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Abstract

The auditory system constitutes a significant perceptual input for humans and animals.

While it is legitimate to say that it ranks behind other senses such as vision or haptics

whose understanding has experienced significant advances in the context of computational

intelligence and robotics, it is intuitive to assume that service and field robotic systems

working closely with humans would benefit from incorporating compelling sound analysis

capabilities in the pursuit of accomplishing human-robot collaborative tasks. Within the

broad area of robotic audition, one of the most relevant research topics has been identifying

and locating multiple sound sources that may be present in the vicinity of the robot at

an instant in time. Robotic systems equipped with such ability would gain the faculty to

better monitor acoustic events such as a conversation, a ringing alarm or a call for help,

for example in a search and rescue scenario, effectively responding to people’s needs in

a more natural way. Mapping stationary sound sources using a robot equipped with an

on-board microphone array is thus the main focus of this thesis.

The first important problem faced when mapping sound sources is the calibration of the au-

ditory sensing unit, which in the scope of robot audition is almost invariably a multichannel

microphone array. There are two distinctive cases depending on whether the microphone

array is hardware-synchronised or not. If it is, calibration reduces to attaining an accu-

rate estimate of the array geometry of all microphones, whereas for asynchronous arrays a

resolution for starting time offsets and clock differences (drift rates) between the various

microphones is also required. A novel methodology is hereby proposed using a graph-

based Gauss-Newton least square optimisation technique borrowed from the simultaneous

localisation and mapping (SLAM) literature. The proposed method starts investigating

the calibration problem of a 2D/3D microphone array, and extends the method to the

more challenging linear microphone array case.

Having attained a calibrated microphone array, two distinctive contributions are made

within the context of a SLAM-based framework to jointly estimate robot poses, positions of
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surrounding sound sources and other likely exteroceptive landmarks (e.g. visual features)

in 2D/3D scenarios. Solving the SLAM problem purely based on sparse sound observations

is quite difficult and often impossible when the number of sound sources is low. The key

singularity is whether sound source mapping is carried out with a 2D/3D microphone array,

or a linear array. The proposed method invariably adopts a least square optimisation in

the form of graph SLAM to jointly optimise the state. This represents an improvement

over the conventional work found in the literature in that trajectory estimation and sound

source mapping are regarded as uncorrelated, i.e. an update on the robot trajectory does

not propagate to the mapping of the sound sources.

While the proposed method is readily able to solve the 2D/3D sound source mapping prob-

lem itself, for the case of 2D/3D microphone array geometries, an additional improvement

in efficiency is suggested by exploiting the conditional independence property between two

maps estimated by two different SLAM algorithms running in parallel. In adopting this

approach, the first map has the flexibility that can be built with any SLAM algorithm

(filtering or optimisation) of choice to estimate robot poses with an exteroceptive sensor.

The second map can then be estimated by using a filtering-based SLAM algorithm with

all the stationary sound sources parametrised with Inverse Depth Parametrisation (IDP).

Compared to the joint optimisation approach, the improved method is able to save compu-

tational cost as the filtering technique is used for the sound source map. Robot locations

used during IDP initialisation become the common features shared between the two SLAM

maps, which allow to propagate information accordingly. The improved method achieves

similar accuracy in mapping sound source when compared to the full joint optimisation

approach, while incurring less computational expense and adding significant flexibility in

building the localisation map.

The proposed method of mapping sound sources using a 2D/3D microphone array cannot

be readily applied to linear microphone arrays given the peculiarity of their sensor observa-

tion model, a considerable challenge when initialising a sound source: a linear microphone

array can only provide 1 Degree Of Freedom (DOF) observations. Hence, multi-hypotheses

tracking combined with a novel sound source parametrisation is proposed in this work to

suggest a fitting initial guess for the sound source. Subsequently, a similar graph-based

SLAM joint optimisation strategy as that employed for the 2D/3D case can be carried out
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to estimate the full 6 DoF robot/sensor poses, 3 DOF landmarks (e.g. visual) and the

location of the sound sources. Additionally, a dedicated sensor model is also proposed to

more accurately model the noise embedded in the Direction of Arrival (DOA) observation

for the specific case of using a linear microphone array. Ultimately, the proposed method

provides a generic approach for mapping sound sources in 3D using a linear microphone

array with the aid of additional exteroceptive sensing to overcome the prevailing sparsity

of sound observations.
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Chapter 1

Introduction

With the advance of technologies in mechanics, electronics, control and information tech-

nology, robots have started to come out of industrial workshops and operate in almost all

fields of service. Application areas include service robots such as Asimo [13], Pepper [14]

and PR2 [15], search and rescue like Packbots [16], entertainment like NAO robot [17],

surveillance such as all types of micro aerial vehicles (MAVs) [18] and many more. As a re-

sult, the perceptual capabilities of a robot have become an important aspect to accomplish

the various tasks they have been designed for.

The auditory system is an important perception system for human and animals together

with visual, tactile and odour sensing systems. With binaural audition, people can localise

sound sources, focus their attention on one or many of them, recognise the speaker and

understand who he/she is. It appears intuitive that robots, especially those aimed at

accomplishing Human Robot Interaction (HRI) tasks, would benefit from incorporating

auditory abilities too. Service robots equipped with some form of sound sensing would

be able to interact with people, understand their needs and monitor acoustic events in

their surroundings, such as a ringing alarm, a conversation or a call attention, to assist the

everyday lives of people in a more natural way. Search and rescue robots with auditory

capabilities can help localise victims by sounds they may emit, in particular where visual

search might not work due to, for example, dust and smoke on the site, or occlusions

introduced by obstacles.

1
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Figure 1.1: Asimo robot localises, separates and recognises simultaneous speech signals
from three persons.

The research topic of developing a robotic audition system is thus introduced. It is an

emerging research field, which incorporates the research field of audio signal processing,

artificial intelligence and robotics. Nowadays, there exist many successful robot audition

system implementations [19–21], with which robots are able to localise and track multi-

ple sound sources [22–41], separate speech singals coming from several people simultane-

ously [42–45], recognise human speech [46–49] and automatically recognise speakers [50–

53]. An illustrative example is shown in Fig. 1.1, where the robot Asimo can localise and

separate speech from three persons talking simultaneously and recognise each separated

speech.

There are four broad elements in a robot auditory system, namely sound source localisa-

tion, speech separation, speech recognition and speaker recognition, which are detailed as

follows:

• Sound Source Localisation

One of the most fundamental processes for robot audition is uncovering the location

of the sound source. Moreover, localisation is an important first step as its outcomes
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Figure 1.2: NAO robot focuses its attention on the person who is speaking.

induce post-signal processes such as sound source separation and speech recogni-

tion [54]. Localisation of sound sources can for instance aid a service robot to be

able to control its attention to focus on events and changes surrounding itself. As

a result, the robot can choose to focus on events such as a phone ringing, a vehicle

honking, a person talking. An example is shown in Fig. 1.2 where a NAO robot

determines the location of the person speaking to engage in meaningful interaction.

Hearing complements well other sensors such as vision because audio sensors are

omni-directional, capable of working in the dark, dust, smoke, fog and not limited

by physical structure occlusion (such as walls) [55]. As shown in Fig. 1.3, a robot

can localise persons by their sound in an area full of smoke, whereas other modal-

ities of sensing such as cameras operating in the visible range would not be able

to do so. Another common application of sound source localisation is the robotic

tracking of one or more sound emitting targets [56] and the speaker tracking [20]

scenarios, in which location or direction of dynamic sound sources can be to esti-

mate the location or direction of the sound emitting targets. Other popular robotic

applications of sound source localisation include search and rescue scenario [57] and

relative positioning for multiple robots [5].

• Speech Separation

Separation of multiple speech signals is another essential skill for robot auditory per-

ception as it plays a preprocessing step for automatic speech recognition. In many

practical scenarios, people often talk at the same time, a situation often referred as

“double-talk” in the literature [58]. In HRI, users might speak at the same time

while the robot interacts with them through speech. In literature, this situation is
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Figure 1.3: Robot operating in an area full of smoke.

called “barge-in” [58]. Unfortunately, current speech recognition technology usually

assumes a single sound source is present. Therefore, the performance of the current

speech recognition technology can be severely degraded in the real-world environ-

ment [59], which could include double-talk or barge-in. A robust robot audition in

HRI should be capable of handling double-talk and barge-in situations. In order

to obtain a double-talk and barge-in free robot audition system, the robot needs to

know the original signals, in either digital or analogue format. This introduces the

need for separation of multiple speech signals that are spoken simultaneously. The

speech separation technique is used to recover every separated signal that represents

each original sound source as much as possible, after a robot hears multiple speech

signals distorted by spatial transfer functions of microphones including the influence

of reflection and echoes by its ears (one or more microphone arrays). Once the system

knows original speech signals, it can deal with the problems of speech recognition

and thus robot audition performance is expected to improve [58]. An example of

separating four simultaneous speech signals coming from three persons and one loud

speaker is shown in Fig 1.4. The robot is able to recover its original speech signal of

each source due to the speech signals separation function in its audition system. This
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Figure 1.4: Separation of four simultaneous speech.

separation process is very important since only a near-clean recovered speech signal

is more likely to be correctly understood by the robot using the speech recognition

technique detailed next.

• Speech Recognition

Robots with HRI ability are increasingly expected to possess perceptual capabil-

ities similar to humans, due to increasing demands for symbiosis of humans and

robots. Particularly, hearing capabilities are essential for social interaction since

spoken communication is very important for normal hearing people [59]. Therefore,

automatic speech recognition (ASR) has been an active research area for over five

decades. ASR has always been considered as an important bridge in fostering better

human-human and human-machine communication [60]. With ASR, a robot could

communicate with users in a natural fashion through speech. This is especially im-

portant for robots that are designed to care for elderly people for instance, who are

not expected to have special technical skills to interact with robots. An example

is shown in Fig. 1.5, where a Pepper robot is talking to its customers to get their

orders in a restaurant.

• Speaker Recognition

The last important skill for a robot audition system is the ability to automatically

recognise each speaker. Automatic speaker recognition, based on their vocal char-

acteristics implies identifying who is speaking to a machine among a number of

persons. This identification process can be done with a closed set or an open set of

persons (identifying a known or an unknown speaker, an impostor), and can be text-

dependent or independent [61]. Due to the numerous fields of applications it covers,
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Figure 1.5: Pepper robot communication with customers with its ASR module.

research interest in automatic speaker recognition is actually growing. For instance,

it can be used for audio surveillance, in which a robot for surveillance purpose can

determine if a person is a verified valid person in a particular area or not.

1.1 Motivation and Scope

Among these diverse applications of robot audition systems, localisation and mapping of

one or multiple sound sources by a mobile robot which is equipped with one or various

microphones is of increasing interest. In Urban Search and Rescue (USAR) scenarios

for instance, location information of sound sources in a geometric map created from the

inspection of the surrounding environment can be used to locate missing people in disaster

sites. In HRI scenarios, localisation results of sound sources can be used to detect and

track speakers [62] or discern between multiple people’s speech [63].

In order to tackle these issues, this thesis focuses on solving the research question of how

to accurately and probabilistically map all sound sources within a geometric map of the

environment using a mobile robot. This is a topic that has received significant attention in

recent years [2, 4, 10, 11] and the work hereby presented delves further into the examination

of mapping stationary sound sources using different configurations of microphone arrays.

The structure of this thesis and its key contributions are pictorially represented in Fig. 1.6.

As can be seen from the figure, an audio signal is sampled by a microphone array, be it
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Figure 1.6: The structure of the thesis. Solid orange color blocks represent key contri-
butions of the thesis, and orange edge color blocks represent other minor contributions.

from a 2D/3D or linear array. The audio signal needs to be sampled synchronously so that

conventional DOA estimation algorithms can be applied to find the bearing information

to the sound source. This synchronisation is typically done in hardware by multi-channel

Analogue-to-Digital Converter (ADC) boards. However, even when the microphone clocks

are synchronised in the hardware, there is a need to estimate the actual geometry of

the microphone array for bearing estimation. Therefore, the first important problem of

mapping sound sources is the calibration of the synchronous/asynchronous microphone

array. The calibration of an asynchronous microphone array estimates positions, starting

time offsets and clock differences of microphones, while as indicated above only estimation

of the positions of the microphones is required when hardware synchronisation is available.

After the calibration, conventional DOA estimation algorithms can be applied directly.

After we obtain bearing information, a SLAM framework to map the sound source is

proposed. In order to achieve accurate robot self localisation and sound source mapping,

we assume that the robot is also equipped with other sensors such as wheel encoders, a

laser scanner or vision sensors, a typical scenario in modern mobile robots. With sound

sources bearing estimation from the microphone array audio signal and landmark obser-

vation from other sensors, the SLAM framework can estimate robot poses, sound source

locations and landmarks locations from other sensors. While a traditional joint optimisa-

tion SLAM framework can solve the 2D/3D sound source mapping problem, we propose

key improvements:
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• For mapping sound source in 2D/3D scenario, we introduced a conditionally indepen-

dent submap method in order to make the SLAM framework less computationally

complex and more flexible so that it can be used together with existing SLAM im-

plementation.

• For the case of linear microphone arrays, the joint optimisation framework can not

be applied directly since the initialisation of the sound source is not straightforward,

as is the case for 2D and 3D microphone geometries. Therefore, a multi-hypothesis

filtering based initialisation strategy is proposed, together with a linear microphone

array sensor model based on Gaussian Process.

In summary, the two main motivations for this thesis work are the need for calibration of

microphone arrays and sound source mapping using microphone arrays, and are detailed

below:

1.1.1 Calibration of a Hardware-Synchronised/Asynchronous Microphone

Array

In many robot audition systems [19–21], a microphone array is needed to estimate the

bearing information of sound sources. A synchronised microphone array consists of a

multi-channel ADC converter and multiple microphones, with each microphone connecting

to each channel of the ADC converter. A typical example of a microphone array and ADC

converter is shown as in Fig. 1.7. The audio data from all microphones is synchronously

sampled by the ADC converter, which is then used to estimate the DOA of sound sources

based on Time Difference of Arrival (TDOA) from the sound source to each microphone.

Calibration of such a microphone array estimates geometric locations of all microphones

which is needed for DOA estimations of the sound source and sometimes can not be easily

manually measured, especially when embedded into a robotic system.

Recently, methods [64] [65] [66] [67] have been developed to relax the hardware synchronisa-

tion and successfully estimate bearing information of sound sources using an asynchronous

microphone array. These methods are capable of computing microphone locations and
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a b

Figure 1.7: A typical microphone array structure and multi-channel ADC board for the
sound source bearing estimation.

starting time-offset between different microphone channels to estimate the bearing infor-

mation of the sound sources, all of them are based on an assumption that the clock interval

for each independent sound card, dedicated to each channel, is identical to that of other

channels. This is a strong assumption that disregards errors from fractional differences in

clock intervals, which will accumulate over time. A mechanism is proposed in this work to

overcome this limitation by calibrating the asynchronous microphone array using graph-

based pose SLAM, which estimates the geometric position, time offset and clock difference

of each microphone simultaneously using probabilistic Gauss-Newton least square optimi-

sation, thereby making this method suitable for generic sound source localisation from a

heterogeneous asynchronous microphone array.

Recent development in MEMS microphone arrays have reduced the size of multichannel

ADC board to a certain degree, posing a major advantage for hardware synchronised

microphone arrays. However, the need to find the exact locations of the microphones per-

sists even in those case, as that is paramount in the calculation of the TDOA (see more

on this below). It is important to note that the process of calibration of an asynchronous

microphone provides not only time offsets and clock differences between each pair of micro-

phones (which would indeed not be the case for synchronous systems), but also the exact

locations of microphones, which is needed in a synchronised microphone array setting too.

The alternative is using asynchronous microphone arrays which are usually significantly

more affordable than fully synchronised MEMS microphone arrays, although they can still

provide the same functionality if properly calibrated. More relevantly to the area of study
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developed in this thesis, synchronisation of an asynchronous microphone array remains a

necessary task when it comes to robot audition in general.

In robotic system, given the constraints of embedding microphones somewhere in the robot

frame, often alongside other perception devices, it is difficult to measure the exact 3D

locations of the microphones accurately. Various alternatives exists for that. Measuring

the exact location is an obvious one, although not trivial and prone to error. As an

alternative, a transfer function between each microphone and a given sound source can be

measured. These measurements, however, can be quite time-consuming since they need

to be obtained at multiple directional intervals of the given sound source. For instance,

recording the transfer function every 5 degree means 72 measurements when only azimuth

angle is sought after, and 2664 measurements when both azimuth and elevation angles

are needed. With a conservative assumption of say 1 minute for each transfer function

recording, in practice the process is not only fiddly but also time consuming. However,

the proposed calibration method only needs to record approx. 1 minute of a chirp signal

to accurately obtain the locations of a set of microphones, thereby dramatically reducing

the time and effort required, and the accuracy obtained. These factors are also behind

the reason why recent works in robot audition literature keep focusing on improving the

microphone array location estimation accuracy.

As indicated before, one calibrated, conventional DOA estimation algorithm can be applied

directly to obtain sound sources bearing information without using a hardware synchroni-

sation board. We analyse the calibration problem of an 2D/3D and linear asynchronous

microphone array separately, due to their different observation models.

1.1.2 Sound Source Mapping by a Robot Embedded Microphone Array

Conventional methods for sound source localisation and mapping rely on a microphone

array and either, a proprioceptive sensor (such as wheel odometry), or an additional ex-

teroceptive sensor (such as cameras or lasers) to get the robot locations accurately. Since

odometry drifts over time and sound observations are bearing-only, sparse and noisy, the

former can only deal with relatively short trajectories before the whole map drifts. In

comparison, the latter can get more accurate trajectory estimation over long distances
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and a better estimation of the sound source map as a result. However, in conventional

methods using an additional exteroceptive sensor, trajectory estimation and sound source

mapping are treated as uncorrelated, which means an update on the robot trajectory does

not propagate properly to the sound source map. Therefore, we propose a least square

optimisation based SLAM framework which estimates robot poses and positions of sound

source and other landmarks (e.g. visual point features) jointly. Under the proposed frame-

work, the robot can accurately localise itself and its trajectory estimation and sound source

mapping are fully correlated.

As previously noted, while the proposed method is able to solve the 2D/3D sound source

mapping problem, a further improved method is also presented. In addition, as the joint

optimisation framework can not be applied to the linear microphone array case, a multi-

hypothesis filtering based sound source initialisation method is proposed. These two meth-

ods are detailed as follows:

• The improved method for 2D/3D sound source mapping: In this thesis, an efficient

method to correlate robot trajectory with sound source mapping by exploiting the

conditional independence property between two maps estimated by two different

SLAM algorithms running in parallel is studied in Chapter 4. In our approach, the

first map has the flexibility that can be built with any SLAM algorithm (filtering

or optimisation) to estimate robot poses with an exteroceptive sensor. The second

map is built by using a filtering-based SLAM algorithm locating all stationary sound

sources parametrised with IDP. Robot locations used during IDP initialisation are

the common features shared between the two SLAM maps, which allow the propa-

gation of information accordingly. Since the second map uses a filtering technique,

the proposed method has less computational complexity compared to the joint opti-

misation framework.

• In the literature of sound source mapping in 3D space, conventional approaches use

dedicated 3D microphone arrays to map sound sources in 3D scenarios as this type

of arrays provide two DOF observations. However, many popular robotic perception

devices such as Microsoft Kinect 360, Kinect One, PS3 Eye and PS4 Eye sensors,

are equipped with a linear microphone array. Despite easy availability at affordable



Chapter 1. Introduction 12

price and frequent usage of these sensors, conventional 3D sound source mapping

methods in the literature hardly make use of a linear microphone array since a linear

microphone array can only provide 1 DOF observation in 3D space. The joint opti-

misation framework can not be applied to the linear microphone array case directly,

since the initialisation of sound sources can not be done as it is done for the 2D/3D

microphone array case. Thus a novel method for real-time 3D sound source mapping

using an off-shelf robotic perception sensor equipped with a linear microphone array

is proposed in Chapter 5. In this framework, multi hypotheses tracking is combined

with a new sound source parametrisation to provide a good initial guess for an online

optimisation strategy. A joint optimisation is subsequently carried out to estimate 6

DOF sensor poses and 3 DOF landmarks and sound source positions. Additionally,

a dedicated sensor model with Gaussian Processes is proposed to model accurately

the noise of the DOA observation when using a linear microphone array.

1.1.3 Scope

While there exists a large amount of research related to robot audition, this thesis focuses

on a specific area of it, which is sound source mapping with a mobile robot equipped with

a microphone array. In particular, we confine the research work in this thesis as follows:

• Sound sources bearing estimation in this thesis is restricted to utilising a robot em-

bedded microphone array. Here, the term robot embedded microphone array means

the size of the microphone array is relatively small compared to the distance from

any sound source to the center of the microphone array (for instance the microphone

array in a Microsoft Kinect sensor). Under this definition, all sound sources are

located in the far field of the microphone array, which means the microphone array,

based on the TDOA of sound source to each channel of the microphone array, can

estimate the bearing (also commonly referred as DOA) but not the 2D/3D coordi-

nates of the sound source. We start investigating the 2D/3D microphone array based

robot audition system, then focus on a linear microphone array based system. Note

that, in this thesis, hardware synchronisation is not a requirement to the microphone

array. When using an asynchronous microphone array, the software synchronisation
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method proposed in this work can be used to synchronise acoustic signals sensed by

the microphones in the array. This is one of the main contribution of this thesis as

detailed in Chapter 3. The near field scenario is only considered when calibrating a

2D/3D microphone array.

• The thesis focuses on sound source mapping using one single robot. Cooperative

sound source mapping using multiple robots is beyond the scope of this thesis work.

With one single mobile robot equipped with a robot embedded microphone array, at

each time instance, since the robot can only obtain a bearing estimation of the sound

sources, it is not enough to estimate full 2D/3D coordinates of the sound sources.

Therefore, the robot needs to obtain multiple bearing estimation of sound source from

multiple locations so that full 2D/3D sound source coordinates can be estimated

using probabilistic SLAM frame work. This is substantially different from multi

robot cooperative sound source mapping since with multiple bearing information of

sound source from the location of multiple robots, full 2D/3D coordinates of sound

source can be estimated.

• In order to obtain an accurate sound source map, in this thesis, we assume that

the robot is equipped with an additional exteroceptive accurate sensor that can be

used to accurately localise itself using SLAM algorithm. Typically, we use a 2D laser

scanner for localising the robot in 2D scenario and camera or RGBD sensor for 3D

localisation of the robot. With the help of these additional perceptive capability,

quite common in today’s mobile platforms, the robot can accurately localise itself,

draw the environment map and map sound sources on the environmental geometry

map.

• In this thesis, the sound source data association problem, significant ego motion noise

and an environment with dynamic objects are not considered. For sound source data

association, this means the ID of each sound source can be obtained by the consis-

tency of the sound source bearing estimation between likely candidates, and the

chi square test. By using these two methods, most sound source data association

problem can be solved, as is frequently the case within the SLAM community when

it comes to feature associations. However, as only the bearing information can be
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obtained for a sound source, this results in a more complex scenario, and a more ad-

vanced data association method - such as feature based sound sourced identification

methods [61] - should be used. For robot ego motion noise, we assume that it does

not affect the sound source bearing estimation considerably. This is mostly true for

many sound source mapping scenarios, but in general an advanced ego motion noise

cancellation method should be used for situations where ego motion noise cannot

be ignored (e.g. the noise of a quadcopter). Finally, we assume that there are no

dynamic objects in the environment, which means the negative influence of dynamic

objects in localising the sensor when using visual or Lidar based SLAM algorithm

can be neglected.

1.2 Contributions

As shown in Fig. 1.6, there are three main contributions in this thesis.

