

Gene and Stem Cell Therapy for Type 1 Diabetes Mellitus

Dario Gerace

Centre for Health Technologies, School of Life Sciences,

University of Technology Sydney, Australia

2017

Thesis submitted for the degree of Doctor of Philosophy (Faculty of Science)

Certificate of Authorship and Originality

I certify that this thesis has not been previously submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This research was supported by an Australian Government Research Training Program Scholarship.

Dario Gerace

Acknowledgements

First and foremost, I would like to thank my supervisors Prof Ann Simpson and Dr Rosetta Martiniello-Wilks for their assistance and support throughout the duration of my PhD studies. I am very grateful for the opportunity to develop my knowledge and skills in the field of gene and stem cell therapy under their tuition. I would also like to thank my fellow colleagues, staff and faculty members within the School of Life Sciences (UTS), in particular Dr Binhai Ren, Dr Najah Nassif and Dr Eileen McGowan who were always available and happy to consult with regards to lentiviral preparation, gene expression analysis and thesis preparation respectively. I must also thank the team at the Advanced Cytometry Facility (Centenary Institute, Sydney, Australia) who assisted with the sorting of transduced BMSCs. A special mention to Fiona Ryan and Lalit Overlunde who managed the maintenance and running of the Ernst Facility. Finally, I would like to thank my wife Angelica, my daughter Chelsea, and my family and friends for their support over the years.

This research was supported by research grants from the Australian Diabetes Society and the Rebecca L Cooper Foundation, and I was supported by an Arrow Bone Marrow Transplant Foundation/Hawkesbury Canoe Classic PhD Scholarship.

Abstract

Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing pancreatic β -cells. As a result, people with T1D suffer from high blood glucose which requires exogenous insulin therapy to maintain within the normal physiological range. However, exogenous insulin therapy does not mimic the tightly regulated function of the pancreas, and as a result does not prevent the development of diabetic complications. Currently, the only cure is either pancreas or islet transplantation; however these treatments are hampered by a shortage of donors. As a result, the generation of an alternative cell replacement therapy would overcome the aforementioned limitations with current treatments. Gene therapy as a means of generating "artificial" insulin-producing cells (IPCs) is being considered as a potential cure for T1D. Previous research has shown that the viral-mediated transfer of the pancreatic transcription factor NeuroD1 and human furin-cleavable insulin (INS-FUR) genes to hepatocytes resulted in their transdifferentiation into pancreatic-like cells capable of synthesising, storing and secreting insulin in response to fluctuating glucose concentrations. Due to their ease of isolation, ease of genetic modification and immunemodulatory properties, the aim of this study was to evaluate the utility of ex vivo expanded murine bone marrow-derived mesenchymal stem cells (BMSCs) as gene therapy targets for the development of a T1D cell replacement therapy following the lentiviral over-expression of murine NeuroD1 and Pdx1, and INS-FUR.

Non-invasive bioluminescence imaging (BLI) technology is an established and sensitive tool for accessing cell replacement therapy efficacy and treatment outcome in living preclinical small animal models. Furthermore, preclinical BLI results often serve as the decision point of a cell replacement therapy's suitability (efficacy and safety) for clinical trial testing in humans. This study utilised the Firefly luciferase reporter protein Luc2, a Luc2 specific light producing substrate D-luciferin and an IVIS Lumina II imaging system. First, a unique subpopulation of BMSCs were isolated from the bone marrow of non-obese diabetic (NOD) mice. These BMSCs displayed potent clonogenicity and tri-lineage differentiation potential, hallmark characteristics of mesenchymal stem cells, when compared to the plastic adherent bone marrow stromal cell starting population. Second, BMSCs were nucleofected to express the yeast fusion cytosine deaminase uracil phosphoribosyltransferase (CDUPRT) and/or Luc2 genes (BMSC-Luc2/CDUPRT; BMSC-Luc2). Luc2 was utilised as a reporter protein for evaluating the *in vitro* and *in vivo* persistence of transgene expression in BMSCs and the *in* vivo persistence of gene-modified BMSCs in immune intact and immune-compromised mice. CDUPRT is a pro-drug converting enzyme, otherwise known as a suicide gene that was utilised as a cell therapy experimental 'off' switch. CDUPRT converts the non-toxic pro-drug 5-fluorocytosine (5-FC) into the toxic metabolite 5-fluorouracil (5-FU) that causes BMSC death. In vitro functional characterisation of CDUPRT using a Luc2 based cytotoxicity assay showed that following exposure to 5-FC, BMSC-Luc2/CDUPRT demonstrated increased cell death when compared to BMSC-Luc2 and parental BMSC controls. A subcutaneous transplant of Luc2/CDUPRT-expressing BMSCs in immune-intact (NOD; n=4) and immunedeficient (NOD/Scid; n=4) mice persisted for 2 weeks and 12 weeks respectively. These results show a BMSC transplant survival providing an experimental window of 12 weeks in NOD/Scid mice and the rapid immune-mediated destruction of BMSC carrying nonmammalian genes in NOD mice.

