, 0.8] Ὕ = [0.03, 0.06]; Ὢ = [0.4, 0.8] 

High Ὕ  = [0.06, 0.08] Ὢ = [0.8, 1] Ὕ = [0.06, 0.08]; Ὢ = [0.8, 1] 

 

Figures 5 to 8 summarize the results, which show the average total cost, the backorder and 

lost sales costs for each category of disruption scenario. When the consequence is only a 

delivery delay, as shown in Figure 5, it is observed that the total lost sales cost is significantly 

higher in a high delay scenario and the average backorder cost flattens for the medium to high 

scenarios. This is because the lost sales cost becomes more attractive than the backorder cost.  
 

 

Fig. 5: Costs for different delivery delay scenarios 
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Fig. 6: Costs for different quantity loss scenarios 

 

When the disruption consequence is only a quantity loss, as shown in Figure 6, the 

lost sales cost increases slowly from the low to high profile scenario and after that the 

increment rate becomes higher. This is because the lost sales become more attractive with 

higher quantity loss and in the low and medium quantity loss scenarios, the backorders are 

more attractive and are incorporated in the revised plan. 

For both delivery delay and quantity loss, as shown in Figure 7, the lost sales are 

mostly incorporated in the revised plan. This is because the revised plan is not capable of 

dealing with only backorders and lost sales becomes more attractive. 

 

 

Fig. 7: Cost for both delivery delay and quantity loss scenario 
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Fig. 8: Average total cost for different disruption consequences 

 

 

To measure the severity of disruption, it is observed that the total cost is significantly 

higher when consequences are both delivery delay and quantity loss, as shown in Figure 8. 

Between the delivery delay and quantity loss, the total cost is higher when the consequence is 

delivery delay. This is because of the systems having only some idle time between two 

consecutive lots, which makes it sensitive to dealing with delivery delay, and lost sales are 

incorporated when the delivery delay is much smaller. 
 

   

7.4 Random experimentation and sensitivity analysis 

After evaluating the performance of the proposed heuristics, a random experimentation is 

conducted and sensitivity analysis is performed to characterize the impact of the parameters 

on the final solutions. To this aim, we conduct a random experimentation for 1,000 random 

test problems that are generated for each disruption scenario from a random uniform 

distribution. In what follows, the results of random experimentation are summarised. 

It is observed that the both the delivery delay and fraction of quantity loss have 

significant impact on the model costs. Figure 9 presents the impact of delivery delay on 

backorders, lost sales, and total cost. We also observe that after a disruption, the system is 

capable of revising the production plan only by using the backorders until the delay is 0.039. 

The recovery plan incorporates both the lost sales and backorders options. Due to 

incorporating only the backorders in the revised plan, the total cost increases slowly when the 

delivery delay is less than 0.039. When the delivery delay exceeds 0.039, the total cost 
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incorporated, along with the backorders, in the revised plan. This explanation supports 

Property 3. 

 

Fig. 9: Change in cost from delivery delay  

 

We run 1,000 random test problems for delivery delay due to a transportation 

disruption using a uniform distribution in the range [0.0001, 0.08]. Figure 10 shows the total 

cost pattern for the test problems. The mean and standard deviation of the total cost are 

21,046 and 18,299, while the maximum and minimum total cost values are 59,768 and 2,012, 

respectively.  

 

Fig. 10: Random experimentation for only delivery delay 
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Figure 11 presents the impact of the fraction of quantity loss on backorders, lost sales, 

and total cost. It can be seen that the system is capable to revise the plan by incorporating 

only backorders until the fraction of quantity loss is 0.72. When the fraction exceeds 0.72, the 

recovery plan incorporates both the lost sales and backorders options. In addition, due to 

incorporating only the backorders in the revised plan, the total cost increases slowly when the 

fraction of quantity loss is less than 0.72. It is because the lost sales cost has no impact on the 

recovery plan and only backorders are incorporated in the revised plan. In contrast, when the 

fraction of quantity loss exceeds 0.72, the total cost increases at a higher rate with the fraction 

of quantity loss because the lost sales cost has also been incorporated in the recovery plan. 

This explanation supports Property 4. 

 

 

Fig. 11: Change in cost with fraction of quantity loss 

 

Similar to the previous experiments, 1,000 random test problems are generated for the 

fraction of quantity loss due to a transportation disruption using a uniform distribution in the 

range [0.0001, 1]. The total cost pattern for all test problems is presented in Figure 12. The 

mean and standard deviation of the total cost are 4,901 and 4,358, while the maximum and 

minimum total cost values are 18,862 and 2,000 respectively.  

Finally, to examine the third scenario under transportation disruption where both the 

delivery delay and fraction of quantity loss exist, 1,000 random test problems are generated 

using a uniform distribution in the range [0.0001, 0.08] and [0.0001, 1] for delivery delay and 

fraction of quantity loss, respectively. The variation in the total cost in the presence of both a 

delivery delay and a fraction of quantity loss are presented in Figure 13. In this scenario, it is 


