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Abstract

The auditory system constitutes a significant perceptual input for humans and animals.

While it is legitimate to say that it ranks behind other senses such as vision or haptics

whose understanding has experienced significant advances in the context of computational

intelligence and robotics, it is intuitive to assume that service and field robotic systems

working closely with humans would benefit from incorporating compelling sound analysis

capabilities in the pursuit of accomplishing human-robot collaborative tasks. Within the

broad area of robotic audition, one of the most relevant research topics has been identifying

and locating multiple sound sources that may be present in the vicinity of the robot at

an instant in time. Robotic systems equipped with such ability would gain the faculty to

better monitor acoustic events such as a conversation, a ringing alarm or a call for help,

for example in a search and rescue scenario, effectively responding to people’s needs in

a more natural way. Mapping stationary sound sources using a robot equipped with an

on-board microphone array is thus the main focus of this thesis.

The first important problem faced when mapping sound sources is the calibration of the au-

ditory sensing unit, which in the scope of robot audition is almost invariably a multichannel

microphone array. There are two distinctive cases depending on whether the microphone

array is hardware-synchronised or not. If it is, calibration reduces to attaining an accu-

rate estimate of the array geometry of all microphones, whereas for asynchronous arrays a

resolution for starting time offsets and clock differences (drift rates) between the various

microphones is also required. A novel methodology is hereby proposed using a graph-

based Gauss-Newton least square optimisation technique borrowed from the simultaneous

localisation and mapping (SLAM) literature. The proposed method starts investigating

the calibration problem of a 2D/3D microphone array, and extends the method to the

more challenging linear microphone array case.

Having attained a calibrated microphone array, two distinctive contributions are made

within the context of a SLAM-based framework to jointly estimate robot poses, positions of
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surrounding sound sources and other likely exteroceptive landmarks (e.g. visual features)

in 2D/3D scenarios. Solving the SLAM problem purely based on sparse sound observations

is quite difficult and often impossible when the number of sound sources is low. The key

singularity is whether sound source mapping is carried out with a 2D/3D microphone array,

or a linear array. The proposed method invariably adopts a least square optimisation in

the form of graph SLAM to jointly optimise the state. This represents an improvement

over the conventional work found in the literature in that trajectory estimation and sound

source mapping are regarded as uncorrelated, i.e. an update on the robot trajectory does

not propagate to the mapping of the sound sources.

While the proposed method is readily able to solve the 2D/3D sound source mapping prob-

lem itself, for the case of 2D/3D microphone array geometries, an additional improvement

in efficiency is suggested by exploiting the conditional independence property between two

maps estimated by two different SLAM algorithms running in parallel. In adopting this

approach, the first map has the flexibility that can be built with any SLAM algorithm

(filtering or optimisation) of choice to estimate robot poses with an exteroceptive sensor.

The second map can then be estimated by using a filtering-based SLAM algorithm with

all the stationary sound sources parametrised with Inverse Depth Parametrisation (IDP).

Compared to the joint optimisation approach, the improved method is able to save compu-

tational cost as the filtering technique is used for the sound source map. Robot locations

used during IDP initialisation become the common features shared between the two SLAM

maps, which allow to propagate information accordingly. The improved method achieves

similar accuracy in mapping sound source when compared to the full joint optimisation

approach, while incurring less computational expense and adding significant flexibility in

building the localisation map.

The proposed method of mapping sound sources using a 2D/3D microphone array cannot

be readily applied to linear microphone arrays given the peculiarity of their sensor observa-

tion model, a considerable challenge when initialising a sound source: a linear microphone

array can only provide 1 Degree Of Freedom (DOF) observations. Hence, multi-hypotheses

tracking combined with a novel sound source parametrisation is proposed in this work to

suggest a fitting initial guess for the sound source. Subsequently, a similar graph-based

SLAM joint optimisation strategy as that employed for the 2D/3D case can be carried out
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to estimate the full 6 DoF robot/sensor poses, 3 DOF landmarks (e.g. visual) and the

location of the sound sources. Additionally, a dedicated sensor model is also proposed to

more accurately model the noise embedded in the Direction of Arrival (DOA) observation

for the specific case of using a linear microphone array. Ultimately, the proposed method

provides a generic approach for mapping sound sources in 3D using a linear microphone

array with the aid of additional exteroceptive sensing to overcome the prevailing sparsity

of sound observations.