1. Calibration of an asynchronous microphone array: in order to use a microphone array

without a hardware synchronisation device, i.e. to tackle the problem in section 1.1.1,

a methodology is hereby proposed to calibrate an asynchronous microphone array

using a graph-based optimisation method borrowed from the SLAM literature, ef-

fectively estimating the array geometry, time offset and clock difference/drift rate of

each microphone together with the sound source locations. Simulation and experi-

mental results are presented, which prove the effectiveness of the proposed method-

ology in achieving accurate estimates of the microphone array characteristics needed

to be used on realistic settings with asynchronous sound devices. Once calibrated,

the microphone array outputs synchronised recording, which can provide bearing

information of sound sources by applying conventional DOA estimation algorithms.

2. 2D/3D sound source mapping by using conditionally independent submap joining:

once sound source bearing information is obtained, be it from a synchronised mi-

crophone array or an asynchronous microphone array, a robot can map stationary

sound sources on a geometric map. Specifically, we propose a least squares optimisa-

tion based SLAM framework to map stationary sound sources while simultaneously
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localising a moving robot, and other landmarks positions (visual features in this

case) jointly. The proposed method correlates robot trajectory with sound source

mapping. While the joint optimisation framework is able to solve the 2D/3D sound

source mapping problem, an improved method is presented. The proposed method

is efficient in correlating robot trajectory with sound source mapping by exploiting

the conditional independence property between two maps estimated by two different

SLAM algorithms running in parallel. In our approach, the first map has the flexibil-

ity that can be built with any SLAM algorithm (filtering or optimisation) to estimate

robot poses with an exteroceptive sensor (e.g. camera or laser) in the traditional

sense of SLAM. The sound map can then be constructed in parallel using a filtering-

based SLAM algorithm hence making the method computationally less expensive

compared to a full joint optimisation framework. Comprehensive simulations and

experimental results show the effectiveness of the proposed method.

3. Sound source mapping of a linear microphone array with multi-hypothesis initial-

isation: finally, we focus on the problem of sound source mapping using a linear

microphone array. We present a method for robotic real-time 3D sound source map-

ping using an off-the-shelf linear microphone array sensor widely used in the robotics

community such as the Microsoft Kinect. In the proposed method, multi hypotheses

tracking is combined with a new sound source parametrisation to provide an ini-

tial guess for an online optimisation strategy. A joint optimisation is carried out

to estimate 6 DOF sensors poses and 3 DOF landmarks and sound source loca-

tions. Additionally, a dedicated sensor model is proposed to model accurately the

noise of the DOA observation when using a liner microphone array. Comprehensive

simulation and experimental results show the effectiveness of the proposed method.

Furthermore, a real-time implementation of the proposed method has been made

available as open source software for the benefit of the community.
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Systems (IROS 2016), pp. 2771-2777, 2016.
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International Conference on Intelligent Robots and Systems (IROS 2015), pp. 5561-

5567, 2015.

6. Daobilige Su, Jaime Valls Miro and Teresa Vidal Calleja, “Graph-SLAM Based

Calibration of an Embedded Asynchronous Microphone Array for Outdoor Robotic
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7. Daobilige Su, Jaime Valls Miro and Teresa Vidal Calleja, “Real-time sound source

localisation for target tracking applications using an asynchronous microphone ar-

ray”, in 2015 IEEE 10th Conference on Industrial Electronics and Applications
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Chapter 1. Introduction 17

8. Daobilige Su and Jaime Valls Miro. “An ultrasonic/RF GP-based sensor model

robotic solution for indoors/outdoors person tracking”, in 2014 13th International

Conference on Control Automation Robotics & Vision (ICARCV 2014), pp. 1662-

1667, 2014.

1.4 Thesis Outline

The structure of the thesis is organised as follows:

In Chapter 2, literature review related to sound source bearing estimation, SLAM and

sound source mapping is introduced. Elaboration of the details of typical algorithms of

sound source bearing estimation relative to the robot coordinate frame are presented. The

sound sources bearing estimation constitutes sound landmark observation for the robot,

which can be exploited within the context of standard SLAM techniques to localise itself, as

well as map the location of the sound sources. Therefore, some start-of-the-art algorithms

related to filtering and optimisation based SLAM are described in section 2.2. Finally,

an overview of some conventional methods proposed in the literature for sound source

mapping using sound bearing estimation and SLAM techniques are presented.

In Chapter 3, we first present the proposed method for calibrating an asynchronous 2D/3D

microphone array. Then, we focus on the key issue of the calibration of a linear microphone

array. We elaborate the mathematical formulation of the proposed method. Comprehen-

sive simulation and experimental results are presented, which prove the effectiveness of

the proposed methodology in achieving accurate estimates of the microphone array char-

acteristics needed to be used on realistic settings with asynchronous sound devices. The

content of this Chapter formed the basis for publications [68, 69]. This part of the work

presents the first contribution of this thesis shown orange in Fig. 1.6.

In Chapter 4, we first introduce the proposed method of mapping sound sources using

a least square optimisation based SLAM framework. Then, we present our improved

method of sound source mapping using a 2D/3D microphone array. Detailed formulation

of conditionally independent localisation and sound maps joining, information backward

propagation and inverse depth parametrisation of sound source are presented. This part
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of the work presents the second contribution of this thesis shown orange in Fig. 1.6. The

content of this Chapter is mainly compiled in publications [70].

In Chapter 5, we present sound source mapping using a commonly available linear mi-

crophone array. Detailed formulation of the sensor model using Gaussian Process (GP),

multi hypotheses sound source initialisation and joint optimisation of sensor poses, visual

landmarks and sound sources are presented. This part of the work presents the third

contribution of this thesis shown orange in Fig. 1.6. The content of this Chapter is the

basis for the publication [71].

Chapter 6 summarises the contributions of the thesis and provides an insight into the

future directions of research.



Chapter 2

Review of Related Work

In this Chapter, some existing work related to sound sources bearing estimation with a

microphone array, typical methods of solving SLAM problem and conventional approaches

for sound sources mapping are presented.

2.1 Sound Source Bearing Estimation using A Microphone

Array

2.1.1 Microphone Array

A microphone array is of key importance to a robot audition system. A microphone

array is needed for most of the robot audition systems that deal with sound sources

bearing estimation [72–80], speech separation [81–84], enhanced speech recognition [85–

88] and enhanced speaker verification [50, 51]. In the following part of the section, typical

structures of microphone arrays and their application domains are introduced.

Based on the structure of a microphone array, it can be classified into one of the following

categories:

• Linear microphone array: A linear microphone array is defined as a microphone

array in which all microphone channels lie on a straight line. Linear microphone

19
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Figure 2.1: 4-channel microphone array on Kinect 360.

Figure 2.2: 4-channel microphone array on Kinect One.

Figure 2.3: 4-channel microphone array on PS3 eye.

arrays are the most common type of microphone arrays available. Typical examples

of linear microphone arrays are the ones on Microsoft Kinect 360, Kinect One, PS3

eye sensor and PS4 eye sensor as shown in Fig. 2.1, Fig. 2.2, Fig. 2.3 and Fig. 2.4.

Linear microphone arrays are mostly used for sound sources bearing estimation in

2D. However, it can not provide full bearing estimation, because of the front and

back ambiguity of sound sources bearing estimation.

A special case of linear microphone array is binaural robot audition [89, 90], which

is a linear microphone array using only two microphones inspired by human and

animal auditory systems. Binaural robot audition is mostly used in humanoid robots.

Despite using only two microphones, binaural robot audition has the comparable

sound sources bearing estimation capability of any linear microphone array. However,
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Figure 2.4: 4-channel microphone array on PS4 eye.

Figure 2.5: A circular microphone array [1].

less number of channels degrades its sound sources bearing estimation accuracy. Note

that the binaural robot audition additionally involves some sort of structure that

works similarly to the human pinna. Using this ear like structure, the sound source

bearing estimation goes through a training process, where the robot learns how the

ear structure affects sounds coming from different directions.

• Planner microphone array: A planner microphone array is defined as a mi-

crophone array in which all microphone channels stay on a plane, but can not be

connected by one single line. Planner microphone arrays are mostly designed for 2D

bearing estimation and acoustic camera application. Typical examples are the circu-

lar microphone array design by Tamai [1], the concentric microphone array designed

by Sasaki et. al. [2] and the microphone array designed by Perrodin et. al. [3] as

shown in Fig. 2.5, Fig. 2.6 and Fig. 2.7.

When a planner microphone is used for sound sources bearing estimation in 2D,

it provides a unique value of sound sources estimated bearing without ambiguity.

When it is used for estimating sound sources bearing in 3D, it can also estimate
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Figure 2.6: A concentric microphone array in [2].

Figure 2.7: A large scale 2D microphone array [3].

both azimuth and elevation angle but with ambiguity in the elevation angle. This

is due to the fact that two sound sources having the same azimuth angle but the

opposite value of elevation angle have the same TDOA to the microphone array,

which means after obtaining the TDOA, the sound source can be either on the top

part of the space on the plane or on the bottom part.

• 3D microphone array: A 3D microphone array is defined as a microphone array

in which all microphone channels cannot stay on a plane. A 3D microphone array

can estimate the azimuth and elevation angle of sound sources without ambiguity.

Typical examples are the microphone array used in [4] and in [5] as shown in Fig 2.8

and Fig 2.9.
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Figure 2.8: A 3D microphone array in [4].

Figure 2.9: A 3D microphone array in [5].

2.1.2 Sound Sources Bearing Estimation

Bearing estimation (a.k.a. DOA estimation) of sound sources is a natural area of research

for array signal processing, which has had a lot of interest over recent decades [91]. As

sound source DOA estimation is essential for many diverse robot audition applications,

typical methods of DOA estimation are presented here.

In the early years of research in the field of DOA estimation, research literature was mainly

focused on scenarios where there was only one single audio source active. The TDOA

at different microphone pairs is used by most of the proposed methods. Among them,

the Generalised Cross-Correlation PHAse Transform (GCC-PHAT) is the most popular

method [33]. Improvements to the TDOA estimation problem were proposed in [92]. In

their work, both the multipath and the so-far unexploited information among multiple
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microphone pairs were taken into account. An overview of TDOA estimation techniques

can be found in [93].

Localising multiple, simultaneously active sources is a more difficult and challenging prob-

lem. In such a situation, even the smallest overlap of sources which is caused by a brief

interjection as an example, can disrupt the localisation of the original source [33]. A sys-

tem that is designed to handle the localisation of multiple sources treats the interjection

as another source that can be simultaneously captured or rejected as desired. One of the

first methods capable of estimating DOAs of multiple sources is the well-known MUlti-

ple SIgnal Classification (MUSIC) algorithm [94] and its wideband variations [54, 95–97].

MUSIC algorithm is one of the classic family of subspace approaches. It depends on the

eigen-decomposition of the covariance matrix of the observation vectors. The Steered

Response Power with Phase Transform (SRP-PHAT) [98] is another efficient sound lo-

calisation algorithm that is suitable for mobile robot applications [99]. Both of MUSIC

and SRP-PHAT algorithms (or their modified versions) are frequently used in the robot

audition literature for bearing estimation of sound sources [2, 10, 11, 100]. Therefore, a

detailed description and mathematical formulation of these two algorithms are provided

below. In addition, we also introduce another DOA estimation algorithm for an uniformly

distributed linear microphone array: ESPRIT, which stands for Estimation of Signal Pa-

rameters via Rotational Invariance Technique. ESPRIT has the advantage of not involving

an exhaustive search through all possible steering vectors to estimate DOA. However, it

is mainly designed for an uniformly distributed linear microphone array to estimate the

sound sources azimuth angles.

2.1.2.1 MUSIC

MUSIC, similar to many adaptive techniques, is based on the correlation matrix of the

multi channel audio data. Let us consider a situation of estimation the DOAs of M

sound sources using a N-channel microphone array. In this case, the sensor model can be

formulated as follows [101],

xmic =
∑M

m=1
αmic
m smic(φm) + nmic, (2.1)
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where m = 1 · · ·M denotes the index of sound sources, xmic is the raw received signal

of mixture of M sources at each channel of the microphone array, αm is the amplitude

coefficient of each sound source, smic(φm) denotes the steering vector of the signal and its

direction φm is what we are aiming to estimate. nmic is zero-mean Gaussian noise added

to each channel of the microphone array with covariance σmic2I.

Then, we can write Eq. 2.1 in a matrix form as follows [101],

xmic = Smicαmic + nmic, (2.2)

Smic = [smic(φ1), · · ·, smic(φM )], (2.3)

αmic = [αmic
1 , · · ·, αmic

M ]T , (2.4)

where the matrix Smic is of dimension NxM, which represents the M steering vectors.

Here we are assuming that signals from different channels are uncorrelated. Therefore, the

correlation matrix of xmic can be written as follows [101],

Rmic = E[xmicxmicH ],

= E[SmicαmicαmicHSmicH ] + E[nmicnmicT ],

= SmicAmicSmicH + σmic2I,

= Rmic
s + σmic2I,

(2.5)

where

Rmic
s = SmicAmicSmicH , (2.6)

Amic =

⎡
⎢⎢⎢⎣
E[|α1|2] 0 · · · 0

0 E[|α2|2] · · · 0

0 0 · · · E[|αM |2]

⎤
⎥⎥⎥⎦ , (2.7)

where ()H stands for ”Hermitian” operation, which is a combination of complex conjugate

and matrix transpose (AH = ĀT , where Ā is complex conjugate of A).

The rank of the signal covariance NxN matrix, Rmic
s , is clearly M. Therefore, its number

of eigenvectors corresponding to the zero eigenvalue is N-M. Let qmic
m represents one of the

eigenvectors corresponding to the zero eigenvalue, then it has the relationship formulated
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as follows,

Rmic
s qmic

m = SmicAmicSmicHqmic
m = 0,

=⇒ qmic
m

H
SmicAmicSmicHqmic

m = 0,

=⇒ SmicHqmic
m = 0,

(2.8)

where because the matrixAmic is positive definite, the final equation is valid. From Eq. 2.8,

we can conclude that all M signal steering vectors are orthogonal to all N-M eigenvectors

(qmic
m ) of Rmic

s corresponding to the zero eigenvalue. The above conclusion serves as the

basis for MUSIC.

Let Qmic
n denotes the Nx(N-M) matrix of those eigenvectors mentioned above. Then,

pseudo-spectrum of MUSIC is as follows [101],

PMUSIC(φ) =
1∑N−M

m=1 |smicH(φ)qmic
m |2

=
1

smicH(φ)Qmic
n Qmic

n
Hsmic(φ)

=
1

||Qmic
n

Hsmic(φ)||2
.

(2.9)

From Eq. 2.9, it can be seen that the denominator becomes zero when φ is a signal direction,

since the eigenvectors making up Qmic
n are orthogonal to the signal steering vectors. As

a result, the M largest peaks in the pseudo-spectrum corresponds to the estimated signal

directions. Unfortunately, the signal covariance matrix Rmic
s would not be available in the

practical situation. So, to be able to estimate Rmic
s , the signal covariance matrix, is the

best we can expect. The key here is that the eigenvectors of Rmic can be used to estimate

the eigenvectors in Qmic
n .

For any eigenvector qmic
m ∈ Qmic, we can have equations as follows,

Rmic
s qmic

m = λqmic
m

=⇒ Rmicqmic
m = Rmic

s qmic
m + σmic2Iqmic

m = (λm + σmic2)qmic
m ,

(2.10)

where λ is the vector of eigenvalues and λm is the corresponding eigenvalue for qmic
m . From

the Eq. 2.10, it can been seen that any eigenvector of Rmic
s is also an eigenvector of Rmic
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with corresponding eigenvalue λ+σmic2. Let Rmic
s represent QmicΛQmicH . Then, we can

have the following equation [101],

Rmic = Qmic[Λ+ σmic2I]QmicH

= Qmic

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 + σmic2 0 · · · 0 0 · · · 0

0 λ2 + σmic2 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · λM + σmic2 0 · · · 0

0 0 · · · 0 σmic2 · · · 0

0 0 · · · 0 0 · · · σmic2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

QmicH .

(2.11)

Following Eq. 2.11, we can partition the eigenvector matrix Qmic into a signal matrix

Qmic
s with M columns, corresponding to the M signal eigenvalues, and a matrix Qmic

n ,

with (N-M) columns, corresponding to the noise eigenvalues (σmic2) based on this eigen-

decomposition [101]. Note that Qmic
n is the Nx(N-M) matrix of eigenvectors corresponding

to the noise eigenvalue (σmic2). Qmic
n is also equal to the matrix of eigenvectors of Rmic

s

corresponding to the zero-eigenvalue. This is the matrix used in Eq. 2.9. The signal

subspace is defined by Qmic
s , while Qmic

n defines the noise subspace.

At this point, there are a few important observations to be made [101]:

• The smallest eigenvalues of Rmic are all equal to σmic2 and they are the noise eigen-

values. This character implies that, determining the number of small eigenvalues that

are equal can be one way of distinguishing between the signal and noise eigenvalues,

which is also equivalently the signal and noise subspaces.

• By orthogonality of Qmic, Qmic
s ⊥ Qmic

n .

Based on the above two observations, we can see that all noise eigenvectors are orthogonal

to the signal steering vectors, which is the basis for MUSIC algorithm. We can construct
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a function of φ as follows [101],

PMUSIC(φ) =
1∑N

m=M+1|qmic
m

Hsmic(φ)|2

=
1

smicH(φ)Qmic
n Qmic

n
Hsmic(φ)

,

(2.12)

where qmic
m is one of the (N-M) noise eigenvectors. We can see that smic(φ) ⊥ qmic

m and

the denominator is identically zero if φ corresponds to the DOA of one of the signals.

Therefore MUSIC algorithm identifies the peaks of the function PMUSIC(φ) as the DOA

of mixed signals.

The correlation matrix Rmic is unknown and must be estimated from the received data in

the practical scenario. This estimation requires averaging over several snapshots of data,

formulated as follows [101],

Rmic =
1

K

∑K

k=1
xmic
k xmic

k
H
, (2.13)

where xmic
k is the kth snapshot of audio signal.

Therefore, in practice, the steps of DOA estimation using MUSIC algorithm are [101]:

1. Firstly, estimate the correlation matrix R using Eq. 2.13. Find its eigen-decomposition

Rmic = QmicΛQmicH .

2. Secondly, partition Qmic to obtain Qmic
n , corresponding to the (N-M) smallest eigen-

values of Qmic, which spans the noise subspace.

3. Then, plot the MUSIC function PMUSIC(φ) in Eq. 2.12 as a function of φ.

4. Finally, the M largest peaks of PMUSIC(φ) are the M signal directions.

The steering vector smic(φ) in Eq. 2.12 of a microphone array is defined as follows,

smic(φ) = [e
−2j

πfdmic
1 cos(φ̄)

cs , · · · , e
−2j

πfdmic
N cos(φ̄)

cs ]T , (2.14)

where j is the symbol for the imaginary part, f is the signal frequency, dmic
n (n = 1· · ·N) is

the distance between the nth microphone to the origin of the microphone array coordinate,
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cs is the speed of sound and φ̄ is the angle between the direction being searched and the

direction from the origin of the microphone array to the nth microphone. In 2D, φ̄ is the

bearing angle to be estimated, and in 3D, φ̄ is a function of azimuth and elevation angle.

In 3D, DOA estimation φ̄ in Eq. 2.14 can be formulated as follows,

φ̄ = 2sin−1(

√
(oxn − cos(φe) cos(φa))2 + (oyn − cos(φe) sin(φa))2 + (ozn − sin(φe)2

2
), (2.15)

where oxn,o
y
n,ozn are coordinates of the nth microphone location, and φa, φe are the candidate

azimuth and elevation angles which we are going to search.

In practice, the steering vector smic(φ) needs to be searched for every possible bearing angle

in 2D or every possible combination of azimuth and elevation angle in 3D. Therefore, the

problem with MUSIC is its expensive computational cost during the exhaustive search.

2.1.2.2 SRP-PHAT

The core idea of the SRP-PHAT DOA estimation algorithm is similar to the idea of the

GCC-PHAT [102]. When computing the likelihood of all possible angles to be DOA angle,

we compute their SRP-PHAT value after Phase Transform (PHAT) is applied to the

Steered Response Power (SRP). The SRP-PHAT for each point xsrp in the space, that is

a potential position of a sound source, is defined as follows [103],

P (xsrp) =
∑k=M

k=1

∑l=M

l=1

∫ ∞

−∞
1

|Xk(ω)X̄l(ω)|
Xk(ω)X̄l(ω)e

jωτlkdω, (2.16)

where l and k denotes the lth channel and kth channel of the microphone array, ω is the

angular frequency, Xk(ω) is audio signal at channel k in frequency domain, X̄l(ω) is the

complex conjugate of the audio signal at channel l in frequency domain and τlk = τl − τk

is the TDOA from point xsrp to lth channel of the microphone array and kth channel of

the microphone array (τl and τk are time of flights (TOF) from point xsrp to lth and kth

channel of the microphone array).

The GCC between microphone k and microphone l and the GCC between microphone l

and k is essentially the same. Therefore, the elements, which are summed to form the

above SRP-PHAT functional, form a symmetric matrix with fixed energy terms on the
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diagonal [103]. As a result, either the upper-part or lower-part of the matrix is the part of

the SRP-PHAT that changes with point xsrp. This means, for a particular point xsrp in the

space, the computation of the SRP-PHAT using Eq. 2.16, can be obtained by summing the

GCC of only a subset Qsrp of the pairs, where Qsrp = [k, l], ∀k ∈ [1, . . .,M − 1],M≤l > k,

which can be formulated as follows [103],

P ′(xsrp) =
∑k=M

k=1

∑l=M

l=k+1

∫ ∞

−∞
1

|Xk(ω)X̄l(ω)|
Xk(ω)X̄l(ω)e

jωτlkdω, (2.17)

In order to find the source locations, the beamformer is steered over all possible points

in a focal volume containing the source. The points that give the maximum weighted

output power (SRP-PHAT value) of the beamformer are determined as the locations of

the sources. The location estimate point xsrps for a single source is [103],

xsrps = argmax
xsrp

P ′(xsrp), (2.18)

where P ′(xsrp) is the SRP-PHAT at point xsrp, which is defined in Eq. 2.17. The integra-

tion over the angular frequency is implemented as the summation of a range of frequency

indexes in practice. The SRP-PHAT value of any particular point of P ′(xsrp) (or 2D/3D

bearing estimation if sound sources are in the far field of the microphone array) is called

a functional evaluation.

The assumption of the algorithm is that the SRP-PHAT will peak at the actual source

location even under very noisy and highly reverberant conditions. However, similar to

MUSIC, the problem with SRP-PHAT is its expensive computational cost because the

search space has many local maxima, and thus computationally intensive grid-search (in

euler space if sound sources are in the near field of the microphone and in all possible

bearings otherwise) methods have been required to find the global maximum [103].

2.1.2.3 ESPRIT

ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance Techniques.

ESPRIT is another subspace based DOA estimation algorithm which does not involve

an exhaustive search through all possible steering vectors to estimate DOA and hence
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dramatically reduces the computational and storage requirements compared to MUSIC

and SRP-PHAT [104, 105]. As a downside, ESPRIT is mainly designed for the estimation

of the azimuth angle using an uniformly distributed linear array.

The goal of the ESPRIT technique is to exploit the rotational invariance in the signal

subspace which is created by two arrays with a translational invariance structure [104],

i.e. its suits an uniformly distributed linear array. To formulate the sound source bearing

estimation using the ESPRIT algorithm, let’s assume there two sub arrays: array-1 and

array-2. Array-1 consists of microphones 1 to N − 1 and array-2 consists of microphone 2

to N , and therefore the two sub arrays are displaced by distance d, where d is the distance

between two adjacent microphones. The signals induced on each of the arrays are therefore

given by

x1(t) = AEs(t) + n1(t), (2.19)

and

x2(t) = AEΛEs(t) + n2(t), (2.20)

where ΛE = diag{e−2jkwndsin(θ1) · · · e−2jkwndsin(θM )} is a diagonal unitary matrix called the

rotation operator with phase shifts between doublets for each DOA angle e−2jkwndsin(θm)(m =

1· · ·M), kwn =
ω

cs
is the wave number of the signal with angular frequency of ω and speed

of sound cs, n1 and n2 are noise terms to the two sub arrays, AE is the M by N steering

matrix of the two sub arrays [105].

