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Abstract

Object recognition and localisation are indispensable competency for service robots in every-

day environments like offices and kitchens. Presence of similar objects that can only be differ-

entiated from a small part of the surface together with clutter that leads to occlusions make it

impossible to detect target objects accurately and reliably from a single observation. When the

sensor observing the environment is mounted on a mobile platform, object detection and pose

estimation can be facilitated by observing the environment from a series of different viewpoints.

Computing Active perception strategies, with the aim of finding optimal actions to enhance object

recognition and pose estimation performance is the focus of this thesis.

This thesis consists of two main parts:

In the first part, it focuses on object detection and pose estimation from a single frame of

observation. Using an RGB-D sensor, we propose a modular 3D textured object detection and

pose estimation framework which can recognise object under cluttered environment by taking

advantage of the geometric information provided from the sensor. To handle less-textured ob-

jects and objects under severe illumination conditions, we propose a novel RGB-D feature which

is robust to illumination, scale, rotation and viewpoint variations, and provides reliable feature

matching results under challenging conditions. The proposed feature is validated for multiple

applications including object detection and point cloud alignment. Parts of the above approaches

are integrated with existing work to produce a practical and effective perception module for a

warehouse automation task. The designed perception system can detect objects of different types

and estimate their poses robustly thus guaranteeing a reliable object grasping and manipulation

performances.

In the second part of the thesis, we investigate the problem of active object detection and

pose estimation from two perspectives: with and without considering the uncertainties in the

motion model and the observation model. First, we propose a model-driven active object recog-

nition and pose estimation system via exploiting the feature association probability under scale

and viewpoint variations. By explicitly modelling the feature association, the proposed system

can predict future information more accurately thus laying the foundation of a successful active

Next-Best-View planning system even with a naive greedy search technique. We also present a

probabilistic framework which handles motion and observation uncertainties in the active object

detection and pose estimation problem. We present an optimisation framework which computes
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the optimal control at each step, using an objective function which incorporates uncertainties in

state estimation, feature coverage for better recognition confidence and control consumption. The

proposed framework can handle various issues such as object initialisation, collision avoidance,

occlusion and changing the object hypothesis. Validations based on a simulation environment are

also presented.
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Chapter 1

Introduction

1.1 Background and Motivation

Autonomous mobile service robots working in close cooperation with humans have a great po-

tential to help individuals with special needs for improving their lives. These robots will have

the technology to support the autonomy and independence of individuals with special needs. 3D

object recognition and pose estimation (also known as object localisation) is an indispensable task

of these service robots that enables robots to dynamically perform grasping and manipulation

tasks. In order to accomplish the manipulation and interactive tasks reliably, the object detec-

tion solution for these service robots requires estimating the 6-DoF relative pose of the identified

target object with respect to(w.r.t) the world coordinate frame or the sensor coordinate frame. De-

tecting and localising objects in everyday environments like offices and kitchens typically full of

confronting conditions such as the presence of occlusion and ambiguity is very challenging.

In order to recognize objects with 6-DoF relative pose, we need strategies which are differ-

ent to the object detection solutions that are commonly used in computer vision which generally

provide 2D or 3D bounding-boxes[50, 153, 97, 58]. The recent emergence of deep learning[89,

22] significantly improves the performances of state-of-the-art object detection algorithms[57, 56,

120] on public dataset[83]. In published deep leaning based approaches, there have not been any

provision to formulate the 6-DoFs pose estimation problem in a neural network framework until

the recent work presented in [105, 78]. Different from the mentioned approaches above, tradi-

tional point feature based 3D object recognition systems[31] can provide full 6 DoFs estimate of

the object pose. In the past decade, a considerable amount of work has been accomplished along

with the development of novel local features[96, 17], more reliable feature matching methods[102,

10] and more accurate pose estimation algorithms[3, 8]. However, the 3D object recognition and
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pose estimation problem is far from solved in its most general form.

The work in this thesis focuses on the traditional object recognition and pose estimation for

robotic perception tasks. In this domain, there are several well-known limitations such as oc-

clusion, less-textured object recognition and object recognition under different illumination con-

ditions that greatly influence the performance of the traditional object recognition algorithms.

Due to scene complexity, useful information may be occluded causing ambiguity in feature cor-

respondences leading to incorrect object recognition results. Also the limitation in illumination

invariance of well-known features such as SIFT[96] and SURF[18] makes the object recognition

even harder as the feature matching under extreme illumination conditions is infeasible. Most of

the existing object recognition and pose estimation methods are constrained by traditional sen-

sors such as monocular cameras. However, the availability of advanced sensors such as RGB-D

cameras facilitates the capture of not only the appearance information but also the geometric

knowledge of the environment. This opens up avenues to use multi-modal sensor information

either to further improve the performance of the current approaches or to develop new strategies.

As mentioned earlier, most of the work in object detection has been based on a single image

and the recognition performance and the accuracy of pose estimation is limited by occlusions

and ambiguity in appearance and geometry. A popular approach to address this ambiguity and

occlusion issue in object recognition and pose estimation is to observe the object from multi-

ple viewpoints by moving the sensor.Through acquiring information from multiple viewpoints,

previously hidden information can be discovered and distinctive features can be captured, thus

enhancing the object detection confidences and the pose estimation accuracy. Planning a trajec-

tory or a viewpoint which can maximise the performance the object detection and pose estimation

framework is one key focus of this thesis. This active sensing was first introduced and defined as

below by Bajcsy in 1988[14].

Active sensing is the problem of intelligent control strategies applied to the data acquisition

process which will depend on the current state of data interpretation including recognition.

Active object detection and pose estimation, as a subset of the active sensing problem, is tar-

geted at finding an optimal viewpoint or series of viewpoints which enables better identification

of the object and provides more accurate estimation. This problem is also known as one example

of Next-Best-View(NBV) problems in the computer vision community[113, 34, 156] where motion

uncertainty is not considered in general.
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For the active object recognition and pose estimation problem, depending on whether the ob-

servation and motion uncertainties are considered, the existing approaches are categorised into

two types: 1) NBV based methods[125] where the motion uncertainty is not taken into account

and 2) planning under uncertainty based methods[149, 70] where all uncertainties are modeled and

embedded in the estimation process. In the literature, most of the contributions on NBV for ob-

ject recognition are focused on either developing novel representation schemes of the objects and

the environments[27] or designing ambiguity functions which need to be optimised using criteria

such entropy[42]. However, the potential of using information from object models has not been

fully exploited and utilised to control the motion of the sensor. One of the key emphases of this

thesis is to solve the active object recognition problem by constructing more information-rich ob-

ject models. NBV problem has been investigated thoroughly in the field of computer vision while

planning under uncertainty is a popular research topic in robotics. Various kinds of robotic ap-

plications can be formulated as planning under uncertainty problem such as exploration and ac-

tive Simultaneous Localisation and Mapping (SLAM). The approaches can be further categorised

into: sampling-based approaches and optimisation-based approaches and great contributions have been

accomplished in the recent years such as Rapid-Exploring Random Belief Tree (RRBT), Feedback-

based Information RoadMap (FIRM) and General Belief Space (GBS) planning. However, there

is not any mature solution specifically designed for active object detection and pose estimation

problems under the framework of planning under uncertainty; This is one particular contribution

of this work. In practice, the contributions presented in this thesis are targeted at developing an

autonomous perception system for mobile robotics in indoor environments which can detect both

textured and less-textured objects under challenging illumination conditions by active manoeu-

vring in the scenario. The system should be able to plan reasonable trajectories even when motion

noises and observation noises are presented in the environment.

1.2 Contributions

The main contributions of this thesis are summarised as follows:

• Chapter. 3

– speeds up state-of-the-art object detection and pose estimation system[32] by taking

advantage of information from an RGB-D sensor in feature clustering and pose estima-

tion;
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– presents a graph-based outlier correspondences rejection algorithm which exploits the

geometric constraints between each pair of feature associations;

• Chapter. 4

– presents a new RGB-D feature, RISAS, which is robust to viewpoint, illumination, scale

and rotation variations;

– verifies the importance of combining appearance and geometric information in both

keypoint detection and feature description by comparing with state-of-the-art 2D or

3D features;

– demonstrates the effectiveness of RISAS in detecting less-textured objects or objects

under extreme illumination conditions;

• Chapter. 5

– designs an object recognition system under warehouse automation via combining 1)

RGB-D/RGB recogniser for textured objects and 2) kernel descriptor based recogniser

for less-textured objects;

• Chapter. 6

– presents a model-driven active object recognition and pose estimation for detecting

textured objects under cluttered indoor environments;

– verifies the importance of considering feature matching likelihood to predict the ob-

servability of features accurately;

– uses additional feature weighting attribute to denote the importance of the feature w.r.t

the object and enables the system to differentiate similar objects in active object recog-

nition;

• Chapter. 7

– presents an active object recognition and pose estimation framework in general belief

space while considering motion and observation uncertainties;

– designs a comprehensive objective function which includes state uncertainty, feature

coverage and repeatability, control consumption and collision avoidance;
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– solves various practical problems in active object detection and pose estimation such

as object pose and uncertainty initialisation, control initialisation for optimisation and

occlusion handling.

1.3 Outline

This thesis is organised as follows:

• Chapter. 2 reviews related work in both single-view and active object detection and pose

estimation;

• Chapter. 3 presents a textured object detection and pose estimation under cluttered envi-

ronment using an RGB-D sensor;

• Chapter. 4 proposes a novel RGB-D feature which is robust to illumination, rotation, view-

point and scale variations and shows the superiority of the feature in detecting objects under

severe illumination conditions;

• Chapter. 5 demonstrates a perception module for object recognition under warehouse envi-

ronments;

• Chapter. 6 proposes a model-driven active object detection and pose estimation system

which can recognise both different and similar objects via exploiting the environment;

• Chapter. 7 proposes an active object detection and pose estimation system under general

belief space considering motion and observation uncertainties;

• Chapter. 8 concludes the thesis and discusses the open challenges and our future work;

• Some proofs and derivations are illustrated in detail in Appendix. A;

To summarise, Fig. 1.1 provides an overview of the contributions in this thesis listed above:

Chapter. 3 and Chapter. 4 provide object detection and pose estimation solutions to both textured

and less-textured objects;Combining the solution presented in Chapter. 3 with kernel descriptor

and modern machine learning algorithms, Chapter. 5 provides a practical framework to han-

dle warehouse automation tasks such as picking objects from a bin; Chapter. 6 and Chapter. 7

present active object detection and pose estimation solutions for two different scenarios: 1) con-

sidering motion and observation noises and 2) ignoring these uncertainties and both simulations

and practical experiments demostrate the effectiveness of these algorithms.
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FIGURE 1.1: Outline of the thesis and relationship between chapters.
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Chapter 2

Literature Review

Object recognition and pose estimation is an indispensable task in robotic perception and ma-

nipulation. As an interdisciplinary research topic across robotics, computer vision, and machine

learning, enormous progress has been made in the past few decades. In this chapter, we review

some of the state-of-the-art work in 1) single view object recognition and pose estimation and 2)

active object recognition and pose estimation especially the solutions which are closely related to

the key contributions of this thesis. Fig. 1.1 presents a clear illustration of the structure and re-

viewed literature in this chapter. The blocks with red border highlight the work which is closely

related with the contributions presented in following chapters. The block with dotted border is

not the focus of this chapter and is only briefly introduced in this chapter.

FIGURE 2.1: Outline of the reviewed literature in Chapter. 2.
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2.1 Single View Object Recognition and Pose Estimation

The first two subsections present contributions about instance-level object recognition and category-

level object recognition. The focus of instance-level object recognition algorithms is to recognise a

specific object such as a coke bottle in the scene. On the other hand, the focus of category-level ob-

ject recognition algorithms is to recognise a certain category of objects such as bottles in the scene.

The approaches towards solving these two problems show remarkable differences. Local fea-

ture description, feature matching, and multi-view geometry are fundamental elements towards

building instance-level object recognition systems. However, with category-level object recog-

nition prime emphasis is given on learning a robust higher-level representation of each object

category thus is involved more with machine learning techniques. Fig. 2.2 illustrates the differ-

ences between two problems using two well-known datasets, BigBIRD dataset[133] and PASCAL

VOC dataset[49]. The first row shows examples from BigBIRD dataset which includes objects

of specific types and the second row shows examples from VOC dataset which include objects

of general categories such as dogs and cats. The last subsection discusses estimating the 6-DoFs

relative pose of the objects using different sensors such as a monocular camera and an RGB-D

camera.

(a) Examples from BigBIRD: (Big) Berkeley Instance Recognition Dataset.

(b) Examples from PASCAL Visual Object Classes (category-level) Dataset.

FIGURE 2.2: Differences between instance-level object recognition dataset and
category-level object recognition dataset.

2.1.1 Instance-Level Object Recognition

The problem of instance-level object recognition stems from the need for recognising and verify-

ing faces in public security applications. Typically, global feature representation based approaches
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Feature Extraction Feature Matching Hypothesis
Verification

FIGURE 2.3: General pipeline for instance-level object recognition.

use the entire image to calculate the similarity between the query image and given examples(templates).

Turk and Pentland[146] generated a vector space from the images and used Principal Component

Analysis (PCA) to reduce the dimension of the vector space (i.e. raw image data) thus obtaining

more compact encodings. Belhumeur and Kriegman[20] proposed Fisherfaces to optimise class

separability using Fisher’s Linear Discriminant Analysis (LDA) rather than the subspace gener-

ated from PCA. Despite the success in face detection, the limitations of global feature representation

are evident. It is unable to deal with occlusion scenarios, viewpoint variations, and deformable

objects. However, soon after the invention of well-performed local features, e.g, Scale Invari-

ant Feature Transform (SIFT)[96], local feature representation based approaches became popular for

solving the instance-level object recognition problem.

Fig. 2.3 summarises the general steps for solving the instance recognition problem. A typical

instance recognition framework consists of 3 steps:

1. Extracting local features from both models and query images independently;

2. Finding the correct correspondences between extracted features;

3. Generating the object hypothesis and verifying the hypothesis w.r.t a certain criterion such

as rigid transformation constraint;

This subsection firstly describes some influential work in these 3 key steps and later review

recent systematic work on instance-level object recognition.

Feature Extraction: Keypoint Detection and Descriptor Construction The feature extraction prob-

lem can be further divided into two sub-problems: keypoint detection(also known as local-

isation) and descriptor construction. The feature extraction methods SIFT (as per Lowe’s

original research publications [96]1 ) and Speed-Up Robust Feature(SURF)[17] are designed

to consist of both detector and descriptor together. However, some feature extraction meth-

ods focus only on either keypoint detection or descriptor construction. For example, Fea-

ture from Accelerated Segment Test(FAST)[123] method focuses only on keypoint detection
1In some other literature[100], SIFT feature is treated as a descriptor since it can be combined with other keypoint

detectors independently.
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while Binary Robust Independent Elementary Feature (BRIEF)[29] focuses only on descrip-

tor construction.

Based on the source of the sensor information where the features are extracted from, this

subsection is organised into 3 parts:

• 2D Image Features

The research work on keypoint detectors dates back to the 1980s when Hessian detec-

tor[19] and Harris detector[62] were firstly invented. SIFT feature is one of the most

attractive local features, proposed by Lowe. SIFT combines a Different-of-Gaussian

interest region detector and gradient orientation histogram as the descriptor. By con-

structing the descriptor from a scale-normalised and orientation-normalised image

patch, SIFT feature is made robust to scale and rotation variations. In order to improve

the performance of SIFT, Bay et al. proposed SURF[17] an alternative which utilises

a Hessian-Laplace region detector with another gradient orientation based feature de-

scriptor. SURF adopts simple 2D box-shaped filters to approximate the derivative filter

kernels which require less time for processing and hence achieving improved timing

efficiency. Followed by SIFT and SURF, many other gradient histograms based local

features were proposed such as PCA-SIFT from Ke and Sukthankar[77] and Gradient

Location and Orientation Histogram (GLOH) from Mikolajczyk and Schimid.

Even though GPU implementations of SIFT(GPU-SIFT[159]) and SURF(GPU-SURF[139])

are available, researchers are still focusing on designing efficient features which can be

practically implemented on platforms without GPU. Rosten and Drummond proposed

FAST[123] which uses a Bresenham circle of radius equal to 3 pixel to decide whether

a candidate point is a keypoint or not. Several machine learning techniques are also

introduced in FAST to speed up the keypoint detection and improve the repeatability.

Using FAST keypoint detector, several binary local features were proposed. Calonder

et al. proposed BRIEF[29] and formulated the feature descriptor as a binary string.

BRIEF feature takes relatively less memory and can be matched faster using Hamming

distance in real-time under limited computational resources. However, BRIEF is not

designed to be robust to scale variations. Leutenegger et al. proposed Binary Robust

Invariant Scalable Keypoint (BRISK)[92] which has a scale invariant keypoint detector

and a binary string like descriptor. Similar to SURF and SIFT, in order to reach the
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scale invariant capability, points of interest are identified across multiple scales using a

saliency criterion. The descriptor is constructed using a similar principle as presented

in BRIEF by sampling in the neighbourhood region of the keypoint. Oriented FAST and

Rotated BRIEF(ORB)[126], another well-known binary feature, has been widely used

in the SLAM community[104]. ORB is built on FAST keypoint detector and BRIEF de-

scriptor, and it is invariant to rotation variations and more robust to noise compared

with BRIEF.

• 3D Geometry Local Feature

Based on the scale invariant capability, Tombari et al. [143] categorised 3D keypoint

detectors into 2 classes: fixed-scale detector and adaptive-scale detector. In order to se-

lect the keypoints which are salient in depth image(point cloud), researchers evaluate

the quality of the keypoint by adopting different criteria, e.g., the normal vector of

the surface and curvature of the mesh. Zhong et al. proposed Intrinsic Shape Sig-

nature (ISS)[163] based on the eigenvalue decomposition of the scatter matrix of the

points which belong to the support set of the candidature point. Another example

of fixed-scale 3D keypoint detector is KeyPoint Quality (KPQ) proposed by Mian et

al[99]. Similar to ISS, KPQ is also based on the scatter matrix. However, compared

with ISS, KPQ prunes non-distinctive points using the ratio between the maximum

lengths along the first two principal axes. There are several well-known adaptive-scale

detectors such as Laplace Beltrami Scale Space (LBSS) and MeshDoG. MeshDoG[147],

proposed by Unnikrishnan and Hebert, applied the Different-of-Gaussian operator to

3D mesh to build scale space and MeshDoG is capable of extracting keypoints under

high curvature surfaces. For more detailed comparative analysis of existing 3D key-

point detectors, readers are recommended to read the survey paper from Tombari et

al. [143].

Back in 1997, Johnson and Hebert [73] proposed Spin Image which is a data level de-

scriptor that is used to match surfaces represented as surface meshes. The Spin im-

age has been successfully employed in 3D object recognition systems under cluttered

environments. After almost one decade, since 2009, with the development of low-

cost consumer-level RGB-D sensors, geometry information of the environment can be

easily captured thus the importance of 3D shape descriptors have gained recognition

again. Various 3D descriptors have been proposed in the literature and are currently
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available in the Point Cloud Library (PCL) [128]. The 3D geometric descriptors are

often divided into two categories: local descriptors which describe the local geomet-

ric information in the neighbourhood of the detected keypoints and global descriptors

which represent the geometric knowledge of a whole object. Typical local descriptors

include Persistent Feature Histogram (PFH)[129] and Normal Aligned Radical Feature

(NARF)[16]. Viewpoint Feature Histogram( VFH)[130] and Clustered VFH (CVFH)[4]

are some of the popular global descriptors. Since a global descriptor is not suitable to

recognise objects under cluttered scenarios, in this study the focus is on local geomet-

ric descriptors. Rusu et al.[129] proposed PFH which is a multi-dimension histogram

which characterises the local geometry of a given keypoint p in its local neighbour-

hood region. PFH is invariant to position, orientation and also the point cloud density.

Based on PFH, Rusu et al.[127] proposed FPFH and which improves the complexity of

PFH, from O(kk), to O(k) where k is the number of points in the neighbourhood of a

given keypoint. Signature of Histograms of OrienTations (SHOT) descriptor proposed

by Tombari et al.[144] is another example of a widely used local surface descriptor.

SHOT encodes the histograms of the surface normals in different partitions in the sup-

port region and the dimension of the SHOT is equal to the product of the division in

radial, azimuth and elevation dimension. Guo et al. provide a thorough survey about

3D descriptors and their performances in [60].

• RGB-D feature

As information from both the RGB/grayscale camera and depth camera are comple-

mentary, it is possible to combine appearance and geometric information to build de-

scriptors and further improve the matching performance. Lai et al. [85] proved that

by joining RGB and depth channels together using spin image[73] and SIFT[96], bet-

ter recognition performance can be achieved for object recognition when compared

with using a single channel only. Tombari et al. [142] introduced colour information

to SHOT[144] to develop C-SHOT(Color-SHOT) with the aim of improving the fea-

ture matching accuracy performance using appearance information. Nascimento et al.

[107] proposed a binary RGB-D descriptor BRAND (Binary Robust Appearance and

Normals Descriptor) which encodes local information as a binary string thus making it

possible to achieve better performance and low memory consumption. They have also

demonstrated the rotation and scale invariance capability of BRAND. More recently,
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Feng et al. [51] proposed LOIND which encodes the texture and depth information

into one descriptor supported by orders of intensities and angles between normal vec-

tors, in addition to the spatial sub-divisions.

Feature Matching and Indexing After extracting the features from object models and input im-

ages(2D or 3D), a straightforward solution to identify the correspondences is to simply per-

form a brute-force search of all descriptors. Unfortunately, this nearest neighbour searching

strategy is unrealistic considering the computational complexity. Thus researchers have to

use more efficient data structures such as KD-tree or hashing to improve the efficiency of

searching. This subsection reviews two types of nearest neighbour searching algorithms:

tree-based algorithm such as Approximate Nearest Neighbour (ANN)[102] and hashing-

based algorithm such as Locality Sensitive Hashing (LSH)[55]. Feature indexing using vi-

sual vocabulary is also discussed briefly.

• Tree structure based algorithms

KD-tree, proposed by Friedman et al..[54], is a binary tree which stores a database of

k-dimensional points in its leaf nodes. KD-tree uses spatial partitions and recursive

hyperplane decomposition to provide an efficient way to search low-dimensional data

exactly. Compared with brute-force approach, while still guaranteeing that the nearest

neighbour can be found, KD-tree only requires O (N logN) computational complex-

ity to construct the tree for N points and O
(
N1− 1

k

)
for querying an input point. For

high-dimensional feature descriptor, using original KD-tree may end up visiting a large

number of additional branches thus degrading the performance. [10] proposed a vari-

ant of KD-trees together with a priority queue which relaxes the search requirement to

allow the return of approximate nearest neighbours. Another idea is to generate mul-

tiple randomised KD-trees and process the query in all trees using a single priority

queue across them. Muja and Lowe[103] attempted to automatically select algorithm

configurations and parameters for desired performances using cross-validation.

• Hashing based algorithms

Hashing algorithms are another type of efficient nearest neighbour search algorithms.



16 Chapter 2. Literature Review
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FIGURE 2.4: Typical flowchart of obtaining visual vocabulary representation.

Motivated by the inadequacy of existing exact nearest-neighbor techniques to pro-

vide sub-linear time search results for high-dimensional data, randomised approxi-

mate hashing-based similarity search algorithms have been explored. The idea in ap-

proximate similarity search is to trade off some precision during the search to reduce

the query time. Locality Sensitive Hashing (LSH), proposed by Indyk and Motwani

[71], offers sub-linear time search by hashing highly similar examples together in a

hash table. The idea is that if one can guarantee that a randomised hash function will

map two inputs to the same bucket with high probability only if they are similar, then

given a new query, one needs to search only the colliding database examples to find

those that are most probable to lie in the input’s near neighbourhood.

• Visual vocabulary

Unlike the above approaches where the individual feature is queried w.r.t the database,

visual vocabulary provides an alternative way to identify the similarity between two

images instead of two features. In fact, before the emergence of deep learning algo-

rithms in recent years, BoW based approaches were among state-of-the-art methods

for object recognition problems. Research on BoW was quite active in some of the crit-

ical issues such as feature encoding and visual word learning[162, 161, 36, 90]. This

subsection provides the standard pipeline of Visual BoW based recognition approach

and discuss some of the most influential work.

Fig. 2.4 presents the pipeline of standard visual vocabulary algorithms. Instead of

using the extracted features directly, there is a need to conduct three additional steps:

1) learning/building the visual vocabulary(dictionary) from the dataset, 2) quantis-

ing the extracted descriptors using the vocabulary and 3) encoding a new descriptor

of the whole image instead of the individual feature. K-means clustering is a popu-

larly used method to perform the visual vocabulary learning. After initialising the k

cluster centres with randomly selected features in the corpus, the algorithm iterates

updating each point’s cluster until it converges. The feature quantization research be-

gan with hard quantization which was later developed into soft quantization and then
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to sparse coding. Sparse coding based methods have been proven to provide better

results for object recognition. Wang et al. presented Locality-constrained Linear Cod-

ing (LLC)[155] which applies locality constraints to select similar basis of local image

descriptors from a dictionary, and learns a linear combination weight of these bases

to reconstruct each descriptor. LLC is easy to compute and it demonstrates superior

image classification performance. Sivic and Zisserman[134] proposed quantizing local

image descriptors for the sake of rapidly indexing video frames with an inverted file.

They showed the potential benefits of exploiting a Term Frequency-Inverse Document

Frequency (TF-IDF) weighting on the words, which de-emphasises those words that

are common to many images and implementing a stop-list which ignores extremely

frequent words that appear in nearly every image.

