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ABSTRACT 
Typogenetic algorithms are a break from classical 
approaches to computation. Based on gene expression 
and intercellular processes, typo-genetic computation 
can offer a new approach to the algorithmic problems of 
system security, data compression and encryption. The 
method has a potential of much higher compression 
ratios at the limited computational costs i.e. processing 
time. This paper presents a formal system based on 
typogenetics for the purposes of compression. Lossless 
data compression is an important part of computer 
science. While the ability to reduce consumption of 
hard disk space or transmission bandwidth through 
statistical redundancy has served well in the past, the 
explosive growth in high quality media content (*.mp3, 
*.mpg) on the internet in the past few years have 
highlighted the limitations of traditional statistical 
techniques for compression. 
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1. INTRODUCTION 
With the rapid growth of media rich content in the form 
of sound, graphics and video, classic lossless 
compression techniques are becoming ineffective when 
handling compression of these files. The impact is that 
often limited and expensive resources such as 
bandwidth and data storage space are being heavily 
used. Unlike other techniques typogenetic1 compression 
is not based on statistical redundancy thus it has a real 
potential to be applied as a strong compression 
computation mechanism. Due to its specific the 
technique requires from users good understanding of its 
nature prior to being able to capture its power in the 
form of computational process.  
 
1.1. Aims and Objectives 
The main goal of this research is to investigate ways 
how the technique of typogenetics could provide a 
robust, secure, reliable and effective solution for a real- 
world application. One of many possible applications is 
a file compression. Although our research involves a 
range of possible applications of typogenetic 
mechanisms in the area of smart computation 
algorithms, the main focus of this paper is on 
implementation of typogenetics in the file compression 
domain. 

                                                           
1 The term ‘typogenetics’ first introduced by Hofstadter 
(1979) represents a formal system which captures the essence 
of biological genetics. 

In the first part of the paper, we will navigate through 
the fundamentals of typogenetics then we move to 
explore how typogenetics can be actually applied to 
computation algorithms. We will discuss the growth 
rate of typogenetics, its impact on theorem coverage, 
and the importance of theorem complexity [5, 6] to the 
compression method. The second part of the paper 
provides an overview of two alternative typogenetic 
methodologies (the top-down and bottom-up) that are 
applicable to the compression problem will be 
investigated. Benefits and shortcomings of each of these 
methods are being discussed. The conclusion will offer 
results of our experimentation, recommendations and 
projection of future studies. This paper covers 
considerations and the process of design for a suitable 
file format applying compression technique. We have 
thoroughly researched the domain of typogenetics and 
designed and implemented an experimental framework 
for a continual refinement, evaluation and improvement 
of various versions of compression algorithms using 
this relatively new technique. 
 
2. EXISTING COMPRESSION METHODS 
Before the advent of the computer systems, 
compression was not a well developed discipline if 
compared to such areas as cryptography, which has 
been used almost for thousands of years to keep 
information secret. Encoding data in more compressed 
forms was seen as a rather useless task since smaller 
writing or print did the same. With development of 
information and communication technology, however, 
the need for compression grew due to the fact that 
memory and space can be very expensive resources. 
One of the simpler ways of compression was to run 
length encoding. 

 
2.1. Run Length Encoding 
Run length encoding or RLE is a common way of 
encoding repeated symbols in a more succinct form. In 
RLE the repeated symbols are replaced by a delimiter 
followed by the number of occurrences. If the 
delimiting symbol is encountered in the data, the 
delimiter is repeated to signify it is part of the data. As 
can be seen, the compressed version on the right on the 
above example represents a shorter form. 
 
Example 
“This ssstring will be compressssssed!”  
“This s!3tring will be compres!6ed!!” 
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Figure 1: The TGCAGACCGC strand mutates to 

TGCCAAGACCGC 
 
2.2. Delta Encoding 
Delta encoding stores the differences between values to 
reduce the data required to signify a stream of values. 
The first value given in a series is a complete value. The 
values given after the leading value is encoded as the 
relative difference between itself and the previous 
value. This method of encoding is particularly 
important when constant revisions or small updates are 
being made. Source control systems take advantage of 
this technique. 
 
