

PLASMA MODIFIED STEEL PROCESSING BY-PRODUCT FOR REMOVING HEAVY METALS AND ANTIBIOTICS FROM WATER

By

Van Son Tran

A dissertation Submitted in fulfillment for the degree of DOCTOR OF PHILOSOPHY

In

Environmental Engineering

University of Technology Sydney New South Wales, Australia June, 2017

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

SIGNATURE OF STUDENT:

Van Son Tran Date: 30 June 2017

ACKNOWLEDGMENT

First of all, I owe my deepest gratitude to my principal supervisor, Prof. Huu Hao Ngo for his continuous supports, guidance, time, patience and inspiration. I have learnt a lot from his ideas, critical review of my study plans and papers, knowledge and motivation which encouraged me to overcome many difficulties in the research as well as other aspects of life to achieve this milestone. I also would like to thank my supervisory committee, Dr. Wenshan Guo and Assoc. Prof. Cuong Ton-that for their mentor supports, papers revising and useful comments on this dissertation.

I gratefully acknowledge the Australian government for awarding me the Australia Awards Scholarship. The financial support from Centre for Technology in Water and Wastewater, and the research collaboration between UTS and Shanghai Advanced Research Institute/Tianjin Polytechnic University are also grateful.

The technical supports and guidance from Dr. Johir, the environmental engineering laboratories, UTS are greatly appreciated. Also, I would like to thank Dr. Andrzej from Water Reclamation and Management Scheme, Sydney Olympic Park Authority for his supports and valuable advices. Many thanks go to Katie and other staffs at Microstructure Analysis Unit, UTS and Dr. Alfonso, University of Macquarie for guiding me to characterize the materials surface. I would like to express my appreciation to Christian and Boshir for their technical assistances and useful discussion. I am thankful to Jean, Ronald, Phuong, Hang, Van, Tram, Lam, Chung, Lijuan for their supports and contributions.

Finally, I am hugely indebted to all my family, colleagues and friends for their emotional supports, unconditional love and guidance.

DEDICATION

This thesis is deeply dedicated to the following people:

To my respective parents, Xuan Hoa Tran & Thi Theu Nguyen For their sacrifices, endless love, hard work and inspiration

> *To my wonderful wife, Thi Thuan Tran* For her constant love, supports and caring

To my lovely daughter and son, Ha Linh & Huy Phong For bringing joy and hope

TABLE OF CONTENTS

CERTIFICATE OF ORIGINAL AUTHORSHIP ii
ACKNOWLEDGMENTiii
DEDICATIONiv
TABLE OF CONTENTS
NOMENCLATURES
ABBREVIATIONS
LIST OF TABLESxviii
LIST OF FIGURES
LIST OF RESEARCH OUTCOMES
PhD DISSERTATION ABSTRACTxxix
CHAPTER 1 INTRODUCTION
1.1. Problem statement2
1.1.1. Heavy metals and antibiotics pollution in water and health risk2
1.1.2. Removal technologies of heavy metals and antibiotics from water3
1.1.3. Adsorption of heavy metals and antibiotics by steel shavings
1.2. Research hypotheses
1.3. Objectives
1.4. Research significance7
1.5. Thesis outline
CHAPTER 2 LITERATURE REVIEW
2.1. Introduction12
2.2. Heavy metal and antibiotics pollution in water12
2.2.1. Heavy metals pollution in water

DOCTORAL THESIS

A. Definition, characteristics	
B. Sources and occurrence of HMs in the environment	
C. Adverse effects of the HMs pollution	14
D. HMs relevant regulations	15
2.2.2. Antibiotics pollution in water	15
A. Definition, characteristics	15
B. Sources and occurrence of ABs in the environment	16
C. Adverse effects of the ABs pollution	21
D. ABs relevant regulations	
2.3. Technologies for the removal of heavy metals and antibiotics f	rom water
•••••	
2.3.1. Heavy metals removal technologies	
A. Chemical precipitation	
B. Ion exchange	
C. Adsorption	
D. Membrane filtration	
E. Coagulation-flocculation	
F. Flotation	
G. Electrochemical	
H. Electrodialysis	
K. Photocatalysis	
2.3.2. Antibiotics removal technologies	
A. Conventional methods	
B. Oxidation and advanced oxidation processes	