Hypothesis Verification from Geometric Information Once the correspondences have been iden-

tified, it is essential to verify whether those matches satisfy a consistent geometric configu-

ration. This means that the locations and scales of corresponding features in both the query

image and the template image(or object model) are related by a fixed geometric transforma-

tion which can be translation transformation, rotation transformation, affine transformation

and similarity transformation. In practical cases, homography transformation, a projection of

a plane onto another plane, is frequently used. The methodology of using homography

transformation in order to locate the consistent correspondences is briefed as below. Ho-

mography transformation from a point pa to the associated point pb can be represented as

follows:
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(2.1)

Given a set of matches, Direct Linear Transform (DLT) can be used to compute the ho-

mography matrix, and the detailed algorithm is presented in Chapter 4.1 of Hartley and

Zisserman’s book titled Multiple View Geometry in Computer Vision[63]. Given correct corre-

spondences, it may sound trivial to identify the set of features which follow a consistent ge-

ometric transformation, however; in reality, it is non-trivial to remove the outliers in a set of
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feature correspondences. This section reviews two fundamental techniques which are pop-

ularly used in removing outliers in the raw data: RANdom SAmple Consensus(RANSAC)

[52] and General Hough Transform(GHT)[15].

RANSAC is a non-deterministic algorithm that operates in a hypothesize-and-test frame-

work. Thus, it only returns a “good” result with a certain probability, but this probability

increases with the number of iterations. The procedures of RANSAC is presented in Fig.

2.5.

Matched cor-
respondences

Select Nmin matches

Estimate parameters

Determine the number
of points which sat-

isfy the inlier criterion

The percentage of
inlier > threshold

iteration > threshhold

Re-estimate the param-
eters using all inlier

Exit

yes

no

yes

no

FIGURE 2.5: Flowchart of RANSAC to remove outliers in raw features matches.

Hough Transform was originally introduced in 1962 as an efficient method for finding

straight lines in images[151]. Ballard, later on, showed how to generalise this idea to detect

arbitrary shapes, leading to the GHT[15]. The basic idea of this extension is that the ob-

served single feature correspondences vote for the parameters of the transformation would

project the object in the model image to the correct view in the test image.
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2.1.2 Category-Level Object Recognition

First, some standard paradigms for image classification problems are introduced. As Yann LeCun

and Marc’ Aurelio Ranzato summarised in [88], the traditional image classification pipeline is

presented in Fig. 2.6. SIFT or HoG features are used to extract low-level information of the object

and the clustering methods such as K-mean is adopted to learn more abstract level representation.

Support Vector Machine (SVM)[150] is a very popular choice for the classifier step.

FIGURE 2.6: Traditional image classification pipeline.

After 2011, deep learning became the de-facto technique in image classification and recogni-

tion. Instead of using the hand-crafted features, researchers tend to learn the feature representa-

tion automatically from neural networks such as CNN and Residual Neural Network (RNN). Fig.

2.7 presents comparable framework for the deep learning based pipeline. In this framework, the

common hierarchical feature structure is constructed from pixel, edge to texton, motif, part and

object in a lower-to-higher order. Please refer to [83] and [21] for detailed network structure.

FIGURE 2.7: Deep learning based image classification pipeline.

However, in order to detect/recognise objects in the image, before inputting image patches

which may contain the targeting object into the pre-trained classifier, firstly, the Region-of-Interest

(ROI) needs to be identified from the input image. Sliding window approach is a popular tech-

nique where windows of different shapes, sizes are scanned on an image in different scales to

detect the object. Visual saliency[25] and object proposal[68] are two favourite tools to speed-up

the sliding window detection.

2.1.3 6D Pose Estimation

There is a considerable body of literature in the area of 6D pose estimation for object detection,

including instance and category recognition, rigid and deformable objects, and coarse (quantized)
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and accurate (6D) poses. This subsection reviews some of the feature-based 6D pose estimation

approaches which are more related to the work presented in this thesis. For template based ap-

proaches, interested readers are referred to [136, 69, 65].

Perspective-n-Point Problem Perspective-n-Point (PnP) is the problem of estimating the pose of

a calibrated camera given a set of n 3D points in the world and their corresponding 2D

projections in the image. The camera pose consists of 6 degrees-of-freedom (DOF) which

are made up of the rotation (roll, pitch, and yaw) and 3D translation of the camera w.r.t the

world. Estimating the relative pose of the object w.r.t the sensor is an equivalent problem

to the PnP problem given the 3D object model and object coordinate frame. The solutions

for the PnP problem are classified into 1) iterative methods and 2) noniterative methods.

Noniterative methods are efficient however more unstable in the presence of noise data.

Pose from Orthography and Scaling with ITeration (POSIT)[37], proposed by Dementhon

and Davis, is one of the most popular iterative PnP solution. In canonical perspective, the

projection equation can be written as below where R and t are the rotation matrix and

translation vector, [xyz1]ᵀ is the homogeneous 3D coordinate of the feature and [uvw]
ᵀ is

the coordinate of projected feature.
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(2.2)

In POSIT, an initial value is assigned on w prior to computing R and t. There are at least 4

pairs of non-coplanar points used to compute R and t. Afterwards, w is updated using the

already computed R̂ and t̂. These steps are iterated until the convergence. [7][1] proposed

non-iterative methods which can determine 6DoF pose with fewer than 5 points. However

the solution tend to be unstable in practice due to the lack of redundant information. The

stability of the non-iterative methods can be improved by incorporating redundant points.

The well-known DLT algorithm[63] achieves relatively accurate results from a large number

of points. However, as pointed out by Lepetit et al. [91], many non-iterative methods are

slow due to high computational complexity for processing large point sets . Lepetit et al. [91]

also presented an efficient non-iterative algorithm with linear complexity in n by expressing
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the solution as the weighted sum of null eigenvectors. Li et al. presented a robust non-

iterative solution of the PnP problem(rPnP). rPnP works well for both non-redundant point

sets (n < 5) and redundant point sets. rPnP achieves even better results compared with

DLT, ePnP and ePnP with Gauss-Newton, and its computational complexity grows linear

with n.

Pose Estimation from 3D-3D Points Set When using an RGB-D sensor, in addition to the 2D co-

ordinate on image space ([u, v]), the 3D coordinate of the feature can be acquired using the

depth information. Therefore, the relative pose estimation problem becomes trivial given

3D-3D correspondences. Eggert et al.[44] review 4 popular and efficient solutions for this

problem. The first solution was developed by Arun et al. [9] which is based on computing

the singular value decomposition (SVD) of a matrix derived from the standard [R, t] rep-

resentation. This approach is adopted in our work presented in chapter 3. Horn et al. [67]

presented a similar approach in which the orthonormal properties of the rotation matrix

were exploited to compute the eigensystem of a different derived matrix. The third algo-

rithm, also developed by Horn[66], involves computing the eigensystem of a matrix related

to representing the rotational component as the quaternion. Walker et al,[154] presented

another approach where the eigensystem is analysed with the translation and rotation com-

ponents represented using dual quaternions. All of these four methods can compute the

relative transformation in closed-form.

The rest of the text in this subsection is dedicated to discussing some representative systematic

object detection and pose estimation works in this field, especially the ones which are more related

to robotic research.

Drost et al. [43] introduced an efficient, stable and accurate method to find 3D free-form objects

in point clouds. Different to local feature based approaches as was discussed in section 2.1.1,

Drost et al. created a global model based on oriented point-pair features and the model

is matched locally using a fast voting scheme. The global representation leads the model

to be independent from local surface information. Thus very fast matching results can be

achieved due to locally reduced search space. The proposed method was evaluated on both

synthetic data and real data, and they demonstrated that with a slight or even no sacri-

fice of the recognition performance, the proposed method decreases the time consumption

significantly.
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Collet et al. [32] presented an object detection and pose estimation framework for object manip-

ulation task, named Multiple Object Pose Estimation and Detection (MOPED). From a the-

oretical perspective, the key contribution of this work lies in Iterative Clustering Estimation

(ICE) which is a novel algorithm that iteratively combines feature clustering with pose es-

timation. ICE handles the common outlier in feature matching and clustering quite well

by considering pose estimation simultaneously. On practical perspective, MOPED is a fully

optimised, robust and scalable framework where GPU and CPU are hybrid and parallelism

is exploited at all level. They provided extensive experimental results demonstrating state-

of-the-art performance regarding recognition, scalability, and latency in real-world robotic

applications.

Hinterstoisser et al. [65] presented a template based approach for less-textured object detection

under a cluttered environment which does not require a complicated training stage. The

core contribution of this work is a novel image representation method for template match-

ing which is designed to be robust to small image transformations using spread image gra-

dient. Complementing on the additional depth information provided by the sensor, this

framework demonstrates even better performance by considering surface normal informa-

tion. Their work is also fully optimised using the modern parallel SSE instruction and GPU

computation. Their approach outperforms state-of-the-art methods on recognition rate and

speed, especially for less-textured objects in heavily cluttered environments .

Aldoma et al. [5] presented a tutorial on 3D object recognition and 6D pose estimation using the

capabilities present in the Point Cloud Library. The pipeline is very similar to what was

discussed in Section 2.1.1 with an additional global pipeline. They adopted uniform sam-

pling to extract the keypoints in the point cloud and various descriptors available in PCL.

Simultaneously, global descriptors such as CVFH(Clustered Viewpoint Feature Histogram)

are used to describe the keypoints and match them against the features on the models. The

relative pose is estimated using ICP.

Tang et al. [138] presented a fused textured object recognition and pose estimation pipeline by

fully utilising both RGB and depth information provided by a Kinect sensor. During the

training phase, a sparse feature point cloud is built as the object model similar to the work

presented in [32]. Additionally, a global colour model for each object is trained using hue
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histogram. In the detecting phase, the support plane where the objects are placed on is ex-

tracted and removed first. The remaining point cloud is clustered into multiple groups and

a colour descriptor is extracted from each cluster. Meanwhile, point features from each clus-

ter are extracted and matched against the trained model. In the end, the pose is estimated

using a Levenberg-Marquardt nonlinear least square algorithm.

2.2 Active Object Detection and Next-Best-View Selection

Previous sections of this chapter presents the recent advancements in object recognition and pose

estimation from a single view observation (i.e. an image). However, in real life, a single view

of the environment may not contain sufficient information to recognise target objects unambigu-

ously. With a sensor (i.e. monocular or RGB-D camera) mounted on a mobile robot platform, it is

possible to move the sensor actively in the environment to capture more information from differ-

ent viewpoints and hence to potentially increase the confidence of the detected objects and their

6DoF relative pose estimates. The text in this section is organised into two parts depending on

whether the motion and observation uncertainties are considered while moving the sensor. If the

motion and observation uncertainties are not taken into consideration, this problem is regarded

as a Next-Best-View(NBV) problem[125]. When uncertainties are taken into consideration, the

same problem is formulated in a planning under uncertainty framework using theoretical tools

such as Partially Observable Markov Decision Process(POMDP) [140, 74]. Planning with uncer-

tainties cases can be further classified into two different type of approaches: 1) sampling-based

methods[75, 28] and 2) optimisation-based methods[148, 70].

2.2.1 Next-Best-View for Active Object Recognition

Next-Best-View problem is widely used in surface reconstruction[114], object modelling[53, 81]

and scene exploration[157, 98, 23]. The term active vision is frequently used in this subsection

which covers not only the active object recognition but also tasks such as active inspection and

active search.

In[125], Roy et al. categorised active object recognition systems based on 1) representation

schemes and 2) planning strategies. There are two popular representation schemes:

1. view-based representations which encode information about different viewpoints (observa-

tions) of a 3D object;
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2. part-based representation which considers an object in terms of its separated parts;

The NBV planning strategy is also classified into two categories:

1. systems which take the NBV to minimise an ambiguity function;

2. systems which incorporate explicit planning algorithms

They also performed a comparative analysis of the active object recognition systems using differ-

ent criteria such as feature types for modelling and recognition, speed and efficiency, and object

model representation. The work presented Borotschnig et al. [26] uses an appearance-based in-

formation in an online fashion. Their work shares the similar objective as the work presented

in this thesis. They use a parametric eigenspace and augment it with probability distribution to

capture possible variations in input images.

Chen et al.[30] presented a broad survey of developments in active vision in robotic applica-

tions. Their paper summarises progress of various applications such as object recognition and

modelling, site reconstruction and inspection, surveillance, tracking and search, as well as robotic

manipulation and assembly, localisation and mapping, navigation and exploration. Denzler and

Brown[38] presented remarkable work in selecting sensor data for active object recognition and

state estimation with the objective of reducing uncertainty in the state estimation process, rather

than an estimator-specific metric. This makes their approach more general and independent from

the existing state estimator. Their work also proposes a method for selection of optimal sensor

parameters for iterative state estimation in static systems. In [38], the capability of the proposed

approach was demonstrated using a state estimation problem of a static system using active gaze

control. More importantly, contributions in [38] are not limited to only active object recognition.

In [11], Atanasov et al. address the problem of object classification and pose estimation of

semantically important objects by actively controlling the viewpoint of a mobile depth sensor.

The proposed a novel static detector, Viewpoint-Pose Tree(VP-Tree), combines object detection

and pose estimation in 3D environment. In order to reach the goal of non-myopic view planning,

this problem is formulated as a POMDP problem and a point based approximation algorithm

proposed in [61] is employed to solve it. The proposed approach is verified in both simulation

and real world experiments with an RGB-D camera mounted on a PR2 robot. The comparative

results against greedy viewpoint selection and single-viewpoint detection show the superior per-

formance of their work.
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Potthast and Gaurav proposed two important information-theoretic based approaches for ac-

tive path planning. In [117], they proposed an information gain-based variant of the NBV prob-

lem to recognise objects under occlusions. Their method utilises a belief model of the unobserved

space to estimate the expected information gain of each possible viewpoint which provides a

more precise estimation of the future visibility of occluded space. Furthermore, more accurate

prediction of the potential information gain of new viewing positions can be incorporated into

the planning step. Under extremely cluttered scenarios, the proposed approach can reduce the

number of unobserved cells faster than traditional approaches. More recently, Potthast et al.

[118] proposed an information-theoretic framework which combines and unifies two common

techniques: online feature selection for reducing computational costs and view planning for re-

solving ambiguities and occlusions. This method adaptively selects one strategy over the other

either by selecting the features that are most discriminative or by moving the sensor to a new

viewpoint that optimally reduces the uncertainty of recognition outcomes. This two-step process

allows keeping the overall computation cost minimal while simultaneously increasing the recog-

nition accuracy. Extensive empirical studies on a large RGB-D dataset, and with two different

sets of features, have validated the effectiveness of the proposed framework. Capitalising on the

strengths of deep learning, Doumanoglou et al.[42] presented a complete framework for both sin-

gle shot-based 6D object pose estimation and NBV prediction based on Hough Forests. Instead

of using manually designed local features, they propose to use unsupervised features that can be

learnt from depth-invariant patches using a Sparse Autoencoder and a 6D Hough voting scheme

for pose estimation. The active vision strategy is built on Active Hough Forests for estimating the

NBV.

2.2.2 Planning under Uncertainty

Decision making under uncertainty is a crucial requirement for most robotic systems. The un-

certainty in robotic systems usually stems from a) motion uncertainty which affects the system

dynamics and b) observation uncertainty caused by the noise in the sensor measurement. In this

case, a state estimation module is used to provide the probability distribution over possible states,

also known as belief space2. This subsection presents literature on active object detection using gen-

eral belief space together with relevant literature which focus more on visual perception[35, 13,

109].
2This terminology is often referred as information space in [35, 2] interchangeably
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The existing approaches towards planning under uncertainty are categorised into two differ-

ent types: (a) sampling-based methods[28, 75] (b) optimisation based methods[149, 115]. Some

well-known sampling-based methods are firstly reviewedsuch as Rapid-exploring Random Be-

lief Tree(RRBT)[28] and Feedback-based Information Roadmap(FIRM)[2]. Latter part of this sub-

section focuses on the optimisation-based algorithms such as Linear Quadratic Gaussian based

methods [148, 149] and Sequential Quadratic Programming (SQP) formulated solutions. This

section also discusses some of the visual perception related planning work such as [35] and [109].

Sampling-based Methods Rapid-exploring Random Tree (RRT)[87] and Probabilistic Roadmap

(PRM)[76] are the most influential sampling-based motion planning algorithms where un-

certainties are ignored. Even though the idea of connecting points sampled randomly from

the state space is similar in both approaches, these two algorithms differ in the way they

construct a graph connecting these points. Based on RRT, Karaman and Frazolli[75] pro-

posed Rapid-exploring Random Graph (RRG) as an extension. Besides the nearest connec-

tions, in RRG, the new samples are also connected to every node within a sphere thus it is

locally refined with each added sample. This refinement guarantees that the RRG algorithm

will contain all possible paths through the environment within the limit of infinite samples.

RRT*, a variant of RRG, is also proposed by Karaman and Frazolli[75] which guarantees to

converge to the optimal path by only keeping the edges in the graph that result in lower

cost at the vertices in the sphere. However, all of the above approaches assume the fully de-

terministic dynamics and therefore, are not suitable for planning with stochastic properties.

In order to address the state uncertainty, Roy proposed two variants, Belief Roadmap (BRM)[119]

and RRBT[28], with Prentice and Bry respectively. Targeting at partial observability issues,

BRM, proposed by Prentice and Roy, simulates measurements along candidate paths and

chooses the path with minimal uncertainty. However, BRM still assumes the mean of the

system is controllable which means that while the path is being executed, the controller is

always capable of driving the state estimate back to the desired path and this can be an

unattainable goal for a practical robot and environment. RRBT, proposed by Bry and Roy,

is an important work in motion planning under uncertainty. Given an intractable prob-

lem involving non-trivial dynamics, spatially varying measurement properties and obstacle

constraints, Bry and Roy simplify the motion plan to a nominal trajectory stabilised with

a linear estimator and controller, Linear Quadratic Gaussian (LQG) controller, which thus

allows prediction of the belief of future states given a candidate nominal trajectory. Both
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sampling-based algorithms and linear control and estimation schemes have been shown

to scale well with dimensionality so that RRBT can be extended easily to more compli-

cated systems. Agha-mohammadi et al. presented Feedback-based Information Roadmap

(FIRM), a multi-query approach for planning under uncertainty which is a belief space vari-

ant of probabilistic roadmap methods. Exploiting feedback controllers, they reduced it to a

tractable FIRM Markov Decision Processes (MDP) problem that can be solved using stan-

dard Dynamic Programming (DP) techniques. FIRM utilises feedback controllers to create

reachable node regions in belief space. An important consequence is that FIRM preserves

the optimal substructure property on the roadmap and thus overcomes the curse of his-

tory in the original POMDP problem. They showed an instantiation of the abstract FIRM

framework using Stationary Linear Quadratic Gaussian (SLQG) controllers and illustrated

the construction and planning results on it.

Optimisation based Methods Optimisation techniques can be used to compute a robot trajectory

that is optimal under some specific metrics (e.g., smoothness or length) and at the same time

satisfies various constraints, e.g., collision-free and dynamics constraints. Some algorithms

assume that a collision-free trajectory is given and it can be refined or smoothened using

optimisation techniques. Van den Burg et al.[148] proposed Linear Quadratic Gaussian Mo-

tion Planning (LQG-MP) which is one of the most popular optimisation based planning

algorithms under uncertainties. By representing the beliefs as Gaussian distributions and

approximating the belief dynamics using an Extended Kalman Filter (EKF) and more im-

portantly by formulating the objective function as a quadratic function in belief space, they

are able to characterise the probability distribution of the state of the robot along the path. In

this work[148], Van den Burg et al. studied the performance of LQG-MP with simulation ex-

periments under different scenarios and Dijkstra’s algorithm based LQG-MP precomputed

roadmaps were used to find optimal paths efficiently.

However, in [148], even though the maximum likelihood observation assumption is relaxed,

LQG-MP is only capable of evaluating the probability of success of a given trajectory rather

than constructing an optimal one. To overcome this limitation, Van den Berg et al.[149]

proposed a new approach to motion planning considering both motion and observation

uncertainties by computing locally optimal solution towards a continuous POMDP prob-

lem. Similar to [148], the beliefs are represented as Gaussian distributions. Non-linear

motion model and observation model are formulated by EKF, using iterative LQG (iLQG)
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proposed by Todorov and Li [141], the proposed approach iterates with second-order con-

vergence towards a linear control policy over the belief space that is locally optimal w.r.t

the cost function. This approach is demonstrated and verified in simulation for holonomic

and non-holonomic robots manoeuvring through environments with obstacles. The main

drawback of this algorithm is the associated computational complexity of O(n6)

In order to reduce the complexity of the algorithm presented in [149], Patil et al. proposed

a novel covariance-free trajectory planning algorithm with complexity O(n3k) where n is

the dimension of the space and k is the number of steps in the planned trajectory. Instead of

using both mean and covariance to describe the uncertainty of the belief, in [110], the locally

optimal trajectory is computed without including the covariance. Therefore, the dimension-

ality of this problem scales linearly in the state dimension instead of quadratically. The main

reason for ignoring covariance is because of the recent progress in numerical optimal control

such as automatic differentiation[59] and modern convex solvers[41]. This algorithm is val-

idated on different applications, for example, manipulator planning, parameter estimation

for dynamical systems and active SLAM. This approach is 400× faster than the traditional

trajectory based optimisation methods.

In order to avoid the maximum likelihood observation assumption, Indelman et al. presented a

probabilistic framework where the motion planning is computed from the Generalised Belief

Space (GBS) which contains both robot space and landmarks. Their work consists of two

layers: 1) an inner layer which estimate the belief given a set of control input and 2) an

outer layer which optimises the control input by minimising the designed objective func-

tion. The decision-making process is entrusted to a Model Predictive Control (MPC) frame-

work. More importantly, they assume the future predicted observations as binary random

variables. Under a specific objective function formulation, through non-trivial derivation,

these binary random variables are later eliminated in the optimisation step. The proposed

approach is applied in uncertainty-constrained exploration tasks where the vehicle is ma-

noeuvred in an unknown environment.

The above methods have been successfully applied to multiple robotic applications, e.g., BRM

has been used for UAV navigation under a GPS-denied environment[64, 12]. Based on RRT*,

Costante et al. proposed an online perception-aware path planning framework which considers

both geometric information and photometric information of the environment. In order to take the

texture information into account, they adopt dense, direct SLAM[79] to compute the photometric
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information gain from the intensity values of every pixel in the image. The effectiveness of the

proposed approach is demonstrated on a quadrotor platform with applications such as vision-

based localisation, dense 3D reconstruction and online perception-aware planning. Pathak et al.

also raise another important issue, the data association in reasoning feature observation, in their

recent work[109]. While previous approaches assume that data association is perfect, they pro-

posed Data Association awared Belief Space Planning (DA-BSP) which explicitly considers the

uncertainty of DA in belief propagation. In particular, they show that due to perceptual aliasing,

the posterior belief becomes a mixture of probability distribution functions. They design a cost

function which measures the expected level of ambiguity and posterior uncertainty. Therefore,

this algorithm is applicable to robust active perception and autonomous navigation in a percep-

tual aliased environment.

2.3 Summary

This chapter reviews the progress in both single-view and active object detection and pose esti-

mation problems. The general pipelines for instance-level object detection, category-level object

detection and 6 DoFs pose estimation are summarised. Because of the objective and emphasis of

this thesis, this chapter only illustrates some representative work in instance-level object recog-

nition and pose estimation in detail. Based on whether the motion and observation uncertainties

are considered, the active object detection and pose estimation approaches is separated into two

categories: NBV for object recognition and active object recognition in belief space. Correspond-

ing to the contributions in subsequent Chapter. 6 and Chapter. 7, influential work in both NBV

and planning under uncertainty are reviewed and the key contributions are discussed.
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Part I

Single-View Object Detection and

Pose Estimation
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Chapter 3

Textured Object Recognition and

Pose Estimation

As was discussed in Section. 2.1.1, given a sufficient number of reliable correspondences, using

a monocular camera, target objects can be recognised and localised even in slightly occluded

environments[31]. However, issues such as robustness and efficiency still remain open. Using

modern day consumer-level RGB-D sensors, geometric information can be acquired to provide

extra information to address these issues in different ways.

The goal of this chapter is to develop an object recognition and pose estimation framework

for textured objects using an RGB-D sensor. By taking advantages of the 3D information from the

RGB-D sensor, a modular, robust and efficient perception system is presented which demonstrates

reliable performances under cluttered environments. The depth information helps improve the

consistency of the feature clustering results; it speeds-up pose estimation while holding the accu-

racy. Instead of using RANSAC[52], a novel outlier rejection algorithm is proposed by formulat-

ing a relative graph from the correspondences which also significantly reduces the computational

time.

This chapter is structured as follows: Section. 3.1 formulates the input, output of the system

and defines the variables and terminologies which will be used later; Section. 3.2 illustrates the

pipeline of the proposed framework and highlights the key innovations of this work; Section.

3.3 identifies the improvements of the proposed methods and also presents the object detection

results using this framework. Section. 3.4 concludes this chapter and discusses the limitation of

this work.
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3.1 Problem Formulation

The input information from an RGB-D sensor consists of a colour image Icolour and a depth image

Idepth. The organised dense point cloud P can be readily computed using Icolour, Idepth and the

intrinsic calibration parameters. Before the recognition procedures, the model for each object is

built using off-the-shelf Structure-from-Motion toolboxes ( bundler [135] and VisualSFM[158]), in

a manner similar to MOPED [32]. Each model M consists of a set of 3D features fi and each

fi includes the 3D coordinate pi = [xi, yi, zi] w.r.t object coordinate frame and an associated SIFT

descriptor di ∈ R
128. The output of the proposed algorithm is the object recognition hypothesis H

which consists object identity O and its relative pose [R, t] w.r.t the camera coordinate frame. fM

with superscript M is used to denote features from pre-trained model and fO to denote features

captured from observation. cmn
ij represents the correspondence between feature n in model Mm

and feature j in cluster i.

3.2 Algorithm Pipeline

This section illustrates the proposed framework and the methodology in each step. The high-

lighted red block in Fig.3.1, represents the outlier rejection method, the key contribution of this

chapter 3.2.4.

