Design and Analysis of a Linear Induction Motor for a Prototype HTS Maglev Transportation System

Youguang Guo, Wei Xu, Jianguo Zhu, Haiyan Lu, Yi Wang
Faculty of Engineering and Information Technology
University of Technology Sydney
Sydney, Australia
youguang@eng.uts.edu.au, joe@eng.uts.edu.au

Jianxun Jin
Center of Applied Superconductivity and Electrical Engineering
University of Electronic Science and Technology of China
Chengdu, China
jxjin@uestc.edu.cn

Abstract—This paper investigates the design and analysis of a linear induction motor (LIM) drive for a prototype transportation system, which is levitated by the interaction force between high temperature superconducting (HTS) bulks placed on the ground and permanent magnets (PMs) mounted on the bottom of the vehicle, while the driving force is provided by a linear induction motor system on the side of the prototype vehicle. An equivalent electrical circuit is applied to predict the motor characteristics and the computation results show that the proposed LIM drive system is appropriate for driving the HTS maglev transportation prototype.

Keywords-linear induction motor; high temperature superconducting (HTS) maglev transportation system; equivalent electrical circuit.

I. INTRODUCTION

High temperature superconducting (HTS) maglev transportation systems have attracted strong interest of research and development due to their attractive property of high levitation force density with passive and self-stabilizing feature [1]-[2]. For investigating the application of this technique, the authors of this paper have developed a prototype HTS maglev transportation vehicle and a linear permanent magnet (PM) synchronous motor drive, which have been successfully tested in laboratory [3]-[4]. In this paper, we will further develop a linear induction motor (LIM) for driving the HTS maglev vehicle prototype.

For the LIM drive, one can choose a long and active primary track or a short and passive primary track. For long transportation application, the coils and iron core have to be mounted all the way and this would be costly. Furthermore, the supply for the whole primary windings would waste much energy while only the coils facing to the vehicle produce effective force. Segment energizing technique may be used but this causes additional complexity [5]. However, the long primary track can avoid the drawback of sliding contact for supplying the coils and it also has the advantage of light weight vehicle due to the lack of coils and iron core in the vehicle. Therefore, the LIM prototype with short and passive secondary aluminum track to be presented in this paper can be suitable for the launcher system in an airplane carrier, where the primary windings and the HTS bulks are not so long and costly. This paper presents the design and performance analysis of a linear induction motor drive, including the major dimensions and parameters of the motor, drive scheme, parameter computation and performance prediction.

II. PROTOTYPE MAGLEV VEHICLE WITH LIM DRIVE

Fig. 1 illustrates the schematic diagram of the prototype HTS maglev vehicle driven by LIM. The levitation force as well as the guidance force is produced by the interaction between the permanent magnets (PMs) mounted on the bottom of the vehicle and the HTS bulks placed on the ground, while the driving force is generated by two LIMs, one in each side. The LIM consists of a stationary side (copper coils placed in the slots of side steel track) and a movable side (aluminum plate on the vehicle side).

Fig. 2 shows the side view of the stationary part of the LIM formed by stacking a number of modular laminated steel cores along the moving direction. Each modular core consists of a concentrated coil and the coils are connected into three-phase windings and supplied by a varying voltage varying frequency inverter. The slot has a depth of 75 mm and a width of 25 mm. The width of middle tooth is 50 mm, the width of side tooth is 25 mm, the height of yoke is 25 mm, and the transversal length of the modular core is 100 mm.

Figure 1. Schematic diagram of an HTS maglev vehicle with LIM drive

Figure 2. Side view of the stationary part of LIM
III. EQUIVALENT ELECTRICAL CIRCUIT OF LIM

The performance of the LIM can be analyzed by an equivalent electrical circuit as shown in Fig. 3, where U_1 is the applied phase voltage, r_1 the primary resistance, x'_2 the secondary leakage reactance, and r'_2 the secondary resistance referred to the primary side. Compared to the rotary induction motor, the LIM has ends in both longitudinal and transversal directions. To consider the end effects, four correction factors, i.e. the longitudinal end effect factors, $K_r(s)$ and $K_x(s)$, and the transversal end effect factors, $C_r(s)$ and $C_x(s)$, are introduced in the equivalent circuit in Fig. 3. These factors are closely related to the structural dimensions, material properties and velocity of the motor. They can be obtained by numerical magnetic field analysis and/or empirical analytical formulae [6]-[7].

![Figure 3. Equivalent electrical circuit of LIM](image)

To achieve the optimal drive performance, the excitation current frequency and motor slip should change according to the vehicle speed. The depth of magnetic field into the secondary aluminum sheet is calculated by

$$\delta = \sqrt{\frac{2}{\omega \mu_0 \rho}} \quad (1)$$

When the secondary current frequency is 25 Hz, the penetration depth of magnetic flux into the aluminum sheet is calculated as 18.3 mm. Therefore, in most operational conditions, the magnetic flux can reach the back iron and the secondary resistance should include both the conduction sheet resistance and the back iron resistance, i.e. r_{con} and r_{back}.

