
© [2008] IEEE. Reprinted, with permission, from [Zenon Chaczko, Andrew Chan and Chris Chiu, FILE
COMPRESSION USING TYPOGENETIC COMPUTATION, 2008, Third International Conference on Broadband
Communications, Information Technology & Biomedical Applications, 2008]. This material is posted here with
permission of the IEEE. Such ermission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Technology, Sydney's products or services. Internal or personal use of this material is
permitted.However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting
it

FILE COMPRESSION USING TYPOGENETIC COMPUTATION

Zenon Chaczko, Andrew Chan and Chris Chiu

University of Technology Sydney, NSW, Australia

Zenon.Chaczko@uts.edu.au, Andrew.Chan@uts.edu.au, Christopher.Chiu@uts.edu.au

ABSTRACT
Typogenetic algorithms are a break from classical
approaches to computation. Based on gene expression
and intercellular processes, typo-genetic computation
can offer a new approach to the algorithmic problems of
system security, data compression and encryption. The
method has a potential of much higher compression
ratios at the limited computational costs i.e. processing
time. This paper presents a formal system based on
typogenetics for the purposes of compression. Lossless
data compression is an important part of computer
science. While the ability to reduce consumption of
hard disk space or transmission bandwidth through
statistical redundancy has served well in the past, the
explosive growth in high quality media content (*.mp3,
*.mpg) on the internet in the past few years have
highlighted the limitations of traditional statistical
techniques for compression.

Keywords: Typogenetics, Lossless data compression

1. INTRODUCTION
With the rapid growth of media rich content in the form
of sound, graphics and video, classic lossless
compression techniques are becoming ineffective when
handling compression of these files. The impact is that
often limited and expensive resources such as
bandwidth and data storage space are being heavily
used. Unlike other techniques typogenetic1 compression
is not based on statistical redundancy thus it has a real
potential to be applied as a strong compression
computation mechanism. Due to its specific the
technique requires from users good understanding of its
nature prior to being able to capture its power in the
form of computational process.

1.1. Aims and Objectives
The main goal of this research is to investigate ways
how the technique of typogenetics could provide a
robust, secure, reliable and effective solution for a real-
world application. One of many possible applications is
a file compression. Although our research involves a
range of possible applications of typogenetic
mechanisms in the area of smart computation
algorithms, the main focus of this paper is on
implementation of typogenetics in the file compression
domain.

1 The term ‘typogenetics’ first introduced by Hofstadter
(1979) represents a formal system which captures the essence
of biological genetics.

In the first part of the paper, we will navigate through
the fundamentals of typogenetics then we move to
explore how typogenetics can be actually applied to
computation algorithms. We will discuss the growth
rate of typogenetics, its impact on theorem coverage,
and the importance of theorem complexity [5, 6] to the
compression method. The second part of the paper
provides an overview of two alternative typogenetic
methodologies (the top-down and bottom-up) that are
applicable to the compression problem will be
investigated. Benefits and shortcomings of each of these
methods are being discussed. The conclusion will offer
results of our experimentation, recommendations and
projection of future studies. This paper covers
considerations and the process of design for a suitable
file format applying compression technique. We have
thoroughly researched the domain of typogenetics and
designed and implemented an experimental framework
for a continual refinement, evaluation and improvement
of various versions of compression algorithms using
this relatively new technique.

2. EXISTING COMPRESSION METHODS
Before the advent of the computer systems,
compression was not a well developed discipline if
compared to such areas as cryptography, which has
been used almost for thousands of years to keep
information secret. Encoding data in more compressed
forms was seen as a rather useless task since smaller
writing or print did the same. With development of
information and communication technology, however,
the need for compression grew due to the fact that
memory and space can be very expensive resources.
One of the simpler ways of compression was to run
length encoding.

2.1. Run Length Encoding
Run length encoding or RLE is a common way of
encoding repeated symbols in a more succinct form. In
RLE the repeated symbols are replaced by a delimiter
followed by the number of occurrences. If the
delimiting symbol is encountered in the data, the
delimiter is repeated to signify it is part of the data. As
can be seen, the compressed version on the right on the
above example represents a shorter form.