Example: 
{104, 99, 101, 96, 96}  {104, -5, +2, -5, 0} 
 
2.3. Huffman & Arithmetic Encoding 
Based on Shannon-Fano encoding, Huffman coding is 
of the simplest ways of achieving strong compression. 
Huffman coding takes advantage of statistical 
redundancy and uneven distribution of data. A prefix 
table is created with the most probable symbols encoded 
as the shortest; and with the least probable being the 
largest. The original file is then compressed using this 
lookup table. Arithmetic encoding such as LZW is a 
more advanced form of Huffman technique, using 
fractional numbers of bits to achieve greater overall 
compression. Arithmetic encoding, however, has failed 
to totally replace Huffman coding because of its 
computational expense and limitations imposed by use 
of multiple patents. The weakness of Huffman and 
Arithmetic encoding occurs in cases of low statistical 
variation in the data. The overhead of encoding using 
these variable bit encoding schemes becomes much 
larger than the amount of compression they provide. 
Typogenetic Compression aims to fill this gap. 
 
3. INTRODUCTION TO TYPOGENETICS 
First introduced by Hofstadter [4], typo-genetics is a 
system which captures the essence of genetics. A very 
interesting result of the system is the self-modifying 
nature of the strands. The self-modifying behavior of 
the strands forms the foundation of this class of AI 
technique [2].  There are three main elements of the 
computational model of typogenetics such as: 
 
 Bases. The typogenetic system involves arbitrary 

lengths of strands comprised of the letters A, C, G 
and T. These are also known as bases. All 
typographical strands are made of these bases. C and 
T are pyrimidines, A and G are purines bases. 

 Mutation. The interesting aspect of typogenetics is 
the fact any strand may have a property of being 
able to mutate [7, 8] into another. This allows us to 
start with any strand and create more strands. We 
shall refer to the starting strand as a seed. In a 
formal system, the seed represents the axiom. 

 Enzymes and Amino Acids. Strands are modified 
through typographical enzymes. Enzymes have 
operations such as inserting bases, removing bases, 
or shifting left and right. These enzymes are derived 
from the strands themselves through a process of 
translation. Enzymes themselves are further 
composed of individual amino acids. Table 3 shows 
the amino acids names in typogenetics & operations. 

 
3.1. Translation Process 
The process of translation involves translating a strand 
into an enzyme. It involves grouping bases into duplets 
and mapping them to an amino acid. These amino acids 
are then accumulated into a sequence which becomes 
the enzyme2. Table 4 how base duplets are translated 
into amino acids. Besides the mapping between base 
duplets and amino acids, typogenetics has a structure 
(Tertiary Structure) which determines the initial starting 
point or binding preference of the enzyme. The binding 
preference is calculated from the folds in the enzymes. 
 
The letter at the end of each enzyme on the enzyme 
table (s, r, l), representing the fold each enzyme creates 
in the enzyme strand. All strands are initially pointing 
right, and depending on the fold of the enzyme, the final 
orientation can be either pointing top, bottom, left or 
right [4]. Once the final orientation is derived, we can 
work out the initial binding for the enzyme strand. 
Enzyme in folding mechanism is depicted in Figure 2, 
following the folds listed in Table 1. 
 

 
Figure 2: The Translation Process 

 
In Table 1 we can see how the folding mechanism 
translates into the formation of an initial binding 
preference which then can be found in Table 2. The 
duplet AA has been left blank on purpose. This served 
as punctuation mark on the strand, signaling the end of 
the code for an enzyme. From this punctuation it is 
possible to have a strand represent several enzymes. 
This allows for more complicated strands to be derived. 
From this we can see the recursive nature of 
typogenetics. Any given strand acts as both data which 
is acted upon and also as the program which modifies it. 
This allows us to take any arbitrary strand, translate it 
into enzymes, and create another strand. Successive 

                                                           
2 The details translation process were described by 
Hofstadter’s (Hofstadter, 1979, pp 508 -510) 

TAGATCCAGTCCACATCG 

TA GA TC CA GT CC AC AT CG 

rpy ina rpu mvr int mvl cut swi cop 

TGCAGACCGC 

M
u

tation
 

TGCCAAGACCGC 
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performances of this “mutation” would allow us to 
create more and strands. The property of self mutating 
strands into longer versions can be quite useful in the 
area of compression. If large strings can be represented 
by smaller strands and mutation numbers, this may give 
a saving in the total bytes required for storing data. 
 