Ex vivo culture-expanded BMSCs were subsequently transduced with the HMD lentiviral vector (MOI=10) to express *INS-FUR*, and murine *NeuroD1* and *Pdx1* as mediators of β -cell differentiation. Pancreatic transdifferentiation was characterised via reverse transcriptase

polymerase chain reaction (RT-PCR), followed by the assessment of insulin storage and secretion. *INS-FUR*-expressing BMSCs lacked glucose-responsiveness and secreted large amounts of human insulin chronically, whereas *NeuroD1* and *Pdx1*-expressing BMSCs lacked glucose-responsiveness and insulin secretion capabilities. Furthermore, RT-PCR analysis showed that BMSC did not undergo pancreatic transdifferentiation when transduced with pancreatic transcription factors, and did not store insulin within secretory granules as determined by acid/ethanol extraction. A subcutaneous transplant of $1x10^7$ and $5x10^7$ *INS-FUR*-expressing BMSCs were assessed for their ability to reverse diabetes in STZ-NOD/*Scid* mice (n=5), which failed to do so upon transplantation.

This study showed *ex vivo* expanded BMSC multipotential differentiation into fat and bone diminishes with increasing passage, and therefore BMSC may be more useful as gene therapy targets prior to expansion. This correlates with other studies where *ex vivo* expansion of MSCs is associated with a loss of MSC characteristics (phenotype, proliferative capacity, self-renewal, immunomodulation) and negative T1D clinical outcomes.

Table of Contents

	Page
Certificate of Authorship and Originality	i
Acknowledgements	ii
Abstract	iii
Table of Contents	vi
List of Figures and Tables	xix
List of Publications	xxvii
List of Presentations	xxix
Abbreviations	xxxi

Ch	apter	1	1
Ger	ne and	stem cell therapy for type 1 diabetes mellitus	
1.1	The ty	ppes of diabetes and their impact on society	2
1.2	T1D g	genetics and pathogenesis	6
	1.2.1	Genetics	6
		1.2.1.1 Human leukocyte antigens	7
		1.2.1.2 Insulin gene	8
	1.2.2	Inductive events leading to autoimmunity	10
		1.2.2.1 Viruses	10
		1.2.2.2 Bacteria	11
		1.2.2.3 Other environmental triggers	11
	1.2.3	Autoimmune process	12
1.3	Diabe	tic complications	14
1.4	Curre	nt and future treatments for T1D	16
1.5	Gene	therapy	18
	1.5.1	Animals models of T1D	18
	1.5.2	Selecting an ideal target cell	22
	1.5.3	Vector choice for gene therapy	24
		1.5.3.1 Retroviral	25
		1.5.3.2 Adenoviral	25
		1.5.3.3 Adeno-associated	26

		1.5.3.4 Lentiviral	26
	1.5.4	Mechanism of glucose-responsive insulin secretion	29
	1.5.5	Gene transfer of insulin	33
	1.5.6	β -cell transcription factors and their role in pancreatic development and mature β -cell function	35
	1.5.7	Gene transfer of β -cell transcription factors	41
		1.5.7.1 Pdx1	41
		1.5.7.2 Neurog3	43
		1.5.7.3 NeuroD1	43
		1.5.7.4 Pax4	44
		1.5.7.5 Nkx6.1	44
	1.5.8	Suicide gene therapy	45
1.6	Meser	nchymal stem cells as a therapy for T1D	48
	1.6.1	Immunomodulatory properties of MSCs	49
		1.6.1.1 T cells and T _{regs}	49
		1.6.1.2 B cells	50
		1.6.1.3 Natural killer cells	50
		1.6.1.4 Dendritic cells	51
	1.6.2	MSCs as an immunomodulatory therapy for T1D	54
		1.6.2.1 Promotion of the survival and regeneration of existing β -cells	54
		1.6.2.2 Modulation of autoimmunity	55
		1.6.2.3 Pancreatic islet and MSC co-transplantation	55

			Page
	1.6.3	MSCs as targets for the generation of surrogate β -cells	58
		1.6.3.1 Chemically-induced transdifferentiation	58
		1.6.3.2 Viral-mediated transdifferentiation	59
	1.6.4	Consideration for the use of MSCs in T1D clinical trials	63
1.7	Thesis	s research project	67
Ch	apter	2	69
Ger	neral N	Methods	
2.1	Cultur	re and maintenance of parental and gene-modified BMSC	70
2.2	Cell p	proliferation assays	70
2.3	Clono	ogenicity assay	71
2.4	Differ	rentiation assays	71
	2.4.1	Adipogenic differentiation	71
	2.4.2	Osteogenic differentiation	72
	2.4.3	Chondrogenic differentiation	74
	2.4.4	Analysis of differentiation assays	74
2.5	Bacter	rial preparation of plasmids	75
	2.5.1	Bacterial transformation	75
		2.5.1.1 Mammalian expression plasmids	75
		2.5.1.2 Lentiviral expression plasmids	75
	2.5.2	Generation of plasmids clones	76

ix

	2.5.3	Plasmid glycerol stocks	76
	2.5.4	Plasmid preparation (Miniprep)	76
2.6	Gene	expression profiling	78
	2.6.1	RNA extraction	78
	2.6.2	DNaseI treatment of RNA	79
	2.6.3	cDNA synthesis	79
	2.6.4	PCR amplification of target genes	81
	2.6.5	Assessment of PCR products	82
2.7	Analy	tical assessment of insulin concentration	82
2.8	Statistical analyses		

Chapter 3

84

Isolation and characterisation of murine bone marrow derived	
mesenchymal stem cells from non-obese diabetic mice	

Intro	troduction		85
3.1	Specific methods		
	3.1.1	Sourcing of animals	87
	3.1.3	Surgical isolation of mesenchymal stromal cells	87
	3.1.3	FACS sorting of a unique population of MSCs	88
	3.1.4	Culture and maintenance of sorted mesenchymal stromal cell populations	91
	3.1.5	Cell proliferation assays	91