Example
“This ssstring will be compressssssed!”
“This s!3tring will be compres!6ed!!”

BROADCOM 2008 South Africa November 23-26, 2008

Figure 1: The TGCAGACCGC strand mutates to

TGCCAAGACCGC

2.2. Delta Encoding
Delta encoding stores the differences between values to
reduce the data required to signify a stream of values.
The first value given in a series is a complete value. The
values given after the leading value is encoded as the
relative difference between itself and the previous
value. This method of encoding is particularly
important when constant revisions or small updates are
being made. Source control systems take advantage of
this technique.

Example:
{104, 99, 101, 96, 96} {104, -5, +2, -5, 0}

2.3. Huffman & Arithmetic Encoding
Based on Shannon-Fano encoding, Huffman coding is
of the simplest ways of achieving strong compression.
Huffman coding takes advantage of statistical
redundancy and uneven distribution of data. A prefix
table is created with the most probable symbols encoded
as the shortest; and with the least probable being the
largest. The original file is then compressed using this
lookup table. Arithmetic encoding such as LZW is a
more advanced form of Huffman technique, using
fractional numbers of bits to achieve greater overall
compression. Arithmetic encoding, however, has failed
to totally replace Huffman coding because of its
computational expense and limitations imposed by use
of multiple patents. The weakness of Huffman and
Arithmetic encoding occurs in cases of low statistical
variation in the data. The overhead of encoding using
these variable bit encoding schemes becomes much
larger than the amount of compression they provide.
Typogenetic Compression aims to fill this gap.

3. INTRODUCTION TO TYPOGENETICS
First introduced by Hofstadter [4], typo-genetics is a
system which captures the essence of genetics. A very
interesting result of the system is the self-modifying
nature of the strands. The self-modifying behavior of
the strands forms the foundation of this class of AI
technique [2]. There are three main elements of the
computational model of typogenetics such as:

 Bases. The typogenetic system involves arbitrary

lengths of strands comprised of the letters A, C, G
and T. These are also known as bases. All
typographical strands are made of these bases. C and
T are pyrimidines, A and G are purines bases.

 Mutation. The interesting aspect of typogenetics is
the fact any strand may have a property of being
able to mutate [7, 8] into another. This allows us to
start with any strand and create more strands. We
shall refer to the starting strand as a seed. In a
formal system, the seed represents the axiom.

 Enzymes and Amino Acids. Strands are modified
through typographical enzymes. Enzymes have
operations such as inserting bases, removing bases,
or shifting left and right. These enzymes are derived
from the strands themselves through a process of
translation. Enzymes themselves are further
composed of individual amino acids. Table 3 shows
the amino acids names in typogenetics & operations.

3.1. Translation Process
The process of translation involves translating a strand
into an enzyme. It involves grouping bases into duplets
and mapping them to an amino acid. These amino acids
are then accumulated into a sequence which becomes
the enzyme2. Table 4 how base duplets are translated
into amino acids. Besides the mapping between base
duplets and amino acids, typogenetics has a structure
(Tertiary Structure) which determines the initial starting
point or binding preference of the enzyme. The binding
preference is calculated from the folds in the enzymes.

The letter at the end of each enzyme on the enzyme
table (s, r, l), representing the fold each enzyme creates
in the enzyme strand. All strands are initially pointing
right, and depending on the fold of the enzyme, the final
orientation can be either pointing top, bottom, left or
right [4]. Once the final orientation is derived, we can
work out the initial binding for the enzyme strand.
Enzyme in folding mechanism is depicted in Figure 2,
following the folds listed in Table 1.