4. COMPRESSION AND TYPOGENETICS 
We have seen how typogenetics can give us a powerful 
way of lengthening a strand through recursively 
modifying itself. This section will focus on the how 
typogenetics might be used to compress strands of data. 
While mutating a strand is a relatively straightforward 
matter. Finding the source strand given any arbitrary 
strand if any exist is a different matter. The situation is 
very similar to Emil Post’s “Post production system.” 
which endlessly generate strings following certain rules. 
In the Table 3 presents how duplet bases map to various 
amino acids. The first base is represented by the left 
column and the second base by the top row. 
 

 
Figure 3: Enzyme Folding 

 
Operator 
Name 
Amino acid 

Description Folding 

cut cut strand  s 
del delete a base from strand  s 
swi switch enzyme to the other strand  r 
mvr move on unit to the right   s 
mvl move on unit to the left  s 
cop turn on copy mode  r 
off turn off copy mode  l 
ina insert A to the right of this unit  s 
inc insert C to the right of this unit  r 
ing insert G to the right of this unit r 
int insert T to the right of this unit  l 
rpy search for nearest pyrimidine to right  r 
rpu search for the nearest purine to the right  l 
lpy search for the nearest pyrimidine to left  l 
lpu search for the nearest purine to the left  l 

Table 1 Amino Acid Table 
 

Top C 
Bottom G 
Left T 
Right A 

Table 2 Enzyme Folding Binding Preference 
 

 A C G T 
A  cut del swi 
C mvr mvl cop off 
G ina inc ing int 
T rpy rpu lpy lpu 

Table 3 Translation Table 
 

4.1. Axioms, Rules of Inference and Theorems 
In Post’s system, all strings start from axioms, which is 
a set of strings. These strings, following given rules of 
inference or rules, then produce more strings. This 
process of string creation in the system continues 
indefinitely. It is clear after a certain stage that some 
strings could be produced by the rules, whereas some 
strings could not be produced by the rules. The strings 
which were producible are also known as theorems. The 
non-producible strings are known as non-theorems. In 
the same way how some strings can be produced, 
strands which can be produced from a given axiom can 
also be known as theorems. Non-reachable strands 
which cannot be produced by typogenetics can also be 
referred to as non-theorems. In typogenetics however, 
the rules of inference are not static but are derived from 
axioms themselves. This makes typogenetics a much 
more complex system to study. 
 
4.2. Seed and Generations 
It follows then that any strand which is a theorem may 
be encoded in terms of its axiom and the number of 
times the axiom modified itself. For simplicity, the 
axiomatic strand is specified as the seed, and the 
number of modifications as the generation. If a strand is 
a theorem, it then follows that all theorems have a 
compressed form represented by their seed and 
generation. From these two pieces of data, the original 
theorem can be reproduced. Likewise, if a bit stream is 
represented by its seed and a byte representing the 
generation, the original bit stream can be recreated. 
 