Acknowledgements

I would like to take the opportunity to express my gratitude to all the people who have

offered me help and support during the past three and a half years of my candidature.

First of all, I would like to give my sincere thanks to my supervisors A/Prof. Jaime Valls

Miro and Dr. Teresa Vidal Calleja for their guidance, inspiration, numerous hours of

discussion and the opportunities they have presented to me. From them I learned not only

the scientific knowledge and technical skills but also the research methodology, which will

benefit me throughout my career. The doors to their offices are always open whenever I

run into a trouble spot or have a question about my research or writing. They consistently

steer me in the right the direction whenever I need it.

I would also like to thank Dr. Keisuke Nakamura and Prof. Kazuhiro Nakadai for their

inspiration, continuous support and direct contributions to my research during and after

my internship in Honda Research Institute, Japan (HRI-JP). Also I thank my colleges and

friends Dr. Randy Gomez, Dr. Anupam Gupta, Mr. Borui Shen and Mr. Severin Bahman

for making my internship experience in Japan fruitful and enjoyable.

I am also grateful to A/Prof. Yong Liu, Mr. Jinhong Xu and Ms. Mengmeng Wang

for their guidance and help during the work on our collaborative project in both the

institute of Cyber-Systems and Control (CSC), Zhejiang University (ZJU) and the Centre

for Autonomous Systems (CAS), University of Technology, Sydney (UTS).

I also want to thank A/Prof. Shoudong Huang for organizing weekly SLAM meeting. It

really helps me to understand the current state-of-the-art techniques related to SLAM,

which is very important in my own research.

Many thanks go to Dr. Leo Shi, Dr. Nalika Ulapane, Dr. Buddhi Wijerathna, Mr.

Raphael Falque, Mr. Freek De Bruijin, Mrs. Liye Sun, Mr. Maani Ghaffari jadidi, Mr.

Kasra Khosoussi, Mr. Kanzhi Wu, Mr. Teng Zhang and many other colleagues from

CAS, UTS. I thank my fellow labmates for the stimulating discussions and for all the

fun we have had in the last four years, as well as their hands-on help on setting up the

experimental environment to collect and process data; Many thanks to Ms. Camie Jiang

and Ms. Katherine Waldron for their help on administrative work. Additional thanks go to

my parents and friends, who are always proud of me for my achievements, and supported

and cared for me throughout these years. Special thanks to my girlfriend Ms. Rina Dao

for her peaceful love and continuous support.

viii



ix

Finally, I extend my gratitude to UTS, Faculty of Engineering and Information Technology

(FEIT) and Sydney Water (SW) for the exemption of my tuition fee and assisting with

my general living costs through the IRS scholarship and FEIT faculty scholarship; and to

the CAS and the FEIT for sponsoring me in attending international conferences.





Contents

Declaration of Authorship iii

Abstract v

Acknowledgements viii

List of Figures xv

List of Tables xix

Acronyms & Abbreviations xxi

Nomenclature xxiii

1 Introduction 1

1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Calibration of a Hardware-Synchronised/Asynchronous Microphone
Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 Sound Source Mapping by a Robot Embedded Microphone Array . . 10

1.1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Directly Related Publications . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Review of Related Work 19

2.1 Sound Source Bearing Estimation using A Microphone Array . . . . . . . . 19

2.1.1 Microphone Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Sound Sources Bearing Estimation . . . . . . . . . . . . . . . . . . . 23

2.1.2.1 MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2.2 SRP-PHAT . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2.3 ESPRIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Simultaneous Localisation and Mapping . . . . . . . . . . . . . . . . . . . . 32

2.2.1 EKF SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



Contents xii

2.2.2 Graph Based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 SLAM Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.4 Monocular Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.5 Stereo Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.6 RGB-D Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.7 2D/3D Lidar based SLAM . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.8 Visual Inertial SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Sound Source Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Robotic Sound Source Mapping with a Microphone Array Only . . . 44

2.3.1.1 Sound Source Mapping by Self-Motion Triangulation . . . 44

2.3.1.2 Sound Source Mapping using FastSLAM . . . . . . . . . . 46

2.3.1.3 Sound Source Mapping using Unscented Kalman Filter
(UKF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1.4 Sound Source Mapping using Single-Cluster Probability
Hypothesis Density filter . . . . . . . . . . . . . . . . . . . 48

2.3.2 Robotic Sound Source Mapping with an Additional Exteroceptive
Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2.1 Sound Source Mapping using Ray Tracing Method . . . . . 49