	3.1.6	6 Clonogenicity assays		
	3.1.7	Differentiation assays	92	
		3.1.7.1 Adipogenic differentiation	92	
		3.1.7.2 Osteogenic differentiation	92	
		3.1.7.3 Chondrogenic differentiation	92	
	3.1.8	Gene expression profiling of native BMSCs	92	
3.2	Result	ts	95	
	3.2.1	FACS sorting and analysis	95	
	3.2.2	Cell morphology	99	
	3.2.3	Cell proliferation	102	
	3.2.4	Clonogenicity assays	105	
	3.2.5	Differentiation assays	109	
		3.2.5.1 Adipogenic differentiation	109	
		3.2.5.2 Osteogenic differentiation	115	
		3.2.5.3 Chondrogenic differentiation	121	
	3.2.6	Gene expression profiling	123	
3.3	Discu	ssion	124	
	3.3.1	Isolation and enrichment of BMSCs via FACS	124	
	3.3.2	Characterisation of BMSC morphology and function	126	
	3.3.3	Requirement for a tissue-specific classification of MSCs	128	

Ch	apter	4		130
		-	ersistence of bioluminescent BMSC in an immune- nmune-deficient model of diabetes	
Intro	oduction			131
4.1	Specif	ic method	ls	133
	4.1.1	Bacteria	l preparation of plasmids	133
	4.1.2	Biolumi	nescent tracking and suicide plasmid cloning	137
		4.1.2.1	Restriction digestion of pVITRO2-mcs and pGL4.20	137
		4.1.2.2	Gel extraction of digested pVITRO2-mcs and Luc2	138
		4.1.2.3	Ligation of pVITRO2-mcs and Luc2	138
		4.1.2.4	<i>Restriction digestion of pVITRO2-Luc2 and pORF5-Fcy::Fur</i>	139
		4.1.2.5	Gel extraction of digested pVITRO2-Luc2 and CDUPRT	140
		4.1.2.6	Ligation of pVITRO2-Luc2 and CDUPRT	140
		4.1.2.7	Transformation of ligation reactions in TOP10 E.coli	141
			In vitro bioluminescence imaging of putative pVITRO2-Luc2 clones	141
		4.1.2.9	Confirmation of CDUPRT ligation into pVITRO2-Luc2	142
	4.1.3	Generati	on of tracking and suicide BMSC via nucleofection	143
		4.1.3.1	Antibiotic sensitivity assay	143
		4.1.3.2	Nucleofection of BMSC	144
			Antibiotic selection of stable BMSC-Luc2 and BMSC-Luc2/CDUPRT clones	145

	4.1.4	In vitro functional determination of Luc2 expression in BMSC	145
	4.1.5	In vitro functional determination of CDUPRT expression in BMSC	146
	4.1.6	Monitoring the persistence of BMSC- <i>Luc2/CDUPRT</i> in NOD and NOD/ <i>Scid</i> mice	149
		4.1.6.1 Sourcing of animals	149
		4.1.6.2 Subcutaneous transplantation of BMSC-Luc2/CDUPRT in NOD and NOD/Scid mice	149
		4.1.6.3 In vivo BLI of transplanted BMSC-Luc2/CDUPRT in NOD and NOD/Scid mice	151
		4.1.6.4 Analysis of BLI data	152
4.2	Result	ts	153
	4.2.1	Generation of the bioluminescent tracking and suicide plasmids	153
		4.2.1.1 Cloning of the bioluminescent plasmid pVITRO2-Luc2	154
		4.2.1.2 Cloning of the suicide plasmid pVITRO2-Luc2/CDUPRT	158
	4.2.2	Generation of tracking and suicide BMSC via nucleofection	163
		4.2.2.1 Determination of Hygromycin B sensitivity of native BMSC	163
		4.2.2.2 Nucleofection and selection of BMSC-Luc2 and BMSC-Luc2/CDUPRT	164
		4.2.2.3 In vitro characterisation of functional Luc2 activity in tracking and suicide BMSCs	166
		4.2.2.4 In vitro characterisation of functional CDUPRT activity in suicide BMSCs	160
	4.2.3	Persistence of BMSC-Luc2/CDUPRT in NOD and NOD/Scid mice	172
4.3	Discu	ssion	177

xiii

4.3.1	Gene-modification of BMSCs via nucleofection	177
4.3.2	Effect of 5-FC on native and CDUPRT-expressing BMSCs	178
4.3.3	Persistence of BMSCs in NOD and NOD/Scid mice	181

Chapter 5

184

Gene-modification of BMSC-*F2/CDUPRT* via the lentiviral transfer of human furin-cleavable insulin (*INS-FUR*), murine *NeuroD1* and *Pdx1*

Intro	Introduction			
5.1	Specific methods			
	5.1.1	Generation of lentiviral plasmids containing INS-FUR and NeuroD1		
		5.1.1.1 Synthesis and plasmid preparation of the NeuroD1-T2A-eGFP construct	188	
		5.1.1.2 PCR amplification of NeuroD1-T2A-eGFP	192	
		5.1.1.3 Restriction digestion of NeuroD1-T2A-eGFP and HMD-INS-FUR	193	
		5.1.1.4 Ligation of NeuroD1-T2A-eGFP and HMD-INS-FUR	194	
		5.1.1.5 Restriction digestion and Quick Ligation [™] of HMD-INS-FUR-NeuroD1	195	
		5.1.1.6 Transformation of Stbl3 E.coli with HMD-INS-FUR-NueroD1 and HMD-NeuroD1 plasmids	197	
		5.1.1.7 Diagnostic digest of putative HMD-INS-FUR-NueroD1 and HMD-NeuroD1 plasmids	197	
	5.1.2	Generation of the lentiviral plasmid containing <i>Pdx1</i>	198	