By creating the signal subspace for the two sub arrays, we can obtain two matrices VE1 &

VE2. Since the arrays are related in translation, the subspaces of eigenvectors are related

by a unique non-singular transformation matrix ΦE such that [104]

VE1ΦE = VE2. (2.21)

In addition, there must also exist a transformation matrix TE such that VE1 = AETE

and VE2 = AEΛETE [104]. Therefore, it can be obtained that

TEΦET
−1
E = ΛE . (2.22)
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Therefore, the eigenvalues of ΦE must be equal to the diagonal elements of ΛE such

that [104]

λ1 = e−2jkwndsin(θ1) · · ·λM = e−2jkwndsin(θM ). (2.23)

Finally, when the eigenvalues of ΦE , λ1 · · ·λM are calculated, the DOA angles can be

formulated as

θm = sin−1(
arg(λm)

kwnd
). (2.24)

From the above formulation, it can be seen that the ESPRIT eliminates the search proce-

dure and produces the DOA estimation directly in terms of the eigenvalues without much

computational and storage requirements [104].

2.2 Simultaneous Localisation and Mapping

SLAM problems come into play when the robot neither knows its own poses nor has

access to a map of the environment. Instead, the robot has access to its controls input u1:t

and measurements z1:t of the environment. The terminology “simultaneous localisation

and mapping” describes the following problem. In SLAM, the robot needs a map of its

environment. At the same time it needs to simultaneously localise itself relative to this

map. Since the map is unknown and has to be estimated along the way, SLAM is more

difficult than robot localisation given an environmental map. Moreover, since the poses

are unknown and have to be estimated along the way, SLAM is also more difficult than

mapping with known poses [106].

There are two main forms of the SLAM problem from a probabilistic perspective. Both of

them are of equal practical importance. One of them is known as the filtering based SLAM

problem. The filtering based SLAM involves estimating the posterior over the momentary

pose along with the map [106], described as follows,

p(xr,t,m|z1:t, u1:t), (2.25)
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where m is the map, xr,t is the pose at time t, and z1:t and u1:t are the measurements and

controls, respectively. Since it only involves the estimation of variables that persist at time

t, this problem is called the filtering based SLAM problem. Many filtering based SLAM

algorithms are incremental. These algorithms discard past measurements and controls

once they have been processed.

The second SLAM problem is called the optimisation based (a.k.a. full) SLAM problem.

Instead of just the current pose xr,t in the filtering based SLAM, a posterior over the

entire path xr,1:t along with the map is to be computed in the optimisation based SLAM

as follows [106],

p(xr,1:t,m|z1:t, u1:t). (2.26)

The accepted traditional SLAM literature generally refers to filtering when only an esti-

mate of the current robot pose and all the landmark locations are kept in the state vector.

Indeed, one can add the previous history of all robot poses into the state vector as well and

estimate them all, yet this is what is specifically referred as “smoothing” in the SLAM lit-

erature. These two generic filtering techniques are different to optimisation-based SLAM,

which forms the backbone of the work in the thesis.

In the following part of this section, Extended Kalman Filter (EKF) based SLAM and

Graph based SLAM are introduced as typical filtering based and optimisation based

SLAM. Finally, a brief summary state-of-the-art SLAM techniques on different application

scenarios will be introduced.

2.2.1 EKF SLAM

Extended Kalman filter based SLAM algorithm is historically the earliest, and perhaps the

most influential SLAM algorithm. Briefly speaking, the EKF SLAM algorithm applies the

EKF to the filtering based SLAM using maximum likelihood data association. However,

EKF SLAM is also subject to a number of approximations and limiting assumptions

detailed as follows [106],
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Figure 2.10: Bayesian Network for EKF SLAM [6].

• In the EKF SLAM algorithm, feature-based maps are utilised. This means SLAM

maps are composed of point landmarks in the EKF. As a result, the number of

point landmarks is usually small (e.g., smaller than 1,000) for computational reasons.

Furthermore, the EKF SLAM algorithm tends to work better when the landmarks

are less ambiguous. Therefore, significant engineering of feature detectors, such

as using artificial beacons or landmarks as features, is needed for the EKF SLAM

algorithm.

• In the EKF SLAM algorithm, Gaussian noise is assumed. In any EKF algorithm,

EKF SLAM makes a Gaussian noise assumption for both the robot motion and the

perception. In addition, since the linearisation in EKFs tends to introduce intolerable

errors, the amount of uncertainty in the posterior must be relatively small.

• In the EKF SLAM algorithm, all measurements need to be positive measurements.

In the EKF SLAM algorithm, only positive sightings of landmarks can be processed.

Negative information that arises from the absence of landmarks in a sensor measure-

ments can not be processed.

EKF SLAM problem can be represented as a recursive Bayesian Network as shown in

Fig. 2.10. The EKF SLAM only keeps current location of the robot and map information

in its state vector, as described in Eq. 2.25. The current estimate of the current robot

pose xr,t and the map m represents the state vector xt. As a result, only the previous

state vector xt−1, the control input ut and the observation of the map zt influence the

estimation of the state vector. EKF SLAM can be divided into two steps, the prediction
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step and the update step. In the prediction step, based on the belief of the state vector in

the previous step bel(xt−1), the control input ut and the robot motion model, the belief

of the current state vector after prediction step bel(xt) can be written as follows [6],

bel(xt) =

∫
p(xt|ut,xt−1)bel(xt−1)dxt−1. (2.27)

During the update step, the robot observes the map and the update its belief of the current

state vector based on the sensor observation model. The belief of the current state vector

after update step bel(xt) can be written as below [6].

bel(xt) = ηp(zt,xt)bel(xt), (2.28)

where η is a normalisation coefficient.

In practice, the EKF SLAM algorithm can be summarised as in the following equations [6].

x̄t = g(ut,xt−1), (2.29)

P̄t = GtPt−1G
T
t +Rt, (2.30)

Kt = P̄tHt
T (HtP̄tHt

T +Qt)
−1, (2.31)

xt = x̄t +Kt(zt − h(x̄t)), (2.32)

Pt = (I −KtHt)P̄t, (2.33)

where xt−1, x̄t and xt are the system state vectors at time instance t − 1, after the

prediction step at time instance t and after the update step at time instance t, and Pt−1,

P̂t and Pt represents their corresponding covariance matrix. Gt is the Jacobian of robot

motion model g(ut,xt−1), ut is the control input and Rt is the robot motion noise variance.

Ht is the Jacobian of observation function h(x̄t), zt is the sensor observation and Qt is the

observation noise variance. Kt is called Kalman gain.
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2.2.2 Graph Based SLAM

A so-called Graph-based formulation is an intuitive way to address the SLAM problem. In

a graph based SLAM, solving a SLAM problem has changed to constructing a graph whose

nodes represent robot poses or landmarks and edges between two nodes represent sensor

measurements that constrain the connected poses. As SLAM is an over determined sys-

tem, such constraints can be contradictory since observations are always affected by noise.

Therefore, the crucial problem is to find a configuration of the nodes that is maximally con-

sistent with the measurements once such a graph of the SLAM problem is constructed. As

a result, the graph based SLAM problem has changed to solving a large error minimisation

problem [7].

Let xi describes the pose of node i and x = (x1, . . . ,xT )
T be the state vector of the

SLAM system. Moreover, let zij and Ωij be the mean and the information matrix of

a virtual measurement between the node i and the node j respectively. This virtual

measurement is such a transformation that it makes the observations acquired from i

maximally overlap with the observation acquired from j. Given a configuration of the

nodes xi and xj , let ẑij(xi,xj) be the prediction of a virtual measurement, which is

usually the relative transformation between the two nodes. The log-likelihood lij of a

measurement zij therefore can be written as follows [7],

lij ∝ [zij − ẑij(xi,xj)]
TΩij [zij − ẑij(xi,xj)]. (2.34)

A difference between the expected observation ẑij and the real observation zij gathered

by the robot is denoted as a error function e(xi,xj , zij). Here, indices of the measurement

are encoded in the indices of the error function for simplicity of notation. Then, the error

function can be computed as follows,

eij(xi,xj) = zij − ẑij(xi,xj). (2.35)

Figure 2.11 illustrates the functions and the quantities that are very important to definition

of an edge of the graph. The actual measurement zij introduces the edge connecting the
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Figure 2.11: Aspects of an edge connecting the vertex xi and the vertex xi [7].

vertex xi and the vertex xj . In addition, it is also possible to compute the expected

measurement ẑij that represents xj seen in the frame of xi from the relative position of

the two nodes. The error function e(xi,xj) represents the difference between the expected

and the real measurement. With the error function e(xi,xj) and the information matrix

Ωij of the measurement that accounts for its uncertainty, an edge is fully characterised.

The set of pairs of indices, for which a constraint (observation) z exists, is denoted as C.
Then, the goal of solving the SLAM problem by a maximum likelihood approach is to find

the best configuration of the nodes x∗ in such a way that they minimise the negative log

likelihood F(x) of all the observations as follows [7],

F(x) =
∑

<i,j>∈C e
T
ijΩijeij︸ ︷︷ ︸

Fij

, (2.36)

thus, it seeks to solve the following equation:

x∗ = argmin
x

F(x). (2.37)

In the next part of this section, an approach to solve Eq. 2.37 and to compute a Gaussian

approximation of the posterior over the robot trajectory is detailed. Although the method

described in the following section utilises standard optimisation methods, such as the
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Gauss-Newton or the Levenberg-Marquardt algorithms, it is much more efficient because

the structure of the problem is effectively exploited.

The numerical solution of Eq. 2.37 can be obtained by using the popular Gauss-Newton

or Levenberg-Marquardt algorithms if a good initial guess x̆ of the robot poses is given a

priori. This is based on the idea that approximation of the error function can be done by

its first order Taylor expansion around the current initial guess x̆ as follows [7],

e(x̆i +Δxi, x̆j +Δxj) = eij(x̆+Δx)

� eij + JijΔx,
(2.38)

where eij
def.
= eij(x̆) and Jij is the Jacobian of eij(x) computed in x̆. By combining Eq. 2.38

and the error terms Fij of Eq. 2.36, we can derive the equation as follows,

Fij(x̆+Δx) = eij(x̆+Δx)TΩijeij(x̆+Δx)

� (eij + JijΔx)TΩij(eij + JijΔx)

= eij
TΩijeij︸ ︷︷ ︸
cij

+2 eij
TΩijJij︸ ︷︷ ︸
bij

Δx+ΔxT Jij
TΩijJij︸ ︷︷ ︸
Hij

Δx

= cij + 2bijΔx+ΔxTHijΔx.

(2.39)

Then, under the local approximation, the function F(x) can be rewritten in Eq. 2.36 as

follows,

F(x̆+Δx) =
∑

<i,j>∈C
Fij(x̆+Δx) (2.40)

�
∑

<i,j>∈C
cij + 2bijΔx+ΔxTHijΔx (2.41)

= c+ 2bTΔx+ΔxTHΔx. (2.42)

After setting b =
∑

bij , c =
∑

cij , and H =
∑

Hij in Eq. 2.41, the quadratic form in

Eq. 2.42 is obtained. By solving the linear system, it can be minimised in Δx as follows,

HΔx∗ = −b. (2.43)
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Since the matrix H is obtained by projecting the measurement error in the space of the

trajectories via the Jacobians, it is the information matrix of the system. In addition,

the matrix H is also sparse by construction. It has non-zeros between poses connected

by a constraint and its number of non-zero blocks is twice the number of constrains plus

the number of nodes. The above mentioned characteristic allows us to solve Eq. 2.43 by

sparse Cholesky factorisation by using a library such as CSparse [107], which is an efficient

yet compact implementation of sparse Cholesky factorisation. The detailed illustration of

sparse structure of the Hij and bij can be found in [7].

Then, by adding to the initial guess the computed increments, the linearised solution can

be obtained as follows,

x∗ = x̆+Δx∗. (2.44)

In the popular Gauss-Newton algorithm, the linearisation is iterated in Eq. 2.42, the

solution is iterated in Eq. 2.43, and the update step is iterated in Eq. 2.44. The previous

solution is used as the linearisation point and the initial guess in every iteration.

Up to now, we introduced a general approach to multivariate function minimisation which

is derived for the special case of the SLAM problem. However, the derived general approach

has an assumption, that is the space of parameters x is Euclidean. This assumption is

not valid for SLAM and may lead to suboptimal solutions. Advanced topics related to

optimisation on manifold to deal with non-Euclidean spaces can be found in [7].

2.2.3 SLAM Applications

There exist a wide range of SLAM implementations based on different sensors, environ-

ments and application scenarios. In this section, we introduce some popular state-of-the-

art methods based on visual, Lidar and the combination of visual inertial sensors.

2.2.4 Monocular Visual SLAM

In monocular visual SLAM, one single camera is used to perform the localisation and

mapping operation. It estimates 6 DOF pose of the sensor with scale ambiguity.
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PTAM [108] proposed by Klein and Murray is the representative keyframe-based monocu-

lar SLAM system, which is probably the first work to introduce the idea of splitting camera

tracking and mapping in parallel threads. It demonstrates to be successful for real-time

augmented reality applications in small environments. Later the authors published an

improvement of the original version with edge features, a rotation estimation step during

tracking, and a better relocalisation method in [109].

Forster et. al. presents a semidirect visual odometry (SVO), which is in a halfway between

direct and feature-based methods. SVO is able to operate at high frame rates and obtain

impressive results in a high speed quadcopter, without requiring to extract features in

every frame.

Mur-Artal et. al. presents ORB-SLAM [110], a feature-based monocular SLAM system

that operates in real time, in small and large indoor and outdoor environments. ORB-

SLAM allows full automatic initialisation, wide baseline loop closing and relocalisation. It

consists of tracking, mapping, relocalisation and loop closing. When selecting keyframes, a

survival of the fittest strategy is applied, which leads to excellent robustness and generates

a compact and trackable map that only grows if the scene content changes, allowing lifelong

operation.

2.2.5 Stereo Visual SLAM

In stereo visual SLAM, two cameras with known baseline are used to estimate the 6 DOF

pose of the sensor without scale ambiguity.

Engel et. al. presents large-scale direct SLAM (LSD-SLAM) [111], which is a semidense

direct approach that minimises photometric error in image regions with high gradient.

LSD-SLAM is expected to be more robust to motion blur or poorly textured environments

since it does not rely on features. As a drawback, the performance of LSD-SLAM can be

severely degraded by unmodeled effects like rolling shutter or non-Lambertian reflectance.

ORB-SLAM2 [8] presented by Mur-Artal et. al. for stereo and RGB-D cameras is built

upon their monocular feature-based ORB-SLAM [110]. Similar to the ORB-SLAM, the

ORB-SLAM2 system also consists of three main parallel threads. The tracking thread is
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Figure 2.12: ORBSLAM2 with stereo input: Trajectory and sparse reconstruction of
an urban environment with multiple loop closures [8].

Figure 2.13: ORBSLAM2 with RGB-D input: Keyframes and dense pointcloud of a
room scene with one loop closure [8].

to localise the camera with every frame by finding feature matches to the local map and

minimising the reprojection error applying motion-only BA. The local mapping manages

the local map and optimise it by performing local BA. The loop closing detects large

loops and correct the accumulated drift by performing a pose-graph optimisation. It also

launches a fourth thread to perform full BA after the pose-graph optimisation to compute

the optimal structure and motion solution. Two example results of ORB-SLAM2 with

stereo and RGB-D inputs are shown in Fiq. 2.12 and Fig. 2.13.
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2.2.6 RGB-D Visual SLAM

In RGB-D visual SLAM, a RGB-D camera is used to estimate the 6 DOF pose of the

sensor without scale ambiguity. A RGB-D camera consists of a color image (RGB) camera

and a depth image camera.

The RGB-D SLAM proposed by Endres et. al. [112] is probably the first popular open-

source SLAM system that uses a RGB-D camera. RGB-D SLAM is a feature-based system

and its front end computes frame-to-frame motion by using both feature matching and

ICP. Its back end performs pose-graph optimisation with loop closure constraints from a

heuristic search.

Similar to RGB-D SLAM, the back end of DVO-SLAM proposed by Kerl et al. [113]

optimises a pose graph where keyframe to keyframe constraints are computed from a

visual odometry, which minimises both photometric and depth error. Regarding loop

closure, DVO-SLAM searches for candidates in a heuristic fashion over all previous frames

instead of relying on place recognition.

Whelan et. al. presents ElasticFusion [114], which builds a surfel-based map of the envi-

ronment. In ElasticFusion, instead of a standard pose-graph optimisation, it forgets poses

and performs loop closing applying a nonrigid deformation to the map. ElasticFusion pro-

duces the detailed reconstruction and impressive localisation accuracy, while the current

implementation is limited to room-size maps as the complexity scales with the number of

surfels in the map.

2.2.7 2D/3D Lidar based SLAM

Hess et. al. presents a 2D SLAM called ”Cartographer” in [115]. Cartographer com-

bines scan-to-submap matching with loop closure detection and graph optimisation. In

Cartographer, individual submap trajectories are created using the local grid-based SLAM

approach, while all scans are matched to nearby submaps using pixel-accurate scan match-

ing to create loop closure constraints in the background. The constraint graph of submap

and scan poses is periodically optimised. It is also demonstrated that the Cartographer

can run the on modest hardware in real-time.
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Figure 2.14: LOAM results of mapping university campus [9].

Zhang et. al. presents the LOAM method [9], which provides an accurate and effective

registration of a 2D sweeping or 3D LiDAR scans. It is further improved by fusion with

data provided by a vision sensor in VLOAM [116]. Both LOAM and VLOAM detect edges

and planar points in the LiDAR scans for which a set of nonlinear equations constraining

the odometry is generated. A non-linear optimisation results in the final 6 DOF poses

of the sensor. LOAM and VLOAM methods achieved the best results in the KITTI

evaluation benchmark [117]. An example result of mapping a university campus using

LOAM is shown in Fig. 2.14.

2.2.8 Visual Inertial SLAM

In visual inertial SLAM, the information from a camera sensor and a inertial sensor is

fused to estimate the 6 DOF pose of the sensor.

In [118], Leutenegger et. al. introduces a framework named OKVIS, which is a tightly-

coupled fusion of inertial measurements and image keypoints in a nonlinear optimisation

problem that applies linearisation and marginalisation in order to achieve keyframing. The

OKVIS outputs the sensor poses, velocities, and IMU biases as a time series, together with

a 3D map of sparse landmarks. Since the optimisation includes a fixed number of poses,

the OKVIS algorithm is bounded in complexity. Its keyframing strategy, in contrast to a

fixed-lag smoother, results in high accuracy, while still being able to operate at real-time.

In [119], Forster et. al. proposes a novel preintegration theory, which provides a grounded

way to model a large number of IMU measurements as a single motion constraint. As the
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proposed method does not commit to a linearisation point during integration, it improves

conventional works that perform integration in a global frame. In addition, it brings

maturity to the preintegration and uncertainty propagation in SO(3). It also adopts a

structureless model for visual measurements which avoids optimising over 3D landmarks.

2.3 Sound Source Mapping

Due to the important application of sound source mapping introduced in 1.1, a number

of sound source mapping works have been represented in the literature. In this section,

some of the typical sound source mapping methods are introduced.

Based on the sensor being used for robot localisation, these robotic sound source mapping

works can be divided into two categories: 1) using a microphone array only [2, 4] and

2) using an additional accurate exteroceptive sensor (such as a camera or a laser range

finder) together with a microphone array [10, 120]. In both scenarios, the robot can have

an proprioceptive sensor such as wheel odometry.

In the first scenario, due to the fact that sound sources are sparse and noisy and wheel

odometry drifts, some considerations need to be imposed to most of the works belong to

this category in the literature. These considerations can be: the robot moves relatively

short distances so the drift in odometry remains small [2] or multiple sound sources are

mapped at the same time in order to obtain a sufficient number of observations to constrain

the robot pose [4].

In the second scenario, with the help of an additional exteroceptive sensor, robot self

localisation can be much more accurate, so can the sound source mapping accuracy.

2.3.1 Robotic Sound Source Mapping with a Microphone Array Only

2.3.1.1 Sound Source Mapping by Self-Motion Triangulation

In [2, 121], Sasaki et. al. describes a 2D sound source mapping system for a mobile robot.

They developed a multiple sound sources localisation method for a mobile robot with a
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Figure 2.15: Experimental setup of the self-motion triangulation method in [2].

Figure 2.16: Experimental result of the self-motion triangulation method in [2].

32-channel concentric microphone array. Directional localisation and separation of differ-

ent pressure sound sources is achieved using the Delay and Sum Beam Forming(DSBF)

and the Frequency Band Selection(FBS) algorithm. Sound sources were mapped by using

a wheeled robot equipped with the microphone array. The robot estimates sound sources

bearing information on the move and maps sound sources positions using triangulation.

RAndom SAmple Consensus(RANSAC) algorithm is used for rejecting outlier triangu-

lation points to improve the sound source mapping accuracy. The system achieved 2D

multiple sound source mapping with high accuracy. In addition, moving sound source

separation is experimentally demonstrated with segments of the DSBF enhanced signal

derived from the sound source mapping process.

The experimental setup and result are shown in Fig. 2.15 and Fig. 2.16. As can be seen

from the figures, during the robot motion, the robot obtains bearing estimation of three

sound sources from multiple locations. Those rays pointing from robot locations to sound
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Figure 2.17: Experimental setup of the FastSLAM method in [4].

sources are triangulated to get multiple triangulation points. Outliers of triangulation

points will be removed by RANSAC algorithm and the mean locations of triangulation

points are returned as estimations of sound sources locations.

There are two limitations with this method. Firstly, since the odometry drifts over longer

distance, the accuracy of sound source mapping degrades over the long run. Secondly,

there is no uncertainty associated with each sound source location.

2.3.1.2 Sound Source Mapping using FastSLAM

In [4], Hu et. al. proposes a framework that simultaneously localises the mobile robot

and multiple sound sources using a microphone array on the robot. An eigenstructure-

based GCC method for estimating time delays between microphones under multi-source

environment is described. Then, using the estimated time delays, a method to compute

the far-field source directions as well as the speed of sound is proposed. The correctness of

the sound speed estimate is utilised to eliminate spurious sources, which greatly enhances

the robustness of sound source detection. The bearing estimation of the detected sound

sources are used as observations in a bearing-only SLAM. The FastSLAM [122] algorithm

is used for sound source mapping and sound sources data estimation, since the source

signals are not persistent and there is no identification of the signal content.

The experimental setup and result are shown in Fig. 2.17 and Fig. 2.18. As can be seen

from the figures, using the FastSLAM algorithm, which is a multi-hypothesis EKF SLAM

approach, the robot can simultaneously localise its own position and estimate the locations

of sound sources.



Chapter 2. Review of Related Work 47

Figure 2.18: Experimental result of the FastSLAM method in [4].

There is one limitation with this method. The robot needs to observe multiple sound

sources all the time. Otherwise, due to the noisy bearing observation and shortage of

number of landmarks, the SLAM accuracy degrades severely. However, reliable observa-

tions of multiple sound sources are not likely to occur in most scenarios, so controlled

environments like the one in [4] are required.

The authors’ previous work in [123], presents a sound source mapping using Structure

from Motion (SfM) [124]. Similar to this example, their previous work [123] also needs

presence of multiple sound sources to localise the robot.

2.3.1.3 Sound Source Mapping using Unscented Kalman Filter (UKF)

In [90], Portello et. al. presents a method for binaural sound mapping. An UKF is used

to provide range and azimuth estimation of a sound source relative to the robot reference

frame.