3.2.1 Support Plane Subtraction

In our experiments, all target objects are assumed to be placed on one support plane. Given the

raw input point cloud P , the largest plane Pπ is extracted from the scene as the support plane

using RANSAC[52] model fitting. Unlike the experimental set-up in Willow dataset1 where a

chessboard marker is placed on the table as an assistance for plane extraction, as shown in Fig.3.2,

our assumption is more general, and this is also a realistic assumption which is acknowledged in

object recognition and pose estimation work such as Narayanan’s recent work[106]. From practi-

cal implementation viewpoint, another issue is that the chessboard based plane detection method

is not as robust as the RANSAC-based method. As shown in Fig. 3.3, the corner points can be

extracted correctly from the right-hand image, Fig. 3.3(a), which contains a larger chessboard,

however, lots of difficulties are encountered when trying to extract corner points from Fig. 3.3(b).

1https://www.willowgarage.com/blog/2011/02/28/nist-and-willow-garage-\
solutions-perception-challenge
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Input data

Depth
image

Point
cloud

RGB
image

Support plane
subtraction

Object
models

Feature extraction

ANN based
feature matching

Feature clustering

Outlier rejection

Pose estimation

Pose combination
and refinement

FIGURE 3.1: Pipeline for single view textured object detection and pose estimation
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FIGURE 3.2: Sample image from Willow dataset

Besides, RANSAC-based plane extraction method shows similar computational time compared

with the chessboard based method.

(a) An easy case where corners can be extracted ro-
bustly.

(b) A difficult case where corners can not be extracted
robustly.

FIGURE 3.3: Example images from reconstructed scenarios similar as Fig. 3.2.

The normal vector vπ of extracted plane Pπ is computed further and the centre point pπ of Pπ

is selected as the original point. For all other 3D point pi, the projected vector of vi = pi − pπ onto

normal vector vπ is computed, denoted as v̂i and

v̂i = |vi|(vi · vπ)vπ (3.1)

The point pi is regarded as above the plane if v̂i > vτ . In our experiments, vτ is set to be positive

and |vτ | = 0.005(m). A binary mask image Imask is generated where only points above the plane

with available depth information are assigned with 1 and vice versa.
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3.2.2 Feature Extraction and Matching

The widely used SIFT[96] feature was adopted and features are extracted using the generated

mask image. Provided with both RGB and depth information, the feature coordinate in image

frame pIk = [uk, vk] and corresponding 3D coordinate pCk = [xC
k , y

C
k , z

C
k ] in camera coordinate

system are available and kept for further 3D-3D pose estimation.

In order to reduce the time consumption of finding the correspondences between observation

and models, the fast ANN[102] searching method is adopted. Because of the complexity of the

environment, outliers are likely to be introduced in this phase while the efficiency is improved.

cw is used to denotes all the correspondences matched to model w where cw = ∪∀m=wc
mn
ij .

In order to evaluate the matching accuracy, following state-of-the-art feature detector and de-

scriptor algorithms are used to conduct a comparative experiments: 1) SIFT keypoint detector

and feature descriptor; 2) SURF keypoint detector and feature descriptor; 3) FAST[123] keypoint

detector and SIFT feature descriptor; 4) FAST keypoint detector and BRIEF feature descriptor; 5)

ORB feature detector and descriptor. Table. 3.1 tabulates the matching accuracy under each of

these methods. Features between the observation and the model are matched using ANN and

the outliers are removed using RANSAC with homography constraints. SIFT can obtain compar-

atively higher number of correct matches given the same number of features compared to all the

other methods.

TABLE 3.1: Feature matching accuracy comparison results2

Feature SIFT SURF FAST+SIFT ORB FAST+BRIEF

Matching Accuracy 0.3287 0.2162 0.1761 0.1913 0.1572

3.2.3 Feature Clustering

For all matches cw between observation and model w, geometrically closer features in camera

coordinate system are grouped using Mean-Shift algorithm[33]. Different from the 2D space clus-

tering in [32], assuming that the environment is static, 3D distances between each pair of points

are fixed from different viewpoints. Therefore, 3D distances based clustering is more robust com-

pared to the clustering in the image space. The comparison results of two clustering methods are

2Accuracy =
NumberOfCorrectMatches

NumberOfExtractedFeatures
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presented in Fig. 3.4. 3D distances based clustering (the top row in Fig. 3.4) shows more consis-

tent and reliable results under different ranges. However 2D clustering results (the bottom row in

Fig. 3.4) show a comparatively larger number of incorrect clusters and the results tend to be very

inconsistent. After clustering, each group Gi consists of a subset of correspondences between the

model M and the observation and is hypothesised to contain object instances. Outliers inevitably

exist after clustering and therefore they need to be removed during pose estimation.

FIGURE 3.4: Comparison results for clustering correspondences for 4 same images
under different ranges using two different methods.

3.2.4 Outlier Rejection

Using an RGB-D sensor, it is able to capture 3D information from the scene. Identifying the correct

correspondences given a set of 3D-3D matches is a simplified problem compared with [47] and

[93] where no initial correspondences are given. The significant differences are: 1) 3D-3D matches

are available rather than 3D-2D matches thus the geometrical constraint can be exploited; 2) initial

matches are given using SIFT features (note that, whereas in [93] the matches are unknown). This

is a typical RANSAC problem which can iteratively estimate relative pose and rejects outliers.

Here, a graph-based approach is presented which is able to solve this problem more efficient and

is also robust when compared with RANSAC.

Given a set of hypothetical correspondences c = {c1, c2, ..., cn} where ci consists of 3D co-

ordinate pM in the model frame and 3D coordinate pO in the sensor frame. A relation graph

G = (V,E) is constructed using c as follows: each vertex vi denotes a correspondence ci and the
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weight of the edge connecting two vertices vi and vj is calculated as (3.2):

ωi,j = 1−
∣∣∣∥∥pMi − pMj

∥∥
2
− ∥∥pCi − pCj

∥∥
2

∣∣∣ (3.2)

where ‖p‖2 denotes the L2 norm of vector p. ωi,j is able to represent the consistency between

a pair of correspondences ci and cj . Smaller ωi,j denotes less-consistency and larger ωi,j means

that the 2 correspondences are more consistent w.r.t a unknown rigid transformation. Given this

fully-connected weighted undirected relation graph G, in order to find a consistent subset of

correspondences, the strongly connected components need to be identified. However, finding

an exact solution to this problem is NP-hard. An approximate solution towards this problem is

proposed which is fast and capable of generating reliable results under practical environments.

By thresholding on the weight of the each edge, the weighted fully-connected undirected

graph G is converted into a secondary undirected graph G without weighted edges firstly. If

ωi,j is larger than a pre-defined threshold ωε, the two pairs of correspondences are regarded as

consistent w.r.t a same unknown transformation [R, t] and this edge is preserved. Otherwise it

is removed in the graph. All the vertices in this secondary graph G are traversed to calculate

the number of edges ne
i connected to each vi. ne of the most connected vertex ve in the graph is

checked and all the vertices connected with ve if ne > τnv
(threshold) are removed. The step is

processed iteratively until the termination criteria ne < τnv
is met and all the remaining vertices

are considered as outliers. The algorithm is presented in Algorithm. 1 and vertex v is also used

to denote a correspondence c. Compared with RANSAC, this method only needs to compute the

number of connected edges for all vi and a simple algorithm to find the most connected vertices

in G. In our experiments, normally, depending on the actual number of consistent cliques in the

relational graph, the loop can be finished within less than 5 iterations. The detailed comparison

experiments and results are presented in section. 3.3.1.

3.2.5 Pose Estimation

There are several 3D rigid body transformation methods described in [45]. In this work, given

3D-3D correspondences, the least square solution based on SVD [8] is adopted. In order to deal

with the noisy depth observations, RANSAC is implemented combined with SVD pose estimation

while RANSAC can find the correct correspondences in significantly fewer iterations. SVD based
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Algorithm 1: Optimal correspondences searching

Input: correspondence set c = {c1, c2, ..., cn} where ci = (pMi , p
C
i );

Output: Consistent cliques C = {C1, C2, ...} where Ci = {ci1 , ci2 , ..., cik}
// ConnectedVertices(v): returns all the vertices linked with v;
// MaxVertex(G): returns the most connected vertex in G;
// G = Graph(c): build graph from c;
vmax = MaxVertex(G);
while |ConnectedVertices(vmax)| > τnv do

C = {vmax, vconnected};
V = V −ConnectedVertices(vmax);
G = Graph(v);
vmax = MaxVertex(G);

end

pose estimation is faster compared with the Levenburg-Marquart optimisation based technique

which is used in [31].

3.2.6 Pose Combination and Refinement

There exist two different methods to handle overlapping recognised hypotheses:

1) if multiple adjacent hypotheses Hi have the same recognised object and overlapping poses, it

is highly likely that there exist only one candidate object. However, it is separated into several

groups in clustering and therefore generates multiple hypotheses with similar poses. The hy-

potheses is combined into one group and calculate a final pose for this single object.

2) If the overlapping hypotheses belong to different kinds of instances, only one of the hypotheses

can be correct. Without any further consideration, The hypothesis with a larger number of correct

matches is selected as the recognised object.

3.3 Experiments and Discussions

3.3.1 Consistent Correspondences Search using Graph based Approach

In order to verify the robustness and efficiency of the proposed approach, the following exper-

iment is designed to compared the proposed approach against the most widely used method,

RANSAC. Given transformation [R, t] and a set of 3D points, transformed points with additional

Gaussian noises on each (x, y, z) axis is generated with a standard deviation 0.1 cm. These two

sets of 3D points were regarded as correct correspondences. In addition, using the translation

vector t, uniformly distributed point sets centred at the origin coordinates [0., 0., 0.] and [xt, yt, zt]
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are generated. Incorrect matches were generated randomly by associating point pairs between

these two uniform distributed points. We were also able to generate multiple sets of consistent

correspondences and this set-up can be considered as a single cluster with multiple objects during

the object detection step. Two types of experiments were designed to fully verify the effectiveness

of the proposed method.

1. Single consistent set experiment: The correct set of correspondences had 200 matches and

the number of incorrect matches is set as 50, 100, 200 and 400.

2. Multiple consistent sets experiment: We have multiple (1, 2 and 3) sets of consistent cor-

respondences in the input raw data. This implies the algorithm is tested under different

number of correct matches (i.e. 200, 400 or 600) . The number of outliers is set to be constant

as 200.

There are several parameters which are needed to be carefully tuned in our experiments. In

both RANSAC and our method, the minimum number of consistent matches in one cluster τnv

was set to be 30 and the threshold of distance error, ω, was set to be 0.15cm which approximately

equals to
√
0.12 + 0.12 + 0.12. Given a pair of 3D coordinates and hypothesis

[
R̂, t̂

]
, if the dif-

ference between transformed coordinate and the given coordinate is less than ω, this match is

regarded as agreed with
[
R̂, t̂

]
. In RANSAC, the iteration number was set to 500 irrespective of

the number of matches. In each iteration, only 4 pairs of matches were selected to calculate the

initial transformation
[
R̂, t̂

]
[9].

This experiments mainly focuses on estimation accuracy and time consumption. The pose es-

timation error is measured using the Euler angle instead of the rotation matrix, and the results are

shown in table. 3.2. The time consumption of the proposed method is greatly reduced compared

to RANSAC. When the number of inliers is 200 and the number of outliers is 400, our method

shows larger error as the least square solver is not robust to erroneous data association. The bot-

tom table in Table. 3.2 demonstrates the results where there are multiple object hypotheses in

the inlier correspondences. The number of hypotheses increased from 1 to 3 with the number

of inliers from 200 to 600. Under this set-up, our approach out-performances RANSAC in both

accuracy and timing.

One key parameter in our method is ω. If ω is not tuned to a larger value correctly, the pro-

posed method can easily include incorrect matches which leads to extremely large estimation

errors. In order to mitigate this, an additional RANSAC step can be appended with much fewer
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TABLE 3.2: Outlier rejection comparative experimental results with RANSAC

(a) Single optimal set searching

Inlier Outlier Criterion Proposed Method RANSAC

200 50
Rotation Error ± [0.743,0.059,0.249] ± [2.292, 1.271, 3.759]
Translation Error ± [0.014,0.006,0.016] ± [0.161, 0.071, 0.032]
Timing (ms) 36.54 397.43

200 100
Rotation Error ± [0.416,0.499,0.716] ± [1.303, 2.839, 1.250]
Translation Error ± [0.041,0.011,0.015] ± [0.037, 0.038, 0.159]
Timing (ms) 54.71 451.96

200 200
Rotation Error ± [0.236,0.014,0.175] ± [1.318, 0.583, 1.143]
Translation Error ± [0.008,0.007,0.003] ± [0.041, 0.004, 0.037]
Timing (ms) 91.36 632.47

200 400
Rotation Error ± [9.968, 4.431, 6.554] ± [3.502,0.091,1.154]
Translation Error ± [0.022,0.010,0.002] ± [0.031, 0.050, 0.073]
Timing (ms) 195.29 971.60

(b) Multiple optimal sets searching

Inlier Outlier Criterion Proposed Method RANSAC

200 200
Rotation Error ± [0.236,0.014,0.175] ± [1.318, 0.583, 1.143]
Translation Error ± [0.008,0.007,0.003] ± [0.041, 0.004, 0.037]
Timing (ms) 91.36 632.47

400 200
Rotation Error ± [1.542,1.859,0.834] ± [1.920, 2.173, 1.728]
Translation Error ± [0.341,0.539,0.109] ± [1.014, 0.836, 0.572]
Timing (ms) 227.43 1396.55

600 200
Rotation Error ± [2.031,1.172,1.411] ± [2.018, 1.554, 1.414]
Translation Error ± [0.572,0.447,0.710] ± [0.549, 0.602, 1.211]
Timing (ms) 468.09 3674.12

iteration after the graph based approach. It is still possible to achieve comparable pose estimation

accuracy with less computational time. All of the simulation experiments were conducted on 64

bit Ubuntu 12.04 operating system with 2.50GHz Intel(R) Core(TM) i5-2520M CPU.

3.3.2 Multiple Objects Recognition and Pose Estimation

In order to evaluate the performance of the proposed outlier rejection strategy and the accuracy

of pose estimation, a cluttered objects dataset is built as shown in Fig. 3.5. In this dataset there

are at least 4 different or identical objects in each frame. There are overall 25 different shaped

objects in our dataset including cubic objects, cylindrical objects and irregular shaped objects. This

experiment compares the proposed framework against the open source MOPED system. In order

to verify the feasibility of the system under a similar scenario as Willow dataset, an environment

with similar complexity (shown in Fig. 3.7(b)) is constructed where multiple different shaped

objects are placed and occlusions are exist.
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FIGURE 3.5: Sample images from the collected dataset which contains multiple
occluded objects.

TABLE 3.3: Object detection results: accuracy, estimate error and time consumption

Method Precision Recall Error(cm) Time consumption(s)
Proposed system (Graph) 96.54% 85.26% 1.94 0.8405
MOPED 94.20% 83.39% 2.73 1.5473

This subsection presents the results in the cluttered objects dataset which includes 100 frames

with a total number of 439 objects that need to be recognised. Our algorithm achieves almost

perfect precision in object recognition except in the case where 3 pairs of similar objects are pre-

sented. It only fails to recognise 32 objects that are under extreme occlusions among 439 objects.

Since it is not able to obtain the accurate relative pose between object and Kinect sensor under this

scenario, using the estimated [R, t], the re-projection error δ is calculated and used as the mea-

surement of pose accuracy for both translation and rotation. This system is able to achieve com-

parable precision-recall recognition performance, slightly better pose estimation accuracy. This

is expected as 3D information is exploited while MOPED only relies on 2D images only. More

importantly, the computational time required for our algorithm is approximately only 50% of the

time by MOPED. Following are the key factors for this inferior timing of MOPED.

• RANSAC based plane subtraction generates a mask image which approximately separates

the support plane and the target objects. This further decreases the number of extracted

features and also speeds up the subsequent steps in Fig. 3.1.

• Compared with 2D clustering in image space, 3D geometrical Mean Shift clustering is much

more accurate and robust. Note that these numbers vary depending on the sensor ranges
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and viewpoints. This also led to the successful implementation of a simpler outlier rejection

algorithm.

• The proposed graph based consistent correspondences searching methods is faster than the

RANSAC method and achieves robust performances when noisy data are presented.

• Given additional 3D point cloud sensor data, SVD solver is used to obtain the relative pose

between two sets of 3D points. Compared with LM optimiser in MOPED, our method is

much faster given reliable matches.

Since SIFT extraction is processed using only the CPU in our system which takes almost 80%

of the time, much less time consumption (within 400ms) is anticipated when using GPU compu-

tation.

FIGURE 3.6: Objects detection and pose estimation results in cluttered environ-
ment.

3.3.3 Discussion

In order to demonstrate the capability of our system on Willow dataset, based on one of the

images from Willow dataset (shown in Fig. 3.2), a scenario with similar complexity is built. In

Fig. 3.7(b), there are 7 different objects with box shape and cylindrical shape, and the objects are

placed in a similar manner as in Fig. 3.2 (7 objects with slightly occluded and one object is placed

flat on the plane). Given a closer range and enough number of observed features, shown in Fig.

3.7(b), the method can successfully recognise all the objects with accurate pose. The most notable

feature of our proposed system is the time efficiency as discussed in section. 3.3.

The current limitations of our system are listed below:
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(a) Constructed scenario similar as Willow dataset (b) Object detection results from Fig. 3.7(b)

FIGURE 3.7: Object detection results in a similar scenario as Willow dataset.

• depth information is not fully used in the recognition step. Therefore the recognition per-

formance is limited by the keypoint features such as SIFT;

• the current system is not able to perform well under a highly cluttered environment espe-

cially when an inadequate number of features are observed;

The first problem will be solved by using RGB-D features which will be discussed in the next

chapter and the second issue motivates the main focus of this PhD work, active object detection,

which will be presented in Chapter. 6.

3.4 Summary

This chapter presents a textured object recognition and pose estimation pipeline using an RGB-D

sensor in a highly cluttered environment. A graph-based consistent correspondences search algo-

rithm is proposed by exploiting the relative geometric constraints between each pair of matches.

Our system benefits by completely using the depth information in pose estimation by directly us-

ing 3D-3D correspondences. This approach is faster to execute and also leads to higher accuracy.

Combined with other improvements on each step and comprehensive experiments, it is shown

that the proposed system performs well under a number of different scenarios in an indoor envi-

ronment and is capable of reducing 50% of the computational time compared to MOPED. How-

ever, this chapter fail to exploit the depth information in the recognition phase thus cannot detect

less-textured objects or objects under severe illumination conditions.
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Chapter 4

A Novel RGB-D Feature for

Challenging Object Detection

Chapter. 3 presents a framework for detection and pose estimation of textured object. However,

in daily life, there also exist various kinds of objects that do not possess rich texture information.

Besides, one of the limitations of the framework for detection and pose estimation of textured

object is that its object detection results are subjected to the illumination conditions. In order to

guarantee a reliable feature extraction and matching performance and to further ensure robust

object detection results, the illumination conditions have to be good enough. To address these

two issues, this chapter presents a novel appearance and shape feature, RISAS, which is robust to

viewpoint, illumination, scale and rotation variations.

RISAS consists of a keypoint detector and a feature descriptor both of which utilise texture

and geometric information present in the appearance and shape channels. It is robust to illumi-

nation variations and also capable of extracting salient keypoints from geometric information.

A novel response function based on the surface normals is used in combination with the Harris

corner detector for selecting keypoints in the scene. A strategy that uses the depth information

for scale estimation and background elimination is proposed to select the neighbourhood around

the keypoints in order to build precise invariant descriptors. Proposed descriptor relies on the

ordering of both grayscale intensity and shape information in the neighbourhood. Comprehen-

sive experiments which confirm the effectiveness of the proposed RGB-D feature when compared

with CSHOT [142] and LOIND[51] are presented. Furthermore, the utility of incorporating tex-

ture and shape information in the design of both the detector and the descriptor is highlighted

by demonstrating the enhanced performance of CSHOT and LOIND when combined with the

RISAS detector. RISAS has been adopted for the framework presented in Chapter. 3 to evaluate
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the object detection performance under extreme illumination conditions.

This chapter is structured as follows: The methodology of the proposed RGB-D feature is illus-

trated in Section. 4.1 including the keypoint detector(4.1.1) and feature descriptor(4.1.2); the pro-

posed feature, RISAS, is validated thoroughly using a public dataset and a specifically designed

RGB-D feature evaluation dataset in Section. 4.2. The object detection results are demonstrated in

Section. 4.3 and Section. 4.4 concludes this chapter.

4.1 A Novel Rotation, Illumination and Scale invariant RGB-D

Feature

This section describes the proposed Rotation, Illumination and Scale invariant Appearance and

Shape feature, RISAS, in detail. RISAS is built on the previous work about an illumination and

scale invariant RGB-D descriptor called Local Ordinal Intensity and Normal Descriptor (LOIND)

[51]. The detector and descriptor are explained in detail in Section.4.1.1 and Section.4.1.2.

4.1.1 Keypoint Detector

The main advantage of using depth information in keypoint detection is the fact that information

rich regions in the depth channel are also given due consideration without being ignored when

these regions lack texture information. Both the proposed detector and the descriptor use similar

information and thus are tightly coupled giving rise to superior matching performance.

FIGURE 4.1: Algorithm flowchart of the keypoint detector in the proposed RISAS
RGB-D feature.
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The flowchart of the keypoint detection method is shown in Fig. 4.1 where Irgb is the original

RGB image and Igrayscale is the converted grayscale image. Inormal is the 3 channel normal vector

image and Idp is the dot product image. The key steps are listed below

1. For each point in the depth image Idepth, the surface normal vector is calculated. From the

three components of the normal vector, the corresponding normal image Inormal with three

channels is created.

2. Using Inormal, the three angles [α, β, γ] between each normal vector and the [x, y, z] axis of the

camera coordinate system are computed. The angle range [0, π] is segmented into ns sectors

labelled with [1, ..., ns] and each computed angle is mapped into one of these sectors. In this

work, ns is set to be 4 as shown in Fig. 4.2. For example, normal vector n =
[√

3
3 ,

√
3
3 ,

√
3
3

]
has the [α, β, γ] = [54.7◦, 54.7◦, 54.7◦] will be labelled as [2, 2, 2];

main normal

Discretized labeling

3D Histogram 
Computation

(for all normal 
vectors)

Select the dominant value 
as the main normal vector

FIGURE 4.2: Calculating the main normal vector of the depth image to extract RGB-
D keypoints.

3. Using this labelled image, a statistical histogram is built to capture the distribution of la-

bels along each channel. From this histogram, the highest entry for each channel is chosen

and the corresponding label [nX , nY , nZ ] is used to represent the most frequent label where

nX , nY , nZ ∈ {1, ..., ns}. Using these three values, the “main” normal vector nmain of the

depth image Idepth is defined.

4. Calculate the dot-product between nmain and each normal vector in Inormal. This describes

the variation of information in the depth channel. The dot product value is then normalised

into range [0, 255]. Using this value, a novel dot-product image Idp is created which is ap-

proximately invariant to the viewpoint of the sensor.

5. The similar principle as in the Harris detector is adopted to compute the response value

E(u, v) using the grayscale image Igrayscale and the dot product image Idp. The response
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value is thresholded to select points that show an extreme value in the weighted sum of two

response values from Igrayscale and Idp, as shown in (4.1):

E (u, v) =
∑
x,y

ω(x, y)[τ (I(x+ u, y + v)− I(x, y))
2

+ (1− τ) (P (x+ u, y + v)− P (x, y))
2
]

(4.1)

where (u, v) is the keypoint coordinate in image space and ω(x, y) is the window function

centred at (u, v) which is a Gaussian function in the work presented in this thesis. I(u, v)

is the intensity value at (u, v) and P (u, v) is the normalized dot product value at (u, v).

Empirical study shows that τ plays a critical role in balancing appearance information and

geometric information in keypoint detection. Because of the fact that an rgb/grayscale im-

age is more information rich compared with a depth image and provides more variations,

τ should assign a larger value to the rgb image. Fig. 4.3 provides precision-recall curves for

different τ value for the same scenario. τ is set empirically as 0.8.
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FIGURE 4.3: Precision-Recall curves for difference τ value in feature point extrac-
tion.

This strategy clearly identifies keypoints from regions that are information rich in both appear-

ance and geometry.
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4.1.2 Feature Descriptor

Scale Estimation and Neighbourhood Region Selection

For grayscale images, the scale of the keypoint is estimated by finding the extreme value in scale

space using image pyramid. Typical examples are as SIFT[95] and SURF[17]. With the develop-

ment of modern RGB-D sensors such as Kinect and Xtion, the scale can be easily measured using

the depth information captured from the sensor. In both LOIND[51] and BRAND[107], the fol-

lowing empirical equation scales the distance range between [2, 8]m into scale range [1, 0.2] in a

linear relationship. Scale value for distance less than 2m is truncated to 1.

s = max

(
0.2,

3.8− 0.4max(2, d)

3

)
(4.2)

After s is estimated, the neighbourhood region that is used to build the descriptor is selected with

radius R in a linear relationship with scale value s, as shown in [51, 107]. A critical deficiency

in their approach is that the neighbourhood region is selected without considering the geometric

continuity. In the following, a more accurate method is presented for selecting the neighbourhood

region from which the descriptor is built.

1. Based on (4.2), initial value of the scale s is estimated. The radius R of the patch is computed

using (4.3) which was derived using extensive experimentation.

R =

(
−5 + 25 ∗min

(
3,

max(0.2.smax)

max(0.2.smin)

))
· s (4.3)

where smax and smin are the maximum and minimum scale values in the image. If scale

varies gently in the neighbourhood region, a smaller R is a better option and vice versa. The

patch centred at keypoint ki in 2D image space is denoted as Puv(ki) and the corresponding

patch in 3D point cloud space is represented as Pxyz(ki);

2. For each point p ∈ Pxyz(ki), the outlier neighbouring points from the keypoint ki are re-

moved according to (4.4). The main objective of this step is to remove the points pertaining
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to the background . This step of eliminating the background was found to produce signifi-

cant improvements in the matching performance.

f(p) =

⎧⎪⎪⎨
⎪⎪⎩
1 if ‖p− ki‖ < t

0 otherwise
(4.4)

where t is the threshold and set to be 0.1 meter in this work. Only the neighbouring points

with f(p) = 1 are kept;

3. Ellipsoid fitting is conducted for the processed 3D neighbouring points P̄xyz(ki) based on

the following equation.