	5.1.2.1	PCR amplification of Pdx1-IRES-mCherry	199
	5.1.2.2	Restriction digestion of Pdx1-IRES-mCherry and HMD	200
	5.1.2.3	Ligation of Pdx1-IRES-mCherry and HMD	200
	5.1.2.4	Transformation of Stbl3 E.coli with HMD-Pdx1 plasmid	201
	5.1.2.5	Diagnostic digest of putative HMD-Pdx1 plasmid	201
5.1.3	Packag	ing of lentiviral plasmids	202
	5.1.3.1	Lentiviral plasmid transfection via calcium phosphate precipitation	202
	5.1.3.2	Lentivirus filtration and concentration	202
5.1.4	Titratio	n of lentiviral plasmids	202
	5.1.4.1	Transduction of NIH3T3 cells	202
	5.1.4.2	FACS analysis of transduced NIH3T3 cells	203
5.1.5	Gene m	nodification of BMSC-F2/CDUPRT with lentiviral plasmids	205
	5.1.5.1	Lentiviral transduction of BMSC-F2/CDUPRT	205
	5.1.5.2	FACS analysis and sorting of transduced BMSC-F2/CDUPRT	207
	5.1.5.3	Cell culture of transduced cells post-sorting	208
	5.1.5.4	Cell proliferation and clonogenicity assays	208
5.1.6	Analysi	is of β -cell differentiation	208
	5.1.6.1	Microscopic evaluation of morphological changes	208
	5.1.6.2	Gene expression profiling of transduced BMSC-F2/CDUPRT	209
	5.1.6.3	In vitro chronic insulin secretion assay	209
	5.1.6.4	In vitro acute stimulation insulin secretion assay	210

		5.1.6.5	Quantification of insulin storage within secretory granules	211
	5.1.7	Generat	ion of islet-like clusters	211
		5.1.7.1	Spheroid cell culture	211
		5.1.7.2	Time-lapse microscopy	211
	5.1.8	Reversa	l of diabetes in STZ-diabetic NOD/Scid mice	212
		5.1.8.1	Sourcing of animals	212
		5.1.8.2	Preparation of STZ for diabetes induction	213
		5.1.8.3	STZ induction of diabetes in NOD/Scid mice	213
		5.1.8.4	In vivo transplantation of BMSC-Luc2/CDUPRT-INS-FUR in STZ-diabetic NOD/Scid mice	214
		5.1.8.5	Intraperitoneal glucose tolerance test (IPGTT)	215
5.2	Result	S		216
	5.2.1		ion of the HMD-INS-FUR/NeuroD1 and HMD-NeuroD1 Il plasmids	216
	5.2.2	Generat	ion of the HMD- <i>Pdx1</i> lentiviral plasmid	224
	5.2.3	-	ng and titration of lentiviral vectors HMD- <i>NeuroD1</i> , NS-FUR/NeuroD1 and HMD-Pdx1	229
	5.2.4		al gene-modification of suicide BMSCs to express <i>INS-FUR</i> ine <i>NeuroD1</i>	232
		5.2.4.1	FACS sorting of suicide BMSCs lentivirally transduced to express INS-FUR and murine NeuroD1	232
		5.2.4.2	Morphological characterisation of INS-FUR and NeuroD1-expressing suicide BMSCs	238

Page

	5.2.4.3	Gene expression profiling of INS-FUR and	241
		NeuroD1-expressing suicide BMSCs	
	5.2.4.4	Insulin secretion and storage assays	243
	5.2.4.5	BMSC proliferation following lentiviral transduction	247
5.2.5		cal gene-modification of suicide BMSCs to express codon-optimised <i>Pdx1</i>	248
	5.2.5.1	FACS sorting suicide BMSCs lentivirally transduced to express murine codon-optimised Pdx1	248
	5.2.5.2	Morphological characterisation of INS-FUR and Pdx1-expressing suicide BMSCs	252
	5.2.5.3	<i>Gene expression profiling of INS-FUR and Pdx1-expressing</i> <i>suicide BMSCs</i>	253
	5.2.5.4	Chronic insulin secretion assay	254
5.2.6	Spheroi	d formation of suicide BMSCs expressing INS-FUR	256
5.2.7		transplant of BMSC- <i>Luc2/CDUPRT-INS-FUR</i> in abetic NOD/ <i>Scid</i> mice	260
Discus	ssion		265
5.3.1	Lentivii	ral transduction of BMSCs	265
5.3.2		D1, $Pdx1$ and <i>INS-FUR</i> as mediators of β -cell differentiation in expanded BMSCs	268
5.3.3	BMSC	spheroid formation as a model for islet-cell aggregation	270
5.3.4	INS-FU mice	R-expressing BMSCs fail to reverse diabetes in STZ-NOD/Scid	271

5.3

		Page
Ch	apter 6	275
Gei	neral Discussion	
Intro	oduction	276
6.1	Limitations of <i>ex vivo</i> culture expanded BMSCs as targets for T1D gene therapy	277
6.2	Future Directions	279
References		284