4.3. Top Down Compression Method 
There are two ways of calculating seeds of a 
typogenetics system. One is the top down approach; the 
other is the bottom up approach. This section will talk 
about the top down approach, its merits and its 
disadvantages. One of the major advantages of top 
down compression would be small memory footprint 
required to compress a given strand. Instead of a 
massive lookup table as characterized in the bottom up 
approach, a compressing client can derive the seeds of a 
strand through processing. If a top-down compression 
technique using typogenetics was to be used. A side 
effect would be a potentially long execution time. This 
may affect the usability of this technique. The nature of 
the typogenetics means that there are many non-
theorems. This means that there are strands which may 
not be able to be derived from smaller strands. Because 
of this, it is critical when calculating seeds that we need 
to identify non-theorems easily in a finite amount of 
time. It then follows that a test for theorem-hood is 
extremely useful as a first step in compression. In a 
formal system a test for theorem-hood which can be run 
in finite time is also known as a decision procedure. 
Unfortunately for a system as complicated as the 
typogenetics system, we can be quite certain that no 
decision procedure as shown by the Church-Turing 
theorem of undecidability. Although we could possibly 
test for theorem-hood if only lengthening operators are 

rpy ina rpu 

mvr 

int mvl cut swi 

cop 
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present, the system of typogenetics is vastly 
complicated that reversing this is still a burden. 
Although there is computation algorithm present in the 
form of generating and recursive functions in discrete 
mathematics, this avenue is perhaps outside the scope of 
this paper but may be appropriate for further study. 
 
4.4. Bottom up Compression Method 
The way the bottom up approach works is to 
methodically work up from the smallest axiom and 
apply all the appropriate rules of inference to it. Once 
this is done perform the same on the theorems 
produced. Eventually all theorems will be derived in 
this method. With the bottom up approach, there needs 
to be a means of storing the theorems derived from 
given axioms. The process of building up this lookup 
will take time and massive amounts of storage place in 
order to support larger and larger chromosomes. 
Although the building of a lookup table will take time, 
this table needs only be built up once and can be reused 
if results are cached. This makes the bottom up method 
quite attractive at compression time. 
 
One of the biggest advantages of the bottom up 
approach is the ability to have a fast decision procedure 
if the lookup table is completely built. In reality 
however, this table can never be “completely built”. We 
can however, be sure that if a strand does exist in our 
table, it is a theorem, if not it may or may not be a 
theorem. This is in some ways a partial decision 
procedure. For the purposes of compression this may be 
enough. This is a massive advantage over the top down 
approach for compression. 
 
While building a table sounds all well and good, one of 
the biggest weaknesses of this method is the fact that 
enormous strands which are theorems of small seeds 
may not be found. This means that potentially larger 
compression opportunities will be missed by the bottom 
up approach due to memory limitations. While bottom 
up compression will work well for theorems within the 
table, larger strands which are theorems cannot be 
identified easily with this method. While one can create 
a larger table to accommodate this, this solution is not 
easily scalable and increases exponentially as seed 
length and strand coverage is increased. 
 
5. TYPOGENETIC THEORY 
If typogenetics is to be applied for compression, there 
would be a need for the system to generate a large 
number of theorems or large coverage. This is to 
increase the chances that a given strand can become a 
theorem. The translation process in particular has a 
massive effect on the coverage of the system. From the 
introduction to typogenetics in chapter it is quite clear 
that the Translation Table has a massive influence on 
the types of theorems produced by the system. While 
the translation table is presented in the book GEB, for 
the purposes of compression this table can be changed 
to produce different sets of theorems. 

From an inspection of the Translation Table we can see 
that there are five main lengthening operators: ina, inc, 
ing, int and cop out of a possible 16 base duplets. For a 
rough approximation we can say that the growth of a 
strand on average is larger than 5 /16 or 31%. In reality 
however, the growth rate is probably much higher due 
to the fact that copy mode can lengthen a string 
dramatically. If strands grew quickly, it follows that 
there would be less theorems produced by the system 
under a certain length. Conversely if strands grew 
slowly, there would be more theorems produced by the 
system as there are more mutations before a certain 
length is reached. This means that to produce more 
theorems, a slower growth is required.  While slow 
growths may allow a typogenetic system to produce 
more theorems, this comes at a cost to the 
decompression phase where more generations need to 
be calculated in order to reach the target strand. 
 

