Benthic diatoms as indicators of herbicide toxicity in rivers

Rebecca J. Wood

A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy

July 2017

Ecosystem Security Team
School of Life Sciences
University of Technology Sydney
Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. This research is supported by an Australian Government Research Training Program Scholarship.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature:

Date:
23/07/17
Acknowledgements

I will always be grateful for this opportunity to study some of the most beautiful rivers in Australia and to gaze down the microscope at the many wondrous creatures that can be found by simply scrubbing rocks!

Firstly I would like to thank my amazing supervisors Ben Kefford, Simon Mitrovic and Richard Lim who have been devoted and unwavering in their support of me. Thank you Ben for inspiring this project, you have driven me to do amazing things and I am very proud of what we have achieved. Simon, thank you for your endless positivity that has kept me smiling and motivated. Richard you are always a wealth of knowledge, thank you for your encouragement and focus.

I would like to acknowledge the financial support provided by the Australian and Queensland Governments through the Caring for Our Country Reef Rescue Water Quality Research & Development Program (project no. RRD058) that made this project possible and from which I am grateful to have received a scholarship to conduct this research.

I am very grateful for the support and openness shown to me by everyone from the Australian Centre for Tropical Freshwater Research, James Cook University. I would especially like to thank, Damien Burrows for allowing me to conduct my rapid toxicity tests in their laboratories. Big thanks to the great people there who answered my many questions and guided me during this project including Jon Brodie, Stephen Lewis, Aaron Davis, Michelle Tink, Zoe Bainbridge, Susan Lesley and Tracey Canhan.

Thank you to the wonderful people at the Queensland Government for your support and enthusiasm in this project - Michael Warne, Jason Dunlop, Glenn McGregor and Satish Choy. Special thanks go to Rajesh Prasad for his time and energies in the field and Rachel Smith for her generous assistance with the calculation of mixture toxicity using the herbicide monitoring data.

I could not have accomplished such a mammoth task without the help of wonderful colleagues and volunteers who went above and beyond to collect data for this project. Thanks to John Tibby, Jenny Fluin, Peter Gell who assisted me with diatom identifications. Thank you Percy for your many hours and kilometres travelled collecting diatoms for me. Massive thanks to my field and lab buddies Steffy, Dinushi
and Jason, and special thanks to Dad (Keith) and my brother (Luke) for coming to the rescue when I needed you!

I want to thank my friends and colleagues at UTS for being such an amazing group of people who cared for and supported me come hell or high water. Thank you to Anne Colville for her lab expertise and to PJ and Gemma for their technical support and advice. To Ann-Marie, Rachel, Renee, Steffy, Louise, James, Divya and Rosaline, thank you for listening and laughing, thank you for sharing your chocolate and wine with me, thank you for being there!

Finally I would like to thank my family for their support over these years of study. Thank you for keeping me on track, me helping me with childcare and willing me onwards! To my dearest Angus, you are the reason I have come so far - this is for us.
Preface

This thesis consists of seven chapters. Chapters 2 to 5 are written as peer reviewed journal articles and have been published in scientific journals. Chapter 6 will be submitted to a journal for peer review. They are included in this thesis as they were when accepted by the relevant journal and therefore some minor differences may occur from the final published manuscripts. Publication details and contributions of co-authors are detailed below.


Table of Contents

Acknowledgements ........................................................................................................ iv
Preface .......................................................................................................................... v
Table of Contents ....................................................................................................... vii
List of Figures ........................................................................................................... ix
List of Tables ............................................................................................................. xii
List of Abbreviations ................................................................................................. xiii
Abstract .................................................................................................................... xiv
Chapter 1 Introduction ............................................................................................... 1
  1.1 Scope and need for this study ............................................................................. 1
  1.2 Diatoms ............................................................................................................. 2
  1.3 Potential threat to aquatic ecosystems ............................................................. 5
  1.4 Bioindicators .................................................................................................... 7
  1.5 Biotic indices and SPEAR ............................................................................... 7
  1.6 Study area ....................................................................................................... 9
  1.7 Thesis aims and overview ............................................................................. 10

Chapter 2: Determining the relative sensitivity of benthic diatoms to atrazine using rapid toxicity testing: A novel method .................................................. 12
  2.1 Abstract ........................................................................................................... 13
  2.2 Introduction ................................................................................................... 14
  2.3 Materials and Methods ................................................................................. 16
  2.4 Results .......................................................................................................... 20
  2.5 Discussion ..................................................................................................... 24
  2.6 Conclusions ................................................................................................... 27