2.3.2.2 Sound Source Mapping using Auditory Evidence Grid Method 52

3 Calibration of a Microphone Array 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Calibration of a 2D Asynchronous Microphone Array . . . . . . . . . . . . . 57

3.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Graph-Based Optimisation . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Calibration of a 3D Asynchronous Microphone Array . . . . . . . . . . . . . 64

3.4 Calibration of an Asynchronous Linear Microphone Array . . . . . . . . . . 67

3.4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Error Functions and Their Jacobians . . . . . . . . . . . . . . . . . . 70

3.5 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Application Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.2 Initialisation and Termination Conditions . . . . . . . . . . . . . . . 71

3.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.3.1 Simulation Results of 2D Microphone Arrays . . . . . . . . 72

3.5.3.2 Simulation Results of 3D Microphone Arrays . . . . . . . . 74

3.5.3.3 Simulations of Calibration of 2D and 3D Asynchronous
Microphone Arrays without Estimating Clock Difference . 78

3.5.3.4 Simulations of Calibration of an Asynchronous Linear Mi-
crophone Array . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5.4.1 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.4.2 Experimental Results of a 2D Microphone Array . . . . . . 87

3.5.4.3 Experiment of Calibration of an Asynchronous Linear Mi-
crophone Array . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



Contents xiii

4 Sound Source Mapping using a 2D/3D Microphone Array 93

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Sound Source Mapping using a Least Squares Optimisation based SLAM
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Sound Source Mapping by CI Submap Joining using a 2D/3D Microphone
Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Structure of the Split CI Maps . . . . . . . . . . . . . . . . . . . . . 98

4.3.2 The Localisation Map . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.3 The Sound Source Map . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.4 Correlation Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . 106

4.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.1.1 Sound Source Mapping with only Odometry Information . 106

4.4.1.2 Sound Source Mapping by a Least Squares Optimisation
based SLAM Framework with Odometer and Range-Bearing
Observations of Environment Landmarks . . . . . . . . . . 107

4.4.1.3 Sound Source Mapping by CI Submap Joining Method
with Odometer and Range-Bearing Observations of Envi-
ronment Landmarks . . . . . . . . . . . . . . . . . . . . . . 109

4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.2.1 2D Sound Source Mapping by a Mobile Robot with a Mi-
crophone Array and a Laser Scanner . . . . . . . . . . . . . 116

4.4.2.2 3D Sound Source Mapping using a Hand Held PS3-eye
(Monocular Camera with a Linear Microphone Array) . . . 117

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Sound Source Mapping using a Linear Microphone Array 123

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Gaussian Processes to Model Linear Microphone Arrays Sensors . . . . . . 125

5.3 Initialisation of Sound Source using Multi Hypotheses . . . . . . . . . . . . 128

5.4 Joint Optimisation of Sensor Poses, Visual Landmarks and Sound Sources
Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . 136

5.5.1 Simulations of Sound Source Mapping with a Linear Microphone Array136

5.5.2 Experiments of Sound Source Mapping with a Linear Microphone
Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Conclusion 147

6.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2 Potential Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendices 151



Contents xiv

Bibliography 151



List of Figures

1.1 Asimo robot localises, separates and recognises simultaneous speech signals
from three persons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 NAO robot focuses its attention on the person who is speaking. . . . . . . . 3

1.3 Robot operating in an area full of smoke. . . . . . . . . . . . . . . . . . . . 4

1.4 Separation of four simultaneous speech. . . . . . . . . . . . . . . . . . . . . 5

1.5 Pepper robot communication with customers with its ASR module. . . . . . 6

1.6 The structure of the thesis. Solid orange color blocks represent key contri-
butions of the thesis, and orange edge color blocks represent other minor
contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 A typical microphone array structure and multi-channel ADC board for the
sound source bearing estimation. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 4-channel microphone array on Kinect 360. . . . . . . . . . . . . . . . . . . 20

2.2 4-channel microphone array on Kinect One. . . . . . . . . . . . . . . . . . . 20

2.3 4-channel microphone array on PS3 eye. . . . . . . . . . . . . . . . . . . . . 20

2.4 4-channel microphone array on PS4 eye. . . . . . . . . . . . . . . . . . . . . 21

2.5 A circular microphone array [1]. . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 A concentric microphone array in [2]. . . . . . . . . . . . . . . . . . . . . . . 22