Figure 2: The Translation Process

In Table 1 we can see how the folding mechanism
translates into the formation of an initial binding
preference which then can be found in Table 2. The
duplet AA has been left blank on purpose. This served
as punctuation mark on the strand, signaling the end of
the code for an enzyme. From this punctuation it is
possible to have a strand represent several enzymes.
This allows for more complicated strands to be derived.
From this we can see the recursive nature of
typogenetics. Any given strand acts as both data which
is acted upon and also as the program which modifies it.
This allows us to take any arbitrary strand, translate it
into enzymes, and create another strand. Successive

2 The details translation process were described by
Hofstadter’s (Hofstadter, 1979, pp 508 -510)

TAGATCCAGTCCACATCG

TA GA TC CA GT CC AC AT CG

rpy ina rpu mvr int mvl cut swi cop

TGCAGACCGC

M
u

tation

TGCCAAGACCGC

BROADCOM 2008 South Africa November 23-26, 2008

performances of this “mutation” would allow us to
create more and strands. The property of self mutating
strands into longer versions can be quite useful in the
area of compression. If large strings can be represented
by smaller strands and mutation numbers, this may give
a saving in the total bytes required for storing data.

4. COMPRESSION AND TYPOGENETICS
We have seen how typogenetics can give us a powerful
way of lengthening a strand through recursively
modifying itself. This section will focus on the how
typogenetics might be used to compress strands of data.
While mutating a strand is a relatively straightforward
matter. Finding the source strand given any arbitrary
strand if any exist is a different matter. The situation is
very similar to Emil Post’s “Post production system.”
which endlessly generate strings following certain rules.
In the Table 3 presents how duplet bases map to various
amino acids. The first base is represented by the left
column and the second base by the top row.

Figure 3: Enzyme Folding

Operator
Name
Amino acid

Description Folding

cut cut strand s
del delete a base from strand s
swi switch enzyme to the other strand r
mvr move on unit to the right s
mvl move on unit to the left s
cop turn on copy mode r
off turn off copy mode l
ina insert A to the right of this unit s
inc insert C to the right of this unit r
ing insert G to the right of this unit r
int insert T to the right of this unit l
rpy search for nearest pyrimidine to right r
rpu search for the nearest purine to the right l
lpy search for the nearest pyrimidine to left l
lpu search for the nearest purine to the left l

Table 1 Amino Acid Table

Top C
Bottom G
Left T
Right A

Table 2 Enzyme Folding Binding Preference

 A C G T
A cut del swi
C mvr mvl cop off
G ina inc ing int
T rpy rpu lpy lpu

Table 3 Translation Table

4.1. Axioms, Rules of Inference and Theorems
In Post’s system, all strings start from axioms, which is
a set of strings. These strings, following given rules of
inference or rules, then produce more strings. This
process of string creation in the system continues
indefinitely. It is clear after a certain stage that some
strings could be produced by the rules, whereas some
strings could not be produced by the rules. The strings
which were producible are also known as theorems. The
non-producible strings are known as non-theorems. In
the same way how some strings can be produced,
strands which can be produced from a given axiom can
also be known as theorems. Non-reachable strands
which cannot be produced by typogenetics can also be
referred to as non-theorems. In typogenetics however,
the rules of inference are not static but are derived from
axioms themselves. This makes typogenetics a much
more complex system to study.

4.2. Seed and Generations
It follows then that any strand which is a theorem may
be encoded in terms of its axiom and the number of
times the axiom modified itself. For simplicity, the
axiomatic strand is specified as the seed, and the
number of modifications as the generation. If a strand is
a theorem, it then follows that all theorems have a
compressed form represented by their seed and
generation. From these two pieces of data, the original
theorem can be reproduced. Likewise, if a bit stream is
represented by its seed and a byte representing the
generation, the original bit stream can be recreated.

4.3. Top Down Compression Method
There are two ways of calculating seeds of a
typogenetics system. One is the top down approach; the
other is the bottom up approach. This section will talk
about the top down approach, its merits and its
disadvantages. One of the major advantages of top
down compression would be small memory footprint
required to compress a given strand. Instead of a
massive lookup table as characterized in the bottom up
approach, a compressing client can derive the seeds of a
strand through processing. If a top-down compression
technique using typogenetics was to be used. A side
effect would be a potentially long execution time. This
may affect the usability of this technique. The nature of
the typogenetics means that there are many non-
theorems. This means that there are strands which may
not be able to be derived from smaller strands. Because
of this, it is critical when calculating seeds that we need
to identify non-theorems easily in a finite amount of
time. It then follows that a test for theorem-hood is
extremely useful as a first step in compression. In a
formal system a test for theorem-hood which can be run
in finite time is also known as a decision procedure.
Unfortunately for a system as complicated as the
typogenetics system, we can be quite certain that no
decision procedure as shown by the Church-Turing
theorem of undecidability. Although we could possibly
test for theorem-hood if only lengthening operators are