C. Adsorption processes
D. Membrane processes
E. Combined processes
2.3.3. Adsorption of HMs and ABs using typical low cost materials
A. Natural minerals
B. Agricultural waste and by-products
C. Industrial waste and by-products
2.4. Adsorption of HMs and ABs using magnetic materials (iron-based
adsorbents)54
2.4.1. Introduction
2.4.2. Uptake mechanism of HMs and ABs from water by iron-based
adsorbents
A. Removal pathway of HMs
B. ABs abatement mechanism
2.4.3. Application of iron adsorbents for removing heavy metals from
aqueous solution
2.4.4. Application of iron adsorbents for removing antibiotics from aqueous
solution
2.4.5. Steel shavings as a novel adsorbent
2.5. Gas plasma for modifying iron materials64
2.5.1. Introduction
2.5.2. Employed gas in plasma modification
2.5.3. The usage of gas plasma for adsorbent modification
2.6. Conclusion and research gap67

2.6.1. Main findings from literature review	
2.6.2. Research gaps	
CHAPTER 3 MATERIALS AND METHODS72	
3.1. Materials	
3.1.1. Steel shavings	
3.1.2. Solutions of heavy metals	
3.1.3. Solutions of antibiotics	
3.2. Methods	
3.2.1. Preparation of adsorbents	
A. Raw steel shavings	
B. Plasma modified material	
C. Comparison with a commercial iron material77	
3.2.2. Characterization methods	
A. SEM-EDS	
B. XRD	
C. XPS	
D. BET	
E. Zeta potential and particle size distribution	
F. FTIR	
3.2.3. Development of adsorbents from steel shavings	
A. Particle size	
B. Employed gas in plasma modification	
3.2.4. Batch adsorption experimental set-up for removing HMs	
A. Affecting factors on HMs adsorption from aqueous solutions	

B. Isotherms and kinetics models of HMs adsorption84
C. Competitive adsorption of HMs on raw and modified StS85
D. Desorption and regeneration
3.2.5. Batch adsorption experimental set-up for removing antibiotics87
A. Affecting factors on antibiotics adsorption from aqueous solutions87
B. Isotherms and kinetics models of antibiotics adsorption
C. Competitive adsorption of ABs on raw and modified StS90
D. Desorption and regeneration
3.2.6. Semi-pilot scale experimental set up for removing HMs and ABs from
synthesized wastewater
A. Selecting the treatment designs for HMs and ABs removal
B. A column design for HMs removal by nitrogen plasma modified steel
shavings
shavings
shavings
shavings
 shavings
 shavings
 shavings
 shavings
shavings
shavings
 shavings

4.3. Effects of particle size, employed gas to adsorptive removal of ABs 107
4.3.1. Particle size
4.3.2. Employed gas in plasma modification
4.4. Characterization of adsorbents109
4.4.1. Surface morphology
4.4.2. Elementary composition
4.4.3. XRD spectrums
4.4.4. BET
4.4.5. XPS
4.4.6. FTIR
4.4.7. Zeta potential
4.4.8. Particle size distribution
4.5. Conclusion 121
CHAPTER 5 RAW AND PLASMA MODIFIED STEEL SHAVINGS FOR
REMOVING HEAVY METALS FROM AQUEOUS SOLUTION: A BATCH
STUDY
5.1. Introduction 125
5.2. Affecting factors to removal efficiencies
5.2.1. Solution pH
5.2.2. Adsorbent dosage
5.2.3. Temperature/thermodynamic
5.3. Modeling of adsorption isotherm and kinetics
5.3.1. Adsorption isotherm

5.4. Competitive adsorption of multi-metals solutions on the adsorbents138
5.4.1. Competitive adsorption isotherms
5.4.2. Competitive adsorption kinetics
5.5. Uptake mechanisms of heavy metals by steel shavings143
5.6. Desorption and regeneration of the HMs loaded adsorbents144
5.6.1. Selecting desorption reagent
5.6.2. Adsorption-desorption cycles
5.7. Conclusion147
CHAPTER 6 RAW AND PLASMA MODIFIED STEEL SHAVINGS FOR
REMOVING ANTIBIOTICS FROM AQUEOUS SOLUTION: A BATCH STUDY .
6.1. Introduction150
6.2. Affecting factors to removal efficiencies153
6.2.1. pH
6.2.2. Adsorbent dosage
6.2.3. Temperature/thermodynamic158
6.3. Modeling of adsorption isotherms and kinetics159
6.3.1. Adsorption isotherms
6.3.2. Adsorption kinetics
6.4. Competitive adsorption of multi-antibiotics solution on the adsorbents
6.4.1. Competitive adsorption isotherms
6.4.2. Competitive adsorption kinetics
6.5. Desorption and regeneration of the ABs loaded adsorbents170

