
UNIVERSITY OF TECHNOLOGY, SYDNEY

Faculty of Engineering and Information Technology

Exploring Heterogeneous Social Information

Networks for Recommendation

by

Qinzhe Zhang

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

2017



Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree

nor has it been submitted as a part of the requirements for another degree except

as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in

my research and in the preparation of the thesis itself has been fully acknowledged.

In addition, I certify that all information sources and literature used are quoted in

the thesis.

This research is supported by an Australian Government Research Training Pro-

gram Scholarship.

c© Copyright 2017 Qinzhe Zhang



ABSTRACT

Exploring Heterogeneous Social Information Networks for

Recommendation

by

Qinzhe Zhang

A basic premise behind our study of heterogeneous social information networks

for recommendation is that a complex network structure leads to a large volume of

implicit but valuable information which can significantly enhance recommendation

performance. In our work, we combine the global popularity and personalized fea-

tures of travel destinations and also integrate temporal sensitive patterns to form

spatial-temporal wise trajectory recommendation. We then develop a model to

identify representative areas of interest (AOIs) for travellers based on a large scale

dataset consisting of geo-tagged images and check-ins. In addition, we introduce

active time frame analysis to determine the most suitable time to visit an AOI

during the day. The outcome of this work can suggest relevant personalized travel

recommendations to assist people who are arriving in new cities.

Another important part of our research is to study how “local” and “global”

social influences exert their impact on user preferences or purchasing decisions. We

first simulate the social influence diffusion in the network to find the global and

local influence nodes. We then embed these two different kinds of influence data,

as regularization terms, into a traditional recommendation model to improve its

accuracy. We find that “Community Stars” and “Web Celebrities”, represent “local”

and “global” influence nodes respectively, a phenomenon which does exist and can

help us to generate significantly better recommendation results.

A central topic of our thesis is also to utilize a large heterogeneous social in-

formation network to identify the collective market hyping behaviours. Combating



malicious user attacks is also a key task in the recommendation research field. In

our study, we investigate the evolving spam strategies which can escape from most

of the traditional detection methods. Based on the investigation of the advanced

spam technique, we define three kinds of heterogeneous information networks to

model the patterns in such spam activities and we then propose an unsupervised

learning model which combines the three networks in an attempt to discover col-

lective hyping activities. Overall, we utilize the heterogeneous social information

network to enhance recommendation quality, not only by improving the user expe-

rience and recommendation accuracy, but also by ensuring that quality and genuine

information is not overwhelmed by advanced hyping activities.
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Abbreviation

1-SMC - First-order Sliding Mode Control

2-SMC - Second-order Sliding Mode Control

2-D: Two-dimensional

3-D: Three-dimensional

DF - Describing Function

FRF - Frequency Response Function

FSSMC - Frequency Shaped Sliding Mode Control

HOSM: Higher-order sliding modes

LTI: Linear time-invariant

MIMO: Multi input multi output

MR - Magnetorheological

MDoF - Multiple Degree of Freedom

RMSE - Root Means Square error

SDoF - Single Degree of Freedom

SISO Single input single output

SMC - Sliding Mode Control

SVD: Singular value decomposition

TF - Transfer Function.

VSC: Variable structure control



Nomenclature and Notation

Capital letters denote matrices.

Lower-case alphabets denote column vectors.

(.)T denotes the transpose operation.

In is the identity matrix of dimension n× n.

0n is the zero matrix of dimension n× n.

R, R
+ denote the field of real numbers, and the set of positive reals, respectively.
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