rpy ina rpu

mvr

int mvl cut swi

cop

BROADCOM 2008 South Africa November 23-26, 2008

present, the system of typogenetics is vastly
complicated that reversing this is still a burden.
Although there is computation algorithm present in the
form of generating and recursive functions in discrete
mathematics, this avenue is perhaps outside the scope of
this paper but may be appropriate for further study.

4.4. Bottom up Compression Method
The way the bottom up approach works is to
methodically work up from the smallest axiom and
apply all the appropriate rules of inference to it. Once
this is done perform the same on the theorems
produced. Eventually all theorems will be derived in
this method. With the bottom up approach, there needs
to be a means of storing the theorems derived from
given axioms. The process of building up this lookup
will take time and massive amounts of storage place in
order to support larger and larger chromosomes.
Although the building of a lookup table will take time,
this table needs only be built up once and can be reused
if results are cached. This makes the bottom up method
quite attractive at compression time.

One of the biggest advantages of the bottom up
approach is the ability to have a fast decision procedure
if the lookup table is completely built. In reality
however, this table can never be “completely built”. We
can however, be sure that if a strand does exist in our
table, it is a theorem, if not it may or may not be a
theorem. This is in some ways a partial decision
procedure. For the purposes of compression this may be
enough. This is a massive advantage over the top down
approach for compression.

While building a table sounds all well and good, one of
the biggest weaknesses of this method is the fact that
enormous strands which are theorems of small seeds
may not be found. This means that potentially larger
compression opportunities will be missed by the bottom
up approach due to memory limitations. While bottom
up compression will work well for theorems within the
table, larger strands which are theorems cannot be
identified easily with this method. While one can create
a larger table to accommodate this, this solution is not
easily scalable and increases exponentially as seed
length and strand coverage is increased.

5. TYPOGENETIC THEORY
If typogenetics is to be applied for compression, there
would be a need for the system to generate a large
number of theorems or large coverage. This is to
increase the chances that a given strand can become a
theorem. The translation process in particular has a
massive effect on the coverage of the system. From the
introduction to typogenetics in chapter it is quite clear
that the Translation Table has a massive influence on
the types of theorems produced by the system. While
the translation table is presented in the book GEB, for
the purposes of compression this table can be changed
to produce different sets of theorems.

From an inspection of the Translation Table we can see
that there are five main lengthening operators: ina, inc,
ing, int and cop out of a possible 16 base duplets. For a
rough approximation we can say that the growth of a
strand on average is larger than 5 /16 or 31%. In reality
however, the growth rate is probably much higher due
to the fact that copy mode can lengthen a string
dramatically. If strands grew quickly, it follows that
there would be less theorems produced by the system
under a certain length. Conversely if strands grew
slowly, there would be more theorems produced by the
system as there are more mutations before a certain
length is reached. This means that to produce more
theorems, a slower growth is required. While slow
growths may allow a typogenetic system to produce
more theorems, this comes at a cost to the
decompression phase where more generations need to
be calculated in order to reach the target strand.

Figure 4: Mapping Binary to Bases

While growth rate has an influence on how many
theorems may be produced, the type of theorems
produced is also important. The theorems produced by
the typogenetic system cannot be too predictable.
Particularly in the case of compressing mp3 or mpg
files, the variability of the strand sequence will vary
between chaotic and ordered. Wolfram describes this as
a class 4 system. The cut, cop and off operators are quite
complex in general. The copy operator involves copying
the length of strand depending on movements of pointer
while cut splits long strands into smaller parts.