6.5.1. Selecting desorption reagent
6.5.2. Adsorption-desorption cycles
6.6. Proposed mechanisms of ABs removal by steel shavings
6.7. Conclusions
CHAPTER 7 DEVELOPMENT OF A SEMI-PILOT TREATMENT DESIGN FOR
REMOVING HMs AND ABs USING NITROGEN PLASMA MODIFIED STEEL
SHAVINGS
7.1. Introduction183
7.2. Selecting treatment unit185
7.2.1. Removal of HMs by different treatment designs
7.2.2. Removal of ABs by different treatment designs
7.3. HMs removal in the column design189
7.3.1. Affecting factors
A. Flow rate
B. Bed height
7.3.2. Breakthrough curves modeling
A. Adams–Bohart model
B. Thomas model
C. Yoon–Nelson model
D. BDST model
7.4. ABs removal in the column design 200
7.4.1. Affecting factors
A. Flow rate
B. Bed height

Van Son Tran	DOCTORAL THESIS	2017
7.4.2. Breakth	rough curves modeling	
A. Adams-	Bohart model	
B. Thomas	model	
C. Yoon–N	elson model	
D. BDST n	nodel	
7.5. Conclusion		
CHAPTER 8 CONCLU	USIONS AND RECOMMENDATIONS	210
8.1. Overall conclu	ision	211
8.1.1. Major fi	ndings	211
8.1.2. Contribu	utions to the field	214
8.2. Recommenda	tions for future works	215
REFERENCES		
APPENDICES		
Appendix A - SEM	1 images	244
Appendix B - EDS	spectrums	246

Symbol	Description	Unit
Å	Angstrom	
Ar	Argon	
As	Arsenic	
C _{ad}	The different in the adsorbate concentration at the	mg/L
	initial time and time t caused by adsorption	
C _b	Adsorbate concentration at breakthrough time	mg/L or μ g/L
Cd^{2+}	Cadmium	
Ce	Concentration at equilibrium	mg/L
Co	Initial concentration	mg/L
C _b	Desired effluent concentration of BDST model	mg/L or μ g/L
Cr ³⁺	Chromium	
Ct	Concentration of adsorbate at time (t)	mg/L or μ g/L
Cu ²⁺	Copper	mg/L
CH ₃ COOH	Acetic acid	
cm ³ /g	Cubic centimeter per gram	
СР	Chloramphenicol	
F	Linear velocity	cm/min
Fe ₂ O ₃	Iron (III) oxide	
g/L	Gram per liter	
H_2	Hydrogen	
HCL	Hydrochloric acid	
HNO ₃	Nitric acid	
HRT	Hydraulic retention time	
$\mathrm{H}_2\mathrm{SO}_4$	Sulfuric acid	
k_{1p}	Equilibrium rate constant of PFO	1/min
k _{2p}	Equilibrium rate constant of PSO	1/min
k_{AB}	Adams-Bohart kinetic constant	
k _b	Rate constant of BDST model	L/(mg.h)
$k_{\rm F}$	Freundlich isotherm constant	

NOMENCLATURES

	Van	Son	Tran
--	-----	-----	------

ki	Equilibrium rate constant of IDM	mg/g.min or
		µg/g.min
k_L	Langmuir isotherm constant	
k_{Th}	Thomas rate constant	
$k_{\rm YN}$	Yoon-Nelson rate velocity constant	
L/h	Liter per hour	
М	The amount of M_3 -pl N_2 packed in the column	g
mg/L	Milligram per liter	
min	Minute	
mL/min	Milliliter per minute	
m^2/g	Square meter per gram	
m ³ /day	Cubic meter per day	
mmol/g	milimol per gram	
n	Freundlich constant	
No	Saturation adsorbate concentration	
N_2	Nitrogen	
NaOH	Sodium hydroxide	
Ni	Nikel	
O ₂	Oxygen	
Pb^{2+}	Lead	
ppm	Part per million	
Q	Volumetric flow rate	mL/min
qo	Column adsorption capacity	mg/g or μ g/g
q_b	Amount of adsorbate adsorbed per unit of dry	mg/g or μ g/g
	weight of adsorbent at breakthrough time	
q _e	Adsorption capacity at equilibrium	mg/g or μ g/g
q _{exp.}	Experimental adsorption capacity	mg/g or μ g/g
q _{max}	Langmuir maximum adsorption capacity of the	mg/g or μ g/g
	adsorbent	
q_s	Amount of adsorbate adsorbed per unit of dry	mg/g or μ g/g
	weight of adsorbent at saturation/exhaustion time	