List of Figures and Tables

Figu	Figure		
1.1	Incidence of T1D in the Australian population in 2014	3	
1.2	Mechanism of T1D autoimmunity	13	
1.3	Mechanism of insulin secretion in pancreatic β-cells	30	
1.4	Schematic representation of the transcription factor hierarchy involved in pancreatic development and cellular differentiation	38	
1.5	Transcriptional gene regulation in β -cells	40	
1.6	Schematic representation of the potential mechanism by which MSCs regulate the immune response	52	
2.1	Schematic representation of adipogenesis and osteogenesis differentiation assay	73	
3.1	Identification of NOD mouse bone marrow stromal cell subpopulations using immunofluorescence staining and flow cytometry	96	
3.2	Purity check of sorted NOD mouse bone marrow cell subpopulations	98	
3.3	Effect of passage on the morphological characteristics of BMSCs, double positive and stromal cells	101	
3.4	Inter-population analysis of passage on cell proliferation	103	
3.5	Intra-population analysis of passage on cell proliferation	104	
3.6	Comparative analysis of colony staining across cell populations	106	
3.7	Inter-population quantitative analysis of clonogenicity	107	
3.8	Intra-population quantitative analysis of clonogenicity	108	
3.9	Inter-population schematic of adipogenesis at early passage	110	

xix

Figu	re	Page
3.10	Inter-population schematic of adipogenesis at mid passage	111
3.11	Inter-population schematic of adipogenesis at late passage	112
3.12	Inter-population quantitative analysis of adipogenesis	113
3.13	Intra-population quantitative analysis of adipogenesis	114
3.14	Inter-population schematic of osteogenesis at early passage	116
3.15	Inter-population schematic of osteogenesis at mid passage	117
3.16	Inter-population schematic of osteogenesis at late passage	118
3.17	Inter-population quantitative analysis of osteogenesis	119
3.18	Intra-population quantitative analysis of osteogenesis	120
3.19	BMSC micro-mass chondrogenesis	122
3.20	RT-PCR gene expression profiling of native BMSCs, double positive and stromal cells	123
4.1	Diagrammatic representation of the pVITRO2-hygro-mcs mammalian expression plasmid	134
4.2	Diagrammatic representation of the pGL4.20 mammalian expression plasmid	135
4.3	Diagrammatic representation of the pORF5-Fcy::Fur mammalian expression plasmid	136
4.4	Schematic representation of 96-well microplate for determination of <i>Luc2</i> function	146
4.5	Schematic representation of 96-well microplate for 5-FC and 5-FU drug sensitivity assays	147
4.6	Illustration of BMSC- <i>Luc2/CDUPRT</i> injections in NOD and NOD/ <i>Scid</i> Mice	151

хх

Figu	Figure		
4.7	Cloning strategy for the generation of bioluminescent tracking and suicide plasmids	153	
4.8	EcoRV-HF/BamHI-HF digest of pVITRO2-mcs and pGL4.20	155	
4.9	Gel extraction of EcoRV-HF/BamHI-HF digested fragments	155	
4.10	In vitro BLI of putative pVITRO2-Luc2 E. coli clones	156	
4.11	Schematic representation of the pVITRO2- <i>Luc2</i> bioluminescent tracking plasmid	157	
4.12	EcoRI-HF/NheI-HF digest of pVITRO2-Luc2 and pORF5-Fcy::Fur	159	
4.13	Gel extraction of EcoRI-HF/NheI-HF digested fragments	159	
4.14	Diagnostic digest of putative pVITRO2-Luc2/CDUPRT plasmids	160	
4.15	In vitro BLI of putative pVITRO2-Luc2/CDUPRT E. coli clones	157	
4.16	Schematic representation of the pVITRO2-Luc2/CDUPRT suicide plasmid	161	
4.17	BMSC antibiotic sensitivity assay	163	
4.18	Nucleofection of BMSCs with pmax-GFP [®]	164	
4.19	Nucleofection of BMSCs with tracking and suicide plasmids	165	
4.20	In vitro functional characterisation of luciferase activity in BMSC-Luc2	167	
4.21	<i>In vitro</i> functional characterisation of luciferase activity in BMSC- <i>Luc2/CDUPRT</i> clone 1	168	
4.22	<i>In vitro</i> functional characterisation of luciferase activity in BMSC- <i>Luc2/CDUPRT</i> clone 2	169	
4.23	In vitro functional characterisation of CDUPRT activity	171	
4.24	In vivo BLI of BMSC-Luc2/CDUPRT in NOD and NOD/Scid mice	174	
4.25	Analysis of in vivo BLI data in NOD/Scid mice	175	