The simulation result is shown in Fig. 2.19. The sensor center follows a circular trajectory,

with a constant interaural axis velocity. As the robot moves, the confidence ellipsoid

shrinks along all directions during the estimation of range and bearing of the sound source.

The estimation of sound sources locations converges to its ground truth locations. The

limitation of the method is that it assumes accurate robot location is known.
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Figure 2.19: Experimental result of the FastSLAM method in [4].

Figure 2.20: Experimental result of the Single-Cluster Probability Hypothesis Density
filter method in [125].

2.3.1.4 Sound Source Mapping using Single-Cluster Probability Hypothesis

Density filter

In [125], Evers et. al. presents a single-cluster probability hypothesis density (SC-PHD)

filter based sound source mapping method. They show that localisation of a moving

microphone array and mapping of the surrounding sound sources are jointly dependent

and can be simultaneously estimated using a bearing-only SC-PHD filter.

The simulation result is shown in Fig. 2.20. The sensor center follows a circular trajectory.
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Acoustic scene map in the figure shows the robot pose (red triangles) and the sound

sources locations estimation (red squares), the robot pose (orange crosses) and the sound

sources locations ground truth (orange asterisks) and the robot trajectory from speed

and orientation measurements only (black circles). The robot speed and orientation is

assumed to be measurable. From the result, it can be seen that the pose of the robot and

the sound sources locations have been successfully estimated with reasonable accuracy.

However, similar to the self motion triangulation based sound source mapping method

in section 2.3.1.1, there is no uncertainty associated with each sound source location.

Moreover, when the robot travels a longer trajectory, the integration of robot speed and

orientation measurements drifts significantly. In such a situation, the feedback from the

noisy bearing estimation of limited number of sound sources is not too much helpful to

correct the robot pose to its ground truth value.

2.3.2 Robotic Sound Source Mapping with an Additional Exteroceptive

Sensor

2.3.2.1 Sound Source Mapping using Ray Tracing Method

In [10], Kallakuri et. al. presents a multi-modal sensor approach for mapping sound

sources using an omni-directional microphone array on an autonomous mobile robot. A

fusion of audio data (from the microphone array), odometry information and the laser

range scan data (from the robot) is used to precisely localise and map the audio sources

in an environment. An audio map is created while the robot is autonomously navigating

through the environment by continuously generating audio scans with a SRP algorithm.

Using the poses of the robot, rays are cast in the map in all directions given by the SRP.

Then each occupied cell in the geometric map hit by a ray is assigned a likelihood of

containing a sound source. This likelihood is derived from the SRP at that particular

instant. Since particle filter is used for the localisation of the robot, the uncertainty in the

pose of the robot in the geometric map is propagated to the occupied cells hit during the

ray casting. This process is repeated while the robot is in motion and the map is updated

after every audio scan. The generated sound maps are reused and the changes in the audio

environment are updated by the robot as it identifies these changes.
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Figure 2.21: Experimental setup of the ray tracing method in [10].

Figure 2.22: Experimental result of the ray tracing method in [10].

The experimental setup and result in 2D case are shown in Fig. 2.21 and Fig. 2.22. It can

be seen from these figures that the grids that are occupied (hit by the laser scan) and close

to the locations of sound sources get a higher likelihood of being a sound source as they

are continuously amended with positive log likelihood values. Other occupied grids which

are far away from sound sources locations are continuously amended with negative log

likelihood values. The obstacle free grids are disregarded. Therefore, a strong assumption

of this method in 2D case is that sound sources have to be detectable by laser scanner.

Otherwise, those positive log likelihood audio rays would wrongly hit obstacles that are

not part of sound sources.

The 3D extension of their work is presented in [11], which presents a framework for creating

a 3D map of an environment that contains the probability of a geometric feature to emit
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Figure 2.23: Experimental setup of the 3D ray tracing method in [11].

Figure 2.24: Experimental result of the 3D ray tracing method in [11].

a sound. The experimental setup and results are shown in Fig 2.23 and Fig 2.24.

The limitation of both 2D and 3D version of ray tracing methods are: firstly, the laser

scan needs to hit sound sources first. If, for some reason, the laser scan does not hit the

sound sources, these sound sources would not be mapped even if they are sensed by the

microphone array. Secondly, some isolated sound sources might lead to false audio ray

tracing to the obstacle behind it, as they point out in [10].
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Figure 2.25: Experimental result of the auditory occupancy grid method in [12].

2.3.2.2 Sound Source Mapping using Auditory Evidence Grid Method

In [12], Martinson et. al. presents a sound source mapping method based on the auditory

evidence grid method. Similar to the occupancy grid mapping, the evidence grid represen-

tation uses Bayesian updating to estimate the probability of a sound source being located

in a set of predetermined locations (i.e. a grid cell center). Initially, it is assumed that

every grid cell has a 50% probability of containing a sound source. Then as each new

sensor measurement is added to the evidence grid, those probabilities for each grid cell are

adjusted. The robot uses a laser scanner to localise itself. The result is a representation

that localises the pertinent objects well over time, can be used to filter poor localisation

results, and may also be useful for global re-localisation from sound localisation results.

The experimental result is shown in Fig 2.25. As can be seen from the figure, two sound

sources from human and tape player are successfully localised. The limitations of this

method are as follows. Firstly, as a common limitation of the grid based method, the

resolution of the estimation accuracy depends on the size of the grid. Smaller size of grid

results in higher accuracy but costs higher memory consumption and vice versa. Secondly,

the uncertainty of the robot pose estimation is not considered and the mapping process

is essentially a mapping based on “known” pose. This means even if the robot pose

estimation is corrected after the loop closure, the mapping result will not be corrected

accordingly.



Chapter 3

Calibration of a Microphone Array

3.1 Introduction

Processing the signals from a microphone array has proven to be an effective approach to

improve robot audition. Many robot audition systems based on microphone arrays have

been proposed in the literature [19–21, 59]. By exploiting this technique, robots are able

to localise and track different sound sources, separate speech coming from several people

simultaneously and automatically recognise each separated speech. Most of these stud-

ies utilise a synchronised microphone array, which requires hardware synchronisation of

each independent microphone channel. Specifically, synchronisation needs a special sound

capturing device such as a multi-channel ADC converter. For a synchronised microphone

array, to find the DOA of a sound source, the TDOA from the sound source to each channel

of the microphone array is exploited. When the geometric locations of microphones are

known, conventional DOA estimation algorithms can be used to estimate bearing infor-

mation of the sound source from its TDOA information. However, given the constraints of

embedding microphones in a robot, often alongside other perception devices, it is difficult

to measure the exact location of the microphones accurately. One alternative of measur-

ing the exact location, a transfer function between each microphone and a sound source

is measured. These measurements, however, can be quite time-consuming since they need

to be obtained at multiple intervals of sound source directions (e.g. every 5 degree) [126].

Therefore the proposed strategy, while more suitable for asynchronous microphone arrays

53
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a The hardware connection.
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b The pulse signal received on each channel.

Figure 3.1: Experimental setup for testing clock differences.

as will become apparent in this Chapter, is also applicable to hardware synchronised ar-

rays where essentially only estimates of the geometric locations of the microphones are

required.

While several commercial products of hardware synchronisation boards exist, they are

either too expensive or too large in size to be integrated inside robotic platforms [126].

Recent methods have started to relax these assumptions, and use an asynchronous micro-

phone array to localise sound sources. For instance self-localisation approaches for ad-hoc

arrays have been proposed in [64] [65] [66] [67]. Most of these approaches can achieve high

accuracy in microphone array self-localisation. Both [64] and [67] provide closed-form
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estimators, in contrast to the standard iterative solution. The method presented in [64]

also considers an acoustically determined, orientation estimate of a device that contains a

microphone array. This method has been used in localisation of an asynchronous source

in [127]. Raykar et al.’s work [128] on self-localisation formulates a maximum likelihood

estimation for unknown parameters of a microphone array (time offsets, microphone posi-

tions) and measurements (TDOA or TOF) by utilising active emissions. Ono et al. [129]

present a TDOA-based cost function approach, which does not require controlled calibra-

tion signal for estimating self-localisation, source localisation and temporal offset estima-

tion. An online approach utilising SLAM is presented by Miura et al. [126], which used

extended Kalman filtering and delay-and-sum beamforming to calibrate the stationary

array.

While these methods are capable of computing individual microphone locations and the

time offsets between different microphone channels, all of them are based on the assump-

tion that the clock interval, in each independent sound card dedicated to each channel, is

identical to those of the others. This is a strong assumption that disregards errors from

fractional differences in clock intervals, which will accumulate over time. Sound cards, es-

pecially those designed for general consumption, have indeed noticeable drifts. An example

is shown in Fig. 3.1(a). A microcontroller, connected to the signal line of each of these

three microphones, generates a simultaneous pulse after a fixed time interval, remaining

at high impedance until the next regular pulse. Fig. 3.1(b) shows a detail of the difference

in arrival time for each microphone, whilst Fig. 3.2 represents the evolution in the differ-

ence between each pair of channels with respect to the first one (vertical axis indicates

the offset as number of samples to normalise the comparison). These signal time offsets

in Fig. 3.2 are a combination of the starting time offsets and clock difference rate by the

elapsed time. From this simple setup, it can be easily observed how time-offsets between

pairs of channels keep increasing over time due to clock drifts from the small variations

in the clock intervals of each sound card. This means the calibration of an asynchronous

microphone array needs to estimate the starting time offsets and clock differences of mi-

crophones in addition to their geometric locations. Estimating the starting time offset and

clock difference essentially mean estimating the intersection point of the Y axis and slope

of the line in Fig. 3.2, which together determine the line uniquely.
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Figure 3.2: Detected differences of peak arrival time.

The method proposed in this thesis overcomes this issue with clock drifts by calibrating the

asynchronous microphone array. The approach is based on a graph-based SLAM method

to calibrate the array, which implies estimating the position, the starting time offset and

clock difference of each microphone simultaneously. As an additional advantage, the tra-

jectory of the sound source can also be recovered at the same time. In the same way as

the SLAM problem, the problem in hand is formulated as a sparse, least-squares minimi-

sation problem, where the minimum is found iteratively using Gauss-Newton algorithm.

This is equivalent to finding the Maximum-Likelihood (ML) estimate of the sequence of

sound sources locations and the array calibration under the assumption of Gaussian noise.

Simulation and experimental results for a random walk sound source and arrays of vari-

able number of microphones show the viability of the approach. Note that the proposed

method works for both an asynchronous microphone array and a hardware synchronised

microphone array.

For the hardware synchronised microphone array, we simply do not estimate the starting

time offsets and clock differences parameters of microphones by removing them from the

state vector, since these parameters are all the same and equal to zero. Therefore, in

the following part of the Chapter, only the case of an asynchronous microphone array is

presented. With a synchronised array, one can simply remove the stating time offsets and
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clock differences parameters from the state vector and only focus on estimating geometric

positions of microphones as stated before.

The rest of this Chapter is organised as follows. We first start investigating the calibration

of a 2D/3D microphone array and extend the method to a linear microphone array case. In

section 3.2, the detailed explanation of the proposed method in 2D scenario is presented.

In section 3.3, the proposed method in 2D scenario has been extended to 3D scenario. In

section 3.4, the calibration method of a 2D/3D microphone array is extended to a linear

microphone array scenario. In section 3.5, comprehensive simulations and experimental

results are presented. Section 3.6 presents the conclusion and discussion about further

work.

3.2 Calibration of a 2D Asynchronous Microphone Array

In our system, the nonlinear least squares minimisation aims at recovering a sequence of

sound source positions and the static configuration of the microphone array given a set of

relative measurements and the number of microphones of the array. As the sound source

moves around, the microphone array produces bearing observations of it from multiple

viewpoints. Enforcing consistency between the different views gives rise to the location

constraints (of sound source and microphone array).

3.2.1 System Model

Let xmic be the state of the microphone array and pk be the position of the sound source

at the time tk = t1...tK . Thus the full state is given by,

xT = (xT
micp

T
1 . . .pT

K) , (3.1)

where

xT
mic = (xT

mic 1 . . .x
T
mic N ) , (3.2)

and N is the total number of microphones, which is known.
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Note that in this case the part of the state of each microphone contains

xT
mic n = (xxmic nx

y
mic nx

τ
mic nx

δ
mic n) (3.3)

for n = 1...N , where the location is given by the variables with superscripts x and y

and the variables with subscripts τ and δ represent the starting time offset and the clock

difference per second of each microphone respectively.

In a similar way, the part of the state of the sound source is

pT
k = (pxkp

y
k) (3.4)

which contains only two variables that represent x and y position, as the orientation is

not estimated in this case.

Let the microphone 1 be used as the reference, then time offsets and clock differences of

other microphones are computed relative to the microphone 1. Hence, xτmic 1 = 0 and

xδmic 1 = 0. Moreover, in order to define the position and orientation of the reference

frame, the origin and, x and y axes need to be defined. As microphone 1 is the reference

its position is set as (0, 0). Let also another microphone (for instance the 2nd) define the

positive direction of the x axis. However, if the microphone array is bi-dimensional there

will be two possible solutions for the position of the microphone array ±y. This will fully

define our reference frame. In practice if the structure of the array is known, it can be

exploited to remove the ambiguity in the y direction, e.g. another microphone can define

the positive direction of the Y axis. This will fully define our reference frame. Note that

it is assumed in any case that the number of microphones N is known and fixed.

To make the analogy to a standard SLAM framework as shown in Fig. 3.3, the sound

source locations are treated as robot poses and the microphone array is treated as a single

landmark. This landmark has the particularity of being observable at all sound source

positions. Note that the main difference with a standard landmark-pose SLAM system is

that here all the microphones are “observed” at all the time. In a standard SLAM system

only part of the landmarks are observed at any time. This fact allows the microphone

array to be treated as a single landmark with a large state that contains all microphones
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Figure 3.3: Description of the poses, landmarks and constraints in the SLAM frame-
work.

locations. The same solution, however, can be achieved if the microphones are considered

independently. The microphone array becomes the first node in the graph-based SLAM

framework and each sound source position becomes one node.

Continuing the analogy with the standard graphical SLAM framework, for the position-

position constraints, in this work the trajectory of the sound source is assumed to be

arbitrary (no-odometry prior is considered), with the only constraint of two adjacent loca-

tions set to be not too distant from each other. Therefore, we use a random walk model1

in which the sound source position of the next time instance is expected to be at the same

location as the previous time with a large uncertainty associated as

zp−p
k−1,k = 0 (3.5)

Ip−p
k−1,k =

1

σ2
p−p

I , (3.6)

1Note that other motion models can also be used to describe the constraint between two adjacent
positions as long as the motion model represents the fact the two adjacent positions are close to each
other.
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where zp−p
k−1,k and Ip−p

k−1,k denote the measurement and information matrices between posi-

tions k−1 and k for k = 1 . . .K. σp−p is the standard deviation of the random walk model

within which the location of the next sound source should fall. I denotes the identity

matrix.

Regarding position-landmark constraints, the measurement represents TDOA values at

each position of sound source. Specifically, the measurement is defined as

zp−l
k

T
= (TDOAmic 2,mic 1 . . . TDOAmic N,mic 1) (3.7)

where TDOAmic n,mic 1 for n = 2 . . . N is the TDOA between microphone n and micro-

phone 1, which is used as the reference as mentioned before. The information matrices for

this position-landmark constraint is given by

Ip−l
k =

1

σ2
p−l

I , (3.8)

where σp−l is the standard deviation of Gaussian distribution within which the error of

each TDOA measurement should be.

3.2.2 Graph-Based Optimisation

In our case, as in the least square problem of the graph-based SLAM, the optimal state

vector is found by minimising the error over all position-position constraints and position-

landmarks constraints [130]

x∗ = argmin
∑
ij

eTijΩijeij (3.9)

where i and j mean ith and jth nodes in the graph.

This estimated x∗ can be obtained by iterative Gauss-Newton optimisation [130].

x = x+Δx (3.10)
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where

HΔx = −b (3.11)

where H and b are called coefficient matrices and coefficient vector respectively. These

two coefficients are defined as follows[130],

b̄Ti =
∑

eTijΩijAij

b̄Tj =
∑

eTijΩijBij

(3.12)

and

H̄ii =
∑

AT
ijΩijAij

H̄ij =
∑

AT
ijΩijBij

H̄ji =
∑

BT
ijΩijAij

H̄jj =
∑

BT
ijΩijBij

(3.13)

where b̄i and b̄j are ith and jth element of the coefficient vector b. H̄ii,H̄ij ,H̄ji and H̄jj

are sub block matrices parts of the coefficient matrices H. Aij and Bij are the Jacobian

matrices of eij over the graph node xi and xj respectively

Aij =
∂e(xi,xj)

∂xi

Bij =
∂e(xi,xj)

∂xj
.

(3.14)

In particular for the asynchronous microphone array, the calibration problem is computed

as shown below. For each position-position constraint of the sound source at tk−1 to tk,

the error function is computed as

ep−p
k−1,k = (pk − pk−1)− zp−p

k−1,k

=

⎡
⎣pxk − pxk−1

pyk − pyk−1

⎤
⎦ .

(3.15)
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Then, Jacobian matrices for this position-position constraint are

Ap−p
k−1,k =

∂ep−p
k−1,k

∂pk−1
=

⎡
⎣−1 0

0 −1

⎤
⎦ (3.16)

and

Bp−p
k−1,k =

∂ep−p
k−1,k

∂pk
=

⎡
⎣1 0

0 1

⎤
⎦ (3.17)

Regarding the position-landmark constraint of the microphone array to the sound source

location at tk, the error function is defined as

ep−l
k = ẑp−l

k − zp−l
k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
(xxmic 2 − pxk)

2 + (xymic 2 − pyk)
2

c
...√

(xxmic n − pxk)
2 + (xymic n − pyk)

2

c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
pxk

2 + pyk
2

c
...√

pxk
2 + pyk

2

c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣
xτmic 2

...

xτmic n

⎤
⎥⎥⎥⎦

+ kΔt

⎡
⎢⎢⎢⎣
xδmic 2

...

xδmic n

⎤
⎥⎥⎥⎦− zp−l

k

(3.18)

where ẑp−l
k denotes the predicted TDOA from the current state vector, c refers to speed

of sound and Δt means the time interval between each sound source position.

Then, the Jacobian matrices for this error function result in

Ap−l
k =

∂ep−l
k

∂xmic
= [0Jp−l

mic 2 . . . J
p−l
mic N ] (3.19)
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and

Bp−l
k =

∂ep−l
k

∂pk
= [Jp−l

k x J
p−l
k y ] (3.20)

where Jp−l
mic n for n = 1 . . . N is the partial derivative of ep−l

k with respect to the state of the

microphone n. Since the microphone 1 is used as a reference, its state is a constant value.

Thus, the Jacobian is equal to zero. Jp−l
mic n is only nonzero at row n and this nonzero row

is computed as

Jp−l
mic n(n, :) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xxmic 2 − pxk

c
√
(xxmic 2 − pxk)

2 + (xymic 2 − pyk)
2

xymic 2 − pyk

c
√
(xxmic 2 − pxk)

2 + (xymic 2 − pyk)
2

1

kΔt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(3.21)

Jp−l
k x and Jp−l

k y in Eq. 3.20 represent the Jacobian matrices of ep−l
k with respect to the

state of x and y locations of the sound source at time tk respectively. These matrices are

computed as

Jp−l
k x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pxk − xxmic 2

c
√
(xxmic 2 − pxk)

2 + (xymic 2 − pyk)
2

...
pxk − xxmic N

c
√
(xxmic N − pxk)

2 + (xymic N − pyk)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pxk

c
√
pxk

2 + pyk
2

...
pxk

c
√
pxk

2 + pyk
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.22)
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Jp−l
k y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

pyk − xymic 2

c
√
(xxmic 2 − pxk)

2 + (xymic 2 − pyk)
2

...

pyk − xymic N

c
√
(xxmic N − pxk)

2 + (xymic N − pyk)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

pyk

c
√
pxk

2 + pyk
2

...

pyk

c
√
pxk

2 + pyk
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.23)

Finally, the block corresponding to the 1st microphone in H is set to identity matrices,

H(1 : 4, 1 : 4) = I . (3.24)

3.3 Calibration of a 3D Asynchronous Microphone Array

When a 3D microphone is considered, the system described above for a 2D microphone

array is subjected to the following changes.

In order to fix the reference frame in 3D scenario, in addition to the constraints of micro-

phones positions defined in 2D case, the z coordinate of a third microphone needs be set

to zero.

Firstly, the state of the microphone array in Eq. 3.3 needs to include the z coordinate of

the microphone as follows,

xT
mic n = (xxmic nx

y
mic nx

z
mic nx

τ
mic nx

δ
mic n). (3.25)

Similarly, the state of the sound source at time instance k in Eq. 3.4 also includes its z

coordinate as follows,

pT
k = (pxkp

y
kp

z
k). (3.26)
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The z coordinates of microphone positions and sound sources come into play when comput-

ing sound sources positions and the TDOA. Therefore, for each position-position constraint

of the sound source, the error function in Eq. 3.15 becomes as follows,

ep−p
k−1,k = (pk − pk−1)− zp−p

k−1,k

=

⎡
⎢⎢⎢⎣
pxk − pxk−1

pyk − pyk−1

pzk − pzk−1

⎤
⎥⎥⎥⎦ .

(3.27)

and its corresponding Jacobian matrix in Eq. 3.16 and Eq. 3.17 can be rewritten as follows,

Ap−p
k−1,k =

∂ep−p
k−1,k

∂pk−1
=

⎡
⎢⎢⎢⎣
−1 0 0

0 −1 0

0 0 −1

⎤
⎥⎥⎥⎦ , (3.28)

Bp−p
k−1,k =

∂ep−p
k−1,k

∂pk
=

⎡
⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎦ . (3.29)

Regarding the position-landmark constraint of the 3D microphone array to the sound

source location at tk, the error function in Eq. 3.18 can be rewritten as follows,

ep−l
k = ẑp−l

k − zp−l
k

=

⎡
⎢⎢⎢⎢⎣

d2,k
c
...

dn,k
c

⎤
⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
pxk

2 + pyk
2

c
...√

pxk
2 + pyk

2

c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣
xτmic 2

...

xτmic n

⎤
⎥⎥⎥⎦

+ kΔt

⎡
⎢⎢⎢⎣
xδmic 2

...

xδmic n

⎤
⎥⎥⎥⎦− zp−l

k ,

(3.30)
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where di,k, i ∈ (1. . .n) is the distance between the ith microphone and the sound source

at time instance k, which can be formulated as follows,

di,k =((xxmic 2 − pxk)
2 + (xymic 2 − pyk)

2

+ (xzmic 2 − pzk)
2)1/2.

(3.31)

The Jacobian matrices Ap−l
k for this error function has the same structure as in Eq. 3.19

while Bp−l
k in Eq. 3.20 can be rewritten as follows,

Bp−l
k =

∂ep−l
k

∂pk
= [Jp−l

k x J
p−l
k y J

p−l
k z ]. (3.32)

Jp−l
mic n is Eq. 3.21 is rewritten as

Jp−l
mic n(n, :) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xxmic 2 − pxk
cdn,k

xymic 2 − pyk
cdn,k

xzmic 2 − pzk
cdn,k

1

kΔt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (3.33)

Jp−l
k x , J

p−l
k y and Jp−l

k z in Eq. 3.32 can be formulated as follows,

Jp−l
k x =

⎡
⎢⎢⎢⎢⎢⎣

pxk − xxmic 2

cdn,k
...

pxk − xxmic N

cdn,k

⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎣

pxk
cdk
...
pxk
cdk

⎤
⎥⎥⎥⎥⎦ , (3.34)

Jp−l
k y =

⎡
⎢⎢⎢⎢⎢⎣

pyk − xymic 2

cdn,k
...

pyk − xymic N

cdn,k

⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎣

pyk
cdk
...

pyk
cdk

⎤
⎥⎥⎥⎥⎥⎦ , (3.35)
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Jp−l
k z =

⎡
⎢⎢⎢⎢⎢⎣

pzk − xzmic 2

cdn,k
...

pzk − xzmic N

cdn,k

⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎣

pzk
cdk
...
pzk
cdk

⎤
⎥⎥⎥⎥⎦ , (3.36)

where dk is the distance from the sound source position at the kth time instance to the

origin of the global coordinate frame, which is formulated as follows,

dk =

√
pxk

2 + pyk
2
+ pzk

2 (3.37)

3.4 Calibration of an Asynchronous Linear Microphone Ar-

ray

In this section, details about the calibration of an asynchronous linear microphone array

is presented2.