Van Son Tran

DOCTORAL THESIS

q_t	Amount of adsorbate adsorbed per unit of dry	mg/g or µg/g
	weight of adsorbent at time t	
r^2	Correlation constant	
R _b	Removal percentage of adsorbate at breakthrough	%
	time	
R _s	Removal percentage of adsorbate at	%
	saturation/exhaustion time	
RF	Radio frequency	
rpm	Revolutions per minute	
SCCM	Standard cubic centimeters per minute	
SMT	Sulfamethazine	
t	Service time of column	
TC	Tetracycline	
V	Volume	
V _b	Volume of water treated at breakthrough time	L
Ζ	Bed height	cm
Zn^{2+}	Zinc	
ΔG	Change in Gibbs free energy	J/mol
ΔH	Change in enthalpy	J/mol
ΔS	Change in entropy	J/mol/K
μm	Micro meter	
τ	The time required for 50% adsorbate breakthrough	min

Symbol	Description
HMs	Heavy metals
ABs	Antibiotics
StS	Steel shavings
BDST	Bed depth service time
M ₁ , M ₂ , M ₃ , M _x -plN ₂ ,	Steel shavings with particles sizes 0-75; 75-150 and
M _x -plAr, M _x plO ₂ ,	150-425 μ m; modified steel shavings with plasma in N ₂ ,
$M_x plH_2$	Ar, O ₂ and H ₂ gases
RO	Reverse osmosis
SEM-EDS	Scanning electron microscopy - energy-dispersive X-ray
	spectroscopy
SEM- SUPRA 55VP	Scanning electron microscopy SUPRA 55V
XRD	Powder X-ray diffraction
XPS	X-ray photoelectron spectroscopy
BET	Brunauer emmett teller
FTIR	Fourier transform infrared spectroscopy
MP-AES	Microwave plasma-atomic emission spectrometry
HPLC	High-performance liquid chromatography

ABBREVIATIONS

LIST OF TABLES

Table 2.1 Chemical structure and properties of the study antibiotics (Ahmed et al.,
2015; Adams et al., 2002; Homem and Santos, 2011; Xia et al., 2014; Pubchem,
2017)
Table 2.2 Common methods for HMs removal from aqueous solution (Rahimi et al.,
2015; Nguyen et al., 2013; Atta et al., 2015; Simate and Ndlovu, 2015)
Table 2.3 Common methods for removing ABs from aqueous solution (Homem and
Santos, 2011)
Table 2.4 Prices of low-cost adsorbents (Bailey et al., 1999; Bhattacharyya and
Gupta, 2008; Rafatullah et al., 2010; Olivella et al., 2012; Tran et al., 2015)
Table 2.5 Heavy metals of adsorption capacity (mg/g) of biosorbents
Table 2.6 ABs adsorption capacities of raw/modified biosorbents 50
Table 2.7 Removal mechanisms of metal ions with Fe ⁰ (O'Carroll et al., 2013) 56
Table 2.8 Synthesis/preparation and characterization of iron adsorbents and HMs
adsorption isotherms, kinetics, experimental conditions
Table 2.9 Synthesis/preparation and characterization of iron adsorbents and ABs
adsorption isotherms, kinetics, experimental conditions
Table 3.1 Summary of adsorbents preparation steps 75
Table 3.2 Summary of adsorbents characterization studies 78
Table 3.3 Kinetic and isotherm models of HMs adsorption on StS 84
Table 3.4 Kinetic and isotherm models of antibiotics adsorption on StS 89
Table 3.5 The elution program applied in the antibiotics analysis using HPLC 103
Table 4.1 Removal efficiencies of HMs and ABs on different sizes of raw and
plasma modified StS109