Chapter 3: How benthic diatoms within natural communities respond to eight common herbicides with different modes of action .............................................. 28
  3.1 Abstract ........................................................................................................... 29
  3.2 Introduction ................................................................................................... 30
  3.3 Materials and Methods ................................................................................. 32
  3.4 Results .......................................................................................................... 35
  3.5 Discussion ..................................................................................................... 41

Chapter 4 The influence of reduced light intensity on the response of benthic diatoms to herbicide exposure .................................................................................. 45
List of Figures

Figure 1.1 A diagram of a typical pennate diatom a) valve view b) girdle view (Gell et al., 1999)...................................................................................................................................................2

Figure 1.2 A diagram of a diatom frustules (Round et al., 1990). .........................................................2

Figure 1.3 Asexual cell division E=epivalve H=hypovalve a) dividing diatom b) one daughter cell the same size as parent c) the other daughter cell smaller than parent (John, 2000). ..............................................................................................................3

Figure 2.1 Effects of atrazine on the health (%) of diatom cells by genus a) Navicula, b) Gomphonema, c) Ulnaria, d) Achnanthidium, e) Cymbella, f) Amphora and g) Eunotia at 48 h of exposure (Error bars represent ± 1 SE). Treatments marked * are statistically different from ethanol controls at alpha 0.05 .......................................22

Figure 3.1 Effect of eight herbicides on the health of diatom cells for each diatom taxon; a) Gomphonema spp., b) E. gracilis, c) G. gracile, d) Cymbella sp., e) U. ulna, f) A. minutissimum, g) E. cf. incisa and h) N. cryptotenella. Mean response of the carrier control is shown as a solid horizontal line with 95% confidence intervals shown as dashed lines. Error bars represent Standard Error (±SE). * Indicates statistically significant difference (p<0.05) from carrier control using GLM analysis...................................................................................................................38

Figure 3.2 Ranking of the diatom taxa based on the mean change in proportion of healthy cells across all test concentrations (50, 200, 500 μg L⁻¹) relative to controls for eight herbicides: atrazine, simazine, hexazinone, tebuthiuron, diuron, MCPA, 2,4-D, and glyphosate. The greater difference from controls corresponds with the most sensitive taxa. .........................................................................................................................................40

Figure 4.1 Percentage of healthy diatom cells for two taxa; A. Gomphonema clevei from Alligator Ck and B. Ulnaria ulna from Barratta Ck, after 48 hr exposure to either atrazine or glyphosate (50, 200 or 500 μg L⁻¹), at low and high light intensities (20 μmol m⁻² s⁻¹ and 100 μmol m⁻² s⁻¹), compared to controls (shaded bars). * indicates statistical difference (p<0.05) compared to controls in GLM
analysis. The responses of other taxa are shown in Supplemental Data, Figures S7-S36.

**Figure 4.2** Percentage of healthy diatom cells for two taxa; A. *Epithemia cf. cistula* from Alligator Ck and B. *Navicula chroeterii* from Barratta Ck, after 48 hr exposure to either atrazine or glyphosate (50, 200 and 500 μg L⁻¹), at low and high light intensities (20 μmol m⁻² s⁻¹ and 100 μmol m⁻² s⁻¹), compared to controls (shaded bars). * indicates statistical difference (p<0.05) compared to controls in GLM analysis. The responses of other taxa are shown in Supplemental Data, Figures S7-S36.

**Figure 5.1** nMDS of the community composition of healthy benthic diatoms at a) Alligator Creek and b) Barratta Creek for each atrazine concentration treatment (50, 200 & 500 μg L⁻¹) and the control treatment (no atrazine) over the 12 day exposure period. Numbers indicate the duration (days) since commencement of exposure.

**Figure 5.2** Changes in the percentage of healthy cells (mean ± SE, n = 3) for the benthic diatom taxa from Alligator Creek over the 12 day experiment. * indicates statistically significant difference (p<0.05) from the control treatment for each time period based on GLM analysis on binary health data. Dotted horizontal line indicates background health of the control treatment at the start of the experiment (day 0).

**Figure 5.3** Changes in the percentage of healthy cells (mean ± SE, n=3) for the benthic diatom taxa from Barratta Creek over the 12 day experiment. * indicates statistically significant difference (p<0.05) from the control treatment for each time period based on GLM analysis on binary health data. Dotted horizontal line indicates background health of the control treatment at the start of the experiment (day 0).

**Figure 6.1** Map of the Great Barrier Reef catchment region and study sites. Green triangles are the reference sites and red circles are the monitored sites. Catchment regions marked in different colours.