 
Figure 4: Mapping Binary to Bases 

 
While growth rate has an influence on how many 
theorems may be produced, the type of theorems 
produced is also important. The theorems produced by 
the typogenetic system cannot be too predictable. 
Particularly in the case of compressing mp3 or mpg 
files, the variability of the strand sequence will vary 
between chaotic and ordered. Wolfram describes this as 
a class 4 system. The cut, cop and off operators are quite 
complex in general. The copy operator involves copying 
the length of strand depending on movements of pointer 
while cut splits long strands into smaller parts. 
 
While the cut operator will definitely result in more 
class 4 results, splitting strands into several parts will 
add a complexity to the mutation which is out of the 
scope of this paper. Integrating the cut operator into 
compression would definitely be an interesting avenue 
for investigation. The cop and off operators in 
typogenetics were also quite complex. While an 
implementation of this was possible, the small axiom 
lengths we would be investigating and for simplicity, 
this aspect of typogenetics was ignored. The binding 
preferences associated with these operators were 
captured for the tertiary structure, but did not act on the 
strand in any way. 
 
6. TYPOGENETIC COMPRESSION METHOD 
Before compressing a file using typogenetic 
compression, we need to map a binary string into one of 
the four bases. This is a relatively straightforward 
mapping of every 2 bits to a single base. To allow the 
file format to improve, versioning information for the 
file will be stored and dispatched. This will simply be a 
leading byte for the file format. 

0010110100111010111010001110001111100110101…

00A, 01T, 10G, 11C

AGCTACGGGGACGACCGTGGA…
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6.1.1. Compressing File Segments 
A high probability of encountering a non-theorem 
meant that hopes of compressing the entire file as a 
single strand was not feasible. A more sensible way to 
compress using typogenetics is to compress only a file. 
If we are compressing only parts of the file which are 
deemed compressible, it follows that while 
decompressing a way of determining the beginning of a 
compressed section is needed, and the end of the 
compressed section. A common way to do this is to use 
a delimiter which will represent the beginning and end 
of a compressed sequence. 
 

 
Figure 5: Compression/Decompression Process 

 
If a certain delimiting symbol is chosen, it follows that a 
way is needed to allow this symbol to be used as data 
when necessary. A common solution is to repeat the 
symbol when it represents data. This technique would 
be required when encoding in our file format. The key 
to the compressed data is the seed and the generation of 
that seed for mutation. This information will be stored 
between the delimiters and used to decompress the 
segment. Due to the fact generational data will be either 
immediately follow the start delimiter or precede the 
end delimiter, this means that the generation data cannot 
clash with the delimiter itself. Therefore, the number 
represented by the chosen delimiter will be a reserved 
generation that cannot be encoded. For similar reasons 
for a reserved generation, seeds cannot start with a byte 
signature similar to the delimiter. 
 
6.2. Compression Trade-off 
The compressed strand must be smaller than original 
strand by a certain amount to achieve compression. The 
original strand must be larger than the two delimiters, 
the seed, and generation data added together. In many 
ways using typogenetic compression in this way can be 
viewed as an extension to run length encoding. Strands 
which are theorems can be viewed as a run of sorts, and 
can be compressed into its seed and generation.  
 
7. IMPLEMENTATION ISSUES 
After careful consideration it was decided a promising 
path forward was the bottom up approach, due to the 
availability of a partial decision procedure and the 
relative simplicity of the method. In implementation, 
many unforeseen issues arose. Central to the bottom up 
approach was the need to pre-calculate all the theorems 
that will be used during the compression stage. This 
involved a script which mutated all axioms of length 
smaller than or equal to 24, the value chosen due to its 
relative manageability (16 million). 