Table 4.2 Elementary composition of different kinds of adsorbents 113
Table 4.3 Summary comparison in characterisations of raw and plasma modified StS
with N ₂
Table 4.4 Binding energy, chemical state, relative peak area and atomic percentage
of peaks in narrow scan of C1s region of M3-plN2 scan of O1s region Fe2p3/2 region
Table 5.1 Thermodynamic parameters for HMs adsorption on M3 and M3-plN2131
Table 5.2 Isotherm and kinetic parameters using the non-linear regression method
for HMs adsorption onto raw and N_2 treated plasma M_3 particles
Table 5.3 Isotherm and kinetic parameters using the non-linear regression method
for competitive HMs adsorption onto raw and N_2 treated plasma M_3 particles142
Table 6.1 Thermodynamic parameters for ABs adsorption on M_3 and M_3 -plN ₂ 159
Table 6.2 Isotherm and kinetic parameters using the non-linear regression method
for antibiotics adsorption onto M ₃ and M ₃ -plN ₂ 164
Table 6.3 Isotherm and kinetic parameters using the non-linear regression method
for competitive adsorption kinetics and isotherms of ABs on M_3 and M_3 -plN ₂ 169
Table 6.4 Binding energy, chemical state, relative peak area and atomic percentage
of peaks in narrow scan of C1s region of the adsorbent before and after adsorption
Table 6.5 Binding energy, chemical state, relative peak area and atomic percentage
of peaks in narrow scan of O1s region of the adsorbent before and after adsorption

Table 6.6 Binding energy, chemical state, relative peak area and atomic percentage
of peaks in narrow scan of Fe2p3/2 region of the adsorbent before and after
adsorption
Table 7.1 Breakthrough curve parameters for HMs adsorption onto M_3 -plN ₂ at
different operating conditions
Table 7.2 Adams-Bohart, Thomas and Yoon-Nelson model constants for HMs
adsorption onto M ₃ -plN ₂ column
Table 7.3 BDST model constants for HMs adsorption onto M ₃ -plN ₂
Table 7.4 Breakthrough curve parameters for ABs adsorption onto M_3 -plN ₂ at
different operating conditions
Table 7.5 Adams-Bohart, Thomas and Yoon-Nelson model constants for ABs
adsorption onto M ₃ -plN ₂ column
Table 7.6 BDST model constants for ABs adsorption onto M ₃ -plN ₂

LIST OF FIGURES

Figure 2.1 Sources of antibiotics in the environment (Adapted from Homem and
Santos, 2011)
Figure 2.2 symptom of aplastic anemia (Pinterest, 2017)22
Figure 2.3 Average chemical composition of some typical lignocellulose (% dry
weight) (Tran et al., 2015)
Figure 2.4 Molecular structure of chitosan (adapted from Celis et al., 2012)46
Figure 2.5 Schematic representation of the magnetic adsorbents separation (Adapted
from Oliveira et al., 2004b)
Figure 2.6 The generation of steel shavings from a steel processing machine
(Dreamstime, 2017)
Figure 2.7 diagram of multi-step process in plasma surface cleaning (Belkind and
Gershman, 2008)
Figure 2.8 Scheme of plasma cleaning with oxygen (Plasma electronic, 2017)65
Figure 3.1 Steel shavings at the steel processing laboratory, UTS73
Figure 3.2 Flowchart for the preparation of adsorbents from StS
Figure 3.3 Images of steel shavings: (A) after washing and drying; (B) after grinding
by a pug and ring crusher
Figure 3.4 Chamber window of plasma equipment: (A) before; (B) in action76
Figure 3.5 Radio frequency (RF) plasma configuration with nitrogen for the surface
treatment of StS
Figure 3.6 SEM-EDS instruments: (A) Zeiss Evo SEM and (B) Supra 55VP SEM.79
Figure 3.7 XRD and XPS instruments: (A) Seimens D5000 X-ray Diffractometer
and (B)Thermo Scientific ESCALAB 250Xi