2.7 A large scale 2D microphone array [3]. . . . . . . . . . . . . . . . . . . . . . 22

2.8 A 3D microphone array in [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 A 3D microphone array in [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Bayesian Network for EKF SLAM [6]. . . . . . . . . . . . . . . . . . . . . . 34

2.11 Aspects of an edge connecting the vertex xi and the vertex xi [7]. . . . . . . 37

2.12 ORBSLAM2 with stereo input: Trajectory and sparse reconstruction of an
urban environment with multiple loop closures [8]. . . . . . . . . . . . . . . 41

2.13 ORBSLAM2 with RGB-D input: Keyframes and dense pointcloud of a room
scene with one loop closure [8]. . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.14 LOAM results of mapping university campus [9]. . . . . . . . . . . . . . . . 43

2.15 Experimental setup of the self-motion triangulation method in [2]. . . . . . 45

2.16 Experimental result of the self-motion triangulation method in [2]. . . . . . 45

2.17 Experimental setup of the FastSLAM method in [4]. . . . . . . . . . . . . . 46

2.18 Experimental result of the FastSLAM method in [4]. . . . . . . . . . . . . . 47

2.19 Experimental result of the FastSLAM method in [4]. . . . . . . . . . . . . . 48

2.20 Experimental result of the Single-Cluster Probability Hypothesis Density
filter method in [125]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xv



List of Figures xvi

2.21 Experimental setup of the ray tracing method in [10]. . . . . . . . . . . . . 50

2.22 Experimental result of the ray tracing method in [10]. . . . . . . . . . . . . 50

2.23 Experimental setup of the 3D ray tracing method in [11]. . . . . . . . . . . 51

2.24 Experimental result of the 3D ray tracing method in [11]. . . . . . . . . . . 51

2.25 Experimental result of the auditory occupancy grid method in [12]. . . . . . 52

3.1 Experimental setup for testing clock differences. . . . . . . . . . . . . . . . . 54

3.2 Detected differences of peak arrival time. . . . . . . . . . . . . . . . . . . . 56

3.3 Description of the poses, landmarks and constraints in the SLAM framework. 59

3.4 Description of the poses, landmarks and constraints. . . . . . . . . . . . . . 68

3.5 Initialisation and final estimation results for a 3× 3 array. . . . . . . . . . . 74

3.6 Final estimation results for a 3× 3 array. . . . . . . . . . . . . . . . . . . . 75

3.7 Estimation results of 3× 2 and 4× 4 arrays. . . . . . . . . . . . . . . . . . . 76

3.8 Estimation results of various number of sound source positions. . . . . . . . 77

3.9 Initialisation and final estimation results for a 3× 3× 2 array. . . . . . . . . 79

3.10 Final estimation results for a 3× 3× 2 array. . . . . . . . . . . . . . . . . . 80

3.11 Initialisation and final estimation results for a 3× 3× 2 array. . . . . . . . . 81

3.12 Final estimation results for a 3× 3× 2 array. . . . . . . . . . . . . . . . . . 82

3.13 Calibration of 2D and 3D microphone arrays diverges when ignoring the
clock difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.14 Simulation results compared to the ground truth values. . . . . . . . . . . 84

3.15 Mean RMS error w.r.t. number of calibration data. . . . . . . . . . . . . . . 85

3.16 Experimental setup of the asynchronous microphone array. Each channel
of the array is sampled independently using individual USB sound cards. . . 85

3.17 Pre signal processing and detection of signal arrival (plot below) for raw
audio data (plot above). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.18 Experiments results of a 2× 3 array. . . . . . . . . . . . . . . . . . . . . . . 88

3.19 Experimental results of a 2× 3 array. . . . . . . . . . . . . . . . . . . . . . . 89

3.20 Experimental setup of the asynchronous microphone array. . . . . . . . . . 90

3.21 DOA estimation results after the calibration. . . . . . . . . . . . . . . . . . 90

4.1 Bayesian network that describes probabilistic dependency between two CI
maps. Map 1 represents the localisation map which estimates the robot
pose and landmarks locations of the exteroceptive sensor, whereas map 2
represents the sound map which estimates locations of sound sources. . . . 99

4.2 Modified Bayesian network that describes probabilistic dependency between
SLAM variables in two maps. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 EKF parametrised by IDP with highly accurate odometry information. . . . 108