(x− xki)
2

a2
+

(y − yki)
2

b2
+

(x− zki)
2

c2
= 1 (4.5)

where a, b and c are the length of the axes. The 3D ellipsoid is projected into the image space

for the new accurate patch P̄uv with radius R̄ for further descriptor construction.

Fig. 4.4 demonstrates the results of the proposed neighbourhood selection method. The de-

fault strategy (left) selects the whole region (shown in red) which covers both foreground and

background area. However, the background points have an adverse effect on the local descrip-

tor. Our approach (right) eliminates the background points (shown in blue) and constructs the

descriptor using the foreground (shown in red) only, leading to more robust descriptor matching

performances.

FIGURE 4.4: Comparison results for different neighbourhood selection methods for
descriptor construction.
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Orientation Estimation

In LOIND[51], the dominant orientation θ of the selected patch is computed from the depth in-

formation only. Although it works reasonably well under different scenarios it is sensitive to

the noise in neighbourhoods where the normal vectors are similar to each other. An alternative

novel dominant orientation estimation algorithm is proposed which is more robust and efficient

compared with LOIND[51]:

1. Given the processed 2D patch P̄uv and 3D patch P̄xyz , PCA is adopted to compute the

eigenvalues [e1, e2, e3] (in descending order) and corresponding eigenvectors [v1,v2,v3].

2. Given the eigenvectors [v1,v2,v3], the 3D dominant orientation d3D of the patch is com-

puted as follows:

d3D =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v1×v2

|v1×v2| if (e2 > γe1) ∧ (e3 ≤ γe1)

rejected if (e2 > γe1) ∧ (e3 > γe1)

v1 others (e1 is signficantly larger)

(4.6)

where γ is set within [0, 1]. If the e1 is significantly larger than the other two, the 3D dom-

inant orientation is set to be the corresponding eigenvector v1. If e2 is close to e1, both

eigenvector v1 and v2 are considered in computing the dominant orientation by taking the

cross-product of these two vectors. Further if both e3 and e2 are closer to e1 which means

no clear differences between the 3 eigenvalues, this keypoint is rejected because the depth

channel will not be able to provide distinctive information. Threshold γ determines when

the second eigenvalue e2 can be regarded as "close" enough to the largest eigenvalue e1

which is set to be 0.8 through experiments.

3. Project the 3D dominant direction d3D into the image plane and get the 2D dominant direc-

tion d2D. We use θ to denote the angle between d2D and u axis in image space.

Descriptor Construction

Based on the results from the above steps, the descriptor of keypoint ki = [u, v] can be constructed

using the neighbourhood region with radius R and the angle θ following the main ideas used in

LOIND[51]. The descriptor is based on the relative order information in both grayscale and depth

channels. The descriptor is constructed in a three-dimensional space, as shown in Fig. 4.5 below
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where [x, y, z] axes denote the spatial labelling, the intensity labelling and the angles labelling

respectively.

Spatial Distribution

Intensity ordinal labeling

Normal vector ordinal labeling

Rasterization

3-D histogram

FIGURE 4.5: Algorithm flowchart of constructing descriptor of the RGB-D feature.

- Encoding Spatial Distribution

For spatial distribution, the pixels in the region (u, v,R, θ) are labeled based on npie equal-

size spatial sectors. Larger the number of sectors, the more discriminative the descriptor,

but this clearly effects timing for both construction and matching.

- Encoding Grayscale Information

In order to enhance illumination invariance, instead of constructing the descriptor in the

absolute intensity space, the statistical histogram is built using the relative intensity with

respect to the intensity value of the keypoint. According to the rank of all the pixels in

the patch, the intensity values are grouped into nbin equally sized bins. For example,

given 100 intensity levels and 10 bins, each bin has 10 intensity levels (i.e., orderings of

[1, 10], [11, 20], . . . , [91, 100] ).

- Encoding Geometrical Information

Given the normal vector of each point, the dot product between the normal vector of the

selected keypoint npk
is computed firstly and the normal vector of each point in the neigh-

bourhood patch npi
.

ρi = |〈npk
,npi

〉| (4.7)
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Due to the fact that normal vectors from small patches are similar to each other, the distri-

bution of ρi is highly unbalanced where the majority of ρi fall into the range close to 1. ρ̄

is set as 0.9 and any ρi ≥ ρ̄ are grouped into one category. The remaining dot products are

ranked and grouped into nvec bins. Points are then labelled based on the group they belong

to. Therefore, in normal vector space encoding, there are overall nvec + 1 labels.

During the empirical study, 12 different combination of parameters npie = {4, 8, 12} , nbin =

{8, 16} and nvec = {1, 2} are tested. The precision-recall curves are presented in Fig. 4.6. Con-

sidering both performance and efficiency, in the experiments section, parameters are set as npie =

8, nbin = 8, nvec = 2 thus constructing a 192-dimensional ( dim = npie ·nbin · (nvec+1)) descriptor.
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FIGURE 4.6: Precision recall curves under different parameterisation of descriptor
construction.

4.2 Experimental Results

This section presents the performance comparison of RISAS against CSHOT, LOIND and other

methods. In order to highlight the merits of using both appearance and depth channels, the results

of comparative experiments using SIFT features have been reported. In these experiments, a

public RGB-D dataset was used which was originally designed for object detection1. This dataset

does not include examples of rotation, scale or illumination changes independently and therefore

1http://rgbd-dataset.cs.washington.edu/
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it is unable to fully illustrate the effectiveness of the RISAS in such situations. Therefore a new

dataset has been developed for further detailed evaluations2.

4.2.1 Evaluation Method

Firstly, keypoints from two frames are extracted and the descriptors are constructed for all these

keypoints. Nearest Neighbour Distance Ratio (NNDR) is used to establish the correspondences

of keypoints between a pair of images. The reprojection error is used to determine whether a

correspondence is correct using the equation below:

||pi − (Rpj + t) || ≤ dmin (4.8)

where pi and pj are 3D points from frames i and j. R and t denote the true rotation and translation

and are given during the evaluation. If the re-projection error is less than dmin(set to be 0.05 m),

the match is regarded as a correct one. In the next subsection, the percentage of inliers is used to

describe the invariance of the features w.r.t scale variations. Precision-Recall curves are used to

evaluate the performance of the RGB-D features under other types of variations similar to [100] .

4.2.2 Experimental Results and Analysis

In order to evaluate the performance of the proposed RISAS feature, the following comparative

experiments have been conducted :

1. 3D ISS keypoint detector and RGB-D CSHOT descriptor: ISS has been combined with dif-

ferent 3D descriptors for evaluation in Guo et al.’s survey[60]. Implementations of these in

PCL[128] were used in the experiments presented in this section.

2. Uniform sampled keypoints and RGB-D CSHOT descriptor: Uniform sampling method for

keypoint detection was used in Aldoma et al.’s work [6] for 3D object recognition3 In these

experiments, the uniform sampling method was adopted and the methods provided in PCL

were used.

3. 2D SIFT keypoint detector and RGB-D CSHOT descriptor: Publically available implemen-

tation of SIFT detector from VLFeat[152] and CSHOT descriptor from PCL[128] were used.

2This dataset can be downloaded from http://kanzhi.me/rgbd-descriptor-dataset/ to make it possible for
the community to use this in future research

3Random sampling is used in the SHOT[144] paper and CSHOT paper[142].
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This was used as an example of a combination of a 2D keypoint detector and a RGB-D

descriptor.

4. Proposed RISAS keypoint detector and RGB-D CSHOT descriptor: Matlab implementation

of the RISAS detector together with the PCL implementation of CSHOT was used.

5. 2D SIFT feature (detector and descriptor) as implemented in VLFeat.

6. Proposed RISAS keypoint detector and LOIND descriptor that were implemented in Mat-

lab.

All of the experiments were performed on a standard desktop PC equipped with an Intel i5-

2400 CPU.

4.2.3 Object Recognition Dataset

The information-rich sequence table_1 from the RGB-D scene dataset [85] was chosen and some

of the results are presented in Fig. 4.7. As the figure indicates, RISAS and the combination of

RISAS detector and CSHOT descriptor show a significantly larger area under the curve and thus

demonstrate the best performance.

(a) Image 33 and 38.
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(b) Precision and recall curve

(c) Image 25 and 32.
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(d) Precision and recall curve

FIGURE 4.7: Evaluation results on RGB-D scene dataset.
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4.2.4 RGB-D Feature Evaluation Dataset

In the constructed dataset, the following four common variations were considered: 1) viewpoint,

2) illumination, 3) scale and 4) rotation.

(a) Image 12 (b) Image 24

FIGURE 4.8: Example images under different viewpoint variations.

Viewpoint Invariance

24 images have been collected by moving the sensor around the objects in approximately 60◦ at

0.7 meters away from the objects. The angle between each pair of consecutive frames is approxi-

mately 3◦. In order to estimate the true transformation between each pair of frames and to further

evaluate the performance of descriptors, the RGBD-SLAM[46] scheme has been adopted. The

RBG-D algorithm computes the optimised poses and these optimised poses have been regarded

as the ground-truth. The image which faces straight forward to the object (in the middle with in-

dex 12 ) was selected as the reference image, and it was matched with two images one on the left

and the other one on the right side (with indices 1, 6, 18 and 24) to the reference one. Image 12 and

24 are presented in Fig. 4.8. The Precision-Recall curves of these four pairs of images are shown

in Fig. 4.9. RISAS is significantly superior compared with all other methods. CSHOT performs

well when used with the RISAS detector while performing surprisingly poorly with SIFT and ISS

detectors, and also with uniform sampling. It also has been noticed that SIFT doesn’t perform as

expected under these scenarios with approximate 30◦ of viewpoint change.

Illumination Invariance

In order to validate the performance of RISAS under illumination variations, a dataset was con-

structed which consists of five different levels of illumination conditions: 1) square 2) square root
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(a) Between image 12 and 1
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(b) Between image 12 and 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Uniform Sample+CSHOT
ISS detector+CSHOT
SIFT detector+CSHOT
RISAS detector+CSHOT
SIFT
RISAS detector+LOIND
RISAS

(c) Between image 12 and 18
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(d) Between image 12 and 24

FIGURE 4.9: Precision-Recall curves under different viewpoint variations.
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FIGURE 4.10: Example images and results under square root illumination variation
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(b)

FIGURE 4.11: Example images and results under square illumination variation

3) cube, 4) cube root and 5) natural illumination variation, as shown in the left column from Fig.

4.10 to Fig. 4.14. The reference image is shown in Fig. 4.15. As the figures demonstrate, the

proposed RISAS feature shows the best performance compared with other approaches, i.e. the

precision value of RISAS is almost equal to 1.0 when the recall value is 0.7 regardless of the extent

of the illumination variation. It is interesting to note that SIFT performs quite well while at the

same time performance of CSHOT is significantly enhanced by using it together with the RISAS

detector.

Scale Invariance

In this experiment, 10 images were collected with the variations in z axis of the sensor coordinate

system. The first frame that was captured at 1.1 m from the object was selected as the reference

image and all other images were captured by moving the camera backwards in steps of 0.1 m. A
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FIGURE 4.12: Example images and results under cube root illumination variation
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FIGURE 4.13: Example images and results under cube illumination variation
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FIGURE 4.14: Example images and results under illumination change using ND
mirror
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FIGURE 4.15: Reference image for illumination and rotation variation.

pair of images of scale variations is shown in Fig. 4.16 and the matching accuracy w.r.t the scale

variation is shown in Fig. 4.17. While RISAS gives the best performance, RISAS detector used

with CSHOT also demonstrates good results. All the other methods are significantly inferior.

(a) Original image as reference, captured at dis-
tance ≈ 1.1m

(b) Image captured at the distance ≈ 1.9m

FIGURE 4.16: Example images under different scale variations.

Rotation Invariance

Fig. 4.18 demonstrates the performance of RISAS under 3D rotation. The reference image is

shown in Fig. 4.15 for illumination variations. Precision-recall curves are presented in Fig. 4.19.

Under 3D rotations, RISAS and the combination of RISAS detector and CSHOT achieve the best

results.
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FIGURE 4.17: Comparative matching results under different scale variations.

FIGURE 4.18: Example images of different 3D rotations.
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FIGURE 4.19: Precision-Recall curves corresponding to Fig. 4.18.
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Discussion

Results from the experiments show that, overall, RISAS provides the best results when compared

with other approaches. RISAS shows clear advantages over the other methods under viewpoint

variations. Under illumination variations, RISAS outperforms other methods significantly ex-

cept for LOIND where LOIND achieves comparable results. Under scale and rotation variations,

RISAS and the combination of RISAS detector and CSHOT descriptor demonstrate the best per-

formance.

It is clear that using the RISAS detector with CSHOT significantly enhances its matching per-

formance. This confirms that a suitable RGB-D detector is critical for the performance of a RGB-D

descriptor. In RISAS, the descriptor performs well if the neighbourhood of the keypoint shows

higher normal vector variations. This variation is precisely the main consideration in developing

the detector.

In the current unoptimised Matlab based implementation, RISAS takes 20 seconds to com-

plete both keypoint detection and descriptor construction for an image 640 × 480 captured from

Kinect/Xtion. On the same PC with C/C++ implementations in PCL [128], ISS[163] takes nearly

6 seconds and CSHOT takes almost 1 second to process a similar frame. Computational time of

RISAS can be significantly improved when implemented in C/C++.

4.3 Object Recognition using RISAS

First, Section. 4.3.1 briefs the pipeline of the recognition framework using the proposed RISAS

feature for object recognition tasks. Its superior performance especially under extreme illumina-

tion variations and also with less-textured objects are later demonstrated through experiments

presented in Section. 4.3.2 and Section. 4.3.3.

4.3.1 Pipeline in Brief

A simple object recognition pipeline shown below is adopted which detects target objects using

2D-2D feature correspondences only.

1. Feature extraction: extract RISAS features on cropped object image Iobject and the whole

image which contains the target object, Iscene;
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2. Feature matching: the extracted features from Iobject and Iscene are matched using ANN

algorithm and ratio test is applied with the ratio equals 0.7;

3. Matches filtering: affine transformation is used as a criterion to calculate the transformation

related to the matched features and to remove the outliers;

4. 2D Object Localisation: the cropped image Iobject is transformed using the estimated affine

transformation into the Iscene thus indicates the detected boundingbox of the object;

4.3.2 Object Recognition in extreme Illumination Conditions

The object image Iobject is shown in Fig. 4.20 and the detection results are shown in Fig. 4.21. The

upper row shows the detection results where the illumination level of the images is set to be 40%

of the original image and the bottom row shows the detection results where the illumination level

is set to 160% of the original image. The testing images are generated using the equation below

where α = 0.4 or 1.6. Inormalised is the normalised image where each value is in range [0, 1].

Iillu = αInormalised +N (0, 0.1) (4.9)

FIGURE 4.20: Iobject for object recognition under illumination variations.

4.3.3 Less-Textured Object Recognition

In this subsection, the effectiveness of the proposed RGB-D feature, RISAS, is validated for less-

textured object detection using a kettle as an example, as shown in Fig. 4.22. The kettle has nearly

no texture information on its surface but shows rich geometric information. In this experiments,



66 Chapter 4. A Novel RGB-D Feature for Challenging Object Detection

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4.21: Object detection results corresponding to the object in Fig. 4.20.

in both detector and descriptor, larger weights are assigned to depth channel in order to achieve

better performance.

FIGURE 4.22: Iobject for less-textured object detection.

The detection results are shown in Fig. 4.23. In most of the time, the object can be detected

correctly. In Fig. 4.23(e), due to inaccurate feature detection results, there is a significant offset

in the detection results. However, this is understandable for object detection under viewpoint

variations.

4.4 Conclusion

This chapter presents a novel RGB-D feature (RISAS) which consists of a tightly coupled RGB-D

keypoint detector and a descriptor. A novel 3D representation, dot-product image is combined
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4.23: Object detection results corresponding to the object in Fig. 4.22.

with grayscale image to extract the keypoints using the principle similar to that of the Harris de-

tector. An enhanced RGB-D descriptor is also proposed based on the previous proposed LOIND

descriptor which significantly improves the matching performance. RISAS is demonstrated to be

invariant to viewpoint, illumination, scale and rotation. RISAS detector is shown to enhance the

performance of CSHOT and LOIND which are currently the best performing RGB-D descriptors.

The performance of RISAS for object recognition under extreme illumination conditions is also

demonstrated.

Here the author would like to highlight the connections and relations between this chapter

and both Chapter. 3 and Chapter. 5. Due to the inefficiency of the current implementation of

RISAS in Matlab, this thesis is unable to demonstrate its performance for active object detection

and pose estimation in Chapter. 6 and Chapter. 7. However, as a point feature, RISAS can be

adapted seamlessly into the work discussed in following chapters. Implementation of RISAS in

C/C++ is one of the key activities planned for future work.





69

Chapter 5

Object Detection and Pose

Estimation for Warehouse

Automation

The first Amazon Picking Challenge (APC) was held alongside the 2015 IEEE International Con-

ference on Robotics and Automation (ICRA) in Seattle, Washington, 26−27 May. The objective of

the competition was to provide a challenging problem to the robotics research community that

involves integrating the state-of-the-art object perception, motion and grasp planning algorithms

to manipulate real-world items in industrial settings. To that end, APC posed a simplified version

of the task that many humans face in warehouses all over the world, that is picking items from

shelves and putting them into containers. In this case, the shelves were prototypical pods from

Kiva Systems, and the picker had to be a fully autonomous robot.

In APC 2015, University of Technology, Sydney teamed up with Zhejiang University and Nan-

jiang Robotics Co. Ltd to form the team, Z.U.N., which was ranked No. 5 in the competition

which was attended by 28 participating teams including the top universities around the world

such as MIT and UC Berkeley. The team designed a dual-arm robot with a suction gripper. The

perception system had two sets of the combination of an RGB-D sensor and a monocular camera

to fully-cover the shelf.

This chapter demonstrates the effectiveness of the proposed perception system under realistic

environment using the perception module which was designed for the APC 2015 as a case study.
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5.1 Environment Setup for APC 2015

There were 24 items selected by the APC organiser which were commonly sold on Amazon.com

and posed various degrees of difficulties in terms of both recognition, estimation and grasping,

as shown in Fig. 5.1. Rigid and textured objects such as a box of straws and a box of pencils are

examples of trivial cases. Some of the items are difficult because they are easy to be reshaped or

damaged such as books and soft-packaged cat food. Transparent coverage items pose difficulties

during the recognition and pose estimation step because of the reflective surfaces and the lack of

depth information. Cheez-it box, even though being textured and rigid, needs to be twisted to

be taken out from the bin as it is oversized, thus posing an extra challenge in grasping planning.

Some other items such as the plush toys bring difficulties in the grasping step. One extreme case

is the meshed pen holder which is difficult in both detection and grasping.

FIGURE 5.1: Targeting objects for recognition and pose estimation in APC 2015

The 24 items were placed in a pod with 12 bins which is shown in Fig. 5.2. A bin may consist

of a single item or multiple items which can be identical or different. Only one of these items

is the target item which needs to be grasped safely from the bin. The score started from 10 for

one successful pick-up and the score increased if additional items were distributed in the same

bin together with the target object. Based on the specific characteristic of each item, some items

were given 1 to 3 extra scores such as the plush toys and books. Damaging an item incurred a

five-point penalty while picking the wrong item incurred a 12-point penalty. Each competitor had
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20 minutes to pick as many of the 12 target items as possible. All the items with additional scores

are also highlighted in Fig. 5.1 as well.

x

zy

FIGURE 5.2: The shelf which contains the objects used in APC 2015.

The list below highlights some of the common difficulties faced in detecting and grasping the

object reliably during the competition:

1. The walls and shelves are not equi-distributed. This introduces differences in the nominal

size of the openings of each individual bin, with height ranging between 19 and 22cm, and

width between 25 and 30 cm;

2. Each bin has a lip on the bottom and top edges, as shown in Fig. 5.3, which impedes expos-

ing an object;

3. The lateral bins have a lip of the exterior edge, as shown in Fig. 5.3, which impedes exposing

an object;

4. The metallic bottom of the structure produced bad reflections which proved to be an im-

pediment for accurate estimation of the location of the shelf by model fitting to point cloud

data.
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FIGURE 5.3: Difficulties in object detection and grasping.

5.2 Analysis of the Particularities of the Warehouse Pick-and-

Place Problem

In APC 2015, compared to the work presented in Chapter. 3 and Chapter. 4, the environment

set-up was significantly different. Some of the differences made the problem more difficult and

some of them provided extra information which made the case easier. The key issues are listed

below:

1. In both Chapter. 3 and Chapter. 4, the proposed algorithms are designed to recognise all

target items from an unstructured environment seldom given prior knowledge. However,

in APC 2015, prior knowledge of the structured environment and the objects were available.

(a) The size of the shelf and the dimension of each bin are given;

(b) The relative transformation between the "shelf” frame (highlighted in Fig. 5.2) and the

robotic body frame can be pre-calibrated;

(c) The target object in each bin is given and the other objects which are placed together

with the target object in the same bin are also given;

2. In the previous two chapters, the full 6 DoFs relative pose [R, t] of the detected object is

required to be estimated. However, in APC 2015, successful grasping and manipulation

of the object did not require the estimation of 6 DoFs pose. In fact, it was sufficient to

detect the region of the object prior to planning the grasping in 3D space. Using the pre-

calibrated transformation between the robot body frame and bin frame, it was only required

to estimate the position of the target region w.r.t the bin frame.
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Note: It is fair to say that the environment set-up in APC 2015 is more constrained and

trivial compared to the proposed framework in Chapter. 3, thus making the object detection

and pose estimation problem relatively easier.

3. In Chapter. 3 and Chapter. 4, most of the objects which can be handled by the proposed

approaches are non-reflective and more importantly are rigid. In this perspective, the ob-

jects included in APC 2015 were much more challenging. Following list shows the major

categories of items in the competition.

(a) Soft-cover books and objects with a crushable package;

(b) Objects in plastic and transparent package which shows invalid information on a depth

sensor;

(c) Non-rigid objects which can be easily deformed by external force;

(d) Meshed objects;

(e) Plush toys;

(f) Very small objects;

All the candidate objects have already been presented in Fig.5.1 and bonus points were

available for difficult objects. In Fig.5.1, one coin with 17.91mm diameter is placed beside

the object to approximately indicates the size of the object.

Note: The targeting objects in APC 2015 is more difficult compared with the objects from

the previous studies.

5.3 Hardware Design of the Robotic Platform

In this section, the hardware system of the robotic platform is presented including its main body,

gripper and sensors that were attached to the the body to perceive the environment. As shown in

Fig.5.4, the platform was designed to have dual arms that can be lifted up and down using the belt

transportation system mounted on the back of the robot body. As the height of the shelf was about

1.7m, the lift system was an essential part of the robot which allowed the arms to reach the items

on different levels making it possible for sensors to observe the bins and the gripper to grasp the

target items. The lift system allowed the robot body (arm and sensor) to reach 4 different heights

corresponding to 4 rows on the shelf. Considering the length of the robotic arm, the width of the
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Sensors

Vertical Movement System

Suction GripperFinger Gripper

FIGURE 5.4: Robotic platform of APC 2015.
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shelf and the Field-of-View (FoV) of the sensor (xtion RGB-D camera), 2 sets of the perception

system were mounted on the platform. The one on the left hand side was responsible for the left

side bins while the one on the right hand side was responsible for the right side bins. The bins

in the middle column was covered by both sets. Each perception module is shown in the top red

box in Fig. 5.4 and consists of:

1. An Asus xtion RGB-D camera which provides the depth information of the bin. This is the

key sensor to provide information to estimate the pose;

2. A pointgrey high-resolution RGB camera which aims at recognising the targeting objects.

The extrinsic parameter between the xtion and pointgrey are calibrated in advance;

3. An LED light which is used to control the illumination condition of the bin;

The following Fig. 5.5 illustrates the configuration of the sensor w.r.t to the shelf. Some basic

and critical parameters of the robotic platform include:

1. The horizontal FoV of xtion sensor: This is 59◦ for the xtion sensor;

2. The distance between the object and the sensor to provide reliable depth information1: This

distance was manged to be 0.5 ∼ 0.6m

3. The length of the arm is 0.68m and the length of the gripper is approximate 0.2m : The robot

platform cannot be placed too far from the shelf. In order to make both the sensor and the

arm work properly, the distance between the sensor (robotic platform) and the shelf was set

to be 0.6m. Therefore, as shown in Fig. 5.5(a), it is not capable of covering the whole shelf.

Fig. 5.5(b) provides a simplified view of the final configuration map, and the two sets of

sensors as explained before.

In Fig. 5.4, the robotic platform is equipped with 2 different kinds of grippers: 1) a two-finger

gripper on the right arm (left green box in Fig. 5.4) and 2) a vacuum gripper on the left arm

(left green box in Fig. 5.4). The original idea was to grasp the rigid objects using the two-finger

gripper and the objects with plastic cover using vacuum gripper. However, due to the size of

the two-finger gripper and the reliability concerns, in the actual competition, both armed were

equipped with vacuum grippers. During the experiments, except for the mesh pencil cup and

one tiny object, the vacuum gripper was able to handle all the other objects well enough.

1Distance within 0.5m is the "blind-zone” for xtion sensor
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sensor

(a)

sensor sensor

(b)

FIGURE 5.5: Sensor configuration for Amazon Picking Challenge.