Figure 3.8 BET system instruments: (A) micrometrics tristar III system, and (B)
Micrometrics VacPrep 061 Sample Degas
Figure 3.9 Zeta potential and FTIR instruments: (A) Nano-ZS Zeta-sizer (Malvern,
Model: ZEN3600) and (B) MIRacle 10, Shimazhu
Figure 3.10 Schematic diagram of treatment system using nitrogen plasma modified
steel shavings design 1
Figure 3.11 Schematic diagram of treatment system using nitrogen plasma modified
StS design 2
Figure 3.12 Schematic diagram of treatment system using nitrogen plasma modified
StS design 3
Figure 3.13 MP-AES and HPLC instruments: (A) 4100-MP-AES, Agilent
Technologies and (B) Jasco HPLC-UV
Figure 3.14 (A) Chromatograph of SMT, CP and TC by HPLC- UV and (B)
Analytical standard lines of SMT, TC and CP 103
Figure 4.1 SEM results of raw and nitrogen plasma modified adsorbent A: M ₃ ; B:
M ₃ -plN ₂ (M ₃ : StS<75 μ m; M ₃ -plN ₂ : StS<75 μ m was plasma modified with N ₂) 110
Figure 4.2 EDS results of raw and nitrogen plasma modified adsorbents (A) M ₃ ; (B)
M ₃ -plN ₂ (M ₃ : StS<75 μ m; M ₃ -plN ₂ : StS<75 μ m was plasma modified with N ₂) 112
Figure 4.3 XRD patterns of adsorbents: (A) M ₃ ; (B) M ₃ -plN ₂ ; (C) M ₃ -plAr (M ₃ :
StS<75 µm; M ₃ -plN ₂ , M ₃ -plAr: StS<75 µm was plasma modified with N ₂ , Ar) 114
Figure 4.4 The XPS spectra of N_2 plasma modified steel shavings (M ₃ -plN ₂): (A)
full survey; (B) narrow scan of C1s region; (C) narrow scan of O1s region; (D)
narrow scan of Fe2p region
Figure 4.5 FTIR spectra of M ₃ and M ₃ -plN ₂

Figure 4.6 Zeta potential as a function of pH solution: (A) M₃: (B) M₃-plN₂ 121 **Figure 5.1** Effect of factors to removal efficiency of metal ions: (A) $pH-M_3$; (B) Figure 5.2 Adsorption isotherm of HMs on (A) M₃ and (B) M₃-plN₂ (initial concentration 0-500 mg/L single metal ion; pH 5, dose 5g/L; at 130 rpm; at 25°C; for Figure 5.3 Adsorption kinetic models of HMs on (A) M_3 and (B) M_3 -plN₂ (initial concentration: 100 mg/L single metal ion; no pH adjustment; dose 5g/L; at 130 rpm **Figure 5.4** Competitive adsorption isotherms of HMs on (A) M_3 and (B) M_3 -plN₂ (total initial concentration 0-500 mg/L; 0-166.67 mg/L single metal ion; pH 5; dose Figure 5.5 Competitive adsorption kinetics of HMs on (A) M_3 and (B) M_3 -plN₂ (total initial concentration: 100 mg/L, 20mg/L single metal ion; no pH adjustment; dose 5g/L; at 130 rpm shaking speed; at room temperature)......141 Figure 5.6 Removal mechanisms of metals and chlorinated compounds with Fe⁰ Figure 5.7 Regeneration of M_3 -plN₂ after adsorption of Pb²⁺, Cu²⁺, Cd²⁺, Cr³⁺ and **Figure 5.8** Adsorption and desorption cycles for HMs on M_3 -plN₂.....146 **Figure 6.1** Effect of pH on adsorption of the antibiotics on (A) M_3 ; (B) M_3 -plN₂. 156 **Figure 6.2** Effect of dose on antibiotics adsorption efficiency using (A) M_3 ; (B) M_3 -

Figure 6.3 Langmuir and Freundlich adsorption of SMT, TC, CP on M₃ and M₃-plN₂ (initial concentration: 100 - 20000 µg/L; pH 3 was adjusted for SMT, CP; pH 5 for Figure 6.4 Sorption kinetics of SMT, TC and CP on M_3 and M_3 -plN₂ (initial concentration: 1000 μ g/L; no pH adjustment; adsorbent dose of 2g/L; at room Figure 6.5 Competitive adsorption isotherm of ABs on M₃ and M₃-plN₂ (total multiantibiotics initial concentration: 0 - 20000 µg/L, each solute concentration: 0-Figure 6.6 Competitive adsorption kinetics of ABs on M_3 and M_3 -plN₂ (total competitive initial concentration: 1000 μ g/L, each solute concentration is 333.33 μ g/L; no pH adjustment; adsorbent dose of 2g/L; at room temperature)......168 Figure 6.7 Regeneration of M₃-plN₂ after adsorption of ABs 171 Figure 6.8 Adsorption and desorption cycles for ABs on M₃-plN₂ using methanol Figure 6.9 FTIR spectrums for M₃, M₃-plN₂ and antibiotics loaded M₃-plN₂ 174 **Figure 6.10** Full survey of N_2 plasma modified steel shavings before and after Figure 6.11 XPS narrow scan of C1s region for M_3 -plN₂ (A) before adsorption and Figure 6.12 XPS narrow scan of O1s region for M_3 -plN₂ (A) before adsorption and Figure 6.13 XPS narrow scan of Fe2p region for M₃-plN₂ (A) before adsorption; (B) after adsorption; (C) combined spectrums of before and after adsorption 180