Figure

4.26	Analysis of <i>in vivo</i> BLI data in NOD mice	176
4.27	Mechanism of action of 5-FC and 5-FU in BMSCs	180
5.1	Diagrammatic representation of the existing HMD lentiviral plasmid	189
5.2	Diagrammatic representation of the existing HMD-INS-FUR lentiviral plasmid	190
5.3	Diagrammatic representation of the pND1-T2A-eGFP sub-cloning plasmid	191
5.4	Diagrammatic representation of the AAV-Pdx1 plasmid	198
5.5	Cloning strategy for the generation of the HMD- <i>NeuroD1</i> and HMD- <i>INS-FUR-NeuroD1</i> lentiviral plasmids	216
5.6	MscI/PacI restriction digest of NeuroD1-T2A-eGFP and HMD-INS-FUR	218
5.7	Gel extraction of MscI/PacI digested fragments	218
5.8	Diagnostic digest of putative HMD-INS-FUR/NeuroD1 lentiviral plasmids	220
5.9	EcoRI-HF restriction digest of HMD-INS-FUR/NeuroD1 and diagnostic digest of putative HMD-NeuroD1 lentiviral plasmids	221
5.10	Diagrammatic representation of the HMD-INS-FUR/NeuroD1 lentiviral plasmid	222
5.11	Diagrammatic representation of the HMD-NeuroD1 lentiviral plasmid	223
5.12	Cloning strategy for the generation of the HMD-Pdx1 lentiviral plasmid	224
5.13	BamHI-HF/PacI restriction digest of <i>Pdx1-IRES-mCherry</i> and HMD	226
5.14	Diagnostic digest of putative HMD-Pdx1 lentiviral plasmids	227
5.15	Diagrammatic representation of the HMD-Pdx1 lentiviral plasmid	228
5.16	Fluorescence imaging of lentiviral packaging in HEK293T cells	230
5.17	FACS analysis of suicide BMSCs transduced to express <i>INS-FUR</i> and <i>NeuroD1</i> (Round 1)	233
5.18	Effect of media composition on the transduction efficiency of suicide BMSCs	236

xxii

Figu	re	Page
5.19	Fluorescence imaging of suicide BMSCs transduced to express <i>INS-FUR</i> and <i>NeuroD1</i>	237
5.20	Morphological characterisation of suicide BMSCs post transduction with <i>INS-FUR</i> and <i>NeuroD1</i>	240
5.21	Gene expression profiling of <i>INS-FUR</i> and <i>NeuroD1</i> -expressing suicide BMSCs	242
5.22	Chronic insulin secretion from suicide BMSCs transduced to express <i>INS-FUR</i> and <i>NeuroD1</i>	244
5.23	Acute stimulated insulin secretion from suicide BMSCs transduced to express <i>INS-FUR</i> and <i>NeuroD1</i>	244
5.24	Insulin storage in transduced suicide BMSCs	246
5.25	Cell proliferation of transduced suicide BMSCs	247
5.26	Transduction of suicide BMSCs with Pdx1-expressing lentiviral vector	249
5.27	Fluorescence imaging of suicide BMSCs transduced to express $Pdx1$	251
5.28	Morphological characterisation of suicide BMSCs post transduction with $Pdx1$	252
5.29	Gene expression profiling of <i>INS-FUR</i> and <i>Pdx1</i> -expressing suicide BMSCs	253
5.30	Chronic insulin secretion from suicide BMSCs transduced to express <i>INS-FUR</i> and <i>Pdx1</i>	254
5.31	Suicide BMSC spheroid formation	257
5.32	Time-lapse imaging of spheroid formation	259
5.33	Blood glucose concentration of treated STZ-NOD/Scid mice	261
5.34	Body weight of treated STZ-NOD/Scid mice	262
5.35	IPGTT in treated STZ-diabetic NOD/Scid mice	264

Figure		
6.1	CRISPR-mediated generation of IPCs and enhanced MSC-derived immunotherapies	281
Tab	le	Page
1.1	Patient healthcare costs associated with diabetic complications	6
1.2	Summary of all QTL associated with predisposition to T1D	9
1.3	Animal models of T1D	21
1.4	Summary of target cells and degree of β -cell similarity	24
1.5	Summary of viral vectors for gene delivery	28
1.6	List and function of the soluble factors secreted by MSCs	53
1.7	Summary of the major MSC immunotherapy studies in pre-clinical animal models of T1D	57
1.8	Summary of the major MSC-derived IPCs in pre-clinical animal models of T1D	62
1.9	Summary of the major ongoing and completed clinical trials utilising MSCs as a treatment for T1D	65
2.1	Components of DNase I treated RNA reactions	79
2.2	Components of cDNA synthesis reactions	80
2.3	Components of PCR mastermix	81
3.1	Stromal cell antibody staining for FACS	90
3.2	Flow cytometry voltage settings for isolating BMSCs	90
3.3	List of murine primers used for gene expression profiling	94
3.4	Stained cell acquisition and analysis of NOD BMSCs and double positive cells	97
3.5	Purity analysis of sorted BMSCs and double positive cells	98

Table		
3.6	Surface markers used for the identification of murine MSCs	125
4.1	EcoRV-HF/BamHI-HF digest of pVITRO2-mcs and pGL4.20	137
4.2	Ligation of pVITRO2-mcs and the Luc2 gene	139
4.3	EcoRI-HF/NheI-HF digest of pVITRO2-Luc2 and pORF5-Fcy::Fur	140
4.4	Ligation of pVITRO2-Luc2 and the CDUPRT gene	141
4.5	In vitro BLI acquisition settings	142
4.6	Diagnostic digest of pVITRO2-Luc2/CDUPRT	143
4.7	Serial dilution of 5-FC and 5-FU drug sensitivity assays	148
4.8	In vivo BLI acquisition settings	151
4.9	Significance in the change in bioluminescent signal in NOD/Scid mice	175
4.10	Significance in the change in bioluminescent signal in NOD mice	176
5.1	Phusion [®] HF PCR amplification of <i>NeuroD1-T2A-eGFP</i>	193
5.2	MscI/PacI digest of HMD-INS-FUR and NeuroD1-T2A-eGFP	194
5.3	Ligation of HMD-INS-FUR and NeuroD1-T2A-eGFP	195
5.4	EcoRI-HF digest of HMD-INS-FUR/NeuroD1	196
5.5	Diagnostic digest of HMD-INS-FUR/NeuroD1	197
5.6	Diagnostic digest of HMD-NeuroD1	197
5.7	Phusion [®] HF PCR amplification of <i>Pdx1-IRES-mCherry</i>	199
5.8	BamHI-HF/PacI digest of HMD and <i>Pdx1-IRES-mCherry</i>	200
5.9	Ligation of HMD and <i>Pdx1-IRES-mCherry</i>	201
5.10	Diagnostic digest of HMD-Pdx1	202
5.11	Transfection Tube 1	203