For an embedded linear microphone array, since the location information of each micro-

phone channel (distance between each microphone) can be easily obtained by the fabri-

cation data or measured by the user, it is assumed to be known here. Then, the only

information to be estimated for a microphone is the starting time offset and clock differ-

ence.

3.4.1 System Model

Let xmic is the state of the microphone array and β is the state of the sound source. Then,

the state vector of the SLAM framework is as follow,

xT = (xT
micβ

T ). (3.38)

2For those who have already got a commercial 3D camera with an embedded synchronised linear mi-
crophone array as shown if Fig. 5.1, this section can be skipped.
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Figure 3.4: Description of the poses, landmarks and constraints.

The state of the microphone array xmic and the state vector of the sound source β have

the following structures,

xT
mic = (xT

mic 1 . . .x
T
mic N ), (3.39)

βT = (βT
1 . . . βT

K), (3.40)

where N is the total number of microphones and K is total number of sound source

positions used in the calibration while it moves around the microphones. βk(k = 1 . . .K)

is the DOA angle of the sound source at time instance k. xmic n(n = 1 . . . N) is the

individual state of each microphone and it is parametrised as follows,

xT
mic n = (xτmic nx

δ
mic n)(n = 1 . . . N), (3.41)

where xτmic n is the starting time offset and xδmic n is the clock difference per second of

microphone n. The first microphone is used as the reference and time offsets and clock

differences of other microphones are computed relative to this microphone. Therefore,

xτmic 1 = 0 and xδmic 1 = 0.

Similar to calibration of a 2D/3D microphone array, to make the analogy to a standard

SLAM framework as shown in Fig. 3.4, DOA angles of the sound source are treated as

robot poses and the microphone array is treated as a single landmark that is observed at all
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sound source directions.. The microphone array becomes the first node in the graph-based

SLAM framework and each sound source DOA angle becomes one node.

For the position-position constraints, similar to calibration of a 2D/3D microphone array,

the trajectory of the sound source is assumed to be arbitrary (no-odometry prior is con-

sidered), and we use a random walk like model in which the sound source DOA angle of

the next time instance is expected to be the same as that of the previous time with the

standard deviation of reasonably big value as follows,

zp−p
k−1,k = 0(k = 1 . . .K), (3.42)

Ip−p
k−1,k =

1

σ2
p−p

(k = 1 . . .K), (3.43)

where zp−p
k−1,k and Ip−p

k−1,k denote the measurement and information matrix between poses

k− 1 and k. σp−p is the standard deviation of the Gaussian distribution within which the

DOA angle of next sound source should fall.

For the pose-landmark constraints, the measurement is the TDOA values of the sound

source to the microphone array at each angle of sound source. The measurement of this

pose-landmark constraint is defined as follows,

zp−l
k

T
= (TDOAmic 2,mic 1 . . . TDOAmic N,mic 1), (3.44)

where TDOAmic n,mic 1(n = 2 . . . N) is the TDOA between microphone n and microphone

1 as microphone 1 is used as reference. The information matrix for this pose-landmark

constraint is

Ip−l
k =

1

σ2
p−l

I, (3.45)

where σp−l is the standard deviation of Gaussian distribution within which the error of

TDOA observation error should be.
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3.4.2 Error Functions and Their Jacobians

For each pose-pose constraint from sound source position k − 1 to k, the error function is

defined as follows,

ep−p
k−1,k = (βk − βk−1)− zp−p

k−1,k = βk − βk−1. (3.46)

Therefore, the corresponding Jacobian matrix for this pose-pose constraint is as follow.

Ap−p
k−1,k =

∂ep−p
k−1,k

∂βk−1
= −1, (3.47)

Bp−p
k−1,k =

∂ep−p
k−1,k

∂βk
= 1, (3.48)

where Ap−p
k−1,k and Bp−p

k−1,k are Jacobian matrix of ep−p
k−1,k over the graph node βk−1 and βk

respectively.

For the pose-landmark constraint between microphone array and sound source location at

time instance k, the error function is computed as follows,

el−p
k = TDOApre − zp−l

k

= −1

c

⎡
⎢⎢⎢⎣

dmic

...

(N − 1) ∗ dmic

⎤
⎥⎥⎥⎦ cos(βk) +

⎡
⎢⎢⎢⎣
xτmic 2

...

xτmic n

⎤
⎥⎥⎥⎦+ kΔt

⎡
⎢⎢⎢⎣
xδmic 2

...

xδmic n

⎤
⎥⎥⎥⎦− zp−l

k ,
(3.49)

where dmic is the distance between two adjacent microphones, TDOApre is the predicted

TDOA value from the current state vector, c denotes the speed of sound and Δt refers to

time interval between time instance k and k + 1.

The Jacobian matrices correspond to this error function are computed as follows,

Al−p
k =

∂el−p
k

∂xmic
= [0Jl−p

mic 2 . . .J
l−p
mic N ], (3.50)

Bl−p
k =

∂el−p
k

∂βk
=

1

c

⎡
⎢⎢⎢⎣

dmic sin(β2)
...

(N − 1)dmic sin(βK)

⎤
⎥⎥⎥⎦ , (3.51)
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where Jl−p
mic n, (n = 1 . . . N) is the Jacobian of el−p

k over state vector of microphone n. Since

microphone 1 is used as reference, its state vector is a constant value and the Jacobian of

it is all zero. Jl−p
mic n is only nonzero at rule n and this nonzero rule is computed as

Jl−p
mic n(n, :) =

⎡
⎣ 1

kΔt

⎤
⎦
T

. (3.52)

3.5 Simulation and Experimental Results

The validation of the proposed methodology is studied first in a simulation environment,

where the performance of the proposed algorithm is tested under a variety of conditions

with known ground truth. An experiment with a set of ordinary microphones was then

conducted to show the effectiveness under realistic conditions.

3.5.1 Application Setup

For all the scenarios of this Chapter, a sound-source is considered to be moving randomly

or following a pre-defined path around a room, where an array of microphones is fixed

and recording. Then, recorded audio signals from all microphone channels are processed

using the proposed graph-based optimisation method, and sound source positions and the

locations, starting time offsets and clock differences of all microphones are estimated. Note

that once the array is calibrated, popular synchronous microphone array processing tech-

niques can be applied for separation or localisation of multiple sound sources as described

previously in section 2.1.2.

3.5.2 Initialisation and Termination Conditions

No prior knowledge of the microphone positions or sound source trajectories are assumed

as initial values for the optimisation. Therefore, the initial values corresponding to those

variables are randomly selected within the workspace. Moreover, zero starting time offsets

and zero clock differences are assumed as part of the state. Like any other optimisation

problem, least square optimisation based graph SLAM also suffers from non-convergence
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from a bad initial value, a situation that can be minimised if approximate priors can be

supplied.

The termination condition is based on the maximum number of iterations and change of

the state vector Δx. If the algorithm reaches a predefined maximum number of iterations,

or the change of the state vector is smaller than a predefined threshold ε, the algorithm

stops.

3.5.3 Simulation Results

3.5.3.1 Simulation Results of 2D Microphone Arrays

The parameters used in 2D simulations are summarised in Table 3.1. The realistic obser-

vation noise and random walk model noise are multiplied by conservative factor to deal

with the worst case scenarios. In this section, three different types of microphone arrays

are simulated. They are an array of 9 microphones with 3 × 3 structure as shown in

Fig. 3.5(b), an array of 6 microphones with 3× 2 structure as shown in Fig. 3.7(a) and an

array of 16 microphones with 4× 4 structure as shown in Fig. 3.7(b).

In all simulations, in order to obtain unique solutions, the position of microphone 1 is

fixed at the origin of the coordinate system, microphone 3 in the 3× 3 microphone array

(microphone 2 in the 3 × 2 microphone array and microphone 4 in the 4 × 4 microphone

array) is fixed at positive x axis and the y coordinate of microphone 4 in the 3 × 3

microphone array (microphone 3 in the 3 × 2 microphone array and microphone 5 in the

4× 4 microphone array) is set to be positive.

Firstly, we performed a 10-runs Monte Carlo simulation, which considers an array of 9

(3× 3) microphones and sound source moving as (Eq. 3.5). The results of the 1st Monte

Carlo run are shown in Fig. 3.5 and Fig. 3.6. From the figure, it can be seen that, despite

random initialisation, the proposed method is able to converge with good accuracy to the

simulated values.

Secondly, in order to show the influence of the number of microphones over the estimation

accuracy, another two 10-runs Monte Carlo simulations for a 3 × 2 and a 4 × 4 arrays
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Table 3.1: Parameters setting in simulation

Parameters Values

Number of microphones 9
Distance between microphones 0.5m
Maximum starting time offset 0.1s
Maximum clock difference 0.1ms

Observation (TDOA) noise STD 0.333ms
Sampling frequency 44.1 KHz
random walk STD 0.333m

Adjacent sound source distance 0.05m
Maximum iterations 50

ε for Δx 0.0001

Table 3.2: RMS errors over 10-run Monte Carlo simulations

Arrangement 3× 2 3× 3 4× 4

mean RMS error of mic. pos.(m) 0.1207 0.0335 0.0103

mean RMS error of τ(ms) 0.2486 0.0812 0.0276

mean RMS error of δ(micro s) 1.6446 0.6952 0.1936

are performed. The comparison of the root mean square (RMS) errors for microphone

positions in the 3× 2, 3× 3 and 4× 4 arrangements is given in Table 3.2. From the RMS

errors, it can be seen that increasing the number of microphones results in better estimation

accuracy of the microphone position and the usage of 9 microphones is sufficient, under

the simulated TDOA observation noise, to recover the trajectory of the sound source with

low RMS error.

Finally, to test the influence of the number of sound source positions over the estimation

accuracy, another two 10-runs Monte Carlo simulations with half of the sound source

positions and twice the number of the sound source positions are performed using the

3 × 3 microphone array. The results are shown in Fig. 3.8. The comparison of RMS

errors of the microphone positions is given in Table 3.3. The figure and table show that

an increased number of sound source positions can lead to better estimation accuracy.
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b Final estimation results for microphone and sound source positions after con-
vergence over 17 iterations.

Figure 3.5: Initialisation and final estimation results for a 3× 3 array.

3.5.3.2 Simulation Results of 3D Microphone Arrays

In this section, calibration of a 3D microphone array simulation scenario is considered. Key

simulation parameters are the same as those in 2D simulation as shown in Table 3.1. Two
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Figure 3.6: Final estimation results for a 3× 3 array.

sets of simulations of a 3 × 3 × 2 microphone array, as shown in Fig. 3.9, are performed.

In all simulations of the 3D microphone array, in order to obtain unique solutions, the

position of microphone 1 is fixed at the origin of the coordinate system, microphone 3 is

fixed at positive x axis, the z coordinate of microphone 7 is set to be zero and z coordinate
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b Estimation results for one of 4× 4 microphone array.

Figure 3.7: Estimation results of 3× 2 and 4× 4 arrays.

of the microphone 10 is set to positive.

Firstly, we simulated a situation in which the sound source can move through the internal

space of the microphone array. The microphone array state and locations of the sound

source are randomly initialised as shown in Fig. 3.9(a), final estimation of the sound source

positions and microphones locations are shown in Fig. 3.9(b), and starting time offsets and
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Figure 3.8: Estimation results of various number of sound source positions.

clock differences are shown in Fig. 3.10(a) and Fig. 3.10(b). From these results, it can be

seen that, the proposed method can successfully calibrate a 3D microphone array and

localise a sound source in 3D space.

Next, we simulated another situation in which the sound source can only access the exterior

space of the microphone array as shown in Fig. 3.11 and Fig. 3.12. These simulations reflect

the scenario in which the casing of the microphone array does not allow the sound source
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Table 3.3: RMS errors over 10-run Monte Carlo simulations

number of sound source positions half original twice

mean RMS error of mic. pos.(m) 0.1480 0.0335 0.0106

mean RMS error of τ(ms) 0.3038 0.0812 0.0239

mean RMS error of δ(micro s) 2.4248 0.6952 0.1450

to be inside the space of the microphone array. The results prove the sound performance

of the method in this simulation scenario. From the experimental result it also can be

seen that the uncertainty associated to the z coordinates of the microphones are smaller

than those of the previous simulation. This is due to the fact that the sound source travels

a longer distance along the z axis (-0.75m to 1.25m) compared to that in the previous

simulation (-0.25m to 0.75m).

3.5.3.3 Simulations of Calibration of 2D and 3D Asynchronous Microphone

Arrays without Estimating Clock Difference

The conventional method [126] for calibration of an asynchronous microphone array dis-

regards the clock differences between the microphone sound cards. However, according

to our own experiments (shown before in Fig. 3.1 and Fig. 3.2), clock timing in different

sound cards does present marginal differences. Therefore, in order to test the relevance

of the proposed clock difference estimation, which is one of the main novelties in the the-

sis, in this section the simulation results of a 2D and 3D asynchronous microphone array

calibration without the clock difference estimation are presented. We use the same 2D

and 3D microphone arrays as simulated before in Fig. 3.5 and Fig. 3.11, and the same

simulation parameters and initialisation values. Unsurprisingly, when difference in clock

timings are ignored, the optimisation results of both 2D and 3D microphone arrays start

to diverge after only a few iterations - as depicted in Fig. 3.13. This is due to the fact

that after a certain time period (more than 2 minutes in both simulation scenarios), the

time offsets between different channels of microphones have changed considerably given

the clock differences. Therefore, assuming a constant time offsets by disregarding clock

differences have resulted in the divergence from the optimal solution. The reason why

in [126] the calibration problem converged even when the clock differences were ignored is
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Figure 3.9: Initialisation and final estimation results for a 3× 3× 2 array.

explained by the fact that they used a synchronised microphone array for the experiment,

and manually added temporal offsets. Therefore, there is no clock difference in their data.
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Figure 3.10: Final estimation results for a 3× 3× 2 array.
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Figure 3.11: Initialisation and final estimation results for a 3× 3× 2 array.

3.5.3.4 Simulations of Calibration of an Asynchronous Linear Microphone

Array

A simulation of the proposed method with an array of 4 microphones is studied and the

parameters used in the simulation are summarised in Table 3.4. The estimations of the

starting time offset and the clock difference of each microphone channel are shown in Fig.
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Figure 3.12: Final estimation results for a 3× 3× 2 array.

3.14. It can be seen from the figure that our method is able to estimate the values for

these two variables with good accuracy.

Secondly, the influence of the number of calibration data over the estimation accuracy is
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a Calibration of the 2D microphone array in Fig. 3.5 diverges when ignoring the
clock difference.

b Calibration of the 3D microphone array in Fig. 3.11 diverges when ignoring the
clock difference.

Figure 3.13: Calibration of 2D and 3D microphone arrays diverges when ignoring the
clock difference.

examined by simulations of various numbers of it with 20 Monte Carlo runs for each case.

The results are shown in the Fig. 3.15. From the comparison of mean RMS errors plot,

it is clear that a lower number of calibration data (smaller than 180) can dramatically

degrade the estimation accuracy of both starting time offsets and clock differences.
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Table 3.4: Parameters setting in simulation

Parameters Values

Number of microphones 4
Distance between microphones 0.05m
Maximum starting time offset 0.1s
Maximum clock difference 0.1ms

Observation (TDOA) noise STD 3.33ms
Sampling frequency 44.1 KHz
random walk STD 50 (degree)

Adjacent sound source angle 1 (degree)
Number of calibration data 180

Speed of sound 340m/s
Maximum iterations 20

ε for ΔX 10

a starting time offset b clock difference

Figure 3.14: Simulation results compared to the ground truth values.

3.5.4 Experimental Results

To validate the proposed methodology, the following experimental set-up in an indoor

setting was devised: an array of 6 microphones was fixed at a known location as shown

in Fig. 3.16. These microphones were individually sampled by independent USB sound

cards. Relevant parameters of the experimental set-up are summarised in Table 3.5. The

observation noise and random walk model noise were empirically obtained. Again, in

order to obtain a unique solution, the position of microphone 1 is fixed at the origin of

the coordinate system, microphone 3 is fixed at positive x axis and the y coordinate of

microphone 4 is set to be positive.
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a starting time offset b clock difference

Figure 3.15: Mean RMS error w.r.t. number of calibration data.

Figure 3.16: Experimental setup of the asynchronous microphone array. Each channel
of the array is sampled independently using individual USB sound cards.

When recording of an incoming sound signal (a short time chirp) commences, a hand-held

sound emitter (a smart phone producing a known sound wave) moves around the micro-

phone array following one similar and one different trajectories to those in simulations.

3.5.4.1 Signal Processing

The raw audio recording contains background noise and reverberation as shown in Fig.

3.17. An Equiripple high pass filter was used to clean the low frequency noise with a

frequency lower than the lowest frequency of the emitted chirp signal. The first distinctive

peak of the filtered wave was chosen as the arrival time of the signal. Note that any other

sound signals (e.g. hand clapping and continuous speech) can be used as the sound source.
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Table 3.5: Experimental set-up parameters

Parameters Values

Number of microphones 6
Distance between microphones 0.5m

Observation (TDOA) noise STD assumed 0.167ms
Sampling frequency 44.1 KHz
random walk STD 0.167m

sound source Samsung Galaxy S4 phone
sound wave short time chirp

time interval of sound 0.5s
total duration of recording 1min

Maximum iterations 50
ε for Δx 0.0001
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Figure 3.17: Pre signal processing and detection of signal arrival (plot below) for raw
audio data (plot above).

Moreover, any other signal processing method (like GCC-PHAT [33]) for obtaining TDOA

can be also adopted as long as its noise is properly characterised.
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3.5.4.2 Experimental Results of a 2D Microphone Array

The algorithm described in the section 3.2 is used to calibrate the microphone array

described above. The final estimation results are shown in Fig. 3.18 and Fig. 3.19. Since

we only have 6 microphones in total, the accuracy of the estimation is expected to be

similar to the 3 × 2 array and not as good as those with 9 or 16 microphones. However,

final RMS errors for microphone positions is 0.0288m and 0.0204m. These errors are much

better than the simulation result (RMS error of 3× 2 in Table 3.2). The reason for this is

that we have more sound source positions in the experimental setup than the simulation

of 6 microphones. Moreover, the TDOA observation noise in the experiment is smaller

than the one used in the simulation, which is conservatively assumed to be 0.333ms and

this can be easily achieved under 44.1 KHz sampling rate. The uncertainty associated

with x and y positions of microphone 1 and y position of microphone 3 are zero since

microphone 1 is fixed at origin and microphone 3 is fixed at positive x axis. The error

of the estimation result can also come from non-precise measurements of the speed of the

sound in the current experimental setup in addition to the observation noise. Using more

microphones, such as 9 or 16, or moving the sound source slower to have more sound

source positions can improve estimation results further.

3.5.4.3 Experiment of Calibration of an Asynchronous Linear Microphone

Array

Our experiment of calibrating an asynchronous microphone array is performed in an indoor

environment. In the experiment, we first collect the calibration data for estimation of

starting time offsets and clock differences. After the calibration, the standard ESPRIT

algorithm is used to find DOA estimation for sound source. The experimental setup

of the microphone array is shown in Fig. 3.20. In the experiment, four microphones

are individually sampled by their own USB sound cards. The extra parameters in the

experiment are summarised in Table. 3.6. Once calibrated, the DOA estimation results

using ESPRIT algorithms w.r.t. ground truth values are shown in Fig. 3.21. The RMS

error is 8.7961 degree.
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Figure 3.18: Experiments results of a 2× 3 array.

3.6 Conclusion

In this Chapter, we presented our proposed method of calibrating a microphone array

sensor, be it a synchronised or an asynchronous microphone array, although results are only
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Figure 3.19: Experimental results of a 2× 3 array.

presented for the more challenging asynchronous case. The technique relies on observations

from a moving sound source and a pose-graph filtering framework. Since the proposed

method estimates geometric positions, the starting time offsets and clock differences of

microphones, it relaxes two key constraints imposed by traditional techniques employed
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Figure 3.20: Experimental setup of the asynchronous microphone array.

Table 3.6: Parameters setting in experiment

Parameters Values

Number of microphones 4
Distance between microphones 0.05m

sound source Samsung Galaxy S4 phone
sound wave short time chirp

time interval of sound 0.5s
total duration of recording 1 min 14 s

ε for ΔX 10

Figure 3.21: DOA estimation results after the calibration.

for microphone array based sound source localisation and separation to obtain synchronous

readings of an audio signal: knowledge of accurate geometry information of the microphone

array, as well as availability of a multichannel analog-to-digital converter. In comparison

with relevant techniques of calibrating an asynchronous microphone array, the proposed

methodology estimates the clock difference of each independent sound card in addition

to the starting time offset, thereby making it more suitable for generic applications with

standard audio devices.The proposed method can be used to calibrate a 2D/3D/linear
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asynchronous microphone array. Once it has been calibrated, an asynchronous microphone

array can be used for estimating DOA of sound sources just like a hardware synchronised

microphone array, and thus it can be used for mapping sound sources as illustrated in

Chapter 4 and 5 .





Chapter 4

Sound Source Mapping using a

2D/3D Microphone Array

4.1 Introduction

Due to the important application of sound source mapping in USAR and HRI scenar-

ios [131] [62] [63], as explained in Chapter 1, recently, mapping of stationary sound sources

has gained increased interest. With a microphone array, the robot can estimate bearing

information of sound sources using DOA estimation algorithms once it has been calibrated.

With multiple sound sources bearing observations from different robot poses, the sound

source locations can be recovered.

Research literature in SLAM provide a sound framework for robot self-localisation and

environmental map building. There are many successful implementations based on laser

scanners [132] and vision sensors [133]. These sensors can provide range and bearing or

bearing-only information of landmarks in the environment with relatively high accuracy.

Despite many important breakthroughs in the field of robot audition during the last

decades, precise simultaneous robot localisation and sound source mapping remains a

challenge mainly due to the following reasons. Firstly, in most robot audition systems,

robots are equipped with an embedded microphone array, which is used to obtain the DOA

93
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of a sound source. Therefore, bearing-only information of sound source from the current

robot pose is observed at each time step. Compared to range and bearing information,

bearing-only is 1 DOF shorter both in 2D and 3D. Secondly, although robot audition sys-

tems are able to estimate directions of multiple sound sources, in a more general scenario,

the number of dominant sound sources that can be reliably detected by robots is very

limited. In most cases, the number of detected sound sources cannot be compared to the

number of key image points detected by a vision sensor, making the attempt to solve the

SLAM problem purely based on sound source quite difficult, especially in the 3D case

that demands more landmarks to uniquely determine the robot pose. Thirdly, compared

to monocular SLAM [133], which also relies on bearing-only landmarks, the bearing in-

formation from a sound source is not always available due to the sparseness of the audio

signals. In other words, the sound source cannot be detected during periods when it does

not generate sound. Lastly, in an indoor environment due to the reverberation, the noise

of sound source bearing observations can reach up to 10 degrees, while the noise of a

calibrated camera is only one or two pixels.