While the cut operator will definitely result in more
class 4 results, splitting strands into several parts will
add a complexity to the mutation which is out of the
scope of this paper. Integrating the cut operator into
compression would definitely be an interesting avenue
for investigation. The cop and off operators in
typogenetics were also quite complex. While an
implementation of this was possible, the small axiom
lengths we would be investigating and for simplicity,
this aspect of typogenetics was ignored. The binding
preferences associated with these operators were
captured for the tertiary structure, but did not act on the
strand in any way.

6. TYPOGENETIC COMPRESSION METHOD
Before compressing a file using typogenetic
compression, we need to map a binary string into one of
the four bases. This is a relatively straightforward
mapping of every 2 bits to a single base. To allow the
file format to improve, versioning information for the
file will be stored and dispatched. This will simply be a
leading byte for the file format.

0010110100111010111010001110001111100110101…

00A, 01T, 10G, 11C

AGCTACGGGGACGACCGTGGA…

BROADCOM 2008 South Africa November 23-26, 2008

6.1.1. Compressing File Segments
A high probability of encountering a non-theorem
meant that hopes of compressing the entire file as a
single strand was not feasible. A more sensible way to
compress using typogenetics is to compress only a file.
If we are compressing only parts of the file which are
deemed compressible, it follows that while
decompressing a way of determining the beginning of a
compressed section is needed, and the end of the
compressed section. A common way to do this is to use
a delimiter which will represent the beginning and end
of a compressed sequence.

Figure 5: Compression/Decompression Process

If a certain delimiting symbol is chosen, it follows that a
way is needed to allow this symbol to be used as data
when necessary. A common solution is to repeat the
symbol when it represents data. This technique would
be required when encoding in our file format. The key
to the compressed data is the seed and the generation of
that seed for mutation. This information will be stored
between the delimiters and used to decompress the
segment. Due to the fact generational data will be either
immediately follow the start delimiter or precede the
end delimiter, this means that the generation data cannot
clash with the delimiter itself. Therefore, the number
represented by the chosen delimiter will be a reserved
generation that cannot be encoded. For similar reasons
for a reserved generation, seeds cannot start with a byte
signature similar to the delimiter.

6.2. Compression Trade-off
The compressed strand must be smaller than original
strand by a certain amount to achieve compression. The
original strand must be larger than the two delimiters,
the seed, and generation data added together. In many
ways using typogenetic compression in this way can be
viewed as an extension to run length encoding. Strands
which are theorems can be viewed as a run of sorts, and
can be compressed into its seed and generation.

7. IMPLEMENTATION ISSUES
After careful consideration it was decided a promising
path forward was the bottom up approach, due to the
availability of a partial decision procedure and the
relative simplicity of the method. In implementation,
many unforeseen issues arose. Central to the bottom up
approach was the need to pre-calculate all the theorems
that will be used during the compression stage. This
involved a script which mutated all axioms of length
smaller than or equal to 24, the value chosen due to its
relative manageability (16 million).

Strand Length Bits Total
32 64 1.8*10^19
16 32 4.2*10^9
12 24 16 *10^7

Table 4 Axiom Strand Length and Size

7.1. Implementation Constraints
With the typogenetic system, strands can lengthen
themselves and mutate indefinitely. A limit for theorem
length needs to be chosen for time constraints. For the
purposes of this paper a theorem upper limit of 764 was
set as it is the maximum length for a primary key string
in SQL Server. Perhaps one of the fundamental issues
that arose was memory limitations. Any meaningful
calculation of our lookup table would involve hundreds
of millions of rows with 16 million axioms. This meant
the table could not be reasonably stored in memory. A
relational database system would be required to store
the theorems. At the time of writing, the database used
to store the lookup table had grown to 40GB. This
would be a major drawback of this method if a 40GB
lookup table was required to compress data. Another
problem that became quite evident was the processing
time required to calculate the table for all axioms of
length 24 or smaller. On a single thread it was
calculating on average 100 axioms per second. This
meant calculating 16 million axioms on a single thread
would take 1.8 days. Distributed processing of the
lookup was a must if any progress was to be made.

