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Abstract

Object recognition and localisation are indispensable competency for service robots in every-
day environments like offices and kitchens. Presence of similar objects that can only be differ-
entiated from a small part of the surface together with clutter that leads to occlusions make it
impossible to detect target objects accurately and reliably from a single observation. When the
sensor observing the environment is mounted on a mobile platform, object detection and pose
estimation can be facilitated by observing the environment from a series of different viewpoints.
Computing Active perception strategies, with the aim of finding optimal actions to enhance object
recognition and pose estimation performance is the focus of this thesis.

This thesis consists of two main parts:

In the first part, it focuses on object detection and pose estimation from a single frame of
observation. Using an RGB-D sensor, we propose a modular 3D textured object detection and
pose estimation framework which can recognise object under cluttered environment by taking
advantage of the geometric information provided from the sensor. To handle less-textured ob-
jects and objects under severe illumination conditions, we propose a novel RGB-D feature which
is robust to illumination, scale, rotation and viewpoint variations, and provides reliable feature
matching results under challenging conditions. The proposed feature is validated for multiple
applications including object detection and point cloud alignment. Parts of the above approaches
are integrated with existing work to produce a practical and effective perception module for a
warehouse automation task. The designed perception system can detect objects of different types
and estimate their poses robustly thus guaranteeing a reliable object grasping and manipulation
performances.

In the second part of the thesis, we investigate the problem of active object detection and
pose estimation from two perspectives: with and without considering the uncertainties in the
motion model and the observation model. First, we propose a model-driven active object recog-
nition and pose estimation system via exploiting the feature association probability under scale
and viewpoint variations. By explicitly modelling the feature association, the proposed system
can predict future information more accurately thus laying the foundation of a successful active
Next-Best-View planning system even with a naive greedy search technique. We also present a
probabilistic framework which handles motion and observation uncertainties in the active object

detection and pose estimation problem. We present an optimisation framework which computes



vi

the optimal control at each step, using an objective function which incorporates uncertainties in
state estimation, feature coverage for better recognition confidence and control consumption. The
proposed framework can handle various issues such as object initialisation, collision avoidance,
occlusion and changing the object hypothesis. Validations based on a simulation environment are

also presented.
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