Due to the above mentioned reasons, performing SLAM with only sound source becomes

quite difficult or sometimes impossible when the number of sound sources is low, the robot

trajectory is large or 3D estimation is required. In most of the examples in the literature

for localisation and sound source mapping using only sound source bearing information

some considerations need to be imposed. For instance in [4] and [2], the robot moves

relatively short distances so the drift in odometry remains small. Also in [4], multiple

sound sources are mapped at the same time in order to obtain a sufficient number of

observations to constrain the robot pose. In a more general scenario, however, this can

not be always guaranteed (e.g. when the robot is moving along a silent corridor). When

the number of landmarks is not adequate, estimation of the robot trajectory becomes less

accurate and so does the sound source location estimation.

In order to overcome these drawbacks, more recent work tends to include an additional

exteroceptive sensor to assist the sound source mapping. With the help of an additional

sensor such as a laser range finder, estimation of the robot pose can become accurate and

sound source locations as well. Examples of such aiding have been shown by Kallakuri et
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al. [10] and Vincent et al. [120]. In [120], a mobile robot with laser scanner and micro-

phone array is used to map sound source producing an occupancy grid sound map. Each

occupancy cell is associated to a probability value for being a sound source and expected

entropy is used to obtain the optimum robot path for better observation of the sound

source. In their work, although both laser scanner and wheel odometry are used, robot

pose uncertainty is not considered and sound source mapping relies on the ”known” robot

pose that comes after fusing wheel odometry and laser scanner observations. In [10], a

Rao-Blackwellised SLAM system is used to localise the robot using laser scan and wheel

odometry data. Based on the particle filter, the robot pose’s uncertainty is taken into

account to estimate sound probability on an occupancy sound map using a ray tracing

algorithm. The method has been extended to the 3D case in their later work [11] by

replacing 2D occupancy maps with 3D octree map. Although the robot pose uncertainty

is considered, after a loop closure the sound map will not be updated accordingly as there

is no correlation between robot poses and the sound map once ray tracing has taken place.

A SLAM algorithm based on least square optimisation, which contains robot poses and

environmental landmarks, and sound source locations will be the ideal framework to tackle

the above issues. By keeping all robot poses, sound sources and other landmarks in a

state vector of a least square optimisation based graph SLAM, the robot trajectory and

sound source states are fully correlated. This guarantees that an update on the robot

trajectory leads to the update on sound source positions, which makes the method more

consistent. Therefore, firstly, we will present this general least square optimisation based

SLAM framework to estimate robot poses, sound sources and other landmarks positions

jointly. The proposed framework is able to map sound sources with either a 2D/3D or

linear microphone array, though the initialisation of sound sources needs special treatment

when applied to a linear microphone array as explained in Chapter 5.

Then, we come up with an improved method which has more flexibility and less computa-

tional cost. The improved method exploits the fact that bearing-only, sparse and extremely

noisy observations, such as sound ones, will be of little help to improve robot trajectory

and/or environmental landmarks. This case is acute in filtered-based SLAM methods

when large linearisation errors can cause major failures in the estimation process. Thus in

this Chapter we present an algorithm that still utilises robot pose uncertainty and allows
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the updating of a sound source map after closing a loop in a sound manner. However, it

decouples the sound source locations from the rest of the state-vector.

The key idea of the proposed approach is to split the full SLAM map into two independent

maps given some common part of the state-vector, i.e. Conditional Independent (CI)

maps. The first map (the localisation map) contains the robot poses and/or the landmarks

observed by a relatively accurate exteroceptive sensor. It has the flexibility of using either

a filtering or an optimisation based SLAM mapping. The second map (the sound source

map) contains the robot locations from which the sound sources are observed together

with the sound source encoded as IDP [133]. The only consideration is that the first

map needs to contain in the state-vector the robot locations at the instant when the

sound source locations are first observed. By exploiting the conditional independence

property, the sound source map can be updated efficiently right after the first map gets

updated, producing more accurate sound source mapping results after long periods with

loop closures. As the second map uses a filtering technique, it is computationally less

expensive than the joint optimisation framework.

The contributions of the Chapter are two-fold; a least square optimisation based SLAM

framework, which estimates robot poses, sound sources and other landmarks positions

jointly, is proposed to map sound sources using a 2D/3D or linear microphone array (the

case of using a linear microphone array is detailed in Chapter 5 as initialisation of sound

sources needs special treatment). Secondly, an efficient method of mapping sound sources

using a 2D/3D microphone array is presented. This method shows the novel use of IDP to

map sound sources and is a computationally efficient and flexible algorithm that exploits

the CI property to propagate information from a map used for localisation to a sound

source map.

The rest of the Chapter is organised as follows. In section 4.2, the least square optimisation

based SLAM framework for mapping sound source is presented. In section 4.3, the details

of the improved method are illustrated. In section 4.4, various simulation and experimental

results are presented to show effectiveness of two proposed methods. Section 4.5 presents

the conclusion and discussion about further work.
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4.2 Sound Source Mapping using a Least Squares Optimi-

sation based SLAM Framework

In this section, the least squares optimisation based SLAM framework for mapping sound

source is presented. Here, we assume the robot observes visual landmarks by a camera as

an example. Note that in general, the landmarks for localising the robot are not restricted

to the visual landmarks (e.g. can be feature points from 3D laser scans).

Let x be the state vector of the graph SLAM, it contains robot poses, visual landmarks

and sound sources locations as follows,

x = [x1
r , · · · ,xK

r ,x1
lm, · · · ,xNv

lm ,x1
ss, · · · ,xNs

ss ]
T , (4.1)

where xk
r (kf = 1· · ·K) is the robot pose at time instance k, xnv

lm(nv = 1 · · ·Nv) is the

location of the nvth visual landmark and xm
ss(m = 1 · · ·Ns) is the location of the mth

sound source. The 3D pose of the robot pose is ∈ SE3 space. Location of a visual

landmark or a sound source is parametrised as Euclidean point.

Any state of a key frame pose, a visual landmark or a sound source location is represented

as a node and the measurement of a visual landmark or a sound source from a key frame

pose, which is a constraint between two nodes, is represented by an edge in the graph

SLAM.

In the least square problem of the graph-based SLAM, the estimated state vector is found

by minimising the error over all pose-pose constraints and pose-landmark constraints [7],

x̂ = argmin
∑
ij

eTijΩijeij , (4.2)

where eij denotes the error in the constraint between ith and jth nodes, and Ωij is the

associated information matrix.

When an edge represents observation of a sound source from a robot pose, the error

function is the difference of the expected bearing information of the sound source, which

is the azimuth and elevation angles, to the real observed values. When an edge represents
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observation of a visual landmark from a robot pose, it depends on the nature of the sensor

(Monocular, Stereo or RGBD) and details regarding them can be found in [110]. After

all nodes and edges are defined, Eq. 4.2 can be solved by Gauss-Newton or Levenberg-

Marquardt optimisation.

4.3 Sound Source Mapping by CI Submap Joining using a

2D/3D Microphone Array

While the least squares optimisation based SLAM framework is able to map sound sources

by itself, it is not convenient to exploit existing SLAM implementations. One needs to

modify existing SLAM implementations, which have to be based on least squares optimi-

sation, by adding sound source states and constraints to make it work. In addition, the

optimisation process takes substantial computational time.

In this section, we present the improved method of mapping sound sources using a 2D/3D

microphone array by CI submap joining. By splitting the full map into the localisation map

and the sound map, the localisation map has the flexibility of using any existing SLAM

implementation. The sound map uses the EKF to estimate sound source locations, hence

consumes less computational time. We present the details to generate two conditionally

independent maps split from a full SLAM map. These maps are maintained and updated

by two different SLAM algorithms, one for simultaneous trajectory estimation and the

other for sound source mapping.

4.3.1 Structure of the Split CI Maps

Let us first examine the Bayesian network in Fig. 4.1, in which a robot observes different

modality landmarks with two sensors, an exteroceptive sensor and a microphone array,

during its navigation process. We will use this example, without loss of generality, to

illustrate the development of the approach. As shown in Fig. 4.1, the robot starts from

pose x1, then it moves to x2 after control input u1. At x2, it gets an observation za1 from

an additional exteroceptive sensor. za1 is the observation of the landmarks fa1 and fa2.
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Figure 4.1: Bayesian network that describes probabilistic dependency between two
CI maps. Map 1 represents the localisation map which estimates the robot pose and
landmarks locations of the exteroceptive sensor, whereas map 2 represents the sound map

which estimates locations of sound sources.

Next, the robot moves to x3 after control input u2. From x3, it gets the observations za2

from landmarks fa1 and fa2 using the additional sensor and zs1 from the sound sources

fs1 and fs2 respectively. Then it moves to x4 after control input u3 and observes fa2

and fa3 through za3 and fs1 and fs2 through zs2. Similarly it moves to x5 and obtains

corresponding observations. From this network, it can be seen that landmarks fa1, fa2 and

fa3 observed using the additional exteroceptive sensor are conditionally independent of the

sound sources fs1 and fs2. Thus in this example the map generated with the exteroceptive

sensor is independent of the map generated with the microphone array given the robot

poses x3, x4 and x5. Then, the full map can be optimally split into two CI map as shown

in Fig. 4.1.

Note that the situation in Fig. 4.1 is a special case of the structure of conditionally in-

dependent submaps method presented in [134]. It can be seen as a situation where the

robot frequently revisits two maps continuously. Robot locations which have observations

from both, the additional sensor and the microphone array, are the common elements of

the state-vector in both maps. As pointed out in [134], in a frequently revisiting scenario,

keeping all robot poses which are common in two submaps in the state vectors of both
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Figure 4.2: Modified Bayesian network that describes probabilistic dependency between
SLAM variables in two maps.

SLAM maps increases the length of both state-vectors, which leads to a significant increase

of the computational complexity. In [134], it is suggested to approximate the solution by

disregarding the odometry information of the re-visited poses (in our example, x4 and x5

would be marginalised out). However, we opted instead to approximate the solution by

duplicating the part of the state that contains robot poses that have not been used to

initialise sound sources with IDP (see Fig. 4.2). Although at first glance it seems dif-

ferent, the proposed framework results in an equivalent approximation. The main reason

will become apparent when the framework to build and maintain the sound source map is

explained. In short, as this latter map is built using a filtered-based framework, all these

poses are marginalised eventually leading to a similar simplification to the one proposed

in [134].

The most interesting part of splitting the full SLAM map into two CI map is that they can

be maintained independently as long as the back propagation algorithm proposed in [134]

is applied to propagate information between the maps after an update (in any of the maps)

takes place. Note, this algorithm does not contain any approximation and it will produce

the same solution as the full SLAM map. In our particular case, we deliberatively avoid
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propagating the information once the sound map has been updated. However, we applied

the back propagation algorithm after each update of the localisation map.

4.3.2 The Localisation Map

The aim of this map is to obtain an accurate estimation of the trajectory of the robot

and/or landmark map at all times. Any given standard SLAM algorithm (filtering or

optimisation, landmark or pose based) to estimate robot poses with a relatively accurate

exteroceptive sensor can be used to built and maintain the localisation map. The only

requirement is that it has to be amendable to incorporate as part of the state-vector mul-

tiple robot poses from where the sound sources are initialised. There are many SLAM

implementations available for the common exteroceptive sensors that meet our require-

ments. For example, Pose SLAM [135] can be used for laser scanner based SLAM, RGB-D

SLAM [112] can be used for RGB-D sensors and ORB-SLAM [110] can be used for monoc-

ular or stereo camera. In the last two cases, poses from key frames can be used for sound

landmarks initialisation and parametrisation so that after each optimisation step, poses of

key frames are updated and so do sound landmarks.

4.3.3 The Sound Source Map

The objective of this map is to accurately localise stationary sound sources utilising the

current robot pose estimate (mean and uncertainty). We propose to use an Extended

Kalman Filter (EKF)-based SLAM approach and parametrise sound source locations using

IDP. The main advantages of using IDP for bearing only observations are that it models

correctly the uncertainty from faraway landmarks and it is less prone to linearisation

errors [133]. Under IDP parametrisation, the state of each sound source in 2D is,

xs
lm(i) = (xiyiθiρi)

T (4.3)

and in 3D case is

xs
lm(i) = (xiyiziθiφiρi)

T (4.4)
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where xi, yi and zi are the Euclidean coordinates of the robot position, which is used for

initialising the i-th sound source. θi and φi are the azimuth and elevation angles of the

sound source respectively. ρi is the inverse of distance from the initial robot position to

the sound source. Then the full state-vector of the system is

xs = (xr,x
s
lm(1),xs

lm(2), . . .,xs
lm(n))T (4.5)

where xr represent the state of robot pose, being

xr = (xr, yr, θr)
T (4.6)

in the 2D case and

xr = (xr, yr, zr, qwr, qxr, qyr, qzr)
T (4.7)

in the 3D case. Variables xr, yr and zr are the Euclidean coordinates, θr is the robot

yaw angle in 2D, and in 3D we chose quaternions (qwr, qxr, qyr, qzr)
T to represent the

orientation of the robot.

At each iteration of the EKF SLAM, the current robot pose xr is copied with cross-

correlations from the localisation map to the sound source map. In the EKF correction

step, the sound sources are either initialised if they are observed for the first time or

updated with standard EKF update as follows,

Ks
t = P s

t−1H
s
t
T (Hs

t P
s
t−1H

s
t
T +Qs

t )
−1 (4.8)

xs
t = xs

t +Ks
t−1(z

s
t − hs(xs

t−1)) (4.9)

P s
t = (I −Ks

tH
s
t )P

s
t−1 (4.10)

where P s
t−1 and P s

t are previous and current estimate of covariance matrix, Hs
t is Jaco-

bian of observation function hs(·), Qs
t is the observation noise variance of sound bearing

observation and zst is the observed sound source bearing. A detailed discussion of bearing

only landmark initialisation under IDP can be found in [136].

Note that with IDP parametrisation of sound source locations in Eq.4.3 or Eq.4.4, only
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the robot position (xi and yi in 2D and xi, yi and zi in 3D) during IDP initialisation is

common in both maps and the rest of the state-vector (θi, ρi in 2D and θi, φi, ρi in 3D)

is conditionally independent of the localisation map.

4.3.4 Correlation Propagation

As mentioned above every time any of the two maps gets updated, a back propagation

is needed to update the other map, but we propose to do it only unidirectionally. Before

describing equations of back propagation, let us first summarise the structure of the state

vectors and covariance matrix of the localisation and sound source maps.

The localisation map in terms of its state vector and covariance can be written as

p(xa|u1:n, za1:an) = N (xa, P a) (4.11)

where xa is the full state vector, u1:n are control inputs and za1:an are landmark observa-

tions. The full state vector xa is

xa = (xr,x
s
r(1), . . .,x

s
r(ns),x

a
lm(1), . . .,xa

lm(n))T (4.12)

where xr is the current robot pose, x
s
r(1), . . .,x

s
r(ns) are past robot poses used to initialise

sound source IDPs and xa
lm(1), . . .,xa

lm(n) are landmarks observed by the additional sensor.

We can rearrange the state vector by grouping elements that are shared by the two maps

and those which are not. First, we split xs
r(i) as

xs
r(i) = (xs p

r (i),xs o
r (i))T , (4.13)

where xs p
r (i) and xs o

r (i))T represent position and orientation of the robot pose that is

used to initialise ith sound source. Then, the full state vector can also be written as

xa =(xr,x
s p
r (1),xs o

r (1), . . .,

xs p
r (ns),x

s o
r (ns),x

a
lm(1), . . .,xa

lm(n))T .
(4.14)
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grouping the localisation map as

x̌a =(xr,x
s p
r (1), . . .,xs p

r (ns),

xs o
r (1), . . .,xs o

r (ns),x
a
lm(1), . . .,xa

lm(n))T .
(4.15)

Let xCa = (xr,x
s p
r (1), . . .,xs p

r (ns))
T represents elements that are shared by both maps

and xA = (xs o
r (1), . . .,xs o

r (ns),x
a
lm(1), . . .,xa

lm(n))T represents elements that are condi-

tionally independent from the sound source map, then the rearranged full state vector can

be written as

x̌a = (xCa ,xA)
T . (4.16)

Similarly, we can rearrange and group covariance matrix of the localisation map as

P̌ a =

⎡
⎣PCa PCA

PAC PA

⎤
⎦ , (4.17)

where PCa , PA, PCA andPAC are covariance matrices related to xCa and xA and their

cross correlation terms.

We can apply a similar rearrangement to the state vector and covariance matrix of the

sound source map,

x̌s = (xCs ,xS)
T , (4.18)

P̌ s =

⎡
⎣PCs PCS

PSC PS

⎤
⎦ , (4.19)

where xCs = (xr,x
s p
lm (1), . . .,xs p

lm (n))T , in which xs p
lm (i) represents position of ith robot

pose that can be used for sound source initialisation ((xiyi)
T of Eq.4.3 in 2D case and

(xiyizi)
T of Eq.4.4 in 3D case). xCs corresponds to xCa in Eq.4.16 and they are the shared

part of state vectors of the two maps. xS = (xs o
lm (1), . . .,xs o

lm (n))T , where xs o
lm (i) represents

bearing and inverse distance of ith sound source ((θiρi)
T of Eq.4.3 in 2D case and (θiφiρi)

T

of Eq.4.4 in 3D case), and it is other element of the state vector in the second map which

is conditionally independent from the first map. PCs , PS , PCS and PSC in Eq.4.19 are

covariance matrix of xCs and xS and their cross correlation terms.

Once state vectors and covariance matrix of the localisation and sound source maps are
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rearranged, back propagation can be performed following the algorithm in [134]. Notice

that the only information used to back-propagate is the difference in the robot locations

at the IDPs initialisation. Each time the localisation map gets internally updated, the

state vector and covariance matrix in Eq.4.18 and Eq.4.19 of the sound source map are

updated as

xb
Cs

= xCa (4.20)

P b
Cs

= PCa (4.21)

Kb
12 = PSCP

−1
Cs

(4.22)

P b
SC = Kb

12P
b
Cs

(4.23)

P b
S = PS +Kb

12(P
b
CS − PCS) (4.24)

xb
S = xS +Kb

12(x
b
Cs

− xCs), (4.25)

where xb
Cs
, xb

S , P
b
Cs
, P b

SC , P
b
CS and P b

S are updated estimates of xCs , xS , PCs , PSC , PCS

and PS after back propagation. Note that P b
CS is the transpose of P b

SC due to the symmetry

of the covariance matrix.

Differently to CI submaps scenario, the back propagation process in our special case is

simplified as back-propagation is not applied in both directions. The consideration here is

that the two maps are obtained using different sensors (one accurate, the other not). As the

shared mean estimate (xCa and xCs) and covariance (PCa and PCs) of two maps represents

robot positions used for sound landmarks initialisation, they are mainly estimated by the

localisation map anyway. A minor contribution from the sound source map to these

robot locations (xCa and xCs) is disregarded due to the following reasons. Firstly, sound

sources are sparse in the time axis and in most cases the total number of sound sources

that are reliably detected at each robot pose are a lot less than visual or laser features.

Secondly, in reverberating indoor environments, accuracy of the bearing observations of

sound source cannot be compared to that of visual or laser landmarks so uncertainties of

sound sources locations are higher. As a result, when the sound source map gets updated,

robot positions used to initialise sound source locations xCs and its covariance PCs , which

are copied from xCa and PCa during last back propagation step from the localisation map,
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only have negligible change. Therefore we assume,

xCs ≈ xCa (4.26)

PCs ≈ PCa , (4.27)

losing only a small part of the information and avoiding the back propagation step from

the sound source map to the localisation map, which incurs extra time complexity.

4.4 Simulation and Experimental Results

In this section, comprehensive simulation and experimental results are presented to eval-

uate and compare the method described in section 4.2 and section 4.3 to the optimal and

other possible solutions.

4.4.1 Simulation Results

4.4.1.1 Sound Source Mapping with only Odometry Information

In the simulation scenario shown in Fig. 4.3(a), the robot follows a square trajectory using

only information from odometry and sound source. When it reaches its original position,

it continues to travel along X axis for loop closure. First, we set the wheel odometry to

be very accurate to allow accurate sound mapping. Later, we increase odometry noise

gradually to see the effect in sound mapping. At each time step, the robot moves a

fixed distance and random Gaussian noise is linearly added. The parameters used in the

simulation are shown in Table 4.1 part I. Bearing estimation noise is set to be a Gaussian

noise with standard deviation of ±10 degrees as in typical indoor environments, where

sound reverberation is present.

In this simulation scenario, we studied both EKF with IDP parametrisation method and

least square optimisation method in 2D and 3D cases. Initialisation and final estimation

results of 2D case are shown in Fig. 4.3 for EKF with IDP parametrisation and Fig. 4.4 for
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Table 4.1: Parameters in simulation

Parameters Values

Part I
Distance per odometry step 0.2m

Odometry noise (Trans. and Orient.) 0.001m and 0.001 deg
Sound bearing noise (Azimuth & Elevation) 10 deg

Least square optimiser Levenberg-Marquardt

Part II
Noise of range bearing sensor 0.01m and 1 deg

Odometry noise (Trans. and Orient.) 0.02m and 5 deg

least square optimisation. Similar results are obtained from 3D simulation. From those

figures, it can be seen that sound mapping works well under very accurate odometry.

A 20 runs Monte Carlo simulation shows that by increasing odometry noise, the sound

mapping estimation fails even with very reasonable noise values of less than 5% of the

displacement. The RMS errors and convergence rates of sound source mapping under

different odometry noise using EKF IDP parametrisation and least square optimisation

in 2D and 3D cases with 20 Monte Carlo runs for each case is shown in Fig. 4.5. As

can be seen from the figure, for a range of odometry noises the mean RMS errors of

estimated sound source locations grows exponentially with time. The figure also presents

the convergence rate for all algorithms. It can be seen from the figure that, in order to

get sound mapping with reasonably good accuracy (e.g. 0.2m) in the simulated situation,

odometry needs to be highly accurate (0.008m in translation and 0.128 deg in orientation

for each step(0.2m)). Most mobile robotic platforms (e.g. Turtlebot) can not provide such

a high accuracy odometry. Therefore, including other landmarks for accurate robot self

localisation is necessary.

4.4.1.2 Sound Source Mapping by a Least Squares Optimisation based SLAM

Framework with Odometer and Range-Bearing Observations of Envi-

ronment Landmarks

We simulated a scenario adding an exteroceptive sensor (e.g. a laser scanner for a 2D sce-

nario and RGBD camera for a 3D scenario), which observes range and bearing information
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a Initial state of IDP sound sources.

b Final estimation results.

Figure 4.3: EKF parametrised by IDP with highly accurate odometry information.

of point landmarks in the environment (e.g. corner points of laser scans or visual point

features). In the simulation, the robot follows the same trajectory as before and comes

back to its original point for loop closure. The parameters used for the additional sensors

are shown in Table 4.1 part II and other parameters are in Table 4.1 part I. The odometry

noise is set at typical levels of a real mobile platform (∼ 10% of the displacement) to reflect

a more general scenario.

The results of the 2D/3D simulations are shown in Fig. 4.6, Fig. 4.7 and Fig. 4.8. In all

figures, green, red and blue unit lines denote the X,Y,Z axis of the robot local coordinate
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a Initial state of IDP sound sources.

x (m)
0 5 10 15

y 
(m

)

0

2

4

6

8

10

12 Estimation
Ground true
Robot pose

b Final estimation results.

Figure 4.4: Least square optimisation with highly accurate odometry information.

frame. It can be seen from the figure that the proposed least square optimisation based

SLAM framework can accurately map all sound sources even in a long trajectory.

4.4.1.3 Sound Source Mapping by CI Submap Joining Method with Odome-

ter and Range-Bearing Observations of Environment Landmarks

In the next step, we simulated a 2D scenario of the previous simulation using our improved

method of sound source mapping by CI submap joining. In this simulation scenario, the

proposed method utilises an EKF-SLAM algorithm for the localisation map fusing these

additional range and bearing observations. Robot locations at sound source initialisation

instants are used as common elements of two maps as explained before. In the simulation,
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Figure 4.5: RMS errors and convergence rates under different odometry noise.

again the robot follows the same trajectory as before and comes back to its original point

for loop closure. The parameters used for the additional sensors are the same as shown

in Table 4.1 part II and other parameters are in Table 4.1 part I. The odometry noise is

again set at typical levels of a real mobile platform (∼ 10% of the displacement) to reflect

a more general scenario.