5.4 Perception Module

5.4.1 Pre-Processed Prior Knowledge

In order to provide more accurate and faster object detection and pose estimation performances,

prior knowledge of the environment has been incorporated into the Perception Module. Besides

pre-built object models and trained classifiers, the following information were also utilised:

1. RGB mask image of each bin;

2. RGB image of each empty bin;

3. Depth mask image of each bin;

4. Depth image of each empty bin;

A set of examples of images from bin A is presented in Fig. 5.6 below. Given the mask images

(RGB and depth), the system is able to quickly identify the correct region which corresponds

to the bin where the target object is located in. After that these reference empty images were

subtracted to approximately identify the regions where these objects were placed. This allows

to reduce the processing time substantially specially during the sliding window operation in the

Kernel Descriptor recogniser and EBlearn recogniser . The details of the object detection using these

two recognisers will be explained later in this chapter.
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(a) RGB image of the empty bin (b) Mask image of the empty bin(RGB)

(c) Depth image of the empty bin (d) Mask image of the empty bin(Depth)

FIGURE 5.6: Pre-processed image for object detection.
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5.4.2 Perception System Pipeline

The perception module that was designed for the APC is shown in Fig.5.7. The system accepts

inputs from 2 sensor: a Xtion RGB-D camera with lower RGB resolution and a PointGrey high-

resolution RGB camera. The extrinsic parameters between the depth sensor on Xtion and the

PointGrey camera are calibrated2.

Xtion PointGrey

RGB
image

Depth
image

RGB
image

Kernel Descrip-
tor recogniser

EBLearn
recogniser

RGB recogniser
and pose estimator

RGBD recogniser
and pose estimator

Cloud fitting and
pose estimation

Object detection
and full 6 DoF Pose Object detection

and point cloud
patch Estimation

FIGURE 5.7: Perception module for APC 2015.

As explained in section.5.1, the objects in APC 2015 are challenging due to inherent character-

istics such as texture and deformation. The 24 objects were separated into two categories:

1. Textured objects with enough size;

2. Objects with plastic cover, small objects and deformable objects;

Fig. 5.8 shows the items of these tow categories where yellow items belong to category 1 and the

red items belong to category 2.

For objects of category 1, the system is modified and implemented based on the proposed

object recognition and pose estimation in Chapter. 3 . Some of the key modifications to cutomise

the original system are:

1. Mask image: In order to extract the features only in the current bin, thus achieving better

feature matching results, mask image is applied in feature extraction and selection step;
2Because the different resolution on depth sensor and PointGrey camera, there will be no guarantee that there is a

depth value for each pixel on the RGB image provided by the PointGrey camera.
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FIGURE 5.8: Selected recognition methods for each objects in APC 2015

2. Dynamic kd-tree construction: Rather than building a SIFT descriptor KD-tree of all 24 ob-

jects, the kd-tree is built using only the objects in the current bin in runtime;

3. Single object detection and pose estimation: In the proposed object detection system as well

as in MOPED, multiple existing objects are detected. However, in this work, the key focus

remains on the target object. Please note that the poses of the other objects are not considered

in the perception module, and collision avoidance between the gripper and other objects is

not considered;

For objects of category 2, the team adopted kernel descriptor[24] and EBLearn[132] based ap-

proaches. Different to RGB-Recogniser and RGBD-Recogniser, both KD-Recogniser and EBLearn-

Recogniser can only provide the bounding-box of the detected objects. Therefore, in case of KD-

Recogniser and EBLearn-Recogniser after the recognition step, another plane fitting and estima-

tion step was incorporated. It is worth to mention some of the key strategies that we have adopted

in implementing the object recognition software module.

1. Instead of using a sliding window based detector with KD-Recogniser and EBLearn-Recogniser,

in order to capture target objects, image subtraction was adhered. The mask image, RGB and

depth image of the empty bin were fully utilised to identify the image patch of the target

objects.

2. In KD-Recogniser, the classifier for the target object A is trained using the images of object

A and the background. Compared with training the classifier for object A w.r.t all other

objects, this approach has the following benefits.
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(a) Since there is only a limited number of objects in the bin at any given point of time,

when using a classifier trained with all the objects, there is a high chance that the clas-

sifier will produce inaccurate classification results.

(b) Since there is no prior knowledge of the combination of objects in a given bin, it is

required to either train the classifier online or provide all possible combinations of

objects, and none of them is realistic.

3. All candidate image patches for a given bin are tested with the trained LIbSVM classifier

and the one that shows gives the highest score is selected as the correct one.

4. For the EBLearn-Recogniser, models are trained for each object individually;

5. Without knowing the full 6 DoFs pose of the object, in order to grasp the object robustly

using the vacuum gripper , the position of the surface patch where the vacuum gripper

must be placed needs to be estimated.

The pose estimation for objects in category 1 is trivial since the 6-DoFs relative pose can be

estimated from the RGB-D and RGB recogniser. For the challenging objects in category 2, by

registering the RGB image with the corresponding depth image captured from xtion sensor, it is

possible to obtain the point cloud of the detected objects. The proposed pipeline adopted surface

fitting method available in PCL to determine the correct suction point.

5.5 Experimental Results

This section summaries some of the object detection results of the proposed system. Fig. 5.9

demonstrates the detection results when a single object is placed in the bin. Even though this

single object case seems to be trivial, as shown in Fig. 5.9, it is difficult to identify the whole object

given the imperfect depth information and reflective surfaces. For example, in Fig. 5.9(c) and Fig.

5.9(d), the cup brush object can be captured only in its bottom part. In Fig. 5.9(e) and Fig. 5.9(f),

there exists a reversed reflection of the box due to the material of the surface.

Fig. 5.10 demonstrates more examples of multiple object detection results. The perception

module designed and implemented for the APC is capable of providing reliable and robust object

detection results even under occluded environment. In Fig. 5.10(a) and Fig. 5.10(b), parts of

the duck toy and the box were under the shaded area, however the proposed framework is still

capable of finding the object given limited observable information. The proposed framework can
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(c) (d)

(e) (f)

FIGURE 5.9: Single object detection results.
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also be used to detect target objects under the side-view where only very limited information is

provided, e.g., the vertically placed books presented in Fig. 5.10(e), Fig. 5.10(f), Fig. 5.10(i) and

Fig. 5.10(j).

5.6 Summary

This chapter has presented a robotic platform has been designed and implemented to use in the

Amazon Picking Challenge 2015 competition. As a part of the system, a reliable and robust per-

ception module that is suitable for the competition environment (similar to a typical warehouse

environment) was designed and developed using the proposed work in Chapter. 3 and Chapter.

4. Additionally a Kernel Descriptor based recogniser and an EBlearn based recogniser were em-

bedded into the pipeline to improve the efficiency and the accuracy. The proposed framework

fully utilises the provided prior knowledge of the environment to achieve better detection results.

Using the suction gripper on both arms, the robot can grasp the target objects from a specified

bin given the detected bounding boxes. Using this setup, the Z-U-N team was able become one

of the top-5 teams in the Amazon Picking Challenge 2015 competition. Unfortunately, the work

in Chapter 4, the RISAS RGB-D feature is proposed after APC 2015, thus it was not utilised for

less-textured object detection in this chapter.
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Part II

Active Object Detection and Pose

Estimation
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Chapter 6

Model-Driven Active Object

Detection and Pose Estimation

In Part. 1, from Chapter. 3 to Chapter. 5, the contributions in object detection and pose estima-

tion under cluttered environments using a single observation have been presented. However, as

explained in Chapter. 1, in challenging conditions such as under cluttered environments or am-

biguity of the objects, a single observation is unable to provide sufficient information to identify

the objects. Therefore, active object detection and pose estimation by manoeuvring robots in the

environment is an effective approach towards addressing these issues.

In this chapter, a novel active object recognition and pose estimation system targeting house-

hold objects in everyday situations is presented. A sparse feature model, augmented with the

characteristics of features when observed from different viewpoints is used for recognition and

pose estimation while a dense point cloud model is used for storing geometry. This strategy

makes it possible to accurately predict the expected information available during the Next-Best-

View (NBV) planning process as both the visibility as well as the likelihood of feature matching

can be considered simultaneously. In order mitigate difficulties with objects with similar appear-

ances, an additional attribute is attached to each feature which denotes its uniqueness across

all the objects in the collected dataset. Note that the shared features are assigned with a lower

weighting value. The proposed strategy can identify the discriminative features of each object

easily and guide the sensor to viewpoints which can differentiate the target objects better. The

effectiveness of proposed active object detection and pose estimation framework using an RGB-D

sensor is also demonstrated.

This chapter is structured as follows: Section. 6.1 explains how to build the models for the

active object detection system while Section. 6.2 illustrates the proposed active object detection
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and pose estimation algorithm from the model perspective. An improved RGB-D object detec-

tion framework is briefly explained and the NBV search strategy is also presented. Section. 6.3

demonstrates the effectiveness of the proposed approach to real world problems and Section. 6.4

concludes this chapter and discusses the advantages and limitations of the proposed method.

6.1 Information Rich Object Modeling

6.1.1 Models for Active Object Recognition

(a) Dense point cloud (b) Sparse feature cloud

FIGURE 6.1: Dense and sparse model of the object "Fruity Bites"

In this work, each object is represented using two models: dense point cloud model Md and

sparse feature cloud model Ms. Md is a dense RGB point cloud which characterises the shape and

texture information of the object, shown in Fig. 6.1(a). In Ms, each feature fs
i consists of the

3D coordinate psi in the object frame and a local feature descriptor ds
i of point psi such as SIFT is

included in fs
i . Both Md and Ms can be easily built using off-the-shelf Simultaneous Localisation

and Mapping toolboxes. In this work, an RGB-D sensor is used to construct these models by

positioning around the object. The dense model Md is further refined using filtering and surface

fitting manually. Feature coordinates in Ms are generated from the optimised camera poses using

consistent correspondences across multiple observations. Fig. 6.2 shows a snapshot of the object

modelling step using the Turtlebot mounted with an RGB-D camera.
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FIGURE 6.2: Object modelling using an RGB-D camera mounted on Turtlebot.

6.1.2 Information Rich Attributes for Better Prediction of Viewpoint Quality

One of the most important tasks that needs to be accomplished for active perception is the pre-

diction of the quality of the information that is likely to be available from a selected viewpoint.

Information quality depends on some visible features as well as the ability to associate the ob-

served features to those included in the object model. Widely used feature descriptors such as

SIFT and SURF, although designed to be robust to variations in scale and multiple deformations,

fail to establish associations if such changes are too large. Fig. 6.3(a) illustrates the impact of the

distance from the camera to the object for 3 objects ("Sanitarium", "Fruity Bites" and "Belvita" ) to

the feature extraction and matching. Using Kinect sensor as an example, while more than 1000

features are captured for “Sanitarium” object when placed at a distance of 0.55 m from the cam-

era, only 50 of these features are remaining to be detected and correctly matched at a distance of

1.2 m. It is seen from 6.3(a) that the number of correct matches decreases exponentially with the

increase of the distance between features and the camera. It was also observed that the impact

of the change in scale is a property of the region from which the feature is extracted and as such

cannot be captured in one general formula.

Fig. 6.3(b) shows how the number of matches changes due to the variation of the angle be-

tween the surface normal and the camera axis at the range of 65 cm. Again it is seen that the



90 Chapter 6. Model-Driven Active Object Detection and Pose Estimation

number of features decreases while the angle between the surface normal and camera axis in-

creases. It can be easily seen from this figure that change in the view angle also has a significant

impact on the matching ability.
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(b) Viewpoint variation analysis

FIGURE 6.3: The number of correct matches under different scale and viewpoint
variations.

To address this issue, it is proposed to attach two attributes for each feature fs
i : 1) maximum

observable distance dmax and 2) maximum observable angle αmax = g(d) which is a function of the

distance d from the sensor to the feature. These extra attributes are used in prediction and depend

on the type of the descriptor. dmax describes the maximum distance under which the feature can

be reliably extracted and potentially correctly matched to the descriptor ds
i in the model. dmax can

be used to give a quantitative indication for the scale invariance of each feature. Similarly , αmax

denotes the upper bound of angle between the normal vector and the viewpoint, under which the

associated feature can be repeated and correctly matched again. αmax is a function of the distance

between the camera and the feature. The function g(d) allows larger αmax in farther distance and

smaller αmax in closer distance.

The two parameters dmax and αmax are set empirically. During object modelling, the local

image patch of a feature is re-scaled into multiple levels and through extracting features and

descriptors on scaled images, dmax is evaluated for each feature fs in the model. αmax is computed

in a similar way by warping the local image patch using multiple levels of affine transformations.

Section. 6.3 shows the impact of adding these two attributes in predicting the number of correct

matches for the new viewpoint.

In following sections, it is demonstrated that both sparse model and dense model are essential

for a reliable active object detection system. On one hand, The extracted features of the sparse
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model have a decisive influence on the performance of the object detection and the accuracy of

pose estimation results. On another hand, the accurate prediction of observable features and the

selection of NBV are heavily depended on the dense geometric models.

6.1.3 Feature Weighting using KD-Tree Structure

Motivation

Ambiguity caused by man-made texture is one of the major challenges in developing a robust

object detection system. Similar textured objects can be observed frequently in daily life such as

biscuit boxes with different flavours, as shown in Fig. 6.4. Deciding the NBV in active object

detection using all available information (local features) may lead the sensor to an ambiguous

viewpoint where similar objects cannot be reliably differentiated. Feature weighting and fea-

ture selection are well-known techniques used to address this issue by mining and discovering

discriminative features. Feature weighting and selection techniques such as Term-Frequency –

Inverse Document Frequency (tf-idf) and its variations have been widely acknowledged as a key

step in image retrieval[112] and feature matching[145].

FIGURE 6.4: Belvita biscuit boxes of different favours

Even though feature weighting and selection can be critical in selecting the NBV for active

object detection and pose estimation, its advantage and importance have not been fully recog-

nised in the literature until recently. In Potthast et al.’s work[118], online feature selection became

vital in making the decision between moving to the NBV or re-detecting the target object again

using another type of feature under the same pose. In the framework presented in Section.6.2,

the selection of NBV is closely related to the quality of expected correspondences under a se-

lected viewpoint where the quality is characterised by not only the number of matches but also

the uniqueness of the matched features. Since the feature matching is realised through the nearest
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neighbour searching in kd-tree, this study aims at adding weight to each feature which indicates

its distinctiveness with respect to the object it belongs to.

Method

Kd-tree is a popular data structure for organising k dimensional data. At each non-leaf node,

the k dimension space is separated into two half-spaces by a hyperplane. With a kd-tree which

consists of N leaves, given a query feature, it requires log2(N) comparisons to identify the nearest

single leaf node. Kd-tree is regarded as an important nearest neighbour searching technique for

various applications[102][103].

In the object recognition system presented in[31] which uses local features such as SIFT, fea-

ture matching using nearest neighbour searching algorithm is a critical step to achieve reliable

object detection performance. For this step the kd-tree approach is frequently applied. However,

when facing multiple ambiguous objects, there are similar features from different objects and each

feature is attached to one leaf of the tree. When noisy feature descriptor is captured and queried

into the kd-tree, it can be matched to the feature from incorrect objects thus leading to inaccu-

rate detection results. Therefore, from practical viewpoint there is a necessity to add a weighting

parameter that captures the uniqueness of each feature.

Algorithm 2: Feature weighting in kd-tree
Input: All objects O and features f where fi denotes features from object Oi;
Output: Weighted kd-tree Tw;
T = BuildTree(f)// build kd-tree using all features;
foreach f in f do

fnn = NNSearch (T, f);
foreach fj in fnn do

if Label(f) ! = Label(fj) then
ωf = |f, fj | // distance between f and fj Assign weight ωf to feature f in tree
T

end

end

end
———————————————————————–
// Functions:
// T = BuildTree(f) : build kd-tree given features f ;
// fnn = NNSearch (T, f): search nearest neighbours using tree T and query feature f ;

In the feature matching step in Section. 3.2.2, ratio test is applied in deciding whether the

correspondence is trustworthy and a fixed value γ is set on the (dnn1 /dnn2 ) where dnni is the distance

between the input feature and its ith nearest neighbour in the kd-tree. In this case, assuming the
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noise of the extracted features follow the same distribution during observation if the matched

feature from model Ms is closer to features from another object, it will more easily lead to an

incorrect correspondence.

In this work, a brute-force feature weighting scheme is proposed in the kd-tree structure using

the Euclidean distance between the input feature and its nearest neighbour from other objects, as

shown in Algorithm.2. Despite its simplicity, this technique achieves reasonable results in finding

the similar SIFT features for each object and by adding additional weight to each feature, the

planned trajectory can successfully differentiate similar objects presented ( detailed in Section.6.3).

Other feature weighting schemes such as TF-IDF have also been adopted into our framework for

comparison purposes. Section 6.1.3 presents the comparative results and shows the effectiveness

of the proposed approach.

Experiments and Results

(a) Weighted SIFT features using our method

(b) Weighted SIFT features using TF-IDF after K-Means clustering

FIGURE 6.5: Feature weighting especially for similar object

To validate the feature weighting method, in this Section, the focus has specifically been on 4

similar objects (shown in Fig.6.4) to compute the uniqueness of each feature on 3D object models.
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As presented in Fig.6.5(a), the red circles denote the unique feature and the dark circles denote the

features which are similar to multiple objects. For better clarification, only the weighted features

in the front face of the Belvita boxes are shown. Fig.6.5(b) shows the feature weighting results

by adopting TF-IDF which is calculated in grouped features after K-Means clustering for all the

features from every object. Even with different types of clustering methods and TF-IDF variations,

the feature weighting results are still not satisfactory compared with the proposed approach.

Discussion

In this Section, a brute-force weighting method was proposed by querying every feature into

the kd-tree. It helps in identifying the discriminative features and assigning reasonable weights

among similar and even general objects, as described in Section.6.1.3. However, there are other

possible methods to speed up the discriminative feature weighting process such as exploiting

the tree structure in each layer. It is not surprising that instead of querying features one-by-

one, it is more efficient to visit multiple nodes in the tree and analyse the Euclidean distances

among leaves on each node simultaneously. Also, note that kd-tree may not be the best way to

finding the nearest neighbours of image feature descriptor [84]. Experiment results from Kumar

et al. indicated that Vantage Point tree(vp-tree) is a better option compared with kd-tree. We will

further validate the vp-tree for feature selection in future research work.

The proposed method shows superior results compared with other widely-acknowledged

methods due to the following two main reasons.

1. Most of the feature weighting methods in image/text retrieval require a Bag-of-Words rep-

resentation of the features thus a clustering step is inevitable. However, the performance of

clustering high-dimension data still cannot be reliable[137];

2. Most popular feature weighting and selection methods do not address the key problem

outlined in this thesis. TF-IDF, for example, requires the features to appear frequently on

the target objects (TF) and has less dispersion across other objects (IDF) at the same time.

However, the first constraint is not applicable to this problem;

The proposed approach shares the similar principle with the near-miss in RELIEF feature weight-

ing method described in[80]. The key difference is that in RELIEF weights are designed on differ-

ent dimensions of the feature. The influence of using weighted features on active object detection

is demonstrated in Section.6.3.
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6.2 Active Object Recognition and Pose Estimation System

6.2.1 Object Recognition and Pose Estimation Using a Single Viewpoint

This section presents the framework for obtaining initial hypotheses as to the objects present in

a cluttered scene and their relative poses from information acquired from a single observation.

The framework presented in this section, shown in Fig. 6.6, is based on the proposed algorithm

in Section. 3.2. The dashed green boxes denote the newly introduced steps which will be detailed

in this section.

RGB-D Segmentation

In Section. 3.2, mean shift clustering method is adopted to cluster feature correspondences after

matching. However, in this chapter, the order of the steps is slightly different. First, the RGB-D

point cloud is obtained from the depth image and the RGB image. Then, the RGB-D point cloud

of the whole environment is segmented into multiple groups using the pre-processing method

described in Richtsfeld [122]. A computationally light-weight version of [122] is implemented

on the robotic platform. Two different models, planes and NURBS (Non-Uniform Rational B-

Splines), which describe the geometry of the object are used for fitting and segmenting the surface

patches in the point cloud. Given that most man-made household objects have planar surfaces

or curved shape that can be easily described using NURBS, these two models can capture infor-

mative patches in the input point cloud which are most likely to contain objects. Examples of

RGB-D segmentation results are shown in Fig. 6.7. In this framework, each cluster is not limited

to contain one object only, by pose refinement and combination step, multiple objects are allowed to

be combined into one cluster and one object can be separated into multiple clusters as well, as

discussed in Section. 3.2.6. Compared with 3D mean shift clustering method, this RGB-D seg-

mentation takes much time as presented in Table. 6.1. However, as demonstrated in Fig. 6.7

where the top row shows the input RGB images and the bottom row presents the segmentation

results (note that the segmented patches are shown in different colours), the clustering result from

the segmentation method is more consistent.
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FIGURE 6.6: The system framework of object recognition and pose estimation using
single RGB-D observation
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FIGURE 6.7: RGB-D segmentation results from cluttered environment.
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6.2.2 Next-Best-View Selection using Information Rich Model

The virtual representation of the scene that encapsulates the current belief about the objects that

are present in the scene and their poses can now be used to evaluate the quality of the information

that can be expected if the robot moves to a new viewpoint. Therefore, it is possible to evaluate

the utility of nearby locations so that the robot can then be moved to the Next-Best-View. This

process can be repeated until some termination criteria such as stable object recognition and pose

estimation, over a set number of moves is reached.

The overall flowchart of the active object recognition system is shown in Fig. 6.8. It begins

with the virtual representation of the scene generated based on the information captured at the

first robot pose. The three-step strategy is then used to predict the observable features which can

be matched correctly from a new viewpoint.

1. Raycasting: In this step, all the features that are not visible from the new viewpoint due

to occlusion by itself or other objects are rejected using raycasting by an octree structure.

The world space is voxelised and given a starting point (observation position) and destina-

tion point (feature), all the voxels intersected by this straight-line are obtained. Therefore,

it is possible to find out whether any features exist in the intersected voxels. This step can

be completed in a few milliseconds. The detailed timing performance is presented in Sec-

tion.6.3.2.

2. Scale analysis: Even though a feature point is observable, as discussed in section 6.1.2 there

is no guarantee that this feature is detected and matched correctly. In the scale filtering

step, a feature is removed from the candidate set if the distance between the sensor and the

feature point, df , is larger than dmax, that corresponds to the feature under consideration.

3. Viewpoint analysis: Another key factor that influences the repeatability of feature match-

ing is the viewpoint variation. Under the same distance, a feature can be re-detected and

matched correctly under a limited range, as shown in 6.3(b). In the experiments presented

in this section, a consistent threshold αmax is set for all the features in the models. The vector

from the feature to the sensor is denoted as vf and the normal vector of the local patch is

denoted as vn. If the angle between vf and vn is larger than αmax, it is assumed that the

feature cannot be correctly matched.

Using the above three steps, the number of potentially correct matches nm under a given

viewpoint can be predicted and the quality of a new viewpoint can be evaluated. In this chapter,
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a simple yet effective greedy search approach is adopted in finding the NBV in the neighbourhood

region of the current pose consecutively. During the active viewpoint planning, the observation

history of each features until step k is recorded in observation matrix Ok ∈ R
nf×k which includes

under which poses each feature is detected where nf is the sum of features on each object. Without

considering the feature weight as discussed in Section. 6.1.3, entry oi,j is equal to 1 if feature i is

detected on step j. Otherwise, considering the feature weight, oi,j is set as the weight of feature i.

From Ok, two values are generated which summarise the feature observation history:

1) nobser which counts the number of features which have been observed before 2) ntimes which

sums all the non-zero entries in Ok.

During the planning phase, for all candidate viewpoints in the neighbourhood of the current

pose k, the observation matrix Ôk+1 is predicted for each candidate and n̄obser and n̄times are

further computed. The greedy search and selection criterion for this step is as follows.

1. If there exists n̄obser larger than current nobser, select the viewpoint which generates the

largest n̄obser thus observing more number of previously unseen features;

2. If n̄obser equals to nobser for all candidate viewpoints, n̄times is used as the criterion and the

viewpoint which generates the maximum n̄times;

3. If all n̄obser and n̄times happen to be the same for both nobser and ntimes, the robot follows the

previous exploring direction or moves to a random direction if it is in the first step;

This criterion always enables the camera to move to a new position to acquire new information.

The path planning in each step follows the logic of information gain which is widely used in

active object recognition and autonomous object modeling. Given that the quality of information

gathered from a given viewpoint is available, work proposed in this section can be adapted for

use with more sophisticated trajectory planners. During the planning phase, it should be noted

that there is no fusion for object detection and pose estimation from multiple observations, and

the robot only trusts the detection results from the viewpoint which observes the largest number

of features on the target object.

6.3 Experiments and Discussion

In this section, an off-line implementation of the proposed active object detection and pose es-

timation framework using a Microsoft Kinect sensor is presented. The key objective here is to
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validate and evaluate the performance of the proposed method. Note that this method can be

easily extended to online active object detection with an external positioning system [82] or an

accurate motion control system. Active object detection and poses estimation is tested in both 2D

and 3D environments in this section as detailed in Section. 6.3.1 and Section. 6.3.2. A significant

difference is that the 2D scenario only contains unique and different objects while the 3D environ-

ment contains both different and similar objects. The experimental results verify the effectiveness

of the proposed method.

6.3.1 Case Study 1: NBV Selection in 2D environments

Experimental Set-up

In these experiments, a Turtlebot with a Microsoft Kinect mounted on the top of it ( shown in

Fig. 6.9) was used. The motion of the RGB-D sensor was constrained to 2D space. Eight different

objects were placed on the table with different orientations. Due to the presence of occlusions, all

objects cannot be observed at the same time from one viewpoint. Thus the robot needs to move

to recognise all the objects and to estimate their poses.