**Figure 6.4** Diatom community characterised as SPEAR herbicides (%) against the environmental variables; a) DO, b) Ammonia, c) NOx, d) EC, e) FRP and f) TSS.
Circles = samples relevant for the 2011/12 wet season, triangles = 2012/13 wet season.

**Figure 7.1** Conceptual diagram of thesis findings.
List of Tables

Table 2.1 Concentration response of the diatom genera using the generalized linear model (GLM). Effects of herbicide concentration on the health of diatom cells at each treatment level (50, 200, 500 μg L⁻¹ atrazine) at 48 h of exposure compared to ethanol controls (no herbicide). Percentage of healthy cells per treatment, percentage composition of the healthy benthic diatom community, EC50 and EC10 values. – Not calculable. ................................................................. 23

Table 4.1 Effect of herbicide concentration, light intensity and their interaction on the cell health of diatom taxa from each of the communities using GLM analysis. .......................... 54

Table 4.2 Classification of diatom taxa as sensitive or tolerant based on responses in rapid toxicity tests to atrazine and glyphosate and occurrence of taxa from counts within control communities at t=0 (Supplemental Data, Table S4). Sites listed in order of increasing herbicide exposure of the collection site, from Alligator Creek (minimal), Liverpool and Gowrie Creeks (moderate) to Barratta Creek (high). ....58

Table 5.1 Responses of the diatom taxa to atrazine exposure at various exposure durations. ......................................................................................................................... 76

Table 6.1 Summary of environmental variables, the limits of reporting and the abbreviation used in analysis. ................................................................. 94

Table 6.2 Results of ANCOVA for relationship of SPEAR_{herbicides} to calculated mixture toxicity, expressed as log TEQSO 95th percentile, after the dry and wet seasons over two sampling years. Bold type indicates statistical significance (p<0.05). ............99

Table 6.3 Results of ANCOVA analysis for relationship of SPEAR to the environmental variables for dry and wet season data. – indicates that the parameter was incalculable. ...................................................................................................102
List of Abbreviations

DO  dissolved oxygen

EC  electrical conductivity

FRP  filterable reactive phosphorus

GBR  Great Barrier Reef

GLM  generalized linear model

NOx  oxidised nitrogen

PICT  pollution induced community tolerance

PSII  photosystem 2 inhibiting

SPEAR  SPEcies At Risk

SSD  species sensitivity distribution

TEF  toxic equivalency factor

TEQ  toxic equivalency quotient

TIS  toxicant induced succession

TSS  total suspended solids
Abstract

Agricultural herbicides are common pollutants of freshwater environments and pose a potential threat to aquatic biota. Assessing the impacts of herbicide pollution on primary producers such as benthic diatoms is essential in protecting freshwater ecosystems from degradation. Benthic diatoms are highly responsive to changes in environmental conditions and changes in community composition can be used to assess the ecological health of rivers. This thesis aims to investigate the impact of herbicide toxicity on benthic diatoms and to determine whether benthic diatoms are suitable indicators of herbicide toxicity in rivers that flow into the Great Barrier Reef (GBR). This was achieved through a series of scientific studies, each addressing key questions regarding the effects of herbicides on benthic diatoms.

Benthic diatoms exposed to herbicides in rapid toxicity tests showed varying sensitivity to herbicides, some taxa being highly sensitive whilst others were unaffected by herbicide exposure. The relative sensitivity of the diatom taxa was consistent between herbicides with differing modes of action and was not altered under reduced light intensities. Prior pollution of the collection site was influential in determining response of diatom communities to herbicide exposure; the diatom community from a highly polluted agricultural stream was less affected than the community collected from a reference site with no history of prior exposure. My thesis identifies individual diatom taxa that are most at risk of herbicide toxicity and also taxa that are tolerant and able to thrive under high herbicide concentrations. This study found that benthic diatom communities within the GBR catchment were affected by herbicide toxicity, showing a decline in sensitive taxa with increasing contamination of the site, after the wet season. Diatom communities were also influenced by other environmental variables such as nutrients and salinity and separating the individual effects of herbicides will require further research.

My thesis demonstrates the effects of herbicide toxicity on benthic diatoms at both the species and community levels. Each study in this thesis provides new insights into the effects of herbicide exposure on natural benthic diatom communities and contributes to the field of aquatic ecotoxicology. As a whole, my thesis illustrates the great potential that benthic diatoms have to assess agricultural impacts, including herbicides in rivers of the GBR catchment area.