7.2. Distribution Method
A simple way of distributing calculation was required.
A console application with command line parameters
was used for simplicity. The console application takes 2
arguments, a lower bound and an upper bound, that was
responsible for calculating all axioms between bounds.
A batch file started the application concurrently with
different parameters. This was an effective way to
distribute processing of the theorem table. Due to the
heavy usage of a database system, the speed of the
database system used soon became a bottleneck. The
average number of queries to the database exceeded 400
per second. To speed up execution at the database layer,
stored procedures were used to speed up queries and
calls to the database should be kept at a minimum.

While calculating the initial theorem table, there were
certain cases when an infinite loop was met. Upon
closer inspection it became apparent that these were
caused by self replicating strands which reproduced
themselves across several mutations. To prevent this
from stalling, processing a cache is required which
makes sure that theorems produced by an axiom are not
repeated. Hofstadter mentioned these strands in his
book. Issues were also encountered with building the
initialization table; implementation of the compressing
client also had issues for consideration. The design of
the compressing client had to be able to handle large
files and needed to be able to compress in a reasonable
time and better utilise stream processing.

AGCAGAAAAAAATCCGACGCGCCCCCCCCCCCAATG

Theorem Theorem

AGCA (GA:3) TCCGAC (GCGC:9) AATG

Seed + Gen Seed + Gen

Compression
Decompression

BROADCOM 2008 South Africa November 23-26, 2008

7.3. Stream Processing
As this technique needed to potentially compress some
very large files, processing had to work on content
which may be in the gigabyte size range. To cater for
this, the compressing client cannot cache the contents of
the file completely in memory; doing this will result in
out of memory errors. To allow the compressing client
to compress large files, the content of the target file
needs to be processed as a stream, leaving a low
memory imprint on the system.

7.4. Compressing Time
Because compression will involve searching for
theorems in the database, care must be taken to
minimize compressing time. An initial prototype which
called the database on every byte of the file was
implemented. A 1MB file required over one million
calls to the database. The time cost of a set of procedure
calls on every byte of a file had an adverse affect on the
speed and the design had to be modified.

7.5. Decompressing Client
The decompressing client was perhaps the simplest of
the applications. The decompressing client basically
consisted of reading in a byte stream, determining start
and end points of a compressed region and
decompressing accordingly. The decompressing client
needs to store two states, normal mode and strand run
mode. Normal mode means that the bytes read from the
compressed file should be copied to the output location.
Strand run mode means the decompressing client should
buffer the bytes in the file, and mutate the seed and
number of generations to recreate the original data. The
decompressing agent will switch between modes when
a delimiter is read. Detection of the chosen delimiting
symbol non-repeated would mean the strand should
enter strand run mode. The next detection of the
delimiting symbol would switch back to normal mode.

7.6. Results
During implementation phase we have used C#.NET
3.0. The reason for this was mainly the familiarity with
the environment, as well as access to lambda
expressions which was used extensively in this paper.
SQL Server 2005 was used as the database of choice.

7.6.1. 1st Attempt: Negative Compression
The first successful application of typogenetic
compression resulted in a negative compression (Log 1
in Appendix). This was achieved with a theorem table
with 19 million entries. Compression took a little less
than 24 hours. From a glimpse of the compression log,
it seems like the implementation of typogenetic
compression has merits but requires much more
refinement. It is clear that some theorems being
detected very regularly, whereas the more chaotic
theorems which typogenetics was meant to capture was
not evidently seen in this example.

 Theorem Limit too small: The limit of 128 for the
theorem limit was too small. From the log it can be
seen that the theorem limit for the axiom “GA” was
regularly being hit. A higher theorem limit would
have resulted in a higher compression.

 Capturing Less Ordered Strands: It is observed
that the captured theorems involved large
sequences of base “A.” If this was further reduced
we can see for most of the theorems had seeds that
ended in “GA”, hence producing long sequences of
“A”. If typogenetic compression is to become more
useful it needs to capture more variable strands for
achieving compression rather than capturing zeros.