4.4 Least square optimisation with highly accurate odometry information. . . . 109

4.5 RMS errors and convergence rates under different odometry noise. . . . . . 110

4.6 2D sound source mapping by the least square optimisation based SLAM
framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 3D sound source mapping by the least square optimisation based SLAM
framework. Initialisation of the system. . . . . . . . . . . . . . . . . . . . . 112



List of Figures xvii

4.8 3D sound source mapping by the least square optimisation based SLAM
framework. Final estimation results. . . . . . . . . . . . . . . . . . . . . . . 113

4.9 sound source mapping with additional range-bearing observations before
loop closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.10 sound source mapping with additional range-bearing observations after loop
closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.11 Mean RMS errors with STD of 10 Monte Carlo runs under various length
of robot trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.12 Turtelbot equipped with a laser scanner and a Microcone (circular micro-
phone array). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.13 2D sound source mapping results using a mobile with laser scanner. . . . . 117

4.14 PS3-eye configuration (a) and experimental setup (b). . . . . . . . . . . . . 119

4.15 Sound landmark initialisation with IDP parametrisation in 3D sound source
mapping using a hand hold PS3-eye experiment (monocular camera with
linear microphone array). The green ellipses represent the one sigma un-
certainty region of the sound source locations along X, Y and Z axes. The
uncertainty is higher along the elevation angle and the depth from the sensor
since these two parameters are unobservable during initialisation. . . . . . . 119

4.16 3D sound source mapping results using a hand hold PS3-eye (monocular
camera with linear microphone array). . . . . . . . . . . . . . . . . . . . . . 120

5.1 Typical robotic sensors that include a linear microphone array. . . . . . . . 124

5.2 Linear microphone array notation and parametrisation of a 3D sound source
location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Intersection of two 3D bearings (a) and cone surfaces (b). . . . . . . . . . . 129

5.4 Multi hypotheses using (a) Euclidean (c) IDP and (b),(d) the proposed
parametrisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 Initialisation of multi hypotheses. When the sensor first observes the sound
source around 0 degree DOA angle, the cone surface approximates a plane
and 10 hypotheses are uniformly distributed along the cone surface. . . . . 139

5.6 Final result of joint optimisation. . . . . . . . . . . . . . . . . . . . . . . . . 140

5.7 Final result of joint optimisation in the second trajectory. . . . . . . . . . . 141

5.8 Mean convergence rate and RMS error over 20 Monte Carlo runs under
various number of hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.9 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.10 Mapping of two sound sources using Kinect (RGBD sensor) and PS3 Eye
(monocular camera). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.11 sound source mapping result in a computer lab. . . . . . . . . . . . . . . . . 145





List of Tables

3.1 Parameters setting in simulation . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 RMS errors over 10-run Monte Carlo simulations . . . . . . . . . . . . . . . 73

3.3 RMS errors over 10-run Monte Carlo simulations . . . . . . . . . . . . . . . 78

3.4 Parameters setting in simulation . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Experimental set-up parameters . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Parameters setting in experiment . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 Parameters in simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Parameters in simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xix





Acronyms & Abbreviations

1D, 2D, and 3D 1 Dimensional, 2 Dimensional, and 3 Dimensional

ADC Analogue-to-Digital Converter

ASR Automatic Speech Recognition

CAS Centre for Autonomous Systems

CI Conditional Independent

DSBF Delay and Sum Beam Forming

DOA Direction of Arrival

DOF Degrees of Freedom

FBS Frequency Band Selection

GCC-PHAT Generalised Cross-Correlation Phase Transform

GP Gaussian Process

HRI Human robot interactions

IDP Inverse Depth Parametrisation

ML Maximum-Likelihood

MUSIC MUltiple SIgnal Classification

PHAT Phase Transform

RANSAC Random Sample Consensus

RMS root mean square

SLAM Simultaneous Localisation and Mapping

SRP Steered Response Power

SRP-PHAT Steered Response Power with Phase Transform

STD Standard Deviation

TDOA Time Difference of Arrival

xxi



Acronyms & Abbreviations xxii

TOF Time of flights

UKF Unscented Kalman Filter

USAR Urban Search and Rescue

USB Universal Serial Bus

UTS University of Technology, Sydney



Nomenclature

General Notations

bel(xt) The belief of the current state vector of the EKF SLAM system after

prediction step.

bel(xt) The belief of the current state vector of the EKF SLAM system after

update step.

cs The speed of sound.

dmic
n The distance between the nth microphone to the origin of the micro-

phone array coordinate.