Strand Length Bits Total 
32 64 1.8*10^19 
16 32 4.2*10^9 
12 24 16 *10^7 

Table 4 Axiom Strand Length and Size 
 
7.1. Implementation Constraints 
With the typogenetic system, strands can lengthen 
themselves and mutate indefinitely. A limit for theorem 
length needs to be chosen for time constraints. For the 
purposes of this paper a theorem upper limit of 764 was 
set as it is the maximum length for a primary key string 
in SQL Server. Perhaps one of the fundamental issues 
that arose was memory limitations. Any meaningful 
calculation of our lookup table would involve hundreds 
of millions of rows with 16 million axioms. This meant 
the table could not be reasonably stored in memory. A 
relational database system would be required to store 
the theorems. At the time of writing, the database used 
to store the lookup table had grown to 40GB. This 
would be a major drawback of this method if a 40GB 
lookup table was required to compress data. Another 
problem that became quite evident was the processing 
time required to calculate the table for all axioms of 
length 24 or smaller. On a single thread it was 
calculating on average 100 axioms per second. This 
meant calculating 16 million axioms on a single thread 
would take 1.8 days. Distributed processing of the 
lookup was a must if any progress was to be made. 
 
7.2. Distribution Method 
A simple way of distributing calculation was required. 
A console application with command line parameters 
was used for simplicity. The console application takes 2 
arguments, a lower bound and an upper bound, that was 
responsible for calculating all axioms between bounds. 
A batch file started the application concurrently with 
different parameters. This was an effective way to 
distribute processing of the theorem table. Due to the 
heavy usage of a database system, the speed of the 
database system used soon became a bottleneck. The 
average number of queries to the database exceeded 400 
per second. To speed up execution at the database layer, 
stored procedures were used to speed up queries and 
calls to the database should be kept at a minimum. 
 
While calculating the initial theorem table, there were 
certain cases when an infinite loop was met. Upon 
closer inspection it became apparent that these were 
caused by self replicating strands which reproduced 
themselves across several mutations. To prevent this 
from stalling, processing a cache is required which 
makes sure that theorems produced by an axiom are not 
repeated. Hofstadter mentioned these strands in his 
book. Issues were also encountered with building the 
initialization table; implementation of the compressing 
client also had issues for consideration. The design of 
the compressing client had to be able to handle large 
files and needed to be able to compress in a reasonable 
time and better utilise stream processing. 

AGCAGAAAAAAATCCGACGCGCCCCCCCCCCCAATG 

Theorem Theorem 

AGCA (GA:3) TCCGAC (GCGC:9) AATG 

Seed + Gen Seed + Gen 

  

Compression 
Decompression 
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7.3. Stream Processing 
As this technique needed to potentially compress some 
very large files, processing had to work on content 
which may be in the gigabyte size range. To cater for 
this, the compressing client cannot cache the contents of 
the file completely in memory; doing this will result in 
out of memory errors. To allow the compressing client 
to compress large files, the content of the target file 
needs to be processed as a stream, leaving a low 
memory imprint on the system. 
 
7.4. Compressing Time 
Because compression will involve searching for 
theorems in the database, care must be taken to 
minimize compressing time. An initial prototype which 
called the database on every byte of the file was 
implemented. A 1MB file required over one million 
calls to the database. The time cost of a set of procedure 
calls on every byte of a file had an adverse affect on the 
speed and the design had to be modified. 
 
7.5. Decompressing Client 
The decompressing client was perhaps the simplest of 
the applications. The decompressing client basically 
consisted of reading in a byte stream, determining start 
and end points of a compressed region and 
decompressing accordingly. The decompressing client 
needs to store two states, normal mode and strand run 
mode. Normal mode means that the bytes read from the 
compressed file should be copied to the output location. 
Strand run mode means the decompressing client should 
buffer the bytes in the file, and mutate the seed and 
number of generations to recreate the original data.  The 
decompressing agent will switch between modes when 
a delimiter is read. Detection of the chosen delimiting 
symbol non-repeated would mean the strand should 
enter strand run mode. The next detection of the 
delimiting symbol would switch back to normal mode. 
 
7.6. Results 
During implementation phase we have used C#.NET 
3.0. The reason for this was mainly the familiarity with 
the environment, as well as access to lambda 
expressions which was used extensively in this paper. 
SQL Server 2005 was used as the database of choice. 
 
