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Abstract

Visual object tracking plays an important role in many computer vision applications, such as

video surveillance, unmanned aerial vehicle image processing, human computer interaction

and automatic control. This research aims to develop robust object tracking methods, which

are capable of tracking general object without the prior knowledge of the target. Tracker drift

is one of the most challenging issues in object tracking due to target deformations, illumination

variations, abrupt motions, occlusions and background clutters. This thesis focuses on the

tracking drift problem, and adopts three main solutions. These include: designing an efficient

target shape feature extraction method, comparing target features with metric learning and

using the ensemble tracking method to tackle the tracking drift during tracker online update.

The main work and contributions are as follows:

1. We propose a Weber’s Law Shape Descriptor (WLSD) for efficient object tracking under

background clutters. Weber’s Law indicates that the perceived change in stimuli is propor-

tional to the initial stimuli, which means that the saliency variations is not only relative to the

feature variations, but also the initial feature quantity. Motivated by Weber’s Law, this thesis

proposes a Weber’s Law Shape Descriptor to describe the saliency variations of the shape

contour. The proposed method first designs a Contour Angular Feature as the initial stimuli,

and builds the WLSD according to Weber’s Law. Then, WLSD is extended to multi-scale

to enhance its shape discriminative strength. Finally, a feature selection scheme is used to

extract the effective WLSD scales. The proposed WLSD is naturally invariant to the shape

scale and rotation, and has low computation load as a whole shape descriptor. We further

apply WLSD in thermal infrared object tracking, and propose a multi-feature integration

method based on WLSD shape, target area and target trajectory. The experiments are first

conducted on MPEG-7 and Tari shape dataset to test the shape discriminative capacity of

WLSD, and then tested on the infrared tracking videos to validate the proposed multi-feature

integration tracking framework.

2. We propose a Time Varying Metric Learning (TVML) object tracking method. Recently,

tracking-by-detection (TBD) methods are very popular. Traditional TBD methods track

the objects by training a binary classifier to discriminate the target and background, which
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leads to two main issues: firstly, the classifier is unreliable when trained with insufficient

data, secondly, comparing the object features with traditional Euclidean distance leans to

tracker drift. To solve the above problems, we propose a time varying metric learning

model and apply it to object tracking. The proposed TVML adopts Wishart Process to

model the variation of the positive semi-definite (PSD) matrices, i.e. the metrics, and uses

the Recursive Bayesian Estimation (RBE) framework to learn the metrics under the side

information constraint. We introduce the side information constraint to omit the clustering

of the negative samples, which is very suitable to the background cluster tracking scenarios.

Furthermore, the RBE framework guarantees the proposed model is able to estimate the

metrics with limited training data. The experimental results demonstrate the comparable

performance of the TVML tracker compared to many state-of-the-art methods on OTB-50

dataset.

3. We propose a historical tracker snapshots based ensemble tracking method. There are

frequent target appearance changes due to illumination variations, abrupt motions and

target deformations, which needs the tracker to conduct online update to adapt to the target

appearance variations. The online update of the tracker often leads to drift. This thesis

proposes a historical tracker snapshots based ensemble tracking framework, and designs a

Scale-adaptive Multi-Expert (SME) tracker according to the proposed method. The tracker

ensemble is composed of the current tracker and its historical tracker snapshots. When the

tracker drift is detected, the framework will select the suitable tracker snapshot to replace the

current drift tracker according to their accumulated scores. Due to the fact that the tracker

tends to be more confident to its own prediction, we propose to define the tracker score in a

semi-supervised learning perspective to describe the consistency and the ambiguity of the

tracker ensemble simultaneously. We use the regression correlation filter as the base tracker

due to its high efficiency. Furthermore, we propose to establish the target scale pyramid to

estimate the target scale accurately. The proposed SME tracker is tested on the OTB-50 and

VOT2015 tracking dataset, which demonstrates the excellent performance of the proposed

tracker with real time speed.

4. We propose a discrete graph based ensemble tracking method. The tracker ensemble is

constituted by the current tracker and its historical snapshots as the multi-expert. This thesis

proposes to introduce the discrete graph to model the tracker ensemble, where the graph

node represents the expert hypothesis. After defining the unary and pair-wise score of the

graph, the best expert is selected according to the graph path of the highest score. With

the efficient solver of dynamic programming, the proposed method can implicitly analyze

the reliability of the multi-expert trajectories by only computing their scores in the current

frame, so as to correct the tracker drift. We integrate three base trackers into the proposed
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tracking framework to validate its generality, including online support vector machine on a

budget, hand-craft feature based correlation filter and convolutional neural network based

correlation filter. The proposed three trackers are widely tested on the OTB-50, OTB-100

and VOT2015 dataset, which demonstrates the proposed trackers are superior to the com-

pared state-of-the-art trackers in both the tracking accuracy and robustness measures.

Keywords — Object tracking, Weber’s Law, time varying metric learning, ensemble track-

ing, correlation filter, discrete graph.
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