Figure 7.1 Remaining concentrations of HMs in the outlet flow after treatment using nitrogen plasma modified StS (M_3 -pl N_2) with different designs: (A) Pb²⁺; (B) Cu²⁺; Figure 7.2 Remaining concentrations of ABs in the outlet flow after semi-pilot scale treatment units using M₃-plN₂: (A) SMT; (B) TC and (C) CP189 Figure 7.3 Effects of flow rate on the breakthrough curve of HMs adsorption on M₃ plN_2 : (A) Pb^{2+} ; (B) Cu^{2+} ; (C) Cd^{2+} ; (D) Cr^{3+} and (E) Zn^{2+} (natural pH, bed height = 35 cm; initial concentrations (C_o) of HMs: Pb²⁺ 5.94; Cu²⁺ 4.74; Cd²⁺ 6.48; Cr³⁺ 6.44 Figure 7.4 Effects of bed height (Z) on the breakthrough curve of HMs adsorption on M₃-plN₂: (A) Pb²⁺; (B) Cu²⁺; (C) Cd²⁺; (D) Cr³⁺ and (E) Zn²⁺ (natural pH, flow rate = 3.47 L/min; initial concentrations (C_0) of HMs: Pb²⁺ 5.94; Cu²⁺ 4.74; Cd²⁺ Figure 7.5 BDST model plots for 10% and 90% breakthrough of Pb²⁺, Cu²⁺, Cd²⁺, Cr^{3+} , Zn^{2+} adsorption onto M₃-plN₂ column at different bed heights (natural pH, flow rate = 3.47 L/min; initial concentrations (C_0) of HMs: Pb²⁺ 5.94; Cu²⁺ 4.74; Cd²⁺ **Figure 7.6** Effects of flow rate on the breakthrough curve of ABs adsorption on M_3 plN_2 : (A) SMT; (B) TC and (C) CP (natural pH, bed height = 35 cm; initial concentrations (C_o) of ABs: SMT 100.1; TC 97.3 and CP 99.5 µg/L).....201 Figure 7.7 Effects of bed height (Z) on the breakthrough curve of ABs adsorption on M_3 -plN₂: (A) SMT; (B) TC and (C) CP (natural pH, flow rate = 3.47 L/min; initial concentrations (C_0) of ABs: SMT 100.1; TC 97.3 and CP 99.5 µg/L)203

Figure 7.8 BDST model plots for 10% and 90% breakthrough of SMT, TC and C
adsorption onto M3-plN2 column at different bed heights (natural pH, flow rate
3.47 L/min; initial concentrations (C_o) of ABs: SMT 100.1; TC 97.3 and CP 99
μg/L)

LIST OF RESEARCH OUTCOMES

Peer-riewed journal papers

- Tran, V.S., Ngo, H.H., Guo, W., Zhang, J., Liang, S., Ton-That, C., Zhang, X., 2015. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresource technology, 182, pp.353-363.
- Tran, V.S., Ngo, H.H., Guo, W., Ton-That, C., Li, J., Li, J., Liu, Y., 2017. Removal of antibiotics (sulfamethazine, tetracycline and chloramphenicol) from aqueous solution by raw and nitrogen plasma modified steel shavings. Science of The Total Environment, 601, pp.845-856.
- Tran, V.S., Guo W.S., Ngo, H.H., Li, J., Liu, Y., Li, J., Ton-That, C., 2017. Enhancement of steel shavings' heavy metal adsorption capacity by a novel plasma modification method. Journal of Industrial and Engineering Chemistry (Submitted and under reviewing).