Simulation results are shown in Fig. 4.9 and Fig. 4.10. In all figures, green circular markers

represent estimated environment landmarks, pink plus markers represent ground true lo-

cations of range-bearing landmarks, red eclipses represent 3 σ region, green line represents

ground truth robot trajectory and red line represents estimated robot trajectory. The
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a Initialisation.

b Final estimation result.

Figure 4.6: 2D sound source mapping by the least square optimisation based SLAM
framework.

meaning of the 3 σ region for a two-dimensional variable is the 3 σ Gaussian probability

region of the landmark location in the 2D plane. From the figure, it is clear that an ad-

ditional sensor allows accurate sound mapping under typical odometry noise. From sub

figure (a) and (b), it can be seen that before loop closure happens, environment landmarks

and sound sources mean estimation are drifting (although the filter is still consistent).

From sub figure (c) and (d), we can see that after the loop closure, drifted landmarks are

corrected in Y axis of the localisation map. Since some robot locations are shared between

the two maps, the estimated positions of sound landmarks are also updated in Y axis after
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a Top view.

b Side view.

Figure 4.7: 3D sound source mapping by the least square optimisation based SLAM
framework. Initialisation of the system.

the back propagation process.

Next, we compared the proposed method with the optimal SLAM solution of sound source

mapping using a single map, whose state vector contains both landmarks with range

and bearing observations and sound sources (we refer to it as full SLAM). In full SLAM

method, we use both EKF SLAM algorithm with sound source parametrised by IDP and

least squares optimisation as stated in section 4.2. We compared the proposed method

with the full SLAM method in terms of sound mapping accuracy with various trajectory
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a Top view.

b Side view.

Figure 4.8: 3D sound source mapping by the least square optimisation based SLAM
framework. Final estimation results.

lengths. For each trajectory, a 10 runs Monte Carlo simulation is used to compute the

Mean RMS errors. The results are shown in Fig.4.11. From the figure, we can see that our

proposed method has a comparable accuracy with the full SLAM method, which means

that the approximation made (back propagation from the second map to the first can be

neglected) is reasonable. In addition, the overall execution time of the proposed method

is slightly smaller than the full SLAM method (e.g. 0.0142s with the proposed method

and 0.0161s with full SLAM method for 185m trajectory at one EKF step). In the full

SLAM method, when the robot trajectory is relatively long, in some runs the localisation
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a Sound source mapping before loop closure.

b Zoomed in view of top left sound source before loop closure.

Figure 4.9: sound source mapping with additional range-bearing observations before
loop closure.

error of EKF filtering is large. A reason might be related to linearisation errors due the

extremely noisy sound bearing-only observations becoming high and negatively impact on

the robot trajectory estimation. Our method avoids this issue by semi-decoupling the two

sensors observations so the noisy information of sound sources sensor does not propagate

back to the localisation, not affecting the robot pose estimation of the localisation map

and as a result producing more accurate results than the full EKF SLAM. Note that in an

optimisation SLAM framework this issue will not be present producing better results than

our proposed method, but at the cost of execution time (e.g. 99.365s for 185m trajectory).
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a Sound source mapping after loop closure.

b Zoomed view of the top left sound source after loop closure.

Figure 4.10: sound source mapping with additional range-bearing observations after
loop closure.

4.4.2 Experimental Results

In this section, two different experimental scenarios are used to show the effectiveness and

flexibility of the improved sound source mapping method by CI submap joining.
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Figure 4.11: Mean RMS errors with STD of 10 Monte Carlo runs under various length
of robot trajectories.

4.4.2.1 2D Sound Source Mapping by a Mobile Robot with a Microphone

Array and a Laser Scanner

A turtlebot [137] with Hokuyo laser range finder and Microcone (6-microphone circular

array) is used to localise two sound sources generating white noise (see Fig. 4.12). Turtlebot

is a differential drive mobile robot made by Clearpath Robotics Inc [138]. It is also

equipped with a wheel encoder for odometry estimation in addition to the laser scanner

and the microphone array that we installed on it. We use the EKF-SLAM described above

for the sound map and the pose SLAM implementation in [135] as SLAM framework to

estimate the localisation map. In our case robot poses that are used for sound source

initialisation, their covariance and cross correlations are shared at each SLAM step with

the sound source map. Then the shared part of the state-vector allow us to back propagate

the information to the sound source map after each update in the localisation map. Sound

bearing observation noise is set to ±10 deg. HARK [100] is used for sound source bearing

estimation using MUSIC algorithm.

The results are shown in Fig. 4.13. In all figures, blue markers represent estimated sound

landmarks, pink markers represent ground truth locations, red eclipses represent 3σ region

and blue line represents estimated robot trajectory. It can be seen that the proposed

method has successfully estimated two sound sources with reasonably good accuracy given

the noisy nature of the audio observations.
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Figure 4.12: Turtelbot equipped with a laser scanner and a Microcone (circular micro-
phone array).
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b Final estimation results.

Figure 4.13: 2D sound source mapping results using a mobile with laser scanner.

4.4.2.2 3D Sound Source Mapping using a Hand Held PS3-eye (Monocular

Camera with a Linear Microphone Array)

The configuration of the sensor and the experimental setup is shown in Fig. 4.14. As can

be seen from the Fig. 4.14(a), the PS3-eye sensor consists of a monocular camera and a 4-

channel uniformly distributed linear microphone array. During the experiment, the sensor

follows a certain trajectory around three sound sources in an office environment as shown

in Fig. 4.14(b). An off-the-shelf visual SLAM implementation without any modification
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is used in this experiment. ORB-SLAM [110] is used at first to estimate the localisation

map. Estimated sensor poses on keyframes are used to initialise sound sources so that

these poses can be updated at each time the ORB-SLAM runs a local bundle adjustment.

Current sensor pose is also obtained from the newest keyframe pose so that pose covariance

can be available. Sound bearing observation noise is measured at different azimuth angle

since the linear array has different sensitivity at different azimuth directions. As the linear

microphone array cannot provide elevation angle observations, the observation noise is set

quite large (±60 deg) to hint that the sound source is in front of the sensor (due to the

casing for PS3-eye, it is more sensitive when detecting sound sources in front of it). The

sound map is the same as in our previous experiment, in this case with three sound sources

from two mobile phones and one pad playing music and speech.

The final estimation results are shown in Fig. 4.15 and Fig. 4.16. In all figures, green

markers represent estimated sound sources, pink markers represent ground truth locations,

blue markers represent key frames’ locations and black dots represent final feature points

from ORB-SLAM. Note that the SLAM from a monocular camera can only provide robot

poses and feature points locations up to scale. So the scale factor is recovered by manually

marking three locations of the sensor trajectory to align estimation results with ground

truth locations. From Fig. 4.15, we can see that the sound source is initialised with

IDP when it is first observed by the sensor. The green ellipses represent the one sigma

uncertainty region of the sound source locations along X, Y and Z axes. We can see that the

uncertainty is higher along the elevation angle and the depth since these two parameters

are unobservable at the first observation of the sound source . From Fig. 4.15(a), we can

see that the sensor trajectory has drifted before loop closure. Therefore, the estimated

sound sources locations have also drifted. From Fig. 4.15(a), we can see that after a loop

closure is detected, the sensor trajectory is corrected and so do the position estimates

of the sound sources. This is again thanks to the split CI maps. From the experiment,

we can also see that although the linear microphone array only provides azimuth angle

(which means 3D estimation lacks 1DOF), with the help of the mono camera observations,

it is sufficient to obtain an accurate sound source map in 3D with the proposed method.

A video showing the performance of the proposed system in this experiment is publicly
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a b

Figure 4.14: PS3-eye configuration (a) and experimental setup (b).
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Figure 4.15: Sound landmark initialisation with IDP parametrisation in 3D sound
source mapping using a hand hold PS3-eye experiment (monocular camera with linear
microphone array). The green ellipses represent the one sigma uncertainty region of
the sound source locations along X, Y and Z axes. The uncertainty is higher along the
elevation angle and the depth from the sensor since these two parameters are unobservable

during initialisation.

available online1.

1https://youtu.be/QyqY2eIX1wk



Chapter 4. Sound Source Mapping using a 2D/3D Microphone Array 120

3

2

( )

1

0

1

1

0

-1

x (m)

-2

-3

0.5

0

-0.5

-4

a Estimation results (before loop closure). Estimation of sound sources locations (represented
by green markers) has considerable error w.r.t. the ground truth locations (represented by
pink markers) due to the drifted sensor poses.

3

2

( )

1

0

1

1

0

-1

x (m)

-2

-3

0.5

0

-0.5

b Final estimation results (after loop closure). The sensor poses are corrected after the
loop closure in the localisation map, which leads to the update of sound sources locations
estimation towards their ground truth locations.

Figure 4.16: 3D sound source mapping results using a hand hold PS3-eye (monocular
camera with linear microphone array).



Chapter 4. Sound Source Mapping using a 2D/3D Microphone Array 121

4.5 Conclusion

In this Chapter, we first presented a least squares optimisation framework to jointly esti-

mate robot poses, positions of sound sources and other landmarks using a 2D/3D or linear

microphone array (the case of using a linear microphone array is detailed in Chapter 5 as

initialisation of sound sources needs special treatment). Secondly, an improved method of

mapping sound source using a 2D/3D microphone array was presented. Specifically, we

proposed a split CI mapping method for sound source mapping and robot localisation.

Our efficient method utilises two SLAM algorithms running in parallel with some common

information used to propagate information unidirectionally. One SLAM algorithm is in

charge of estimating accurately the location of the sensor, while the other is used for sound

source mapping parametrised as inverse-depth points. As sound source observations are

bearing-only, extremely noisy and sparse, they are not used for localisation. However, any

update in the localisation reflects back to the sound source mapping by exploiting the

conditional independence between split maps. Moreover, we propose to use inverse-depth

parametrisation to represent the sound source locations. The key advantage of using IDP

is that it models accurately uncertainty of faraway points, utilises all information contained

in bearing-only sound observations and linearisation errors are small compared with Eu-

clidean points. The improved method is flexible enough to allow the use of off-the-shelf

SLAM implementations (optimisation or filter-based) to estimate the localisation map. It

is also flexible to be used with any relatively accurate exteroceptive sensor such as lasers

or cameras. Although some approximations are made to the otherwise optimal solution,

the extensive simulation and experimental results show that our method produces consis-

tent and bounded estimation quite close to the maximum aposteri solution produced by

least-square optimisation or EKF approaches.





Chapter 5

Sound Source Mapping using a

Linear Microphone Array

5.1 Introduction

3D cameras such as Microsoft Kinect 360, Kinect One, PS3 Eye and PS4 Eye sensors, as

shown in Fig. 5.1, are becoming an integral part of the perception modules of robotic and

intelligent systems. A common feature of these microphone arrays is that the geometric

location of all microphones are distributed along a straight line, i.e. in a linear array, be

it uniformly distributed (in Fig. 5.1 (b) and (c)) or not (in Fig. 5.1 (a) and (d)).

Despite easy availability at an affordable price and frequent usage of sensors with a linear

microphone array in robotic systems, conventional 3D sound source mapping methods

hardly use this configuration. This is because a linear microphone array only provides 1

DOF estimation (angle between the line connecting a sound source and the origin and the

axis of the linear array) out of 3 DOF (2 DOF bearing estimation in terms of azimuth and

elevation angles plus 1 DOF estimation of range). This lack of observability makes the 3D

mapping of multiple sound sources more challenging, which we will discuss in Section 5.3.

The least square optimisation based SLAM framework proposed in Chapter 4 can not be

applied directly, since the initialisation of sound sources is not as straightforward as it is

in the 2D/3D microphone array case.

123
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a Kinect 360. b Kinect One.

c PS3 Eye. d PS4 Eye.

Figure 5.1: Typical robotic sensors that include a linear microphone array.

In recent work of 2D sound source mapping, Hu et. al. in [4] proposed a FastSLAM

based approach to map multiple sound sources using a 3D microphone array. Sasaki et.

al. in [2] uses a self motion triangulation method to deal with sound source mapping

using a concentric microphone array. A ray casting based probabilistic 2D sound source

mapping approach is proposed by Kallakuri et. al. in [10]. Conventional approaches

such as [11, 139] for mapping stationary sound sources in 3D space usually require a 3D

microphone array, which can be used to estimate both azimuth and elevation angles of

sound sources. In [11], Even et. al. extend their previous work in [10] to the 3D case by

using a 3D microphone array. In [139], Kotus et. al. also use a 3D multi channel acoustic

vector sensor to estimate azimuth and elevation angles of sound sources and estimate

their 3D location by integrating prior knowledge of the shape of the room. Some other

works in 3D sound source mapping even use multiple microphone arrays. In [31], Ishi et.

al. use multiple 3D microphone arrays attached on the ceiling to estimate 3D locations

of multiple sound sources. They also exploit the reflection information to improve the

localisation accuracy. In [140], Seewald et. al. use two perpendicularly placed Microsoft
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Kinects to estimate 3D locations of sound sources. Note that in [31, 139, 140], all sensors

and sound sources are static.

In this Chapter, we present a method to map 3D sound sources using a robotic perception

sensor equipped with a linear microphone array. First, we propose a new parametrisation

within a multi-hypotheses tracking framework to obtain a good initial guess for the location

of sound sources. Then, an optimisation approach is used to jointly estimate 6 DOF poses

of the sensor and 3 DOF locations of sound sources together with visual landmarks.

The contribution of this Chapter is two-fold: firstly we introduce a framework that allows

the mapping in real-time of the location of 3D sound sources using a linear microphone

array without any prior knowledge of the sensor hardware as was done in our previous

work [70]. Secondly, we propose a new sensor model, which is able to handle the sensor

noise in a microphone array. In addition, we release code of real-time implementation open

source1 for the benefit of the community.

The rest of the Chapter is organised as follows. In Section 5.2, sensor model for a linear mi-

crophone array using Gaussian Process is presented. In Section 5.3, initialisation of sound

sources using multi-hypotheses filters is presented. In Section 5.4, details about jointly

optimising sensor poses, visual landmarks and sound sources are presented. In Section 5.5,

various simulation and experimental results are presented to show the effectiveness of the

proposed method. Section 5.6 presents the conclusion and discussion about further work.

5.2 Gaussian Processes to Model Linear Microphone Arrays

Sensors

A graphical representation of the sensor model of a linear microphone array is shown

in Fig. 5.2. The axis of the linear microphone array coincides with the Y axis. The

observation of a linear microphone array is the angle βm, which is the complementary

angle of αm (βm = π − αm) that is the angle between the straight line connecting the

location of a sound source and the origin of the microphone array and the Y axis. Let

1Open source implementation and experimental data is available on https://github.com/daobilige-
su/SSM LinearArray.
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Figure 5.2: Linear microphone array notation and parametrisation of a 3D sound source
location.

pm = [xmss, y
m
ss, z

m
ss]

T be the Euclidean coordinates of the mth sound source and xr,k be

sensor pose at time instance k. The observation βm
k of this sound source pm using the

linear microphone array from the sensor pose xr,k is

⎡
⎣pm

k

1

⎤
⎦ = M−1(xr,k)

⎡
⎣pm

1

⎤
⎦ , (5.1)

βm
k = atan2(pm

k (2),

√
pm
k (1)2 + pm

k (3)2), (5.2)

where M(xr,k) is the homogeneous transformation of the sensor pose xr,k, p
m
k is the local

coordinate of the sound source pm in the reference coordinate frame of the sensor pose

xr,k and function atan2(•) returns the four-quadrant inverse tangent angle.

The observation βm
k , in practice, is obtained by processing a multi channel audio signal.

The TDOA from a sound source to all channels of the microphone array is commonly

exploited to estimate the DOA observation βm
k . Typical methods for estimation of DOA

from multi channel audio signal include MUSIC [94] and SRP-PHAT [141]. These algo-

rithms search all possible DOA angles and assign likelihood values to them, and angles
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with local maximum likelihoods are treated as the estimation of DOAs corresponding to

the sound sources.

Due to the presence of noise in an audio signal, the estimated angle from a DOA estimation

algorithm β̂m,DOA
k is affected by noise. The DOA estimation (β̂m,DOA

k ) accuracy for a linear

microphone array varies according to the true DOA estimation angle (βm
k ). When the true

DOA angle is close to 0 rad, which means the sound source is in front of the linear array,

DOA estimation accuracy is best. On the other hand, when the true DOA angle is ±π/2

degree, DOA estimation accuracy is at its worst.

In addition, there is a bias in the mean estimation values around a true DOA angle,

particularly at the limits (±π/2). Therefore, the sensor model of a linear microphone

array cannot be constructed simply by the DOA estimation plus a constant noise term -

the sensor models applicable to most other microphone arrays (e.g. a circular microphone

array).

Since there is no obvious parametric model that can describe this bias in the mean value

and how the noise term increase around ±π/2 degree, a machine learning model via non-

parametric Gaussian Process [142] model is adopted to capture this behavior using real

experimental dataset (with the estimated and ground truth DOA angles). A Gaussian

Process is a generalisation of the Gaussian probability distribution. In Gaussian Process,

a probability distribution describes random variables and a stochastic process governs the

properties of functions [142]. This kind of sensor model aims to transfer the raw biased

estimation result into a normally distributed function, whose mean values locate near the

true values and uncertainty values change according to different DOA angles. The GP

sensor model is formulated as follows,

βgp ∼ N (0,K(β̂DOA
gp , β̂DOA

gp ) + σ2
nI), (5.3)

where β̂DOA
gp is a set of raw results from the DOA estimation algorithm, βgp is the corre-

sponding set of ground truth values, K(•) is a pre-defined Kernel function and σn is the

variance of the noise. β̂DOA
gp and βgp are used to train the GP sensor model.
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When a new data β̂DOA
gp∗ from the DOA estimation algorithm is available, the joint Gaussian

distribution is

⎡
⎣βgp

βgp∗

⎤
⎦ ∼ N (⎡⎣0

0

⎤
⎦ ,

⎡
⎣K(β̂DOA

gp , β̂DOA
gp ) + σ2

nI K(β̂DOA
gp , β̂DOA

gp∗ )

K(β̂DOA
gp∗ , β̂DOA

gp ) K(β̂DOA
gp∗ , β̂DOA

gp∗ )

⎤
⎦)

,

(5.4)

where βgp∗ is the predicted DOA estimation from GP. Then, the mean and covariance of

the predicted DOA from the GP sensor model can be computed as follows,

β̂gp∗ = K(β̂DOA
gp∗ , β̂DOA

gp )(K(β̂DOA
gp∗ , β̂DOA

gp ) + σ2
nI)

−1βgp, (5.5)

P β
gp∗ =K(β̂DOA

gp∗ , β̂DOA
gp∗ )−K(β̂DOA

gp∗ , β̂DOA
gp )(K(

β̂DOA
gp , β̂DOA

gp ) + σ2
nI)

−1K(β̂DOA
gp , β̂DOA

gp∗ ).
(5.6)

A squared exponential kernel function

ki,j = σ2
fexp(−

1

2�2
(β̂DOA

gp (i)− β̂DOA
gp (j))2) (5.7)

is used in our GP sensor model. In Eq. 5.7, ki,j denotes the ith row and jth column of

covariance K, and β̂DOA
gp (i) and β̂DOA

gp (j) are ith and jth data of β̂DOA
gp or β̂DOA

gp∗ . The

maximum of the marginal likelihood is used to train the set of hyper-parameters σf ,� and

σn as described in [142].

5.3 Initialisation of Sound Source using Multi Hypotheses

As mentioned above, a linear microphone array provides 1 DOF observation out of 3

DOF of the sound source position. This means that given an angle observation αm, the

sound source can be located anywhere on a cone surface, which extends from the sensor

location to infinity, as shown by the yellow surface in the Fig. 5.3. This produces a partial

observability which introduces a great difficulty in the initialisation of the sound sources

in the map. This issue is similar to the one on point feature initialisation in monocular
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a b

Figure 5.3: Intersection of two 3D bearings (a) and cone surfaces (b).

SLAM [110]. In monocular SLAM, visual point features parametrised by their Euclidean

coordinates can be initialised after triangulating two 3D bearing observations as shown

in Fig. 5.3 (a). However, intersection of two cone surfaces is not possible to model with

simple Gaussian distribution as shown in Fig. 5.3 (b).

In order to initialise the sound source location, a multi-hypotheses strategy is required,

which will allow us to model the uncertainty correctly. Tracking these hypotheses until

they have converged would allow us to use a joint optimisation algorithm to estimate

sensor poses, other landmarks and sound sources together.

Firstly, we parametrise the state of mth sound source as follows,

sm = (βm, γm, ρm)T . (5.8)

Note that in Eq. 5.8, we use symbol s to represent the proposed parametrisation of the

sound source state instead of the Euclidean coordinates parametrisation of p. In Eq. 5.8,

βm, γm, ρm are axis angle, circumferential angle and inverse depth of the sound source as

shown in Fig. 5.2. As can be seen from the figure, the origin of the sensor coordinate

frame is (xmr , ymr , zmr ), the azimuth and elevation angle of positive Y axis are (θmr , φm
r ).

These five parameters come from the sensor pose at the first observation of the sound

source, and once they are fixed, the axis and direction of the linear microphone array on

global coordinates is determined. The remaining DOF, the roll angle along Y axis, is not

required, since the cone surface is the same with different roll angles. The anchor axis of
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the sound source location is therefore parametrised as follows,

xm
ss,axis = (xmr , ymr , zmr , θmr , φm

r )T . (5.9)

Note that xm
ss,axis needs to be stored to recover the sound source locations when multi

hypotheses initialisations have converged. The axis angle βm determines the angle of the

cone, and its initial value comes from the predicted DOA angle β̂m
gp∗,ini obtained by the

GP sensor model at the first observation of the sound source. The circumferential angle

γm is the angle between the positive X axis and the direction pointing from the origin of

the sensor coordinate frame to the projected point of sound source on X,Z plane of the

sensor coordinate frame. The inverse depth ρm is the inverse of the distance as defined for

the IDP in the visual SLAM algorithm in [133] [136].

Among three parameters determining the state of the sound source, two of them, the

circumferential angle γm and the inverse depth ρm, are unobservable at the first observation

of the sound source. We can initialise the inverse depth ρm = 1/(3dmin) the same way

as visual SLAM [133] [136], where dmin is the minimum possible distance from the sound

source to the sensor coordinates origin. ρm will converge after observing the same sound

source with some parallax. To initialise the circumferential angle γm, we introduce a multi

hypotheses framework. Specifically, we divide the range of the possible circumferential

angles into Nh spaces and each hypothesis covers one region. Let the state of the sound

source m in the ith hypothesis be

sm,i = (βm,i, γm,i, ρm,i)T , (5.10)

where the circumferential angle γm,i is uniformly distributed along the range −π to π as

follows,

γm,i =
2π

Nh
i− π, i ∈ (1· · ·Nh). (5.11)
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The covariance of the mth sound source in the ith hypothesis can be initialised as follows,

Pm,i
ss =

⎡
⎢⎢⎢⎢⎢⎣

P β,m
gp∗,ini 0 0

0

(
π

Nh

)2

0

0 0
1

3d2min

⎤
⎥⎥⎥⎥⎥⎦ , (5.12)

where P β,m
gp∗,ini is the predicted variance of DOA angle β̂m

gp∗,ini using the GP sensor model.

The covariance of the inverse depth is the same as suggested in [136]. The covariance

of the circumferential angle is set to (π/Nh)
2 so that one sigma region of all hypotheses

covers all possible ranges.