FIGURE 6.9: Active object recognition and pose estimation using Turtlebot

In the experiments reported in this subsection, the environment was divided into multiple

cells, and the robot was manually placed in each cell as dictated by the planning algorithms. For

simplicity, it is assumed that the robot orientation will be such that the camera will face towards

the objects from each of the grid cells. The locations in which the robot can be positioned are

shown in Fig. 6.10. 180 RGB-D images were collected by placing the robot in these locations so

that the algorithm can be evaluated off-line.
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FIGURE 6.10: Optimised localisation using Parallax BA

Results and Discussion

(a) Input image (b) Actual correct matched features

(c) Predicted matches without using dmax and
αmax

(d) Predicted matches using dmax and αmax

FIGURE 6.11: Prediction of potential matches in next frame

1. Prediction of Possible Matches: As explained in Section. 6.1.2, a key advantage of the pro-

posed algorithm is to provide more accurate prediction of the observable features. Under

this scenario, Fig.6.11 shows the differences between prediction results with and without

using the additional information dmax and αmaxstored in the object model. Fig.6.11(a) is the
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actual acquired image in frame 2 and Fig.6.11(b) shows the matched features when the robot

moves to the 2nd frame. Fig. 6.11(c) shows the prediction outcome when dmax and αmax are

not used. It can be seen that the predicted matches using the proposed strategy that uses

this additional information shown in Fig. 6.11(d) is much closer to real scene.

FIGURE 6.12: Planned trajectory for active object recognition and pose estimation

2. Planned Path and Reconstructed Scenario: Using the collected data at every pose shown

in Fig. 6.10, a path is generated which can cover the whole space on the table. The planned

path is shown in Fig. 6.12. When the robot moves along this path, the objects can be recog-

nised one-by-one and finally all the objects on the table can be covered. Parts of the recon-

structed scene during the motion are shown in Fig. 6.13. In Fig. 6.13(d), all the objects are

recognised with accurate pose estimation results.

6.3.2 Case Study 2: NBV Selection in 3D environments

Experimental Set-up

Similar to Section. 6.3.1, the observation data is pre-collected, and the ground-truth poses are also

calculated using off-the-shelf RGB-D SLAM algorithm as shown in Fig. 6.15. The algorithm starts

from a selected pose in Fig. 6.15 and plans the trajectory for detecting target objects and estimating

their poses autonomously. Compared with Section. 6.3.1, there are two obvious differences: 1) the

poses of the sensors are distributed in 3D spaces 2) there are similar appearance objects placed in

the environment.
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(a) Recognised 3 of 8 objects in step 3 (b) Recognised 5 of 8 objects in step 13

(c) Recognised 7 of 8 objects in step 47 (d) Recognised 8 of 8 objects in step 52

FIGURE 6.13: Object recognition and pose estimation results in different steps of
the path

FIGURE 6.14: Example images from the pre-collected RGB-D data.
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FIGURE 6.15: Optimised camera poses using RGBD-SLAM

Results and Discussion

1. Prediction of Possible Matches: Fig.6.16 shows the differences between prediction results

with and without using dmax and αmax . Fig.6.16(a) is the actual acquired image in frame

2 and Fig.6.16(b) shows the matched features when the robot moves to the 2nd frame. If

dmax and αmax, are not used, the prediction is not accurate enough as shown in Fig. 6.16(c).

Similar to the conclusion in Section. 6.3.1, it can be seen that the predicted matches us-

ing the proposed strategy that uses these two additional information produces significantly

improved prediction results as shown in Fig. 6.16(d).

2. Planned Path and Reconstructed Scenario: Using the collected data at every pose shown

in Fig. 6.15, a path is generated which can cover the whole space on the table. The planned

path is shown in Fig. 6.17. When the robot moves along this path, the objects can be recog-

nised one-by-one and finally all of the objects on the table can be detected in spite of similar

objects exist in the environment. Fig. 6.18 shows the reconstructed scene during different

steps in the active object recognition. In the bottom-right figure, the ellipses highlight the

detected similar objects using the newly introduced weight to each feature.
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(a) Input image (b) Actual correct matched features

(c) Predicted matches without using dmax and αmax (d) Predicted matches using dmax and αmax

FIGURE 6.16: Object recognition and pose estimation results in different steps of
the path

FIGURE 6.17: Planned trajectory for active object recognition and pose estimation
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FIGURE 6.18: Object recognition and pose estimation results in different steps of
the path.
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Computational Cost

Approximate timing information for each of the steps in the algorithm during the robot trajectory

in Fig. 6.17 is shown in Table. 6.1. The overall time consumption of recognition and estimation

for each step is less than 1.5s even without using GPU computation. The voxelisation and the

octree construction time only depend on the size of the work space. Therefore it is approximately

the same during each iteration. Predicting matches for one voxel using raycasting, scale analysis

and angle analysis takes less than 10 ms for about 3000 feature points. The overall prediction time

depends on the number of voxels that are searched in the neighbourhood .

TABLE 6.1: Time consumption analysis for individual steps

Step name Time (ms)1

RGB-D segmentation 745
Feature extracton 287
Feature matching 54
Consistent Matches searching < 1
Pose estimation < 1
Post-processing < 1
Voxelisation and octree construction ∼ 117
Overall ∼ 1206

Unlike online active recognition in which all the working space is free to move, in these ex-

periments, the trajectory can be generated given the positions of limited waypoints. In each step,

instead of searching for the nearest free voxels, the method only searches the nearest neighbour

points with pre-collected data.

6.4 Conclusion

In this chapter, an active object recognition and pose estimation system is presented which is able

to localise cluttered household objects in the environment. By adding two more attributes, max-

imum observable distance and maximum observable angle, to the model, the proposed method

is able to provide much more realistic prediction in Next-Best-View decision making. To discrim-

inate similar objects, a feature weighting scheme is further proposed by using the distance from

query feature to the closest different-class feature (called near-miss). The active recognition trajec-

tory is generated by joining the nearest neighbour NBV problem into a consecutive process. A

new object recognition and pose estimation system is also presented in this chapter. Via actively

1Intel(R) Core(TM) i7-3630QM CPU@2.40GHz
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moving in the environment, the proposed system is able to cover all objects in the environment

with accurate relative poses even with occlusion and ambiguities presented. With additional fea-

ture weights, the algorithm can generate trajectory which differentiates similar objects better.

In future work, the author is interested in taking motion uncertainty during viewpoint control

into active object detection problem. This will help in implementing the active recognition system

onto a less accurate robotic platform or without additional sensor positioning. Extending this

one-step greedy NBV search algorithm into multiple steps is also another issue for future focus.
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Chapter 7

Active Object Detection and Pose

Estimation in Belief Space

In Chapter. 6, a model driven solution towards the active object detection and pose estimation

problem is presented. Enriching the information in pre-trained object models enables more accu-

rate predictions of the observable information under a new candidate viewpoint, thus laying the

root for a successful active object detection framework even with a naive greedy search planning

algorithm. However, in the above work, the motion model and observation model need to be

perfect which is an unrealistic assumption for practical problems.

To address this limitation, this chapter presents a novel active object detection and pose esti-

mation framework in belief space. The framework is able to incorporate various requirements for

active object detection problem such as: object recognition confidence, pose estimate uncertainties

for both robot and objects, and control consumptions. The solutions towards several critical issues

during active object detection and pose estimation are presented, such as: 1) object pose initiali-

sation; 2) initial guess for control optimisation; 3) collision avoidance; 4) online fast re-planning

and 5) hypothesis changing during planning.

Throughout this chapter, bold lower-case and upper-case letters are reserved for vectors and

matrices, respectively. Euclidean norm is denoted by ‖·‖. The weighted Euclidean norm of vector

e with a positive definite matrix W is denoted by ‖e‖W := eᵀW−1e.
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7.1 Preliminaries and Problem Formulation

7.1.1 Notation and Preliminaries

In this work, po
i and pr

k are used to denote i-th object pose and robot pose at step k respectively.

The state vector Xk consists of all previous robot poses p1:k till step k and the poses of all detected

objects, thus can be represented as

Xk =
[
po
1, ...,p

o
no
,pr

1, ...,p
r
k

]
(7.1)

Under the 2D cases, po = [xo, yo, θo] and pr
k = [xr

k, y
r
k, θ

r
k], no is the number of detected objects in

state vector Xk ∈ R
3×(no+k).

Zk is used to denote the observation at time step k. Under the assumption in [31, 160] that

the object model consists of features on the object, the observation vector Zk is a concatenation of

the observed features on the detected objects. Assuming only one object is detected, observation

Zk is represented as [zk,1, ..., zk,nk
] where nk is the number of observed features on object at step

k. In this work, a typical range-bearing sensor in 2D environment is adopted; therefore, zk,i

is explicitly represented
[
xz
k,i, y

z
k,i

]
which denotes the coordinate of feature fi in current sensor

frame by assuming that the sensor frame and robot frame coincide.

Given the notations of state vector Xk and observation Zk above, the probabilistic motion

model and observation model are formulated as

p(Xk+1|Xk, uk) ⇒Xk+1 = F(Xk, uk) + ηk

p(Zk|Xk) ⇒Zk = H(Xk) + ξk

(7.2)

By adapting the Markov assumption which has been widely accepted in SLAM community[40]

and also by assuming that the robot is moving in a static environment, the motion and observation

models with additive Gaussian noise are re-written as

pr
k+1 =f(pr

k, uk) + ηk, ηk ∼ N (0, Iη)

zk,i =h(pr
k,p

o, fo
i ) + ξk, ξk ∼ N (0, Iξ)

(7.3)

where ε ∼ N (μ, I) denotes a Gaussian random variable ε with mean μ and information matrix

I. fo
i is the coordinate of feature i in object frame.
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Given observations up to k-th step, Z1:k, and control input up to (k − 1)-th step, u1:k−1, the

probability distribution function of state vector is represented as

p (Xk|Z1:k, u1:k−1) (7.4)

This is a similar formulation from the traditional SLAM problem[39] as well. However, com-

pared with feature based SLAM, a significant difference is that instead of inserting every fea-

ture(landmark) estimate into the state vector, a more compact representation is provided using

the object pose po and the coordinates of features in object frame which are provided as object

model information. More importantly, as a planning problem, the future observations are not

given, and the core problem is to find the optimal control from a specifically designed objective

function which will be explained later in this section.

7.1.2 Problem statement

The objective of this work is to present a planning strategy for the active object detection and pose

estimation problem which allows a robot to autonomously explore the environments, recognise

the target objects and estimate their relative poses. Model Predictive Control(MPC) framework is

adopted into the system. At time step k, an optimal control strategy, uΔ
k:k+L−1 =

{
uΔ
k , ..., u

Δ
u+L−1

}
,

in L steps horizon is computed via optimising the objective function Jk (uk:k+L−1) at time step k

and the effectiveness of the generated trajectory is evaluated by the objective function J .

7.1.3 Formulation

Within planning horizon [1, L], the generalised belief b (Xk+l) at l-th step is defined as

b (Xk+l)
.
= p (Xk+l|Z1:k, u1:k−1,Zk+1:k+l, uk:k+l−1) (7.5)

In (7.5), the observations up to l-th step Z1:k+l and control inputs u1:k+l are partitioned into 2

parts: 1) control input u1:k−1 and observation Z1:k until step k which are available and 2) uk:k+l−1

and Zk+1:k+l which can only be predicted in l planning steps ahead. The general belief b (Xk+l)

is an extension of standard belief space b (Xk) into future l-th steps. b (Xk+l) is also assumed to
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follow a Gaussian distribution as below

b (Xk+l) ∼ N (XΔ
k+l, Ik+l

)
(7.6)

where XΔ
k+l coincides with the Maximum A Posteriori (MAP) estimate of the b (Xk+l)

XΔ
k+l = argmax

Xk+l

b (Xk+l)

= arg min
Xk+l

− logb (Xk+l)

(7.7)

and Ik+l is the corresponding information matrix. Even though the mixture of Gaussians may be

a better model of the belief[48], however, the uni-modal Gaussian distribution is still a widely-

accepted and realistic assumption, such as [124] and [116]. The major difficulty in estimating

the mean and information matrix of b (Xk+l) lies in the unknown future control uk:k+l−1 and

observation Zk+1:k+l which will be addressed in Section. 7.2.

Once the belief b (Xk+l) is given, the objective function can be constructed and here a gener-

alised formulation of the objective function is presented

Jk (uk:k+L−1)
.
= E

{
L−1∑
l=0

cl (b (Xk+l) , uk+l) + cL (b(Xk+L))

}
(7.8)

where cl (·) is the intermediate cost function which counts both belief b (Xk+l) and control

input uk+l when l is in [1, L− 1] and cL is the final state cost function which is only parameterised

on b (Xk+L). The optimal control input uΔ
k:k+L−1 is computed as (7.9) which is also the objective

of this paper.

uΔ
k:k+L−1

.
=
{
uΔ
k , ..., u

Δ
k+L−1

}
= argmin

uk:k+L−1

Jk (uk:k+L−1)
(7.9)

7.2 Viewpoints Planning in General Belief Space

In order to optimise the objective function shown in (7.8), given the initial value of control inputs

u0
l:k+L−1, the general belief b (Xk+l) needs to be inferred firstly. Secondly, the optimised control

uΔ
l:k+L−1 needs to be computed via optimising the objective function which is parameterised on

b (Xk+l). This section first illustrates the inference of the general belief and control optimisation
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scheme. The formulation of the objective function is then presented for the active object detection

and pose estimation problem. As a critical component in the objective function, feature association

probability, is also explained and modelled in this section.

7.2.1 MAP Estimation in General Belief Space

Given the formulation of the general belief in (7.5), b (Xk+l) can be decomposed up to current

belief Xk as

b (Xk+l)
.
=p (Xk+l|Z1:k, u1:k−1,Zk+1:k+l, uk:k+l−1)

∝p(Xk|Z1:k, u1:k−1)

l∏
i=1

[p (Xk+i|Xk+i−1, uk+i−1) p (Zk+i|Xk+i)]
(7.10)

where the feature observation and association are assumed to be perfect in future steps. However,

in practical problems, this assumption is too optimistic and also unrealistic. To model the feature

association probability, a new variable γi,j is introduced for observation zi,j which represents

a correct association of feature fo
j at step i. Therefore, the probabilistic observation model is

extended from p (Zk+i|Xk+i) into

p (Zk+i,Γk+i|Xk+i) =

ni∏
j=1

p (zk+i,j , γk+i,j |Xk+i)

=

ni∏
j=1

(p (zk+i,j |Xk+i, γk+i,j) p (γk+i,j |Xk+i))

(7.11)

where p (γk+i,j |Xk+i) describes the feature association probability given state Xk+i. If the feature can

be observed and given the association probability, p (zk+i,j |Xk+i, γk+i,j) describes the probability

of capturing observation zk+i,j given state Xk+i and γk+i,j

Via introducing parameter γ, (7.5) is marginalised on the latent variables Γk+1:k+l as follows

b (Xk+l)
.
=

∑
Γk+1:k+l

p (Xk+l,Γk+1:k+l|Z1:k, u1:k−1,Zk+1:k+l, uk:k+l−1) (7.12)
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and the MAP estimate of b (Xk+l) is computed as

XΔ
k+l =argmin

Xk+l

E
Γk+1:k+l|X̄k+l

[− log p (Xk+l,Γk+1:k+l|Z1:k, u1:k−1,Zk+1:k+l, uk:k+l−1)]

=argmin
Xk+l

E
Γk+1:k+l|X̄k+l

[− log p(Xk|Z1:k, u1:k−1)

l∏
i=1

⎛
⎝p (Xk+i|Xk+i−1, uk+i−1)

ni∏
j=1

(p (zk+i,j |Xk+i, γk+i,j) p (γk+i,j |Xk+i))

⎞
⎠
⎤
⎦

(7.13)

Recalling the Gaussian observation and motion models, (7.13) is further re-written as

XΔ
k+l =argmin

Xk+l

||Xk −XΔ
k ||2Ik +

l∑
i=1

||Xk+i − F (Xk+i−1, uk+i−1) ||2Iη+

l∑
i=1

ni∑
j=1

p (γk+i,j |Xk+i) ||zk+i,j − h
(
Xk+i, f

o
j

) ||2Iξ
=argmin

Xk+l

||Xk −XΔ
k ||2Ik +

l∑
i=1

||Xk+i − F (Xk+i−1, uk+i−1) ||2Iη+

l∑
i=1

ni∑
j=1

||zk+i,j − h
(
Xk+i, f

o
j

) ||2
Īi,jξ

(7.14)

where Īi,jξ = p (γk+i,j |Xk+i) I
i,j and XΔ is the current estimate of Xk.

In (7.14), the MAP estimate of Xk+l is computed by minimising three terms:

• ||Xk −XΔ
k ||2Ik : the uncertainty of current state vector Xk;

• ∑l
i=1 ||Xk+i −F (Xk+i−1, uk+i−1) ||2Iη : the motion uncertainty given uk:k+l−1 control inputs

in the predicted steps;

• ∑l
i=1

∑ni

j=1 ||zk+i,j − h
(
Xk+i, f

o
j

) ||2
Īi,jξ

: the observation uncertainty;

Up to this point, the original problem in (7.8) is re-written into (7.14) using Expectation-Maximisation[101]

where the MAP estimate of the “future” state vector Xk+l can be computed via traditional Gaus-

sian Newton optimisation scheme. (7.14) is first linearised on nominal state X̄k+l(uk:k+l−1)

XΔ
k+l =argmin

ΔXk+l

‖ΔXk‖2Ik +
l∑

i=1

∥∥∥∥ΔXk+i − ∂F

∂Xk+i−1
ΔXk+i−1

∥∥∥∥2
Iη

+

l∑
i=1

ni∑
j=1

∥∥∥∥ ∂hj

∂Xk+i
ΔXk+i − bhi,j(zk+i,j)

∥∥∥∥2
Īijξ

(7.15)
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where ΔXk is the difference between two consecutive iterations and bhi,j (zk+i,j) = h
(
Xk+i, f

o
j

)−
h
(
X̄k+i, f

o
j

)
and the linearisation point X̄k+l (uk:k+l−1) is explicitly computed given control uk:k+l−1

iteratively as (7.16)

X̄k+l (uk:k+l−1)

=F
(
X̄k+l−1, uk+l−1

)
=F
(
F
(
X̄k+l−2, uk+l−2

)
, uk+l−1

)
=F
(· · ·F (XΔ

k , uk

) · · · , uk+l−1

)
(7.16)

The detail of the linearsation is illustrated in Appendix. A.1.

In order to compute the optimal ΔXk+l, (7.15) is further converted into the following quadratic

form and the detailed derivation is illustrated in Appendix. A.2

‖Ak+lΔXk+l − Bk+l‖2 (7.17)

where Ak+l is a function of uk:k+l−1 and Bk+l is a function of both uk:k+l−1 and future observa-

tions Zk+1:k+l. Based on normal equation, the update state vector ΔXk+l which minimises (7.16)

is

ΔXk+l =
(Aᵀ

k+lAk+l

)−1 Aᵀ
k+lBk+l (7.18)

and nominal state vector is updated as

XΔ
k+l

.
= X̄k+l +ΔXk+l (7.19)

The information matrix is also updated as

Ik+l
.
= Aᵀ

k+lAk+l (7.20)

So far, the Gaussian distribution is parameterised in general belief b(Xk+l) with the mean (7.19)

and the information matrix (7.20).

7.2.2 Empirical Modelling of Feature Association

In (7.11), an additional term p (γk+i,j |Xk+i) is introduced which describes the possibility of a

correct feature association of feature j at step k+i. In this subsection, based on previous empirical
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analysis shown in Fig. 6.3, γ̄k+i,j = p (γk+i,j |Xk+i) is approximated as the production of two

Gaussian distributions considering two factors as below

• Scale variations: γ̄i,j is assumed to show the maximum value when the feature is re-

observed under distance μγd
and follows a Gaussian distribution w.r.t the variation of the

distance;

• Viewpoint variations: γ̄i,j is also assumed to show the maximum value when the feature is

re-observed at viewpoint angle μγθ
and there is a Gaussian distribution when the viewpoint

angle varies;

Note here that the Gaussian distribution may not be the most realistic assumption of the distri-

bution. For example, in Jia et al.’s work[72], the heavy tailed Gamma-compound-Laplace is regarded

as a better option. However, our formulation is not limited to Gaussian distribution and any other

alternative distributions can be adopted. Just for easier annotation and computation, the Gaussian

distribution is assumed in this work. Based on the above assumption, γi,j = �j (Xi) is modelled

explicitly as below:

γ̄k+i,j =p (γk+i,j |Xk+i)

=

(
1

σγd

√
2π

exp

(
− (df − μγd

)
2

2σγd

))(
1

σγθ

√
2π

exp

(
− (θf − μγθ

)
2

2σγθ

)) (7.21)

where μγd
and μγθ

denote the means as was illustrated before, and σγd
and σγθ

denote the stan-

dard deviations respectively.

Take SIFT feature as an example, μγd represents the distance where the feature shows the

maximum response and μγθ
is the direction of the surface normal vector of the feature (assuming

the descriptor is captured perpendicular to the surface of the feature). Larger σγd and σγθ
allow

the feature to be correctly matched under larger range. df denotes the current distance between

(xr
i, y

r
i) and the feature. θf denotes the angle between the ray from the feature to (xr

i, y
r
i) and μγθ

.

Please notice that both df and θf are calculated from Xi and the pre-trained information shows

the coordinate and normal vector of feature in object coordinate frame.

Fig. 7.1 shows an example of the feature correspondence score distribution where the red

arrow denotes the normal vector and the green line draws the surface. The red peak in Fig. 7.1

represents the area where the feature has a higher possibility of being correctly matched.
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FIGURE 7.1: Probabilistic distribution of feature correspondence confidence

7.2.3 Optimal Control Inference

In practical problems, the Field-of-View of the sensor will lead to the discontinuity of the ob-

jective function Jk (uk:k+L−1) together with occlusion scenarios which will be discussed later in

Section.7.3.3. In this case, in order to compute the optimal control uΔ
k:k+L−1 which satisfies

uΔ
k:k+L−1 = argmin

uk:k+L−1

Jk(uk:k+L−1) (7.22)

A Derivative Free Optimisation (DFO) method, Nelder Mead Simplex-Reflective method[108], is

adopted rather than using gradient based methods where derivatives are approximated using

central difference. The implementation and simulation in Section. 7.4 are using fminsearchbnd

in Matlab1.

Given initial guess u
(0)
k:k+L−1, the algorithm first creates the elements of the simplex around

u
(0)
k:k+L−1 by adding 5% on each component of u(0)

k:k+L−1 to the original value. Using the created

elements and u
(0)
k:k+L−1, a simplex is formed and the algorithm modifies and shrinks the simplex

iteratively until it converges. By denoting x (i) , i = 1, ..., n + 1 as the points on the simplex, the

1The original fminsearch function from Matlab does not support bounded constraint on the parameters uk:k+L−1

and a modified fminsearchbnd from D’Errico is used. This modification is achieved by rewriting the parameter using
sin () function which is bounded within [−1, 1]
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detailed algorithm is illustrated in Algorithm. 3 as below

Algorithm 3: Nelder-Mead Simplex algorithm for control optimisation

while not converged do

Order x(i) from lowest function value Jk (x (1)) to highest Jk (x (n+ 1));

Generate reflected point as;

r = 2x̄− x(n+ 1);

where x̄ =
∑n

i=1 x(i)

n and calculate Jk (r);

if Jk (x(1)) ≤ Jk (r) ≤ Jk (x(k)) then

x(n+ 1) = r;

else if Jk (r) < Jk (x(1)) then

s = x̄+ 2 (x̄− x (n+ 1));

if Jk (s) < Jk (r) then

x (n+ 1) = s;

else

x (n+ 1) = r;

end

else if Jk (r) > Jk (x(n)) then

if Jk (r) < Jk (n+ 1) then

c = x̄+ (r− x̄);

if Jk (c) > Jk (r) then

x(n+ 1) = c

else

v(i) = x(1) + (x(i)−x(1))
2 for i = 2, .., n+ 1;

x(i) = v(i) for i = 2, ..., n+ 1;

end

else

t = x̄+ x(n+1)−x̄
2 ;

if Jk(t) < Jk (x(n+ 1)) then

x(n+ 1) = t;

else

v(i) = x(1) + (x(i)−x(1))
2 for i = 2, .., n+ 1;

x(i) = v(i) for i = 2, ..., n+ 1;

end

end

end
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7.2.4 Objective Function Formulation

In order to design a comprehensive objective function for active object detection and pose estima-

tion tasks, the following issues at least have to be considered with the declining priority

1. maximise the object recognition confidence by observing the object from different view-

points;

2. minimise the uncertainty of the pose estimation of both the robot and the target objects

while the robot explores the environment;

3. minimise the control consumption to achieve a smooth trajectory;

Apparently, in practical problems, more factors are required to be included such as occlusion

and obstacle avoidance. However, these issues will be discussed in the forthcoming Section. 7.3.

Regarding the 3 issues above, the objective function is formulated as

Jk (uk:k+L−1)
.
=wJ

f

{
cf
(
XΔ

k

)− E[cf
(
XΔ

k+L

)
]
}
+

wJ
XcX

(
b
(
XΔ

k+L

))
+

wJ
ucu (ul:k+L−1)

(7.23)

The 3 terms in the above (7.23) are explained in detail below sequentially

1. The evaluation of the object recognition confidence is a non-trivial problem here. In com-

puter vision communities where researchers adopt machine learning techniques heavily[121,

56], criteria such as precision, recall and mean Average Precision are utilised to describe the

capability of a classifier in differentiating the objects. However, since the traditional point-

feature based object recognition framework is used, these criteria are not suitable for our

problem, therefore, the following assumption is proposed

The object recognition confidence is increased if 1) larger number of features are

observed or 2) one feature is observed in larger number of frames.

Intelligibly speaking, the above assumption means that, to confirm an object, observing 2

features provides more information about the object compared with observing only 1 fea-

ture and observing 1 feature for 2 times is better than observing the same feature for only

once. This is a realistic and also understandable assumption. Given this assumption, the
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observation score matrix O(XΔ
k+L) at step k + L is defined as

O(XΔ
k+L) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1o1,1 · · · 1o1,k · · · 1o1,k+L

...
...