di,k The distance between the ith microphone and the sound source at

time instance k.

dk The distance from the sound source position at the kth time instance

to the origin of the global coordinate frame.

dm,i
k The chi-square distance of the ith hypothesis of themth sound source

for a linear array.

ep−p
k−1,k The error related to the position-position constraint between the

sound source at time instance k − 1 and k.

ep−l
k The error related to TDOA observation of microphone array, repre-

sented as the position-landmark constraint in graph based optimisa-

tion, when the sound source is at time instance k.

e(xi,xj , zij) The error between the node i and the node j in graph based SLAM,

which represents a difference between the expected observation ẑij
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F(x) The negative log likelihood of all the observations in the graph SLAM

least square optimisation.

g(ut,xt−1) The robot motion model of EKF SLAM system.

Gt The Jacobian of robot motion model g(ut,xt−1).

h(x̄t) Observation function of the SLAM system.

hs(xs
t ) Observation function in the EKF SLAM based sound map.

Ht The Jacobian of observation function h(x̄t).

Hs
t The Jacobian of hs(xs

t ).

H The information matrix of the system in the graph SLAM.

Ip−p
k−1,k The information matrix corresponds to the zp−p

k−1,k.

Ip−l
k The information matrix corresponds to the zp−l

k .

Kt Kalman gain in the EKF SLAM system.

Ks
t Kalman gain in the EKF SLAM based sound map.

K(•) The pre-defined Kernel function of Gaussian Process.

Ldm,i
k The linearity index of the ith hypothesis of the mth sound source for

a linear array.

m the map of the environment.

M() The function computing the homogeneous transformation matrix of

the a pose.

nmic Zero-mean Gaussian noise added to each channel of the microphone

array with covariance σmic2I.

p(xRt ,m|z1:t, u1:t)The posterior probability over the robot momentary pose along with

the map.

pk The position of the sound source at time instance k.

pm The Euclidean coordinates of the mth sound source.

pm,i
l,k The Euclidean coordinate of the mth sound source in ith hypothesis

under sensor local coordinate at time instance k.

pj,i The local coordinate of the jth sound source in the ith key frame’s

reference frame.
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pm
k The local coordinate of the sound source pm in the reference coordi-

nate frame of the sensor/robot pose xr,k.

PMUSIC(φ) Pseudo-spectrum of MUSIC algorithm corresponds to angle φ.

P (xsrp) SPR-PHAT power of a given candidate point xsrp.

P ′(xsrp) Simplified computation of the SPR-PHAT power of a given candidate

point xsrp.

Pt The covariance matrix corresponding to the system state vector of

EKF SLAM system at time instance t.

P̂t The covariance matrix corresponding to the system state vector of

EKF SLAM system after the prediction step at time instance t.

P s
t Covariance matrix at time instance t in the EKF SLAM based sound

map.

PCs Covariance matrix related to xCs .

PS Covariance matrix related to xS .

PCS Cross correlation terms of xCs and xS .

PSC Cross correlation terms of xS and xCs .

PCa Covariance matrix related to xCa .

PA Covariance matrix related to xA.

PCA Cross correlation terms of xCa and xA.

PAC Cross correlation terms of xA and xCa .

P̌ a Covariance matrix of the rearranged state vector of the sound map.

P̌ a Covariance matrix of the rearranged state vector of the localisation

map.

P b
S Covariance matrix of state vector of the sound map after back prop-

agation process.

Pm,i
ss The covariance matrix associated to sm,i.

qmic
m One of the eigenvectors of Rmic

s corresponding to the zero eigenvalue.

Qt The observation noise variance of the SLAM system.

Qs
t Noise level of observation in the EKF SLAM based sound map.

Qmic
n Matrix of eigenvectors qmic

m corresponds to the noise. The noise

subspace of Qmic.
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Qmic
s Matrix of eigenvectors qmic

m corresponds to the signal. The signal

subspace of Qmic.

Qmic Matrix of eigenvectors of correlation matrix Rmic.

Rt The robot motion noise variance.

Rmic The correlation matrix of xmic.

Rmic
s Signal covariance matrix of xmic.

smic(φm) The steering vector of the signal and φm is its direction.

sm The proposed novel parametrisation of the mth sound source state

for a linear array.

sm,i The state of the mth sound source in ith hypothesis with the pro-

posed novel parametrisation for a linear array.