7.6.2. 2nd Attempt: Small Compression Achieved
For the second attempt (Log 2 in Appendix), several
things were changed in order to increase compression
ratio. Firstly the allowed theorem length was increased
to 764. This would allow the algorithm to compress
strand runs at a larger compression ratio. The SQL used
for the table initialization code was optimized3 as well
as a check to halt mutations if a theorem produced
already exists. Calculating the lookup table with strand
length of 764 for 24 byte axioms proved much longer
than for strand lengths of 128. At the time of
compression, the table had only processed 250,000
axioms out of a possible 16 million. The database file
size had also increased to 40GB. This made the bottom
up method less appealing as a compression method. The
increase in strand length increased the effectiveness of
the method slightly. Instead of increasing the size, a
very small compression was made.

Input File
Size (bytes)

Compressed File
Size (bytes)

Ratio

671660 671748 0.013 % increase
Table 5: First Attempt Compression Results

Input File
Size (bytes)

Compressed File
Size (bytes)

Ratio

671660 669150 1% compression
Table 6: Second Attempt Compression Results

7.7. Issues
From inspection of compression in Log 2, it is clear that
the same problems plaguing the first attempt still
applied to the second attempt. The theorems found in
the file were too ordered and instead of the strand length
being too small the maximum generation of 256
generations was reached. For typogenetic compression
to be effective a lot more work was required on
theorizing theorems produced by translation processes.

CONCLUSION
From observing the typogenetics results, potential is
there to use typogenetics as a form of compression.
However, for typogenetics to work as a mainstream
method of compression, more work is required in

3 Insert Ignore feature of SQL Server was used to reduce database
calls by half or more.

BROADCOM 2008 South Africa November 23-26, 2008

understanding the theorems types generated by
typogenetics. The ability to compress long strands into
small axioms and a number cannot be dismissed. With
enough processing power, and more theorem coverage,
this technique may become a powerful way of
compressing all file types, including files with low
statistical redundancy. Perhaps the most important
finding is the low coverage of typogenetics for strands
of a certain length. The growth factor of typogenetics
may need to be slowed and different operators may be
needed to increase coverage of this technique. Once a
large coverage is achieved, typogenetic compression
will become a powerful server side technique. From the
first prototype of typogenetics it was apparent that this
technique was extremely slow even for small files.
Major improvements to the design of the compressing
client is required if this technique is to become usable.
No user will have the patience to wait 24 hours for a
600KB file to compress. Caching and minimizing
database calls for theorem checks will go a long way
towards achieving this. From the test table generated, a
40GB database was generated when only 250,000
axioms were calculated. Typogenetic compression
needs a better decision procedure to be more effective.

Investigation into further understanding of the theorems
produced will be necessary in making the proposed
typogenetic compression practical. The top down
approach may be required in compressing extremely
large strands. The top down approach is seen as a more
powerful and scalable way of compressing. If a bottom
up approach is to be used to calculate larger axioms,
then further efforts need to be made in exploring
extremely large databases together with their efficient
storage and retrieval. The compression of strings of
characters inside a string is also a future topic.

REFERENCES
[1] Bruzzone, A.G., Longo, F., 2005. Modeling &

Simulation applied to Security Systems.
Proceedings of Summer Computer Simulation
Conference, pp. 183-188. July 24-28, Philadelphia,
Pennsylvania, USA.

[2] Cawsey, A. (1998). The Essence of Artificial
Intelligence. Europe: Prentice Hall.

[3] Gustavsson, R. & Fredriksson M., (2003).
Sustainable Information Ecosystems, Lecture Notes
in Computer Science, Volume 2603/2003, Springer
Berlin / Heidelberg, 123-138.

[4] Hofstadter, D. R. (1979). Godel, Escher, Bach, an
Eternal Golden Braid (20th Ed). NY Books, p511.

[5] Holland, J. H. (1992). Adaptation in Natural and
Artificial Systems (5th Ed). MIT Press, USA.

[6] Holland, J. H. (1995). Hidden Order - How
Adaptation Builds Complexity. Basic Books.

[7] Johnson, S. (2002). Emergence. Penguin Books.
[8] Mitchell, M. (2002). An Introduction to Genetic

Algorithms. Massachusetts: MIT Press Cambridge.
[9] Waldrop, M. M. Complexity: The Emerging

Science at the Edge of Order and Chaos.

