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Abstract

Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing 

-cells. As a result, people with T1D suffer from high blood glucose which 

requires exogenous insulin therapy to maintain within the normal physiological range. 

However, exogenous insulin therapy does not mimic the tightly regulated function of the 

pancreas, and as a result does not prevent the development of diabetic complications. 

Currently, the only cure is either pancreas or islet transplantation; however these treatments 

are hampered by a shortage of donors. As a result, the generation of an alternative cell 

replacement therapy would overcome the aforementioned limitations with current treatments. 

Gene therapy as a means of generating “artificial” insulin-producing cells (IPCs) is being 

considered as a potential cure for T1D. Previous research has shown that the viral-mediated 

transfer of the pancreatic transcription factor NeuroD1 and human furin-cleavable insulin

(INS-FUR) genes to hepatocytes resulted in their transdifferentiation into pancreatic-like cells 

capable of synthesising, storing and secreting insulin in response to fluctuating glucose 

concentrations. Due to their ease of isolation, ease of genetic modification and immune-

modulatory properties, the aim of this study was to evaluate the utility of ex vivo expanded 

murine bone marrow-derived mesenchymal stem cells (BMSCs) as gene therapy targets for 

the development of a T1D cell replacement therapy following the lentiviral over-expression 

of murine NeuroD1 and Pdx1, and INS-FUR.

Non-invasive bioluminescence imaging (BLI) technology is an established and sensitive tool

for accessing cell replacement therapy efficacy and treatment outcome in living preclinical 

small animal models. Furthermore, preclinical BLI results often serve as the decision point of 



a cell replacement therapy’s suitability (efficacy and safety) for clinical trial testing in 

humans.  This study utilised the Firefly luciferase reporter protein Luc2, a Luc2 specific light 

producing substrate D-luciferin and an IVIS Lumina II imaging system. First, a unique sub-

population of BMSCs were isolated from the bone marrow of non-obese diabetic (NOD)

mice. These BMSCs displayed potent clonogenicity and tri-lineage differentiation potential,

hallmark characteristics of mesenchymal stem cells, when compared to the plastic adherent 

bone marrow stromal cell starting population. Second, BMSCs were nucleofected to express

the yeast fusion cytosine deaminase uracil phosphoribosyltransferase (CDUPRT) and/or Luc2

genes (BMSC-Luc2/CDUPRT; BMSC-Luc2). Luc2 was utilised as a reporter protein for 

evaluating the in vitro and in vivo persistence of transgene expression in BMSCs and the in 

vivo persistence of gene-modified BMSCs in immune intact and immune-compromised mice. 

CDUPRT is a pro-drug converting enzyme, otherwise known as a suicide gene that was 

utilised as a cell therapy experimental ‘off’ switch. CDUPRT converts the non-toxic pro-drug 

5-fluorocytosine (5-FC) into the toxic metabolite 5-fluorouracil (5-FU) that causes BMSC

death. In vitro functional characterisation of CDUPRT using a Luc2 based cytotoxicity assay 

showed that following exposure to 5-FC, BMSC-Luc2/CDUPRT demonstrated increased cell 

death when compared to BMSC-Luc2 and parental BMSC controls. A subcutaneous 

transplant of Luc2/CDUPRT-expressing BMSCs in immune-intact (NOD; n=4) and immune-

deficient (NOD/Scid; n=4) mice persisted for 2 weeks and 12 weeks respectively. These 

results show a BMSC transplant survival providing an experimental window of 12 weeks in 

NOD/Scid mice and the rapid immune-mediated destruction of BMSC carrying non-

mammalian genes in NOD mice.

Ex vivo culture-expanded BMSCs were subsequently transduced with the HMD lentiviral 

vector (MOI=10) to express INS-FUR, and murine NeuroD1 and Pdx1 as m -cell 

differentiation. Pancreatic transdifferentiation was characterised via reverse transcriptase 



polymerase chain reaction (RT-PCR), followed by the assessment of insulin storage and 

secretion. INS-FUR-expressing BMSCs lacked glucose-responsiveness and secreted large 

amounts of human insulin chronically, whereas NeuroD1 and Pdx1-expressing BMSCs 

lacked glucose-responsiveness and insulin secretion capabilities. Furthermore, RT-PCR 

analysis showed that BMSC did not undergo pancreatic transdifferentiation when transduced 

with pancreatic transcription factors, and did not store insulin within secretory granules as 

determined by acid/ethanol extraction. A subcutaneous transplant of 1x107 and 5x107 INS-

FUR-expressing BMSCs were assessed for their ability to reverse diabetes in STZ-NOD/Scid

mice (n=5), which failed to do so upon transplantation.

This study showed ex vivo expanded BMSC multipotential differentiation into fat and bone

diminishes with increasing passage, and therefore BMSC may be more useful as gene therapy 

targets prior to expansion. This correlates with other studies where ex vivo expansion of 

MSCs is associated with a loss of MSC characteristics (phenotype, proliferative capacity, 

self-renewal, immunomodulation) and negative T1D clinical outcomes.
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