Contribution to scientific forums

 Tran, V.S., Ngo, H.H., Guo, W.S., Ton-that, C., 2017. Single and competive adsorption of antibiotics (sulfamethazine, tetracycline and chloramphenicol) onto nitrogen plasma modified steel shavings (oral presentation). The Inaugural International Conference on Green Technologies for Sustainable Water (GTSW). Hanoi, Vietnam, 13-16 October, 2017 (accepted).

Awards

- 2015 HDR Students publication Award from Faculty of Engineering and Information Technology (FEIT), University of Technology Sydney (UTS) for publishing in high quality Journals.
- 2. 2014 one-off scholarship from Centre for Technology in Water and Wastewater (CTWW), University of Technology Sydney (UTS).

PhD DISSERTATION ABSTRACT

Author:	Van Son Tran
Date:	23 June 2017
Thesis title:	Plasma modified steel processing by-product for removing
	heavy metals and antibiotics from water
School:	Civil and Environmental Engineering
Supervisors:	Prof. Dr. Huu Hao Ngo (Principal supervisor)
	Dr. Wenshan Guo (Alternative supervisor)
	Assoc. Prof. Dr. Cuong Ton-that (Co-supervisor)

Abstract:

The presence of heavy metals (HMs) and antibiotics (ABs) in the aquatic environment causes critical problems to human health and the environment. The adsorptive removal of HMs and ABs onto cost-effective adsorbents has a high potential. In this study, adsorbents were prepared from steel shavings (StS), a byproduct generated from the steel processing industries. Among adsorbents, nitrogen plasma modified StS (M₃-plN₂) has highest adsorption capacities of HMs and ABs. Adsorption and co-precipitation were the mechanisms for HMs removal by the adsorbents, while main driving forces for ABs adsorption were hydrogen bonding, electrostatic and non-electrostatic interactions, and redox reaction. Thermodynamic data demonstrated that both adsorption processes of HMs and ABs onto the adsorbents were feasible, spontaneous and endothermic. Solution pH, particle size, adsorbent dose and contact time exerted great influences on the adsorption processs. Optimal conditions for the adsorptive removal of HMs were pH 5, adsorbent dose

5g/L, at 25°C. The best removal of sulfamethazine (SMT) and chloramphenicol (CP) was observed at pH 3, while tetracycline (TC) was ultimately removed at pH 5 (with the same adsorbent dose of 2 g/L and at 25° C). The Pseudo-first-order kinetic and Pseudo-second-order kinetic models described the adsorptive kinetics of HMs and ABs very well. The Langmuir maximum single adsorption capacities of Pb²⁺, Cu²⁺ Cd^{2+} , Cr^{3+} and Zn^{2+} onto M_3 -plN₂ were: 27.04, 20.64, 16.87, 14.89 and 18.47 mg/g, respectively. In competitive adsorption of multi-metals solutions, each competitive solute adsorption capacities were approximately 2-fold less than the single adsorption capacities. However, the total of competitive adsorption capacities was higher than those of single solute sorption. Single Langmuir adsorption capacities of SMT, TC and CP onto M_3 -plN₂ were 2702.55, 2158.36 and 2920.11 µg/g, respectively. Adsorption capacities of mixed-ABs onto the adsorbents were nearly 2fold less than individual adsorption capacities. Furthermore, the metals-loaded M₃plN₂ was well regenerated using sulphuric acid 0.1N after 5 cycles of adsorptiondesorption, while the most effective reagent to regenerate ABs-loaded M₃-plN₂ was methanol 0.1N solution after 2-3 adsorption-desorption cycles. The semi-pilot scale experiments confirmed that fixed-bed column using M₃-plN₂ could efficient abate both HMs and ABs from water with the highest removal efficiencies at a flow rate of 3.47 L/min and bed height of 35 cm. The column adsorption data was well described by The Thomas, Yoon-Nelson and BDST models. Overall, the application of M₃plN₂ for removing HMs and ABs from aqueous solution can provide tremendous benefits in treating water and reducing solid wastes.

Key words: Heavy metals, Antibiotics, Removal, Adsorption, Mechanism, Desorption, regeneration, Industrial waste/by-product, Steel shavings (StS), Gas plasma, Nitrogen plasma modified steel shavings (M₃-plN₂), Characterization.

Graphical Abstract