...
...

...

1on1,1 · · · 1on1,k · · · 1on1,k+L

...
...

...
...

...

jo1,1 · · · jo1,k · · · jo1,k+L

...
...

...
...

...

jonj ,1 · · · jonj ,k · · · jonj ,k+L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
number of steps: k+L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

j∑
i=1

ni (7.24)

where ioj,k denotes the feature association probability of feature j of object i at step k and

ioj,k is a function of pr
k and po

i
2. ioj,k denotes the possibility of the feature being correctly

associated at step k. Now the matrix O
(
XΔ

k+L

)
which describes the feature association

probability till step k + L is computed and it needs to be summarised into a scalar value

which can be minimised through the objective function. Hence the object observation score is

formulated as a function of O
(
XΔ

k+L

)
below

ρ =cf
(
XΔ

k+L

)
=

no∑
i=1

ni∑
j=1

(
1−

k+L∏
m=1

(
1−i oj,m

)) (7.25)

(7.25) provides a solution to describe the object recognition confidence by considering the

coverage of the features on the objects and the repeatability of the feature being observed.

To explain this formulation clearer, given an example of a 3×3 matrix O (X3) =

⎡
⎢⎢⎢⎢⎣

0.8 0.9 0.7

0.9 0.85 0.7

0.8 0.8 0.9

⎤
⎥⎥⎥⎥⎦

( 3 steps with 3 observed features), the possibility of feature 1 being missing after 3 observa-

tions is computed as a product of (1− 0.8)× (1− 0.9)× (1− 0.7) = 0.006. Therefore, after 3

observations, the possibility of confirming this feature is 1− 0.006 = 0.994. By summing up

all 3 features, ρ is equal to 0.994 + 0.9955 + 0.996 = 2.9855.

By computing the difference between current object observation score calculated from XΔ
k and

2Strictly speaking, ioj,k should be written as ioj,k
(
XΔ

k

)
, however, here a simplified notation is used.
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the one computed from the MAP estimate, XΔ
k+L from (7.19), it is possible to describe the

gained information about the features on the objects from step k to step k + L. Therefore,

minimising cf
(
XΔ

k

)− E[cf
(
XΔ

k+L

)
] will maximise the number of covered features and the

repeatability of each observed feature.

However, there are two points which needs to be highlighted about this term:

• Here, the object observation score is formulated as (7.25), however, the matrix formu-

lation of (7.24) allows flexible extensions and modifications of score ρ. For example,

based on the importance of each feature, it is possible to assign different weight to the

score ioj,k; ρ can be also computed as

ρ =

no∑
i=1

ni∑
j=1

(
max

m=1,.,k+L

ioj,m

)
(7.26)

where the maximum probability score is selected to represent the feature association

probability after a series of observations;

• Please be aware that this term is actually computed as the difference cf
(
XΔ

k

)−E[cf
(
XΔ

k+L

)
]

where all history feature association probability is taken into consideration. This char-

acteristic makes this objective function no longer following the Markov assumption

where the previous information actually interferes with the future planning. From an-

other perspective, this is an essential and realistic formulation where previous obser-

vation knowledge of the objects does need to influence the future planning trajectory.

2. cX (b (Xk+L)) denotes the uncertainties of both the robots and the objects. As formulated in

(7.1), Xk+L consists of object poses and all previous poses of the robot. In order to describe

the uncertainty, this term is explicitly modelled as

cX (b (Xk+L))
.
= Tr

(
WXI−1

k+LW
ᵀ
X

)
(7.27)

where Tr (M) computes the trace of the matrix M and WX is the weight matrix. In the

simulation experiments in Section. 7.4, the uncertainty of the target objects and imminent

steps are paid more attention to thus larger weights are assigned to close steps and smaller

weights are assigned to further away steps.

3. cu (ul:k+L−1) represents the control consumption. In 2D environments such as the simula-

tions in Section. 7.4, the control input uk+i consists of velocity μk+i and angular velocity
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ωk+i. As was illustrated in Section. 7.2.3, both μk+i and ωk+i are bounded within a specific

range. In our simulations, this term is represented as

cu (ul:k+L−1)
.
=

⎧⎪⎨
⎪⎩

wuωk:k+L−1 if μi are all positive or negative

wuωk:k+L−1 + cμ else
(7.28)

where ωk:k+L−1 = [ωk, ωk+1, ..., ωk+L−1]
ᵀ and wu assigns different weight to different steps

which plays the same role as WX in (7.27). The principle of (7.28) is that if the robot plans a

trajectory where all linear velocities are either positive or negative, the control cost is defined

as the weighted sum of the angular velocity. However, if the robot plans a trajectory where

linear velocity can be both negative and positive, a fixed, extra term cμ will be given to

penalise the zigzag movements of the robot.

Among the detailed formulation of each term in the objective function (7.23), the main diffi-

culty is to compute the last term E[cf
(
XΔ

k+L

)
] where XΔ

k+L is related with the unknown future

observations as shown in (7.18) and (7.19). To predict the future observations, traditional ap-

proaches[116][48] assume the future observations will be the same as their maximum likelihood

estimates. However, there are two pieces of work[70, 149] which solve this problem via formulat-

ing the objective function ingeniously. In Van Den Berg and et al.’s work[149], the value function

vt [b] is approximated in a quadratic form below(Please refer to Section. 4.2 in [149] for detailed

derivation.):

vt [b] ≈ 1

2

(
b− b̄t

)ᵀ
St

(
b− b̄t

)
+
(
b− b̄t

)
st + st (7.29)

where b̄t is the nominal belief. In Indelman et al.’s work[70], the term which is related with the

mean of future belief is formulated in the linear relationship as below(Please see Section. 5 in [70]

for detailed information):

cL (Xk+L) =
∥∥EG

k+LX
Δ
k+L −XG

∥∥2
MX

(7.30)

where EG
k+L is a selection matrix and XG is the goal state. In the above two formulations, the

formula below is used:

E
y
[yᵀQy] = E

y
[y]

ᵀ
QE

y
[y]− Tr (QΣy) (7.31)

where y is a random vector with covariance matrix Σy. Q is a given matrix. Now assume the

y denotes the uncertain noise in the future observations, (7.31) allows eliminating the mean of y
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and only keeping the covariance term which is given in the observation model.

Back to our problem, the last term cf
(
XΔ

k+L

)
is highly nonlinear. There are two ways to solve

this problem

1. following the maximum likelihood observation assumption;

2. approximating the nonlinear term to the first or second order;

If the maximum likelihood observation is assumed, β in ( A.9) is set as 0. An intuition to understand

this assumption is that the predicted future observation will be exactly the same with captured ac-

tual observation when estimating the posterior belief. In the experiments which will be presented

Section. 7.4, due to the complexity in approximating this nonlinear term into second-order, this

work follows the maximum likelihood observation assumption.

7.2.5 Online Re-planning

In the current approach which is formulated in an MPC framework, the control optimisation step

discussed in Section. 7.2.3 and Section. 7.2.4 is the most time-consuming step. Therefore, there is a

need to re-plan the trajectory efficiently by utilising the optimisation results from previous steps.

In this subsection, a fast re-planning strategy is presented by comparing the prior and posterior

belief using KL-divergence.

Object 1
Object 2

FIGURE 7.2: Example: path planning for next 3 steps and the updated pose after 1
step of control execution.

Following the strategy of MPC, the following L− 1 controls uk:k+L−1 is computed from step k

to k+L given the current belief of the state. For example, assuming L is equal to 3, the optimised
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control uΔ
k:k+2 will lead the robot to poses p̂r

k+1:k+3, shown as the gray triangles in Fig. 7.2. Af-

terwards, the first optimised control uΔ
k is executed and after acquiring the updated observations

from the two objects, the estimate of the robot is computed as pr
k+1, shown as the blue triangles

in Fig. 7.2. The prior estimate of the objects (1 and 2) are denoted by the dashed shapes in Fig. 7.2

and the posterior estimate of the objects are shown as the shapes with solid border lines. Due to

the noises in motion model and observation model, there will be a difference between the prior

belief and posterior belief.

In order to fully utilise the previous optimisation results uΔ
k+1:k+2, a re-planning strategy using

the Kullback-Leibler divergence is presented to compare the difference between two distributions

as below:

bk+1 ∼ N (Xk+1, Ik+1) , b̂k+1 ∼ N
(
X̂k+1, Îk+1

)
(7.32)

where b̂k+1 denotes the prior belief of object poses po
1,p

o
2 and pr

k+1 obtained from the prediction

at step k + 1 and bk+1 is the posterior belief of the same variables after executing the control and

capturing the observation. The KL divergence is computed as below:

DKL(bk+1‖b̂k+1) =
1

2
log

|Î−1
k+1|

|I−1
k+1|

− 1

2
Tr
{
I3(no+k+1)

}
+

1

2

(
Xk+1 − X̂k+1

)ᵀ
Îk+1

(
Xk+1 − X̂k+1

)
+

1

2
Tr
{
Îk+1 · I−1

k+1

} (7.33)

Object 1
Object 2

FIGURE 7.3: Replanning strategy if the belief is only changed within the threshold.
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KL divergence describes the similarity between two distributions. Less DKL(bk+1‖b̂k+1) de-

notes larger similarity between two beliefs bk+1 and b̂k+1 and vice versa. As shown in Fig. 7.3, if

DKL(bk+1‖b̂k+1) is less than a given threshold ρKL, the next pose is set as p̂r
k+1 which is computed

from the previous optimised controls thus avoiding the redundant optimisation steps.

Object 1
Object 2

FIGURE 7.4: Replanning strategy if the belief shows significant differences com-
pared with the prediction.

If DKL(bk+1‖b̂k+1) > ρKL where estimated poses of the objects and robot changes significantly

as shown in Fig. 7.4, the previous belief b̂k+1 cannot be trusted after capturing the observation

and updating the state. Therefore, it is necessary to re-do the initialisation step presented in Sec-

tion. 7.3.2 and re-run the optimisation step thus abandoning the previous optimisation results.

Moreover, the robot is forced to start sampling and optimisation once there is less than 2 opti-

mised poses remaining in the experiments. During the experiments, this re-planning strategy

significantly reduces the number of executions of the time-consuming optimisation step,

7.3 Practical Issues

7.3.1 Object Pose Initialisation

Under the proposed framework, when a target object is discovered, its relative pose and covari-

ance w.r.t the world coordinate frame need to be estimated. This problem can appear at the

beginning step or when a new object is discovered and added into the state vector during the

planning phase. In order to deal with this problem, here the beginning step is used as an example

to show how to compute the object’s pose and covariance.
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In this subsection, rTo is denoted as the object’s pose w.r.t the camera frame, wTo as the object’s

pose w.r.t the world frame and wTr as the robot’s pose w.r.t the world frame. Please also note that

po is equivalent to the estimate of wTo and pr in the state vector is the estimate of wTr.

Assuming the observation model in (7.2), the object’s pose w.r.t the object can be estimated

using a Least Square Estimator. rTo is trivial to compute and the computed least square estimate

is computed as rT
�
o, the covariance matrix of the least square estimate is computed as

rΣo = Hᵀ
(rT�

o )
ΣηH(rT�

o )
(7.34)

where Ση is the block diagonal covariance matrix stacked by Ση from (7.2) and

H(rT�
o )

=
∂h (rT

�
o +Δδ)

∂Δδ

∣∣∣∣
Δδ=0

(7.35)

Under 2D environments, H(rT�
o )

∈ R
2n×3 and Ση ∈ R

2n×2n where n is the number of observed

features. So far, the pose of the object w.r.t the camera , rT
�
o, and its covariance rΣo are provided.

Given initial robot pose wT
�
r = pr

1 and its covariance wΣo, , now the state vector and the

covariance need to be augmented as

X̄1 = [pr
1] ∈ R

3 =⇒X1 = [po
1,p

r
1] ∈ R

6

Σ̄1 = wΣo ∈ R
3×3 =⇒Σ1 =

⎡
⎢⎣ A B

C D

⎤
⎥⎦ ∈ R

6×6
(7.36)

In order to achieve the above augment, wT
�
r and rT

�
o in error state are computed as

wTr =wT
�
r ⊕ wer

=wT
�
r · Vec2T(wer)

rTo =rT
�
o ⊕ wer

=rT
�
o · Vec2T (wer)

(7.37)

where wTr and rTo in R
3×3 are the groundtruth pose and wer, reo ∈ R

3 are the errors with zero

means and covariance matrices wΣr and rΣo respectively. Vec2T is the function which converts

the pose representation p = [x, y, θ] into a homogeneous transformation matrix representation T
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as below

T =Vec2T (p) =

⎡
⎢⎢⎢⎢⎣

cos(θ) − sin(θ) x

sin(θ) cos(θ) y

0 0 1

⎤
⎥⎥⎥⎥⎦ (7.38)

Therefore, the error state representation of wTo is

wTo = (wT
�
r ⊕ wer) · (rT

�
o ⊕ reo) (7.39)

and the Jacobian matrix w.r.t the error e = [we
ᵀ
r ,we

ᵀ
r ]

ᵀ and the first-order expansion are

F =
∂wTo � (wT

�
r · rT

�
o)

∂e

∣∣∣∣
e=0

wTo =(wT
�
r · rT

�
o)⊕ (F · e)

(7.40)

So far, recalling (7.36), the object pose w.r.t the world frame, po
1, is computed as

po
1 = wT

�
r · rT

�
o (7.41)

Considering the 4 blocks in the covariance matrix, firstly, the D is equal to the original covariance

of the robot pose wΣr and A is calculated as

A =F

⎡
⎢⎣ wΣr

rΣo

⎤
⎥⎦Fᵀ

=

⎡
⎢⎣ Fwer

Freo

⎤
⎥⎦
⎡
⎢⎣ wΣr

rΣo

⎤
⎥⎦
⎡
⎢⎣ Fwer

Freo

⎤
⎥⎦
ᵀ

=Fwer(wΣr)F
ᵀ
wer

+ Freo(rΣo)F
ᵀ
reo

(7.42)
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where Fwer and Freo are from F. After all, Σ1 is represented as

Σ1 =

⎡
⎢⎣ A B

C D

⎤
⎥⎦

=

⎡
⎢⎣ Freo Fwer

0 I

⎤
⎥⎦
⎡
⎢⎣ rΣo

wΣr

⎤
⎥⎦
⎡
⎢⎣ Fᵀ

reo
0

Fᵀ
wer

I

⎤
⎥⎦

=

⎡
⎢⎣ Fwer(wΣr)F

ᵀ
wer

+ Freo(rΣo)F
ᵀ
reo

Fwer wΣr

wΣrF
ᵀ
wer wΣr

⎤
⎥⎦

(7.43)

Up to now, given the estimated object’s pose w.r.t robot and its covariance computed using (7.34)

and (7.35), the method is able to augment the original state vector and covariance in (7.36) using

( 7.40) to (7.43).

7.3.2 Initial Guess for Control Optimisation

In order to obtain the optimal control uΔ
k:k+L−1 for objective function in (7.23), an initial value

for the controls u
(0)
k:k+L−1 is required. To compute a reasonable initial value, it is necessary to

sample the control series for future steps and select the best one as the initial guess for the control

optimisation. The detailed steps are listed as below:

1. In this problem set-up, the control constraints of linear velocity are [νmin, νmax], and the con-

straints of angular velocity are [ωmin, ωmax] where νmin = −νmax, ωmin = −ωmax. Along each

sampled trajectory which consists of L steps of control, it is required that all the linear ve-

locity to be either all positive νmax or all negative νmin which implies the zigzag movements

are not allowed during the sampling phase and the robot can only explore in one direction

in one trajectory. To sample angular velocity control input for each step, a random number

in range [ωmin, ωmax] is generated. After all, 2× 3L series of sampled controls are computed;

2. From the sampled controls, the robot poses are generated from these controls. Given the

current understanding of the environment which includes the detected objects and possible

unknown obstacles, if the generated poses are located in the occupied areas, this trajectory

is rejected from the candidates. After this step, 2×3L control series are filtered into n control

series where n ≤ 2× 3L;
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3. Evaluating all n control series using the objective function and selecting the best one as the

initial guess are extremely time-consuming. For example, in our experiments in Section. 7.4

where L = 5, there still will be hundreds of trajectories to be evaluated. Therefore, in order

to speed up the algorithm, only m out of n controls series are selected where m is set to be

20 or 40 in Section. 7.4;

4. Evaluating the objective function on m control series and selecting the best one as the initial

guess which will be input to the subsequent optimisation step;

7.3.3 Occlusion Modelling

Given the dense models of the objects as shown in Section. 7.1, self-occlusion and occlusion

caused by other pre-trained objects can be predicted using raytracing algorithm given current

belief of the state and the sensor’s pose. However, in practical problems, the environment may

consist of unknown obstacles and thus generate occlusions which interfere with future obser-

vations. Fig. 7.5 demonstrates an example of unknown occlusions as the shaded blue area. In

order to solve this issue, an effective yet reasonable probabilistic modelling of the occlusions is

presented.

Object
occlusion

Camera

FIGURE 7.5: Occlusion modelling for observation prediction.

The fundamental assumption for modelling the occlusion is that the unobserved, occupied

area behind the unknown obstacle has only a limited range of dobs along the ray as shown in Fig.

7.6(a). The possibility of having occlusion is also assumed to be decreased along the ray in a linear

relationship, shown as the shaded area in Fig. 7.6(b). Due to the fact that no prior knowledge of

the unknown occlusion is given, this is a realistic assumption which means that the occlusion

only happens within a limited hidden area behind the obstacle and areas which are further away

behind the obstacle have less possibilities of being occupied.
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Object
occlusion

Camera

(a) Occluded area modeling.
4

Object
occlusion

Camera

Object

(b) Grid representation of the occlusions

FIGURE 7.6: Probabilistic occlusion modeling.

Following the above assumption, a grid map of the occluded area is generated as shown in

Fig. 7.6(b) using the ray from the sensor to the points on the obstacle. A occlusion possibility ρocc

is associated with each grid and further away grids are assigned with smaller ρocc. For example,

dobs is assumed to be 0.5m and there are 10 grids along the ray behind the obstacle. Given this

assumption, the grid which is 0.25m far behind the obstacle will have ρocc = 0.5. In the prediction

phase, as explained in Section. 7.2.4, this value can be incorporated seamlessly into observation

score matrix O
(
XΔ

k+L

)
. If a feature is predicted to be occluded by a grid with occlusion possibility

ρocc, each entry in O
(
XΔ

k+L

)
is re-written as

(
ρocc · ioj,k

)
. Taking an explicit case as an example

to explain it more clearly, suppose the original value for ioj,k is 0.8 which means that this feature

has 80% probability of being associated correctly. If a grid with ρocc = 0.8 appears along the ray,

new feature observation score is 0.8 ∗ 0.8 = 0.64 which means that due to the occlusion, this feature

has only 64% probability to be observed and matched correctly.

7.3.4 Collision Avoidance

During the planning for active object detection and pose estimation, due to the complexity of the

environment, another inevitable issue is to avoid the forbidden areas in the environment. Fig.

7.7 shows an example of the obstacles. The red ellipse shows a forbidden area such as the table

where the object is placed on and the robot is not allowed to explore such a region. The right part
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Forbidden Region

Unknown Obstacle

Camera

Object

FIGURE 7.7: Obstacle avoidance in path planning.

shows an unknown obstacle and the shaded area can be the obstacle or not. Since the occlusion

issue has been discussed in above Section. 7.3.3, here collision avoidance is the only focus.

Obstacle avoidance is another mature research topic in the robotic field. Lamiraux et. al [86]

used an iterative scheme to find a collision free path using a potential field based on the obstacles.

A more recently work, TrajOpt, from Schulman et. al[131] provides an elegant solution which

penalises collisions with a hinge loss in a sequential convex optimisation framework. Here, an

alternative strategy is provided that can be easily fitted into our framework. Points on the surface

of the obstacles is sampled and the “forbidden” zone is defined as the circle area centred at each

sampled point, shown as the black dashed circle in Fig. 7.7. If the robot falls into the “forbidden”

zone, a larger penalty will be added into the objective function, thus having an additional term in

the objective function as below

cobs
(
XΔ

k+L

) .
=

L∑
k=1

ωobs · 1
(
pr
k+i,Areaobs

)
(7.44)

where

1
(
pr
k+i,Areaobs

)
=

⎧⎪⎨
⎪⎩

1 pr
k+i locates in occulusion regions Areaobs

0 pr
k+i locates in free regions

(7.45)



134 Chapter 7. Active Object Detection and Pose Estimation in Belief Space

and ωobs is set to be a large value. Via minimising the objective function as below, it is able to

avoid the obstacles in the environment.

Jk (uk:k+L−1)
.
= cX

(
b
(
XΔ

k+L

))
+ cu (ul:k+L−1) + E[cf

(
XΔ

k+L

)
] + E

[
cobs

(
XΔ

k+L

)]
(7.46)

7.3.5 Hypothesis Changing during Planning

The previous Section. 7.2.5 discusses how to re-plan the trajectory when the poses and uncertain-

ties are changed after acquiring actual observation while utilising the previous optimal control

values. This section presents the solution when the object identity changes after capturing the

latest observation. This also means that the previous object recognition hypothesis is incorrect

and the identity of the object has to be changed as in the example below

X̂k+1 = [ po
1
↑

Object A

, po
2
↑

Object B

,pr
1, ...,p

r
k, p̂

r
k+1]

⇒Xk+1 = [ po
1
↑

Object A

, ×po
2

↑
Object C

,pr
1, ...,p

r
k,p

r
k+1]

(7.47)

where the identity of po
2 is switched from object B to object C. In order to complete the above

conversion, this subsection refers to some fundamental knowledge in EKF-SLAM[40]. There are

overall 4 steps to accomplish the conversion in (7.47) presented as below:

1. state propagation: In this step, using the available motion model and control input uΔ
k , and

using the formula below, it is able to compute the prior belief of the state as

p̃r
k+1 = f

(
pr
k, u

Δ
k , 0
)
=⇒X̃K

.
=
[
po
1,p

o
2,p

r
1, ...,p

r
k, p̃

r
k+1

]
Σ̃k+1 =FXΣkFX + FηI

−1
η Fᵀ

η

(7.48)

2. state reduction: After acquiring the observation at step k + 1, from the feature association

results, it is able to tell that the object hypothesis of object 2 should be item C rather than

item B. Therefore, the corresponding entry of object 2 from the mean and covariance matrix

needs to be removed.
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Recalling the fundamental knowledge on statistics, given joint distribution of landmark m

and state x

μ =

⎡
⎢⎣ μx

μm

⎤
⎥⎦ and Σ =

⎡
⎢⎣ Σxx Σxm

Σmx Σmm

⎤
⎥⎦ (7.49)

where μ is the mean estimate and Σ is the covariance matrix. In (7.49), the mean of robot

pose as μx with covariance Σxx and mean of the landmark as μm with covariance Σmm are

computed. Therefore, the mean and covariance of object A and all robot poses from X̂k and

Îk are also extracted as:

X̂′
k =
[
po
1,p

r
1, ...,p

r
k, p̃

r
k+1

]

Σ̂
′
k+1 =

⎡
⎢⎣ Σ̃

oo
1,1 Σ̃

or
1,1:k

(Σ̃
or
1,1:k)

ᵀ Σ̃
rr
1:k,1:k

⎤
⎥⎦ (7.50)

where Σ̃
oo
1,1 is the covariance of object 1, Σ̃

or
1,1:k is the block between object 1 and all poses

pr
1:k and Σ̃

rr
1:k,1:k is the covariance of all robot poses.

3. state update and augment: Given the observation of the object C, the mean estimate and co-

variance need to be augmented by estimating the pose of the object C. By conducting the

object initialisation step explained in Section. 7.3.2. The state vector which includes new

discovered is updated as

Xk = [po
1,

×po
2,p

r
1, ...,p

r
k,p

r
k+1] (7.51)

where po
1 and pr

1:k+1 is extracted from X̂k+1 in (7.50). This is a similar task as object initial-

isation in Section. 7.3.1 where the only difference is that the object pose is computed w.r.t

pr
k+1 rather than pr

1. The augment on covariance matrix also follows (7.43) in Section. 7.3.1.

7.4 Simulation Experiments and Results Analysis

This section presents simulation experiments and analysis to validate the effectiveness of the pro-

posed framework. The structure of this section is summarised as below

1. Section. 7.4.1 illustrates the basic set-ups of the simulation experiments including the sensor

model, motion, observation noise and control noise;
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2. Section. 7.4.2 demonstrates the effectiveness and consistency of simplex optimisation method

in this problem formulation even though it cannot guarantee a global optimal solution;

3. Section. 7.4.3 discusses the parameterisation in our problem including the planning horizon

L and the weights in the objective function;

4. Section. 7.4.4 validates our approach under a more challenging scenario and the results are

analysed;

5. Section. 7.4.5 validates the performance of our approach in environments which consist of

both forbidden regions and unknown obstacles;

6. Section. 7.4.6 further demonstrates the effectiveness of the proposed approach when the

object hypothesis is changed during the planning phase;

7.4.1 Experimental Set-up
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FIGURE 7.8: An example of the simulation environments.

Fig. 7.8 shows an example of the simulation environments for validating the proposed ac-

tive object detection and pose estimation framework and this environment will be further tested

in Section. 7.4.2 to Section. 7.4.3. The green and blue line segments denote the x axis and y
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axis of the object frame and robot frame respectively. The robot, denoted as the gray triangle, is

equipped with a bearing-range sensor with the Field-of-View equals to π and its range is between

0.5m ∼ 4.0m. The control inputs, linear velocity ν and angular velocity ω, are limited within

[−3, 3] m/s and [−π, π] rad/s. The time duration of each step is 0.2 s which means that the max-

imum translation difference between two consecutive poses is less than 3 × 0.2 = 0.6 m and the

maximum orientation difference is less than π × 0.2 = π
5 . The odometry noise is set as 5% of

the input control values and the covariance of the observation noise is set as

⎡
⎢⎣ 0.022 0

0 0.022

⎤
⎥⎦.