The advantage of the proposed parametrisation is shown in Fig. 5.4. When using the

Euclidean parametrisation for multi hypotheses as shown in the subfigure (a), infinite

Euclidean points, hence infinite hypotheses, are needed to represent the cone surface ex-

tending to infinity, while the proposed parametrisation only needs several hypotheses to

represent the cone surface thanks to the inverse depth as shown in subfigure (b). When

IDP [133] is used, there exists a polygon effect when looking from the right side of the

cone as shown in subfigure (c), especially when less number of hypotheses are used. With

the proposed parametrisation, the polygon effect does not exist and the cone surface is

represented better as shown in the subfigure (d).

As the sensor gets more observations of the sound source, the state of the sound source

can be updated as follows by using an extended Kalman filtering strategy,

ẑm,i
k = atan2(pm,i

l,k (2),
√

pm,i
l,k (1)2 + pm,i

l,k (3)2), (5.13)

zm,i
k = β̂m

gp∗,k, (5.14)

Qm,i
k = P β,m

gp∗,k, (5.15)

Km,i
k =Pm,i

ss,k−1(H
m,i
k )T /(Hm,i

k Pm,i
ss,k−1

(Hm,i
k )T +Qm,i

k ),
(5.16)

sm,i
k = sm,i

k−1 +Km,i
k fna(z

m,i
k − ẑm,i

k ), (5.17)



Chapter 5. sound source Mapping using a Linear Microphone Array 132

a Euclidean parametrisation. b Proposed parametrisation.

c IDP parametrisation. d Proposed parametrisation.

Figure 5.4: Multi hypotheses using (a) Euclidean (c) IDP and (b),(d) the proposed
parametrisation.

Pm,i
ss,k = (I−Km,i

k Hm,i
k )Pm,i

ss,k−1, (5.18)

where ẑm,i
k is the expected observation of the mth sound source in the ith hypothesis at

time instant k, zm,i
k is the actual observation from GP sensor model, Qm,i

k is the observation

noise coming from GP sensor model, Km,i
k is the Kalman gain, Hm,i

k is Jacobian of the

sensor observation under the proposed parametrisation, sm,i
k−1, P

m,i
ss,k−1, s

m,i
k , Pm,i

ss,k are the

mth sound source state and the associated covariance in the ith hypothesis at time instance

k − 1 and k. fna(•) is the function to normalise an angle between −π to π and pm,i
l,k is

the Euclidean coordinate of the mth sound source in ith hypothesis under sensor local

coordinate. pm,i
l,k can be computed from the sound source state sm,i

k−1 and the current
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sensor pose xr,k as

pm,i
k−1 =feul mat(x

m
ss,axis(1),x

m
ss,axis(2),x

m
ss,axis(3),

xm
ss,axis(4)− π/2, 0,xm

ss,axis(5))⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(sm,i
k−1(1))cos(s

m,i
k−1(2))

sm,i
k−1(3)

sin(sm,i
k−1(1))

sm,i
k−1(3)

cos(sm,i
k−1(1))sin(s

m,i
k−1(2))

sm,i
k−1(3)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.19)

pm,i
l,k = [I30]M−1(xr,k)p

m,i
k−1, (5.20)

where function feul mat(xt, yt, zt, yawr, pitchr, rollr) transforms translational XYZ and ro-

tational yaw pitch roll angle into a homogeneous transformation matrix and I3 is a 3x3

identity matrix.

After a sound source is initialised, we use a chi-square test to validate each hypothesis

at the time a new observation is available. The chi-square distance dm,i
k is formulated as

follows,

P
zm,i
k

= Hm,i
k Pm,i

ss,k−1(H
m,i
k )T , (5.21)

dm,i
k = (fna(ẑ

m,i
k − zm,i

k ))TP
zm,i
k

fna(ẑ
m,i
k − zm,i

k ). (5.22)

We invalidate a hypothesis when the mean value of the chi-square distance dm,i
k is larger

than a predefined value. This hypothesis pruning process will continue until all remaining

hypotheses (usually one or two) converge.

The convergence of a hypothesis is determined by the linearity index Ldm,i
k of the inverse

depth of the hypothesis according to [133] as follows,

hW,m,i
XY Z,k = xm

ss,axis(1 : 3)− pm,i
k , (5.23)

σm,i
ρ,k =

√
Pm,i

ss,k(3, 3), (5.24)
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mm,i
k =

pm,i
k − xm

ss,axis(1 : 3)

||pm,i
k − xm

ss,axis(1 : 3)|| , (5.25)

σm,i
d,k =

σm,i
ρ,k

sm,i
k (3)

, (5.26)

Ldm,i
k =

4 ∗ σm,i
d,k ||(mm,i

k )ThW,m,i
XY Z,k||hW,m,i

XY Z,k||−1||
||hW,m,i

XY Z,k||
, (5.27)

where pm,i
k can be computed in the same way as pm,i

k−1 in Eq. 5.19. When the linearity index

Ldm,i
k is small enough, convergence of the hypothesis is determined. When all remaining

valid hypotheses converge, we take the mean value of sound source states in Euclidean

coordinates of all valid hypotheses, and the mean value will be fed as the initial guess for

sound sources in the joint optimisation process detailed in the next Section.

5.4 Joint Optimisation of Sensor Poses, Visual Landmarks

and Sound Sources Locations

A graph based SLAM [7] is used for optimisation to estimate jointly sensor poses, land-

marks and sound sources. Note we will particularise this algorithm for an online imple-

mentation using key frames and visual landmarks, but any offline and other landmark-type

can be utilised in a similar way.

Let x be the state vector of the graph SLAM,

x = [x1
kf , · · · ,xNkf

kf ,v1, · · · ,vNv ,p1, · · · ,pNs ]T , (5.28)

where x
nkf

kf (nkf = 1 · · ·Nkf ) is the pose of the nkf th key frame, vnv(nv = 1 · · ·Nv) is

the location of the nvth visual landmark parametrised as Euclidean point and pm(m =

1 · · ·Ns) is the location of the mth sound source. In the optimisation, since the sound

source state is converged after the multi hypotheses initialisation, it is also parametrised

by a Euclidean point. Any state of a key frame pose, a visual landmark or a sound source

location is represented as a node and the measurement of a visual landmark or a sound
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source from a key frame pose, which is a constraint between two nodes, is represented by

an edge in the graph SLAM.

In the least squares problem of the graph-based SLAM, the estimated state vector is found

by minimising the error over all pose-pose constraints and pose-landmarks constraints [7],

x̂ = argmin
∑
ij

eTijΩijeij , (5.29)

where eij denotes the error in the constraint between ith and jth nodes, and Ωij is the

associated information matrix.

When an edge represents an observation of a sound source of node j from a key frame of

node i, the eij can be computed as follows,

pj,i = [I30]M−1(xi
kf )

⎡
⎣pj

1

⎤
⎦ , (5.30)

eij = atan2(pj,i(2),
√

pj,i(1)2 + pj,i(3)2)− β̂j,i
gp∗, (5.31)

where pj,i is the local coordinate of the jth sound source in the ith key frame’s reference

frame and β̂j,i
gp∗ is the observation of the sound source j from key frame i, which is the

predicted DOA angle from GP sensor model. The associated information matrix is

Ωij = (P β,j,i
gp∗ )−1 . (5.32)

The observations of visual landmarks from the key frame poses depend on the nature

of the sensor (monocular, stereo or RGBD) and details regarding them can be found

in [110]. After all nodes and edges are defined, Eq. 5.29 can be solved by Gauss-Newton

or Levenberg-Marquardt optimisation.

Regarding the real time implementation, following ORB-SLAM implementation [110], only

the last key frames, either a fixed number or the co-visible key frames of the current

key frame, and their related visual landmarks and sound sources are optimised. A full

optimisation is performed only when a loop closure is detected. Any intermediate frame,



Chapter 5. sound source Mapping using a Linear Microphone Array 136

which is not a key frame, is disregarded due to the real-time constraint. ORB features are

used for visual landmarks and parallel tracking, optimisation and loop closure detection

is performed as done in [110].

There are two limitations in the proposed method. Firstly, all sound sources are assumed

to be static to be jointly optimised with other landmarks and poses. Note that if the

sound sources are moving, once the hypotheses have converged to one, they could be

tracked independently outside the joint optimisation. Secondly, the sensor is required to

observe sound sources from different sensor poses. This is to compensate for the partial

angle observation of a linear microphone array. Without observing from several different

poses, sound source location estimation is not guaranteed to converge.

5.5 Simulation and Experimental Results

In this section, comprehensive simulation and experimental results are presented to eval-

uate the performance of the proposed method.

5.5.1 Simulations of Sound Source Mapping with a Linear Microphone

Array

In the simulation scenario shown in Fig. 5.5 and Fig. 5.6, a sensor with a RGBD camera

and a linear microphone array for sound source mapping is simulated. In all figures,

red and blue (+) markers represent estimation and ground truth of RGBD landmarks.

Green, red and blue unit lines denote the X,Y,Z axis of sensor local coordinate frame.

In Fig. 5.5(a) and Fig. 5.5(b), blue circle markers represent initial multi hypotheses of

sound sources. The sensor follows a 3D trajectory as shown in figure (d) and (e). It

starts from the origin and travels along positive X axis direction. After 2m, it follows a

1/4 arc. Then it moves vertically up and down, followed by another 1/4 arc returning

to the positive X axis and travels along it for another 2m. This pattern of movement

is repeated 4 times until it goes back to the origin. There are 8 sound sources in the

simulation. The ground truth locations of them along with other simulation parameters

can be found in Table 5.1. The sound source bearing observation noise is set to be a
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Gaussian noise with a standard deviation of 10-20 degree. The linear microphone array

is distributed along Y axis (represented by the red unit length line) of the sensor local

coordinate frame. The sound bearing observation noise at different DOA angles is obtained

empirically, and it is added to the ground truth value to be treated as a noisy observation.

Specifically, the estimated the DOA angle using MUSIC algorithm and the ground truth

DOA angle data is collected at each 5 degree interval of all possible range of DOA angle

using a real 4 channel linear microphone array in the PS3-eye sensor. Then, the data

is fitted into the Gaussian Process machine learning model to model the noise terms in

the DOA estimation w.r.t. different true DOA angles. As can be seen from figure (a)

and (b), when the sensor first observes a sound source, it initialises 10 hypotheses along

its instantaneously unobservable circumferential angle. The covariance value associated to

each hypothesis is shown in (c). As the sensor keeps observing sound sources from different

angles, most of the hypotheses are invalidated and only one of them will converge. From

the time of convergence, the converged sound source is added to the joint optimisation

process, where the last 5 poses of the sensor, their associated visual feature points and

sound sources are optimised. During the joint optimisation process, the error of the sound

source location estimation continuously decreases. When a loop closure is encountered,

the full graph is optimised. The final result is shown in Fig. 5.6 (a) and (b). We can

see that all sound sources are converged to their ground truth locations. The RMS error

of sound sources locations w.r.t. the absolute positions is 0.1302m. This result is quite

reasonable, given the lack of DOF in observation and the large sound source observation

noise.

In the second simulation scenario, we validate the system performance when sound sources

are mostly observed by the least sensitive region of a linear microphone array, which is at

the two sides of the linear microphone array of DOA angle of ±90 degrees. Locations of

sound sources and the sensor trajectory is shown in Fig. 5.7. In all figures, red and blue

(+) markers represent estimation and ground truth of RGBD landmarks. Green, red and

blue unit lines denote the X,Y,Z axis of sensor local coordinate frame. As shown in the

figure, the sensor starts from the origin, moves along the positive X axis direction. After

4m, it moves up and down, followed by another 4m along positive X axis and up and

down movement. Then it moves another 4m along X axis and reaches the point (12,0,0).
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Table 5.1: Parameters in simulation

Parameters Values

Number of initial hypotheses 10
Sound source ground truth (4,0,1), (4,0,-1),

(4,8,1), (4,8,-1),
(8,4,1), (8,4,-1),
(0,4,1), (0,4,-1)

Sound bearing estimation noise 10-20 deg
Mic. array max sensing distance 3m

Distance per odometry step 0.2m
Least square optimiser Levenberg-Marquardt

RGBD landmark observation noise 1 deg and 0.01m

Sound source ground truth (2nd sim) (4,1,0.5), (8,1,-0.5),
(11,4,0.5), (11,8,-0.5),
(8,11,0.5), (4,11,-0.5),
(1,4,0.5), (1,8,-0.5)

This pattern is repeated 4 times until the sensor reaches the origin. Finally, it moves

diagonally to generate another loop closure that better constrains the system. Positions of

sound sources are shown in Table 5.1, other simulation parameters are the same as in the

previous simulation. It can be seen from the figure that, most of the time, sound sources

are around 90 degree DOA angle, which is the least sensitive region for a linear array.

Despite the noisy observation around 90 degree DOA angle, sound sources are converged

in the end with mean RMS error of 0.2688m. The error, as expected, is larger than the

previous one, in which sound sources are mostly observed by the highly sensitive region

around 0 degree.

In the third set of simulation, we test the influence of the number of hypotheses over the

final convergence of sound sources. 20 Monte Carlo runs of the first and second set of

simulations are performed under various number of hypotheses. Mean convergence rate of

the multi hypotheses filters, which is determined by the linearity index Ldm,i
k in Eq. 5.27,

and RMS error of converged sound sources are shown in Fig. 5.8. From the figure, it can

be seen that the number of hypotheses mainly affect the mean convergence rate and 6 or

more hypotheses are suggested for better convergence. Regarding both convergence rate

and sound source mapping accuracy, in terms of RMS error, the first set of simulations is
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Figure 5.5: Initialisation of multi hypotheses. When the sensor first observes the sound
source around 0 degree DOA angle, the cone surface approximates a plane and 10 hy-

potheses are uniformly distributed along the cone surface.

always better than the second set due to its observation of sound sources mostly in the

sensitive region of the linear microphone array and from wide parallax angle.



Chapter 5. sound source Mapping using a Linear Microphone Array 140

a Final result of joint optimisation.

b Final result of joint optimisation.

Figure 5.6: Final result of joint optimisation.

5.5.2 Experiments of Sound Source Mapping with a Linear Microphone

Array

In this section, experimental results of sound source mapping using Kinect 360 and PS3

Eye, as shown in Fig 5.1 (a) and (c), are presented as examples of monocular and RGBD

vision sensors respectively.
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a Final result of joint optimisation.

b Final result of joint optimisation.

Figure 5.7: Final result of joint optimisation in the second trajectory.
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Figure 5.8: Mean convergence rate and RMS error over 20 Monte Carlo runs under
various number of hypotheses.

Two experiments are conducted in a small office room and a computer lab as shown in

Fig. 5.9 (a) and (b). In the small office setup, mapping of two sound sources using both

Kinect RGBD sensor and PS3 Eye Monocular camera, both with a linear microphone

array inside, are performed. In the computer lab setup, mapping of five sound sources

using the Kinect RGBD sensor is performed. Before performing the experiment, a set of

sound source DOA estimation results using the SRP-PHAT algorithm and ground truth

DOA angles are collected using both sensors in order to build the sensor model using GP

as explained in Section 5.2. Sound sources are emitted from a phone and a loud speaker

for mapping two sound sources and fives phones for mapping fives sound sources. These

devices are playing either music or a continuous human speech. The sampling frequency

of the microphone array is at 16KHz. Sound source bearing estimation is performed at

5Hz. The sensors are handheld following a random trajectory around the sound sources.

In Fig. 5.10 and Fig. 5.11, yellow cubes represent estimated positions of sound sources and

red hollow rectangles represent the manually measured ground truth positions of sound

sources from the dense (using Kinect RGBD sensor) or sparse (using the PS3 Eye Camera)

map.

Results of mapping two sound sources are shown in Fig. 5.10. In (a) and (b), sound source

map using Kinect RGBD sensor are presented, while in (c) and (d) mapping results using

PS3 Eye are presented. Using Kinect RGBD sensor, a dense map of the environment

can be obtained, whereas only a sparse map of the environment is obtained when using a
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a Small office room. b Computer lab.

Figure 5.9: Experimental setup.

monocular camera. From these results, it can be seen that the proposed method can map

sound sources with reasonably good accuracy. Mapping of five sound sources using Kinect

RGBD sensor in a computer lab is shown in Fig. 5.11. The large image on top is the top

view of the mapping result, while the five images at the bottom are the corresponding side

view of five sound sources that are on top of each image. The result shows the proposed

method performs well in a larger area. Covariances of sound sources are not shown in

the figures for clarity, but they are consistent with the estimation errors. Note that a 3D

microphone array provides 2 DOF measurement (azimuth and elevation angles), while a

linear array can only provide 1 DOF measurement (axis angle). Most of the results in the

literature use 3D microphone arrays and those results are not comparable with the results

attained with a linear array. A video showing the performance of the proposed system

during these two experiments is publicly available online2.

5.6 Conclusion

In this Chapter, we presented a method for real-time 3D sound source mapping using

an off-the-shelf robotic perception sensor equipped with a linear microphone array. In

the proposed method, multi hypotheses filters are combined with a new sound sources

parametrisation to provide good initial guesses of sound source locations for an online

2https://youtu.be/Ry i3kmvlHM



Chapter 5. sound source Mapping using a Linear Microphone Array 144

a Top view using Kinect. b Side view using Kinect.

c Top view using PS3 Eye. d Side view using PS3 Eye.

Figure 5.10: Mapping of two sound sources using Kinect (RGBD sensor) and PS3 Eye
(monocular camera).

optimisation strategy. A joint optimisation is carried out to estimate 6 DOF sensors poses

and 3 DOF visual landmarks and sound sources locations. In addition, a dedicated sensor

model for a linear microphone array is proposed to model accurately the noise of the DOA

observation. Future work includes robust sound source data association and optimal active

path planning to achieve better sound source mapping performance.
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Figure 5.11: sound source mapping result in a computer lab.





Chapter 6

Conclusion

6.1 Summary of the Thesis

In this thesis, sound source mapping using a microphone array and calibration of a mi-

crophone array are studied. This thesis proposes three novel approaches in the field of

sound source mapping. Ordered by their occurrence in this thesis, these contributions are

as follows,

• Calibration of a 2D/3D/linear microphone array: A methodology is hereby

proposed to calibrate a 2D/3D/linear microphone array using a graph-based optimi-

sation method borrowed from the SLAM literature, effectively estimating the array

geometry, time offset and clock difference/drift rate of each microphone (only the

array structure for a hardware synchronised microphone array) together with the

sound source locations. Simulation and experimental results are presented, which

prove the effectiveness of the proposed methodology in achieving accurate estimates

of the microphone array characteristics needed to be used on realistic settings with

asynchronous sound devices.

• Sound source mapping using a 2D/3D microphone array: Firstly, we pro-

pose a least squares optimisation based SLAM framework to map stationary sound

sources while simultaneously localising a moving robot. The proposed method jointly

147



Chapter 5. Conclusion 148

estimates robot poses, positions of sound source and other landmarks, and hence is

efficient in correlating robot trajectory with sound source mapping. Then an flexible

and efficient method based on CI submap joining has been proposed to map sound

source using a 2D/3D microphone array. This method exploits the conditional inde-

pendence property between two maps estimated by two different SLAM algorithms

running in parallel. The first map has the flexibility that it can be built with any

off-the-shelf SLAM algorithm (filtering or optimisation) to estimate robot poses with

an exteroceptive sensor. The second map is built by using a filtering-based SLAM

algorithm locating all stationary sound sources parametrised with IDP. Robot loca-

tions used during IDP initialisation become common features shared between the two

SLAM maps, which allow the propagation of information accordingly. Since filtering

techniques are proposed to build the second (sound) map, the suggested methodology

has less computational complexity compared to the full joint optimisation method.

• Sound source mapping using a linear microphone array: We present a

method for real-time 3D sound source mapping using an off-the-shelf robotic percep-

tion sensor equipped with a linear microphone array such as Kinect and PS3-Eye.

In the proposed method, multi hypotheses filters are combined with a new sound

source parametrisation to provide good initial guesses of sound source locations for

an online optimisation strategy. A joint optimisation is carried out to estimate 6

DOF sensor poses and 3 DOF visual landmarks and sound source locations. In ad-

dition, a dedicated sensor model for a linear microphone array is proposed to model

accurately the noise of the DOA observation.

6.2 Potential Future Work

All of the research topics covered in this thesis, including sound source mapping, bearing

estimation and asynchronous microphone array calibration, are rapidly evolving research

areas. It is possible that other methods and techniques may improve the results reported

in this thesis. Particularly, the following topics are recommended for future research and

development.
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• Data association: The data association problem in the sound source mapping

method presented in this thesis and many other works in the literature, assume

either the IDs of sound sources to be known, or obtained by consistency of sound

source bearing estimation or chi square test, as frequently used in the SLAM data

association. However, there are problems with both of these methods in sound

source mapping with a robot embedded microphone array scenario. Firstly, the

consistency of sound sources bearing estimation only happens if the sound sources

are continuously emitting sound. This is not likely to be always true in a real world

scenario. If a sound source is active for a long period, becomes silent for a period, and

then is activated again, using the the consistency of sound source bearing estimation,

this sound source could be treated as two sound sources since the bearing information

of this sound source has jumped a certain angle. Secondly, as a robot embedded

microphone array typically estimates sound source bearing only, if two active sound

sources stay on the same line, chi square test cannot distinguish between the two of

them. We believe that using audio features of the sound source, this data association

problem can be improved. Some sound features, such as the Mel Frequency Cepstrum

Coefficient (MFCC) feature [143], can be used as a characteristic of a sound emitter,

which is frequently used in speaker verification [143]. Therefore, it can help to

determine the ID of a sound source when both of the methods mentioned above

fail, especially in a situation in which all sound sources are human speech. For

example, in [144], Alexandridis et. al. present a data association algorithm that

finds the correct DOA association to the sources based on features extracted for each

source. They propose the use of a feature that describes how the frequencies of the

captured signals in each array are distributed to the sources. Their method results

in high association and localization accuracy in scenarios with missed detections,

reverberation, and noise and outperforms other recently proposed methods.

• Ego motion noise suppression: Throughout this thesis work, all simulations and

experiments do not include or include only a little ego motion noise. However, this

is not always true in many other application scenarios. One of the typical examples

is an Unmanned Aerial Vehicle (UAV), such as a quadcopter. Due to the huge noise

from a quadcopter’s propellers, the sound source mapping result proposed in this
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thesis could be severely influenced. Besides UAV, some large humanoid robots and

some outdoor mobile robots, due to the inherently large noise from their motors

and fans, also have considerable ego motion noise. Therefore, dealing with this ego

motion noise is another challenge and potential future work. Some existing methods

in [73, 145] can be tested.

• Sound source mapping in a dynamic environment: A static environment is

assumed in this thesis. In a real world scenario, this assumption can hardly hold true.

In most situations there are people walking around, doors opening and closing and

objects being displaced. How to deal with these challenging non-static environments

is a full research field in itself. Vision based mapping in dynamic environments [146,

147] has been studied in the past. These methods can be incorporated into the sound

source mapping to deal with dynamic moving objects.

• Multi-robot cooperative sound source mapping: In this thesis, sound source

mapping by a single robot scenario is considered. As a potential future work, sound

source mapping using multiple robots is an interesting topic, specially for USAR

scenarios, where in order to localise victims in a disaster area, it is much better

to employ multiple robots to map the environment and position of victims rather

than using only one robot. Therefore, how to effectively and cooperatively map an

environment and all sound sources has become a challenging potential research area

as these robots need to share information on an environmental and sound source

map. Existing work on multi-robot SLAM [148, 149] and submap joining [134] can

be a good starting point for this.

• Active sound source mapping and exploration: In this thesis, the robot (or

sensor) motion are controlled by humans in all experiments. In a fully autonomous

robotic application, a robot needs to plan its own path in addition to the sound source

mapping. In this scenario, how to plan a path that minimises the uncertainty of

sound source locations (exploitation) and maximises the exploration of an unknown

area (exploration) is of key importance. Existing work in [120, 150] can be used to

address this problem.
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