The skin-effect factor K_f is obtained by

$$K_f = \frac{1 + B_i^2 s h^2 (2 K g_s)}{A_i [1 + B_i^2 s h^2 (2 K d)]} \quad (2)$$

where $K = \frac{\pi}{\tau}$, τ is the primary pole pitch, d is the thickness of the secondary conduction sheet, g_s is the equivalent air gap length, and A_i and B_i are coefficients which are the functions of the slip and motor structure as

$$g_s = K_i K_s g \quad (3)$$

$$A_i = c h^2 (K g_s) + \left[\frac{K \rho s h (K g_s)}{s o \mu_0 d} \right]^2 \quad (4)$$

$$B_i = \frac{s o \mu_0 d}{2 K \rho d} \left(1 + \frac{K \rho_s}{s o \mu_0 d} \right)^2 \quad (5)$$

where g is the air gap length, K_i the Carter factor, K_s the magnetic saturation factor, ρ_s the electrical conductivity of the secondary aluminum sheet, s the slip, ω the angular frequency of induced secondary current, and μ_0 the magnetic permeability of air.

The primary winding resistance can be calculated by

$$r_1 = 2 \rho_{\text{con}} l_i W_i / S_{\text{con}} \quad (6)$$

where ρ_{con} is the resistivity of copper, l_i the length of half coil, W_i the number of turns of phase winding in series, and S_{con} the cross-sectional area of the copper wire.

The primary leakage reactance can be calculated by

$$x_1 = 0.158 f_i W_i^2 a_i \frac{\lambda_s + \lambda_t + \lambda_e + \lambda_d}{P} \quad (7)$$

where f_i is the primary current frequency, a_i the width of primary lamination, P the number of pole pairs, P_e the number of equivalent pole pairs, λ_s the slot leakage permeance, λ_t the tooth leakage permeance, λ_e the end leakage permeance, and λ_d the harmonic leakage permeance.

The secondary winding resistance consists of two parts: the aluminum sheet resistance and the back iron resistance in parallel as shown in Fig. 3. The aluminum sheet resistance can be calculated by

$$r_{\text{con}} = \frac{2 m_r \rho_{\text{con}} W_i k_{\text{wl}} a_i}{P d} \quad (8)$$

where $m_r = 3$ is the number of phases of primary winding, k_{wl} the primary winding factor, and ρ_{con} the resistivity of aluminum sheet.

The back iron resistance is calculated by

$$r_{\text{back}} = \frac{2 m_r \rho_{\text{fe}} W_i k_{\text{wl}} a_i}{P_e d} \quad (9)$$

where ρ_{fe} is the resistivity and d_{fe} is the thickness of the back iron.

Therefore, the secondary resistance is

$$r_2 = \frac{r_{\text{con}} r_{\text{back}}}{r_{\text{con}} + r_{\text{back}}} \quad (10)$$

The secondary leakage reactance is calculated by

$$x_2 = k_r \frac{r_2}{s} B_i s h (2 K d) \quad (11)$$

The exciting reactance is calculated by
\[x_m = \frac{2m_i \mu_0 W_i^2 k_m^2 a_i v_s}{\pi g_c P_e} \]

(12)

where \(v_s \) is the synchronous velocity of primary magnetic field.

IV. PERFORMANCE ANALYSIS

The major dimensions and parameters of the proposed LIM include the rated primary voltage of 380 V, rated primary current of 37 A, rated apparent power of 24 kVA, rated output power of 8.5 kW, rated driving force of 780 N, vehicle length of 1.65 m, and main air gap length of 10 mm.

Based on the equivalent circuit, the major characteristics of LIM can be obtained. For example, the curve of thrust force versus velocity is shown in Fig. 4. The thrust force is actually determined by the load, i.e. the wind and friction resistances and acceleration. Below the base velocity, the LIM adopts the constant force control so that the thrust force is almost constant. Above the base velocity, the LIM adopts the constant power control so that the output power is almost constant; the phase voltage has reached its maximum value but the reactance continues to increase, so the phase current should be controlled to decrease as well as the thrust.

Fig. 5 illustrates the relation between the phase voltage and vehicle velocity. It can be seen that under 40 km/h, the vehicle velocity is controlled by the applied voltage under the constant torque control mode. When the voltage reaches the rated value, the vehicle velocity is adjusted by applying the flux-weakening technique under the constant power control mode. The corresponding phase current is given in Fig. 6.

Fig. 7 shows the LIM drive power factor, efficiency, and product of power factor and efficiency. Fig. 8 plots the drive capacity, input power and output power with respect to vehicle velocity.
V. CONCLUSION

This paper presents the design of a linear induction motor drive for a HTS maglev vehicle prototype. The major characteristics of the linear motor are predicted by an improved equivalent electrical circuit, which takes into account the end effects, back-iron saturation and skin effect. The calculated performance, including the thrust force, phase voltage, phase current, power factor, efficiency and power against velocity, shows that the designed motor would be appropriate.

REFERENCES