Smic Matrix form of steering vectors of the microphone array audio signal

xmic.

ut Control input to the robot at time instance t.

vnv The location of the nvth visual landmark.

xsrp Candidature point or direction for SRP-PHAT value computation.

xsrps The location estimation for a single sound source using SRP-PHAT

algorithm.

xmic The raw received signal of mixture of M sources at each channel of

the microphone array.

xr,t The sensor/robot pose at time t.

xt The state vector of the SLAM system at time instance t.

x̄t The system state vector of EKF SLAM system after the prediction

step at time instance t.

x∗ The best configuration of the nodes, the state vector, in the graph

SLAM system.

xmic The state of the microphone array.

xmic n The state of the nth microphone.

xs
lm(i) The state of the ith sound source using IDP parametrisation.

xs State vector of the sound map.

xr State of the current robot pose.
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xs
t State vector of sound map at time instance t.

xs
r(ns) The past robot pose used to initialise the nsth sound source.

xa
lm(n) State of the nth landmark observed by the additional sensor.

xCa Part of state vector in localisation map that are shared by both

localisation and sound maps.

xA Part of state vector in localisation map that are conditionally inde-

pendent from the sound source map.

xCs Part of state vector in sound map that are shared by both localisation

and sound maps.

xS Part of state vector in sound map that are conditionally independent

from the localisation source map.

x̌a Rearranged state vector of the sound map.

x̌a Rearranged state vector of the localisation map.

xb
S State vector of the sound map after back propagation process.

xr,k The sensor/robot pose at time instance k.

xm
ss,axis The anchor axis of the mth sound source location. The state repre-

senting the position and direction of the Y axis of the sensor local

coordinate.

x
nkf

kf The pose of the nkf th key frame.

x The full state vector of the SLAM system.

Xk(ω) Audio signal at channel k in frequency domain.

X̄l(ω) The complex conjugate of the audio signal at channel l in frequency

domain.

zt The robot measurement of the environment at time instance t.

zan Observation of nth landmark using an additional sensor.

zsn Observation of nth sound landmark by the microphone array.

zst The observed sound source bearing in the EKF SLAM based sound

map.

zij The mean of a virtual measurement between the node i and the node

j in graph based SLAM.



Nomenclature xxviii

ẑij(xi,xj) The prediction of a virtual measurement between the node i and the

node j in graph based SLAM.

zp−p
k−1,k The observation of the position-position constraint between the

sound source at time instance k − 1 and k.

ẑp−p
k−1,k The observation of the position-position constraint between the

sound source at time instance k − 1 and k.

zp−l
k The TDOA observation of microphone array, represented as the

position-landmark constraint in graph based optimisation, when the

sound source is at time instance k.

ẑp−l
k The expected TDOA observation of microphone array, represented as

the position-landmark constraint in graph based optimisation, when

the sound source is at time instance k.

αm Complementary angle of βm, the DOA angle of themth sound source.

βk The DOA angle of the sound source at time instance k for the cali-

bration of a linear array.

βm DOA angle of the mth sound source.

β̂m,DOA
k The estimated sound DOA angle of the mth sound source from a

DOA estimation algorithm.

β̂DOA
gp∗ A new test date from the DOA estimation algorithm to the Gaussian

Process sensor model.

βgp∗ The predicted DOA angle using the Gaussian Process sensor model

corresponding to β̂DOA
gp∗ .

β̂m
gp∗,ini The predicted DOA angle from the Gaussian Process sensor model

at the first observation of the mth sound source.

β̂j,i
gp∗ The observation of the sound source j from key frame i, which is the

predicted DOA angle from the Gaussian Process sensor model for a

linear array.

β̂DOA
gp The set of raw results from the DOA estimation algorithm that are

used as function input when training the Gaussian Process sensor

model.
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βgp The set of ground truth DOA angles that are used as function output

when training the Gaussian Process sensor model.

γm The circumferential angle of the mth sound source with the proposed

novel parametrisation for a linear array.

ρm The inverse depth of the mth sound source with the proposed novel

parametrisation for a linear array.

λm The corresponding eigenvalue for qmic
m .

φ The angle between the direction being searched and the direction

from the origin of the microphone array to the nth microphone.

ω The angular frequency.

Ωij The information matrix of a virtual measurement between the node

i and the node j in graph based SLAM.

τlk The TDOA from point xsrp to lth channel of the microphone array

and kth channel of the microphone array.

τk TOF from point xsrp to the kth channel of the microphone array.
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