7.6.1. 1st Attempt: Negative Compression 
The first successful application of typogenetic 
compression resulted in a negative compression (Log 1 
in Appendix). This was achieved with a theorem table 
with 19 million entries. Compression took a little less 
than 24 hours. From a glimpse of the compression log, 
it seems like the implementation of typogenetic 
compression has merits but requires much more 
refinement. It is clear that some theorems being 
detected very regularly, whereas the more chaotic 
theorems which typogenetics was meant to capture was 
not evidently seen in this example. 
 

 Theorem Limit too small: The limit of 128 for the 
theorem limit was too small. From the log it can be 
seen that the theorem limit for the axiom “GA” was 
regularly being hit. A higher theorem limit would 
have resulted in a higher compression. 

 Capturing Less Ordered Strands: It is observed 
that the captured theorems involved large 
sequences of base “A.” If this was further reduced 
we can see for most of the theorems had seeds that 
ended in “GA”, hence producing long sequences of 
“A”. If typogenetic compression is to become more 
useful it needs to capture more variable strands for 
achieving compression rather than capturing zeros. 

 
7.6.2. 2nd Attempt: Small Compression Achieved 
For the second attempt (Log 2 in Appendix), several 
things were changed in order to increase compression 
ratio. Firstly the allowed theorem length was increased 
to 764. This would allow the algorithm to compress 
strand runs at a larger compression ratio. The SQL used 
for the table initialization code was optimized3 as well 
as a check to halt mutations if a theorem produced 
already exists. Calculating the lookup table with strand 
length of 764 for 24 byte axioms proved much longer 
than for strand lengths of 128. At the time of 
compression, the table had only processed 250,000 
axioms out of a possible 16 million. The database file 
size had also increased to 40GB. This made the bottom 
up method less appealing as a compression method. The 
increase in strand length increased the effectiveness of 
the method slightly. Instead of increasing the size, a 
very small compression was made. 
 

Input File 
Size (bytes) 

Compressed File 
Size (bytes) 

Ratio 

671660 671748 0.013 % increase 
Table 5: First Attempt Compression Results 

 
Input File 
Size (bytes) 

Compressed File 
Size (bytes) 

Ratio 

671660 669150 1% compression 
Table 6: Second Attempt Compression Results 

 
7.7. Issues 
From inspection of compression in Log 2, it is clear that 
the same problems plaguing the first attempt still 
applied to the second attempt. The theorems found in 
the file were too ordered and instead of the strand length 
being too small the maximum generation of 256 
generations was reached. For typogenetic compression 
to be effective a lot more work was required on 
theorizing theorems produced by translation processes. 
 
CONCLUSION 
From observing the typogenetics results, potential is 
there to use typogenetics as a form of compression. 
However, for typogenetics to work as a mainstream 
method of compression, more work is required in 
                                                           
3 Insert Ignore feature of SQL Server was used to reduce database 
calls by half or more. 
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understanding the theorems types generated by 
typogenetics. The ability to compress long strands into 
small axioms and a number cannot be dismissed. With 
enough processing power, and more theorem coverage, 
this technique may become a powerful way of 
compressing all file types, including files with low 
statistical redundancy. Perhaps the most important 
finding is the low coverage of typogenetics for strands 
of a certain length. The growth factor of typogenetics 
may need to be slowed and different operators may be 
needed to increase coverage of this technique. Once a 
large coverage is achieved, typogenetic compression 
will become a powerful server side technique. From the 
first prototype of typogenetics it was apparent that this 
technique was extremely slow even for small files. 
Major improvements to the design of the compressing 
client is required if this technique is to become usable. 
No user will have the patience to wait 24 hours for a 
600KB file to compress. Caching and minimizing 
database calls for theorem checks will go a long way 
towards achieving this. From the test table generated, a 
40GB database was generated when only 250,000 
axioms were calculated. Typogenetic compression 
needs a better decision procedure to be more effective. 
 