[10] Ring, J.; Madni, A.M., (2005). Key Challenges and
Opportunities in ‘System of Systems’ Engineering,
IEEE International Conference on Systems, Man &
Cybernetics Vol 1 Issue , 10-12 Oct., pp. 973-978.

APPENDIX
GAAAATAAAAAAAAAAAAAA compressed GAAAAT:14
CAAAGAAAAAAAAAAAAAAA compressed CAAAGA:14
GAAAAGCATAAAAAAAAAAAAAAAA compressed GAAAAGCAT:16
GACAAAAAAAAAAAAAAAAA compressed GAC:17
GAAAAAAAAAAAAAAA compressed GA:14
GACAAAAAAAAAAAAA compressed GAC:13
GAAGCTTAAAAAAAAAAAAA compressed GAAGCTT:13
GAAAAAAAAAAAAAAA compressed GA:14
GAAAAAAAAAAAAAAAAAAAAAA compressed GA:21
GAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AAAAAA compressed GA:126
CCCCGAAAAAAAAAAAAAAA compressed CCCCGA:14
GAAAAAAAAAAAAAAAAAAAAAA compressed to GA:21
GAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AAAAAA compressed GA:126
CCCCGAAAAAAAAAAAAAAA compressed CCCCGA:14
GAAAAAAAAAAAAAAAAAAAAAA compressed GA:21
GAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AAAAAA compressed GA:126
CCCCGAAAAAAAAAAAAAAA compressed CCCCGA:14
GAAAAAAAAAAAAAAAAAAAAAA compressed GA:21
GAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AAAAAA compressed GA:127

Log 1: First Attempt at Compression
GATGAGTAAAAAAAAAAAAAAAAA compressed GATGAGTA:16
CAGAAAAAAAAAAAAAAA compressed CAGA:14
GAAAAAAAAAAAAAAA compressed GA:14
GAAAAAAAAAAAAAA compressed GA:13
CGAAGAAAAAAAAAAAAAAA compressed CGAAGA:14
GATAAAAAAAAAAAAAAA compressed GAT:15
GATAAAAAAAAAAAAA compressed GAT:13
GAAGAAAAAAAAAAAAAAA compressed GAAG:15
TGAAGATAGAAAAAAAAAAAAAAA compressed TGAAGATG:9
GACATGAAAAAAAAAAAAAA compressed GACATG:14
CTTAGAAAAAAAAAAAAAA compressed CTTAGA:13
GAAAAAAAAAAAAAAA compressed GA:14
GATAAAAAAAAAAAAA compressed GAT:13
GAAAAGAAAAAAAAAAAAA compressed GAAAAG:13
GAGAATAAAAAAAAAAAAAA compressed GAGAAT:7
GAAAAAAAAAAAAAA compressed GA:13
CCTATTAAGAAAAAAAAAAAAAAA compressed CCTATTAAGAA:13
TTGAAAAAAAAAAAAAAA compressed TTGA:14
GAAAAAAAAAAAAAAAAA compressed GA:16
TAGATGAAAAAAAAAAAAA compressed TAGATG:13
TGAAGAAAAAAAAAAAAAAA compressed TGAAGA:14
GAATAGAGAAAAAAAAAAAAAAAA compressed GAATAGAG:16
CGAGGATAAAAAAAAAAAAA compressed CGAGGAT:13
CCCGGAGAAAAAAAAAAAAA compressed CCCGGAG:7
TCAAGAAAAAAAAAAAAAAA compressed TCAAGA:14
CCTTGAAATAGAAAAAAAAAAAAA compressed CCTTGAAATAG:7
GAAAAAAAAAAAAAA compressed GA:13
GATAAAAAAAAAAAAA compressed GAT:13
GAAGTATAAAAAAAAAAAA compressed GAAGTT:13
GCACCC
compressed GCA:41
GCTCCCCCCCCCCCCC compressed GCT:13
TGTCGCCC
CC compressed TGTCGC:42
CAGCCC
compressed CAGC:40

Log 2: Second Attempt at Compression