Assume the size of the planning horizon L is set to be 5, the weights in planning phase, WX

and wu, are set as {1.0, 0.9, 0.8, 0.7, 0.6} accordingly. Later Section. 7.4.3 will discuss further the

parameterisation issues.

7.4.2 Convergence Analysis in Optimisation

Before presenting the planned trajectories using the proposed approach, in this section, since

the simplex optimisation method is known as not being a global optimal solution, the conver-

gence characteristics of the proposed approach is validated via extensive simulation experiments.

Through comprehensive experiments, the effectiveness and convergence of the simplex method

in this problem is demonstrated.

In this section, starting pose of the robot is
[
0,−3, π

2

]
. By assuming a perfect observation

model without any noise, the optimised trajectories from different initial values under exactly the

same belief are presented. Among all the figures which are presented in Fig. 7.9, the thin, blue

and dash-dotted lines are the sampled trajectories, the green line is the best trajectory selected

from the samples and set as the initial guess for the optimisation step, and the blue line is the

trajectory generated from the optimised control series. There are two circular objects distributed

in the environment with radius equals to 1m and the poses of the two objects are [−1, 0, 0] and

[1, 1, 0]. There are 50 features equally distributed on the surface of each object, shown as the green

dots on the red circles which denote the objects.

The sampling strategiy as was illustrated in Section. 7.3.2 is adopted. Fig. 7.9(a) to Fig. 7.9(d)

demonstrate the optimisation results under 40 randomly sampled trajectories. As the blue trajec-

tories indicate, the optimisation results are different especially at future poses. As summarised

in Table. 7.1, even though the values from the objective function are different. However, as

highlighted in the red values, the first optimised poses are still very close to each other and the
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differences of linear velocity and angular velocity are limited with ±0.001m/s and ±0.005 rad/s.

These errors in control input will lead to only 0.0002m translation error and 0.565◦ orientation

error in the first step planned poses.
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(a) Translation error.
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(b) Orientation error.
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(c) Translation error.
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(d) Orientation error.

FIGURE 7.9: Optimisation results for different random sampled initial guess.

From the above experiments, it is observed that the simplex method cannot guarantee con-

verging to exactly the same values, as indicated in Table. 7.1. However, by comparing the first

planned pose and even the second planned pose, the differences between optimisation results

from different initial values are constrained within 0.003m in translation and 4.586◦ in orienta-

tion. Therefore, simplex method is a suitable optimisation method in our framework.
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TABLE 7.1: Optimisation results for randomly sampled initial guess

Fig. 7.9(a) Fig. 7.9(b) Fig. 7.9(c) Fig. 7.9(d)
Objective function value -12.161 -8.799 -9.464 -7.135

Step 1 ν1 -3.000 -2.998 -3.000 -2.998
ω1 3.141 3.132 3.130 3.141

Step 2 ν2 -3.000 -2.998 -3.000 -2.987
ω2 2.897 3.099 3.135 2.671

Step 3 ν3 -3.000 -2.971 -3.000 -3.000
ω3 -1.325 -1.716 -1.725 -0.903

Step 4 ν4 -3.000 -2.998 -2.742 -2.977
ω4 -0.762 -0.664 -0.949 -1.427

Step 5 ν5 -3.000 -2.998 -2.888 -2.981
ω5 -2.879 -2.511 -1.786 -0.979

7.4.3 Parameterisation

Planning Horizon L

Among the parameters which need to be tuned, the size of planning horizon, L, significantly

influences the timing consumption of the planning step. In short, larger L enables the robot to

consider further away future steps by sacrificing the efficiency of the planning phase. In this sec-

tion, the time consumption analysis is demonstrated with different numbers of L = 3, 5, 8 and 10

and the optimal value is selected based on comparative experiments and empirical analysis.

With larger planning horizon L, as shown in Fig. 7.10, the planned trajectories show better

results and cover the object better. After 100 Monte Carlo simulations, the average time con-

sumptions for 1 step of planning when L = 3, 5, 8, 10 are 8.209, 22.613, 43.858 and 96.924 seconds

respectively. By balancing the planning results and time consumption, in later experiments, L is

set to be 5. Please note that L = 5 is the optimal solution from empirical analysis only under cur-

rent simulation environments and other values may show better performances in different sized

environments.

Weight Selection in Objective Function

In the objective function as below

Jk (uk:k+L−1)
.
=wJ

XcX
(
b
(
XΔ

k+L

))
+

wJ
ucu (ul:k+L−1)+

wJ
f

{
cf
(
XΔ

k

)− E[cf
(
XΔ

k+L

)
]
} (7.52)
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(a) Planned trajectory when L = 3
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(b) Planned trajectory when L = 5
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(c) Planned trajectory when L = 8
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(d) Planned trajectory when L = 10

FIGURE 7.10: Comparative experiments of different L values.
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without considering the obstacle penalty term, there are 3 weights which need to be tuned care-

fully during implementation. Here the comparison experiments of the combinations of parame-

ters wj
X , wJ

u and wJ
f are presented in Table. 7.2.

TABLE 7.2: Different weight parameterisation methods in the objective function.

Parameters wJ
X wJ

u wJ
f

1 50 20 1
2 10 1 50
3 1 0.2 50

The results of the five different parameterisation methods are presented in Fig. 7.11 to Fig.

7.13. In each parameterisation method, the 1) the planned trajectory using the given weights up-to

the 30-th step, 2) the translation error εtand 3) the orientation error εr till step 30 are demonstrated

which are computed as below

εt =
√
(x− x́)2 + (y − ý)2

εr = |θ − θ́o|
(7.53)

where the groundtruth pose is denoted as ṕ =
[
x́, ý, θ́

]
and estimated pose is denoted as p =

[x, y, θ].

By examining and comparing the results of different combinations of wJ
X , wJ

u and wJ
f , the

following conclusions are drawn:

1. As Fig. 7.11 demonstrates, relying on either uncertainty term wJ
XcX

(
b
(
XΔ

k+L

))
and control

term wJ
ucu (ul:k+L−1) will not be able to generate reasonable planning trajectories and the

robot is driven around a fixed position. Meanwhile, the estimation error is limited in a

shorter range within 0.025m in translation and 0.012 rad which are significantly smaller

compared to other 2 parameterisation methods by focusing on the state uncertainty term.

Additionally, less control inputs will introduce less uncertainty and noises compared with

larger control inputs thus leading to better estimation results. However, the robot is not able

to cover features on the opposite side of the objects thus degenerating the

2. Fig. 7.12 shows good planning results which can cover most of the features on the objects.

However, by looking at the figures in detail, as the dashed red lines on Fig. 7.12(a) indicate,

the trajectory is composed from 3 line segments approximately. This is caused by the larger

weight on the control term.
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(a) Planned trajectory
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FIGURE 7.11: Experimental results of objective function parameterisation 1 in Ta-
ble. 7.2.
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(a) Planned trajectory
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(c) Orientation error

FIGURE 7.12: Experimental results of objective function parameterisation 2 in Ta-
ble. 7.2.
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(a) Planned trajectory
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FIGURE 7.13: Experimental results of objective function parameterisation 3 in Ta-
ble. 7.2.
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3. Fig. 7.13 shows a smoothed trajectory planned by 3rd combination of the weights. Under

this parameterisation, as illustrated in previous sections, larger weight is assigned to the

feature coverage term and the estimate uncertainty is the term with less priority. The control

consumption term is assigned with the smallest weight.

After the empirical comparison in this subsection, we use the weights in parameters 3 in Table.

7.2 in the later simulation experiments.

7.4.4 Case Study 1: Trajectory Planning in Another Scenario
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FIGURE 7.14: Simulation environment of scenario 2.

From Section. 7.4.2 and Section. 7.4.3, it has been shown that under environments of multiple

objects, our framework is able to provide reasonable results. This section presents a more chal-

lenging case as shown in Fig. 7.14. There are two circular objects existing in the environment with

different radius 0.6 m and 1 m located at [−1.5,−1] and [1.5, 1.5]. For small object 1, 24 features are

equally distributed from angle π to 2π and for larger object 2, 36 features are equally distributed

between angle 0.75π to 2π. At the beginning step, the robot is not able to observe object 2 and

hypothesis for object 2 has to be initialised during the planning phase after the features on object

2 are observed.
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Fig. 7.15 shows the planned trajectory under this scenario. Before the red, dashed line on the

trajectory, the robot covers most of the features on object 1. After acquiring features on object 2,

the robot starts covering and re-observing the features on object 2 by planning to the left side of

the object 2.
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FIGURE 7.15: Planned trajectory in the scenario 2.

Fig. 7.16 shows the estimate errors from the planned trajectory. Object 2 is observed from step

5 with larger uncertainty which is significant from the initialisation of object 1. However, after

observing more features from object 2, the estimate error is reduced gradually as expected.
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FIGURE 7.16: Estimation errors in the scenario 2.
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7.4.5 Case Study 2: Obstacle Avoidance and Occlusion Handling

The above sections successfully demonstrate the effectiveness of the proposed framework under

an environment which contains multiple objects, as shown in Fig. 7.8 and Fig. 7.14. With correct

parameterisations, as was discussed above, the planned trajectory can cover most of the features

on the objects while bounding the translation error and orientation error of the object within

limited ranges. This section validates the approach under more complex scenarios which includes

forbidden regions and occlusions.

At first, the simulation environment which only consists of a forbidden region drawn as the

gray rectangle and target objects is presented as shown in Fig. 7.17. The groundtruth poses of two

objects are [−1, 0, 0] and [1, 1, 0] and the radius of both objects are 0.6m. In the objective function, if

the robot pose falls into the circular areas located along the border of the obstacle, a large penalty

term will be added to the objective function, as illustrated in (7.46).
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FIGURE 7.17: Environment with known obstacles.

Fig. 7.18 shows the planned trajectory. As the result indicates, the trajectory perfectly avoids

the collision between the robot and the forbidden region and thus verifies the effectiveness of the

additional penalty term. Meanwhile, Fig. 7.19 also demonstrates that the estimate errors are also

limited within 0.12m and 0.03 rad.
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FIGURE 7.18: Planned trajectory in environment with known obstacles.

Except for the forbidden areas, in practical problems, obstacles may appear in the environment

which may introduce not only collisions but also unknown occlusions. Here, a simulation envi-

ronment in Fig. 7.20 is constructed where the gray rectangle denotes the forbidden region and the

purple circle represents an obstacle which introduces problems of both collision and occlusions.

Following Section. 7.3.3, here it is assumed that there is a limited area behind the captured

unknown area. Fig. 7.21 shows the understanding of the environment from the robot perspective

at the beginning step. The red stars show the observed features on the objects and the colour-

shaded lines on the purple circle denote the occlusion area given the current understanding of

the environment. During the planning phase, the occlusion due to the colour-shaded area will

reduce the number of observable features on the right region in the map. Please note that the

unknown obstacle is not modelled and there is no mapping thread existed in this work, the current

understanding of the unknown obstacles will only affect the prediction at the current step. In step

k, the planning for steps k+1 to k+L is only depending on the occlusion model which is captured

at step k and the previous knowledge of the obstacle is ignored.

Fig. 7.22 shows the planned trajectory in the simulation environment in Fig. 7.20. Similar to

Fig. 7.18, the trajectory avoids the possible obstacles; moreover, a significant difference is that,

due to the existence of the unknown obstacle (purple circle), the robot exploits the left region first
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(a) Translation error.
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(b) Orientation error.

FIGURE 7.19: Estimation errors in environment with a known obstacle.
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FIGURE 7.20: Environment with both known obstacles and unknown obstacles.

and then covers the right side. This representative trajectory demonstrates the effectiveness of

our approach. In addition, the estimation errors are also presented in Fig. 7.23.

7.4.6 Case Study 3: Hypothesis Changing During Planning

This subsection validates the proposed strategy in the scenario where object hypothesis is changed

during the planning phase which can happen when new features are observed, and the algorithm

discovers that the previous understanding of the object is wrong.
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FIGURE 7.21: Environment understanding at the beginning step.
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FIGURE 7.22: Planned trajectory in the environment with a forbidden region and
an obstacle.

The simulation scenario shown in Fig. 7.24 is explained as follows: the radius of the object is

equal to 1 m and located at [0, 0, 0]. The robot starts planning from pose
[
0,−3, π

2

]
. Object 1 has
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FIGURE 7.23: Estimation errors in the environment with a forbidden region and an
obstacle.

60 features uniformly distributed between angle π to 2.5π and object 2 has 60 features uniformly

distributed between angle 0.5π to 2π. The features between 1.25π and 1.75π are the same across

two objects shown as the green dots, and the other dots denote the different features. At the

beginning, the target object is recognised as object 1 and once the different features are associated,

the robot discovers that the target object is object 2 rather than object 1. The trajectory is re-

planned once the hypothesis is changed.

The planned trajectory is shown in Fig. 7.25. As the trajectory indicates, since the beginning

assumption is object 1 and there are more features on the right side, therefore, the robot planned

trajectory to the right side and executed. After the robot realises that the features on the right side

are from object 2, the object hypothesis is corrected, shown as the dashed red rectangle in Fig.

7.25, the planned trajectory is replanned to the left side and the robot seeks more features from

the left side to confirm object 2. Fig. 7.26 shows the translation error and orientation error of the

robot and the object up to step 20.

7.5 Conclusion

This chapter presents an active object detection and pose estimation algorithm in general belief

space. The proposed algorithm considers uncertainties introduced in both motion model and

observation model, and formulates the planning problem as an optimal control problem using

MPC. The objective function is designed delicately considering the feature coverage on the target

objects, the estimation uncertainty of objects and robots and control consumption. The feature
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(a) Object hypothesis 1.
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(b) Object hypothesis 2.

FIGURE 7.24: Similar object with different distributed feature.
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FIGURE 7.25: Planned trajectory in the environment where object hypothesis is
changed after observing new features.

association probability is modelled for simplicity using a Gaussian distribution to predict the fu-

ture observations. The proposed algorithm is able to re-plan the trajectory by computing the KL-

divergence between the prior belief and posterior belief. Several practical problems are addressed

such as object state (mean and covariance) initialisation, occlusion handling, collision avoidance
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FIGURE 7.26: Estimate error corresponding to the trajectory in Fig. 7.25.

and object hypothesis changing after updating from observations. Due to the lack of a mature

experiment platform and insufficient time, practical experiments is not added. However, through

comprehensive simulation experiments by taking different types of noises into consideration, the

effectiveness of the proposed algorithm has been verified.
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Chapter 8

Conclusion

This thesis investigates the problem of active object recognition and pose estimation. The tra-

ditional feature-based textured object detection and pose estimation methods are reviewed first.

Strategies to improve the effectiveness and efficiency of these feature-based texured object detec-

tion and pose estimation are developed using a modern RGB-D sensor. To detect objects under

severe illumination conditions, a novel RGB-D feature is proposed which is robust to illumina-

tion, viewpoint, scale and rotation variations and thus providing reliable feature matching results

even for less-textured objects. The proposed methods are implemented and validated for a robotic

perception module under a warehouse environment. Based on the proposed work in single-view

object detection and pose estimation, two types of active object detection and pose estimation

system are presented: 1) a model-driven next-best-view planning algorithm by exploiting the fea-

ture association probability which works effectively even with a naive greedy search planning

method; 2) an optimisation-based framework which computes the trajectory for future steps con-

sidering the motion and observation uncertainties.

In this chapter, the contributions in this thesis are restated, and the limitations and future

works are discussed.

8.1 Single-View Object Detection and Pose Estimation

Contributions

• In Chapter 3, a fast, robust and modular textured object detection and pose estimation

framework under a cluttered indoor environment is proposed by taking the advantages of a

novel RGB-D sensor specifically in feature correspondences clustering and pose estimation.

An outlier rejection algorithm is also presented using a relational graph constructed from
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3D-3D correspondences. Compared with the traditional RANSAC approach, the proposed

graph-based approach takes less time while achieving robust outlier rejection performances.

The framework also demonstrates reliable object detection and accurate pose estimation re-

sults.

• In Chapter 4, a novel RGB-D feature which is robust to illumination, viewpoint, scale and

rotation variations is proposed. Significance of designing the keypoint detector and fea-

ture descriptor simultaneously when building the proposed RGB-D feature is highlighted.

In RISAS, the geometric information provided from the depth channel of an RGB-D sen-

sor is combined with texture information. RISAS shows superior performance compared

with state-of-the-art 2D, 3D and RGB-D features, and is validated for object detection under

severe illumination environments.

• By combining the work in Chapter 3 with a kernel descriptor, a practical, effective and

efficient object detection and estimation framework under warehouse environments is pre-

sented. The target objects are categorised into different classes based on the rigidity, texture

information and the type of its package/surface. This compound robotic perception system

has been used by the collaborative team Z.U.N at the Amazon Picking Challenge 2015. This

perception system is able to detect the target object and provides the grasping region of a

candidate object.

Limitations and Future Work

The work in both Chapter. 3 and Chapter. 4 requires the target object to be information rich in

either appearance or geometry where the discriminative features can be extracted and matched.

Apart from this, the objects are required to be rigid. In comparison to the traditional feature-based

object detection methods, the work presented in this thesis has achieved significant performance

gains. However, deep learning based approaches achieve the state-of-the-art of object detection

performances in category-level object recognition. The following two key aspects can be further

investigated from the deep learning perspective

1. How to adopt state-of-the-art deep learning object detection approaches which is aimed

at category-level object detection such as R-CNN[57], You Only Look Once (YOLO[120])

and Single Shot Multibox Detector (SSD[94]) into instance-level object detection problem

for robotic perception?
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2. 6 DoFs pose estimation can be formulated as a least square optimisation problem trivially

using 2D-3D, 3D-3D or even 2D-2D correspondences in a feature-based object detection

framework. However, how to integrate the pose estimation problem within a deep learning

framework has not been explored as yet.

8.2 Active Object Detection and Pose Estimation

Contributions

• In Chapter. 6, a novel active object recognition and pose estimation system is introduced

using two types of object models: 1) a sparse feature model, augmented with the character-

istics of features when observed from different viewpoints and 2) a dense point cloud model

which facilitates storing geometry. This dual model strategy makes it possible to accurately

predict the expected information available during the Next-Best-View planning process as

both the visibility as well as the likelihood of feature matching can be considered simulta-

neously. Another parameter to differentiate objects with similar appearances is attached to

each feature which denotes its uniqueness across all modelled objects. The proposed strat-

egy can identify the discriminative features of each object easily and guides the sensor to the

viewpoints which can differentiate the target objects unambiguously. The effectiveness of

the proposed active object detection and pose estimation framework is demonstrated using

an RGB-D sensor.

• In order to incorporate motion and observation uncertainties into the active object detection

and pose estimation, Chapter. 7 presents another active perception framework formulated

using planning under uncertainty. By carefully designing the objective function consid-

ering the estimation uncertainty, feature coverage and control consumption, the proposed

framework is able to achieve optimised control sequence for a desired trajectory. In Chap-

ter. 7, various issues are addressed such as the object pose and covariance initialisation,

initial guess for control optimisation, obstacle avoidance and occlusion handling and online

re-planning. By conducting simulation experiments thoroughly, the effectiveness of the pro-

posed framework is validated. This proposed framework has the potential to be extended

for solving the active SLAM problem.
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Limitations and Future Work

• In Chapter. 6, the key contribution is to model the feature association capability under dif-

ferent variations such as scale and viewpoint. This helps to lead to more accurate prediction

in future observation under a selected viewpoint. It will be beneficial to model the im-

pact of additional conditions such as illumination and rotation to enhance the accuracy of

these predictions. We would also like to combine a more advanced planner with the current

framework and validate its effectiveness. Lastly, in recent years the conventional feature-

based object recognition methods such as [31] have been surpassed by superior model-based

approaches using more advanced computer vision techniques such as deep learning. In re-

cent work[111, 11], a model which describes the object detection confidence under different

viewpoints is built by collecting a large amount of data with careful training. How to inte-

grate such approaches with strategies developed in this thesis will be a beneficial direction.

• In the planning framework presented in Chapter. 7, it is possible to add a complementary

mapping thread which can work in parallel with the current framework. In the proposed

system, even though the obstacles can be handled correctly, they are not modelled explicitly,

and only the current understanding of the obstacles is used to predict the future observation.

However, modelling the obstacle will provide more information about the environment and

enable more accurate prediction of the future observation thus planning a better robot trajec-

tory. From a theoretical perspective, current probabilistic feature association modelling can

be further improved by training with more data. Besides, work has already been started

to replace the current state representation using Lie group which enables more accurate

state propagation. Implementing active object detection and pose estimation strategies on

a mobile manipulator such as Fetch robot is an important avenue to demonstrate the effec-

tiveness of the proposed algorithms.

• In Part 2 of the thesis, some of the contributions presented in Part 1 are not implemented.

The proposed RGB-D feature has not been validated in active object detection and pose

estimation frameworks even though there is no difficulties to integrate RISAS into pro-

posed algorithms theoretically. However, this remains to be a future work of the thesis.

On the other hand, it also will be beneficial to improve the object detection and pose estima-

tion performance in warehouse environments if active perception strategies are employed.
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Strengthening the connection between single view perception algorithms and active percep-

tion algorithms introduced in this thesis will be the key goal of the future work.
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Appendix A

Proofs in Chapter. 7

A.1 Linearisation of (7.14)

In the end of (7.14), we obtain:

argmin
Xk+l

∥∥Xk −XΔ
k

∥∥2
Ik

+
l∑

i=1

‖Xk+i − g (Xk+i−1, uk+i−1)‖2Iη +

l∑
i=1

ni∑
j=1

∥∥zk+i,j − h
(
Xk+i, f

o
j

)∥∥2
Īi,jξ

(A.1)

Now the following shows the conversion from (7.14) to error state representation (7.15). At time

step k, it is trivial to have:

‖Xk −XΔ
k ‖2Ik = ‖ΔXk‖2Ik (A.2)
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For the second term:

l∑
i=1

‖Xk+i − F (Xk+i−1, uk+i−1)‖2Iη

=
l∑

i=1

∥∥Xk+i − X̄k+i + X̄k+i − F (Xk+i−1, uk+i−1)
∥∥2
Iη

=
l∑

i=1

∥∥ΔXk+i + X̄k+i − F (Xk+i−1, uk+i−1)
∥∥2
Iη

=
l∑

i=1

∥∥ΔXk+i + F
(
X̄k+i−1, uk+i−1

)− F (Xk+i−1, uk+i−1) + X̄k+i − F
(
X̄k+i−1, uk+i−1

)∥∥2
Iη

=
l∑

i=1

∥∥∥∥ΔXk+i − ∂F

∂Xk+i−1
ΔXk+i−1 + X̄k+i − F

(
X̄k+i−1, uk+i−1

)∥∥∥∥2
Iη

=
l∑

i=1

||ΔXk+i − ∂F

∂Xk+i−1
ΔXk+i−1||2Iη

(A.3)

where X̄k+i = F
(
X̄k+i−1, uk+i−1

)
according to 7.16. The similar method is adopted for the last

term:

l∑
i=1

ni∑
j=1

∥∥zk+i,j − h
(
Xk+i, f

o
j

)∥∥2
Īi,jξ

=
l∑

i=1

ni∑
j=1

∥∥zk+i,j − h
(
X̄k+i, f

o
j

)
+ h
(
X̄k+i, f

o
j

)− h
(
Xk+i, f

o
j

)∥∥2
Īi,jξ

=
l∑

i=1

ni∑
j=1

∥∥∥∥ ∂hj

∂Xk+i
ΔXk+i − bhi,j(zk+i,j)

∥∥∥∥2
Īijξ

(A.4)

where bhi,j (zk+i,j) = h
(
Xk+i, f

o
j

)− h
(
X̄k+i, f

o
j

)
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A.2 Quadratic Form Representation

In order to obtain the quadratic representation from (7.15), the following two equation need to

used

Given x,y ||x||2Ix + ||y||2Iy =

∥∥∥∥∥∥∥
⎛
⎜⎝ x

y

⎞
⎟⎠
∥∥∥∥∥∥∥
2

⎛
⎝ Ix 0

0 Iy

⎞
⎠

n∑
j

‖Ajx− bj‖2Ij = ‖Ax− b‖2⎛
⎜⎜⎜⎝

I1

. . .

In

⎞
⎟⎟⎟⎠

(A.5)

Starting from the first term in (7.15)

‖ΔXk‖2Ik = (ΔXk)
ᵀIkΔXk

= (ΔXk)
ᵀI1/2k I

1/2
k ΔXk

= (I
1/2
k ΔXk)

2

For the second term, the motion model related term, we have:

l∑
i=1

‖ΔXk+i − F′ΔXk+i−1‖2Iη =
l∑

i=1

∥∥∥I1/2η ΔXk+i − I1/2η F′ΔXk+i−1

∥∥∥
= GΔX

where F′
i is the short for ∂F

∂Xk+i−1
and G is

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · −I
1/2
η F1 I

1/2
η 0 · · · 0 0

0 · · · · · · 0 −I
1/2
η F2 I

1/2
η · · · 0 0

...
...

...
... 0

. . . . . . 0 0

...
...

...
... 0 0

. . . . . . 0

0 · · · · · · 0 0 0 0 −I
1/2
η Fl−1 I

1/2
η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.6)
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and ΔX is

l∑
i=1

ni∑
j=1

∥∥h′
jΔXk+i − bhi,j(zk+i,j)

∥∥2
Īijξ

=
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(A.7)

where

H̃i =
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and βh
i =

⎡
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(A.8)

From eq. A.5, we can stack H̃i and βh
i from step k + 1 to step k + l to obtain H̃ and βh. Finally, in

quadratic form eq. 7.17, we have:

Ak+l =

⎡
⎢⎢⎢⎢⎣

[
I
1/2
k 0

]
G
H̃

⎤
⎥⎥⎥⎥⎦ and Bk+l =

⎡
⎢⎢⎢⎢⎣

0

0

βh

⎤
⎥⎥⎥⎥⎦ (A.9)
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