Investigation into further understanding of the theorems 
produced will be necessary in making the proposed 
typogenetic compression practical. The top down 
approach may be required in compressing extremely 
large strands. The top down approach is seen as a more 
powerful and scalable way of compressing. If a bottom 
up approach is to be used to calculate larger axioms, 
then further efforts need to be made in exploring 
extremely large databases together with their efficient 
storage and retrieval. The compression of strings of 
characters inside a string is also a future topic. 
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APPENDIX 
GAAAATAAAAAAAAAAAAAA compressed GAAAAT:14 
CAAAGAAAAAAAAAAAAAAA compressed CAAAGA:14 
GAAAAGCATAAAAAAAAAAAAAAAA compressed GAAAAGCAT:16
GACAAAAAAAAAAAAAAAAA compressed GAC:17 
GAAAAAAAAAAAAAAA compressed GA:14 
GACAAAAAAAAAAAAA compressed GAC:13 
GAAGCTTAAAAAAAAAAAAA compressed GAAGCTT:13 
GAAAAAAAAAAAAAAA compressed GA:14 
GAAAAAAAAAAAAAAAAAAAAAA compressed GA:21 
GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAA compressed GA:126 
CCCCGAAAAAAAAAAAAAAA compressed CCCCGA:14 
GAAAAAAAAAAAAAAAAAAAAAA compressed to GA:21 
GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAA compressed GA:126 
CCCCGAAAAAAAAAAAAAAA compressed CCCCGA:14 
GAAAAAAAAAAAAAAAAAAAAAA compressed GA:21 
GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAA compressed GA:126 
CCCCGAAAAAAAAAAAAAAA compressed CCCCGA:14 
GAAAAAAAAAAAAAAAAAAAAAA compressed GA:21 
GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAA compressed GA:127 

Log 1: First Attempt at Compression 
GATGAGTAAAAAAAAAAAAAAAAA compressed GATGAGTA:16 
CAGAAAAAAAAAAAAAAA compressed CAGA:14 
GAAAAAAAAAAAAAAA compressed GA:14 
GAAAAAAAAAAAAAA compressed GA:13 
CGAAGAAAAAAAAAAAAAAA compressed CGAAGA:14 
GATAAAAAAAAAAAAAAA compressed GAT:15 
GATAAAAAAAAAAAAA compressed GAT:13 
GAAGAAAAAAAAAAAAAAA compressed GAAG:15 
TGAAGATAGAAAAAAAAAAAAAAA compressed TGAAGATG:9 
GACATGAAAAAAAAAAAAAA compressed GACATG:14 
CTTAGAAAAAAAAAAAAAA compressed CTTAGA:13 
GAAAAAAAAAAAAAAA compressed GA:14 
GATAAAAAAAAAAAAA compressed GAT:13 
GAAAAGAAAAAAAAAAAAA compressed GAAAAG:13 
GAGAATAAAAAAAAAAAAAA compressed GAGAAT:7 
GAAAAAAAAAAAAAA compressed GA:13 
CCTATTAAGAAAAAAAAAAAAAAA compressed CCTATTAAGAA:13
TTGAAAAAAAAAAAAAAA compressed TTGA:14 
GAAAAAAAAAAAAAAAAA compressed GA:16 
TAGATGAAAAAAAAAAAAA compressed TAGATG:13 
TGAAGAAAAAAAAAAAAAAA compressed TGAAGA:14 
GAATAGAGAAAAAAAAAAAAAAAA compressed GAATAGAG:16 
CGAGGATAAAAAAAAAAAAA compressed CGAGGAT:13 
CCCGGAGAAAAAAAAAAAAA compressed CCCGGAG:7 
TCAAGAAAAAAAAAAAAAAA compressed TCAAGA:14 
CCTTGAAATAGAAAAAAAAAAAAA compressed CCTTGAAATAG:7
GAAAAAAAAAAAAAA compressed GA:13 
GATAAAAAAAAAAAAA compressed GAT:13 
GAAGTATAAAAAAAAAAAA compressed GAAGTT:13 
GCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
compressed GCA:41 
GCTCCCCCCCCCCCCC compressed GCT:13 
TGTCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CC compressed TGTCGC:42 
CAGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
compressed CAGC:40 

Log 2: Second Attempt at Compression 