xxv

Table Page 5.12 Transfection Tube 2 203 5.13 Determination of lentivirus concentration via FACS analysis of transduced 231 NIH3T3 cells 5.14 Cell acquisition analysis of transduced suicide BMSCs (Round 1) 234 5.15 Sorted cell purity analysis of transduced BMSCs (Round 1) 234 5.16 Cell acquisition analysis of transduced suicide BMSCs (Round 2) 235 5.17 Sorted cell purity analysis of transduced BMSCs (Round 2) 235 5.18 Cell acquisition analysis of suicide BMSCs transduced with Pdx1250 5.19 Sorted cell purity analysis of suicide BMSCs transduced with Pdx1250 5.20 Comparison of significance in blood glucose concentration following cell 261 transplant

5 0 1	a ·	o · · · o		0 11 . 11		
521	Comparison (of significance	in body weight	tollowing cell 1	transplant	262
· · - ·	e o inpanio o in		m cowy werging			

List of Publications

- Gerace D, Martiniello-Wilks R, Habib R, Ren B, Nassif NT, O'Brien BA *et al. Ex vivo* expansion impairs genetic engineering of murine MSC-derived pancreatic β-cells. 2017; *In preparation*.
- 2. **Gerace D**, Martiniello-Wilks R, Habib R, Simpson AM. *In vitro* luciferase-based validation of mesenchymal stem cell suicide gene therapy. 2017; *In preparation*.
- Gerace D, Martiniello-Wilks R, Nassif NT, Lal S, Steptoe R, Simpson AM. CRISPRtargeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes: a path to clinical success? *Stem Cell Research & Therapy* 2017; 8(1): 62.
- Gerace D, Martiniello-Wilks R, Simpson AM. Viral-mediated gene therapy for the generation of artificial insulin-producing cells as a therapeutic treatment for type 1 diabetes mellitus. In: A. Hardikar A (ed) *Pancreatic Islet Biology*. Springer International Publishing: Cham, 2016, pp 241-255.
- Gerace D, Martiniello-Wilks R, Simpson AM. Diabetes reversal via gene transfer: building on successes in animal models. *Research and Reports in Endocrine Disorders* 2015; 5: 15-29.
- Gerace D, Martiniello-Wilks R, O'Brien BA, Simpson AM. The use of β-cell transcription factors in engineering artificial β-cells from non-pancreatic tissue. *Gene Ther* 2014; 22(1): 1-8.

 Gerace D, Ren B, Hawthorne WJ, Byrne MR, Phillips PM, O'Brien BA *et al.* Pancreatic transdifferentiation in porcine liver following lentiviral delivery of human furin–cleavable insulin. *Transplantation Proceedings* 2013; 45(5): 1869-1874.

List of Presentations

- Gerace D, Martiniello-Wilks R, Nassif NT, Ren B, Simpson AM. *Ex vivo* expanded murine mesenchymal stem cells as targets for the generation of a cell replacement therapy for type 1 diabetes. In: 77th American Diabetes Association (ADA) Scientific Sessions. San Diego, USA, 2017.
- Gerace D, Martiniello-Wilks R, Simpson AM. Persistence of Luciferase Expressing Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) in Non-Obese Diabetic (NOD) and NOD/Scid Mice. In: 8th Islet Society – Australian Islet Study Group Meeting. Sydney, Australia, 2015
- Gerace D, Martiniello-Wilks R, Simpson AM. Bioluminescent Imaging of Mesenchymal Stem Cell Engraftment in Immune Competent and Immune Deficient Animal Models of Type 1 Diabetes. In: 9th Australasian Gene and Cell Therapy Society (AGCTS) Conference. Melbourne, Australia, 2015
- Gerace D, Martiniello-Wilks R, Simpson AM. Persistence of Luciferase Expressing Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) in Non-Obese Diabetic (NOD) and NOD/Scid Mice. In: 18th Meeting of the American Society of Gene & Cell Therapy (ASGCT). New Orleans, USA, 2015.
- Gerace D, Ren B, Hawthorne WJ, Byrne MR, Phillips P, O'Brien BA et al. Reversal of Diabetes in a Porcine Model Following Liver-Directed Gene Therapy. In: 8th AGTS Meeting. Sydney, Australia, 2013.

- Gerace D, Ren B, Hawthorne WJ, Byrne MR, Phillips P, O'Brien BA *et al.* Reversal of Diabetes in a Pig Model Following Lentiviral Delivery of Human Furin-Cleavable Insulin (INS-FUR). In: *The Annual Scientific Meeting of the Australian Diabetes Society and the Australian Diabetes Educators Association*. Gold Coast, Australia, 2012.
- Gerace D, Ren B, Hawthorne WJ, Byrne MR, Phillips P, O'Brien BA *et al.* Pancreatic Transdifferentiation in Porcine Liver Following Lentiviral Delivery of Human Furin-Cleavable Insulin. In: *The 24th International Congress of the Transplantation Society*. Berlin, Germany, 2012.
- Gerace D, Ren B, Byrne MR, O'Brien BA, Swan A, Simpson AM. Pancreatic Transdifferentiation in the Livers of Non-Obese Diabetic (NOD) Mice Following Lentiviral Delivery of Furin-Cleavable Insulin. In: *RNSH/UTS/USYD/KIMR Annual Scientific Meeting*. Sydney, Australia, 2011.

Abbreviations

5-FC	5-fluorocytosine
5-FU	5-fluorouracil
AAV	Adeno-associated virus
AD-MSCs	Adipose-derived mesenchymal stem cells
ANOVA	Analysis of variance
APC	Antigen presenting cell
ATP	Adenosine triphosphate
BB	Biobreeding
bFGF	Basic fibroblast growth factor
BLI	Bioluminescence imaging
BMSCs	Bone marrow-derived mesenchymal stem cells
CD	Cluster of differentiation
CD	Cytosine deaminase
CDUPRT	Yeast cytosine deaminase uracil phosphoribosyltransferase fusion pro- drug converting enzyme
CLEC16A	C-type lectin domain containing 16A
CMV	Cytomegalovirus
CRISPR	Clustered regularly interspaced short palindromic repeat
CTLA-4	Cytotoxic lymphocyte antigen 4
DC	Dendritic cell
DMSO	Dimethyl sulfoxide
DPP-4	Dipeptidyl peptidase-4
EDTA	Ethylenediaminetetracetic acid

eGFP	Enhanced green fluorescent protein
EGR1	Early growth response-1
ER	Endoplasmic reticulum
ESCs	Embryonic stem cells
ESRF	End-stage renal failure
FACS	Fluorescence-assisted cytometric sorting
FCS	Foetal calf serum
Fcy::Fur	Yeast gene that encodes CDUPRT fusion protein
FoxA1/FoxA2	Forkhead box factors
G1RE	Glucose-responsive element
GD	Gestational diabetes
GFP	Green fluorescent protein
GLUT2	Glucose transporter 2
GSIS	Glucose-stimulated insulin secretion
GWAS	Genome-wide association study
HbA1C	Glycated haemoglobin
HBSS	Hanks buffered salt solution
HDAD	Helper-dependent adenovirus
Hes-1	Hairy and enhancer of split 1
hIPCs	Human islet-derived progenitor cells
HLA	Human leukocyte antigen
HNF	Hepatocyte nuclear factor
hTERT	Human telomerase reverse transcriptase
ICA	Islet cell-like aggregates
IDO	Indoleamime 2,3-dioxygenase
IDDM1	Insulin-dependent diabetes mellitus 1
IFN-γ	Interferon gamma

IL	Interleukin
IL2RA	Interleukin 2 receptor subunit alpha
INS-FUR	Furin-cleavable human insulin
IPCs	Insulin-producing cells
IPGTT	Intraperitoneal glucose tolerance test
iPSCs	Induced pluripotent stem cells
IRES	Internal ribosome entry site
ISG	Insulin secretory granules
Isl-1	LIM Homeobox 1
IVC	Individually ventilated cage
KCNJ11	ATP-sensitive potassium channel
LADA	Latent-onset autoimmune diabetes in adults
LB	Luria broth
LPK	L-type pyruvate kinase
Luc2	Firefly luciferase
mAb	Monoclonal antibody
MafA	v-maf musculoaponeurotic fibrosarcoma A
MAP	Mycobacterium avium paratuberculosis
МНС	Major histocompatibility complex
MOI	Multiplicity of infection
MODY	Mature-onset diabetes of the young
MSCs	Mesenchymal stem cells
NCBI	National Centre for Biotechnology Information
NeuroD1	Neuronal differentiation 1
Neurog3	Neurogenin 3
NK	Natural killer
Nkx2.2	NK2 homeobox 2

Nkx6.1	NK6 homeobox 1
P/S/G	Penicillin-Streptomycin-Glutamine
PANDER	Pancreatic derived factor
Pax4	Paired homeobox 4
Pax6	Paired homeobox 6
PBS	Phosphate buffered saline
PD-1	Programmed death 1
Pdx1	Pancreatic and duodenal homeobox 1
PGE2	Prostaglandin E2
PP	Pancreatic polypeptide
PPAR-γ	Peroxisome proliferator-activated receptor gamma
PTPN2	Protein tyrosine phosphatase, non-receptor type 2
PTPN22	Protein tyrosine phosphatase, non-receptor type 22
QTL	Quantitative trait loci
RLU	Relative light units
RO	Reverse osmosis
rSAP	Shrimp alkaline phosphatase
RT-PCR	Reverse transcription polymerase chain reaction
SCA-1	Stem cell antigen 1
Scid	Severe combined immunodeficiency
SSEA-1	Stage-specific embryonic antigen 1
STRO-1	Stromal cell antigen 1
STZ	Streptozotocin
SV40T	Simian virus 40 antigen
T1D	Type 1 diabetes
T2D	Type 2 diabetes
TBE	Tris/Borate/EDTA

TCF7L2	Transcription factor 7-like 2
TFF	Tangential flow filtration
TGF-β	Transforming growth factor beta
UC-MSCs	Umbilical cord mesenchymal stem cells
UPRT	Yeast uracil phosphoribosyltransferase pro-drug converting enzyme
UTR	Untranslated region
VNTR	Variable number tandem repeat
VSMCs	Vascular smooth muscle cells