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LIST OF FIGURES 

Main text figures 

Figure 1.1 Theoretical thermal performance curves for cold- (solid blue curve) and 

warm-adapted (dashed red curve) conditions. Physiological performance is maintained 

within limits of a species’ thermal tolerance range (horizontal lines) that is bound by a 

lower and upper critical thermal limit: CTmin and CTmax, respectively, beyond which 

performance drops to zero. Peak performance occurs at the thermal optima, Topt (vertical 

lines). A species’ thermal tolerance range and Topt can shift to an extent over time to 

match novel growth conditions. 

Figure 1.2 Press, pulse and ramp disturbances can be distinguished by temporal trends 

in the strength of the disturbing force. Press disturbances may arise sharply and 

eventually reach a constant, chronic level a). Pulse disturbances are short-term and 

sharply delineated, acute disturbances b). Ramp disturbances can arise where a stressor 

increases in strength steadily over time c) (modified from Lake, 2000). 

Figure 1.3 The electromagnetic spectrum is the wavelengths of energy ranging from 

cosmic radiation to radio waves. The solar spectrum is generally subdivided into three 

components, commonly referred to as short-wave radiation and includes ultraviolet 

radiation (UV: 300 to 400 nm, up to 4 – 7% of solar radiation), photosynthetically 

active or visible radiation (PAR: 400 – 700 nm, 21 – 46%) and near infrared radiation 

(NIR: 700 – 1100 nm, 50 – 70%) (Lambers et al., 1998; Jones & Rotenberg, 2001). 

Visible wavelengths represent the portion of light that is used by plants during 

photosynthesis; it is also responsible for the colours that we see (modified from Knox & 

Ladiges, 2006). 

Figure 1.4 Photosynthesis takes place within highly structured, membrane-rich 

organelles located within the chloroplasts of leaves. The elaborately folded, internal 

membranes within chloroplasts are called thylakoids, which stack to form grana. 

Photosystem I and II (PSI and PSII, respectively) of the photosynthetic electron 

transport system are located within these membranes (modified from Freeman, 2008). 

Figure 1.5 Photosynthesis consists of two reactions. During the light dependent 

reactions light energy is turned into chemical energy in the form of adenosine 
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triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). 

During this process, molecular oxygen (O2) forms from the splitting of water molecules 

(H2O). The energy rich molecules, ATP and NADPH, produced during the light-

independent reactions, are used in the Calvin cycle, to reduce carbon dioxide (CO2) to 

carbohydrates ((CH2O)n) (modified from Freeman, 2008). 

Figure 1.6 Chlorophyll a fluorescence can be measured for quantifying a species’ 

thermal damage threshold, T50. Specifically, the temperature causing a 50% decline in 

FV/FM of PSII from pre-stress levels corresponds to the onset of irreparable thermal 

damage, T50, where FV/FM is the maximum quantum yield of PSII. 

Figure 1.7 Pathways through which energy is transferred to and from plant leaves. Leaf 

temperature is the result of the balance between incoming energy and energy loss.  

Absorbed radiation, including solar radiation and the emission of thermal or infrared 

radiation from the surroundings, i.e., soil and other vegetation, is the main process by 

which energy is gained (red arrows). Contrasting energy gains, the predominant 

pathways through which energy loss occurs (blue arrows) from a leaf are: reradiation or 

the emission of previously absorbed radiation, sensible heat exchange processes, e.g., 

convection and latent heat exchange via transpiration (adapted from Gates, 1965). 

Figure 1.8 Approximately 40% of the world’s terrestrial land surface is occupied by 

deserts which includes extremely or hyper-arid, arid and semi-arid regions. These 

regions generally have high daytime temperatures, receive little rainfall and have a high 

potential evaporation (© 2011 Nature Education, All rights reserved). 

Figure 1.9 Arid and semiarid regions extend across 70% of the Australian continent 

making it the largest desert region in the southern hemisphere. Panels a – e: examples of 

the rich and diverse range of floral assemblages found across Australia’s desert region. 

Bold ‘x’ marks the approximate location of the Australian Arid Lands Botanic Garden 

study site in Port Augusta, South Australia. Source: http://www.bom.gov.au/. 

Figure 2.1 (For corresponding, published figure, see Fig. S2.1). Step 1. Leaves were 

sampled from branches collected from the north-facing outer canopy of a minimum of 

five plants per species. Step 2. For each species, six batches of ten leaves were 

randomly chosen from the sampling pool and treated to one of six temperature 

treatments. Step 3. Control measurements of maximum quantum yield of PSII (PSFV/FM) 



 

Page | viii  
 

and effective quantum yield (PS∆F/FM′) were measured prior to heat stress. FV/FM was 

measured two hours (2 hr) after stress treatment and after a further recovery period of 

ca. 16 hours (D2FV/FM, indicating day two of measurements) at 46, 48, 50, 52 to 54 °C 

and a control temperature of 28 °C. ∆F/FM′ was measured immediately following stress 

treatment (0 hr), 1.5 hours after and on day two following dark-adapted measurements 

and an additional 15 minutes under control conditions in order to light-adapt samples 

(D2∆F/FM′). For each treatment temperature, dark measurements were used to quantify 

the damage metric, DPSII, and light measurements were used to quantify the recovery 

metric, RΦPSII. For all data points n = 10 ± SE. The alignment of dark- and light-adapted 

measurements, FV/FM and ∆F/FM′ respectively, with time and treatment temperature 

indicated with arrows. Graphs inset show the photochemical quantum yield for leaves in 

the dark- and light-adapted state in response to heat stress treatments, as demonstrated 

in Acacia papyrocarpa during summer. Dashed lines are for ease of reading patterns 

and not representative of continuous time. 

Figure 2.2 Correlative relationships between recovery and damage measures at five 

stress treatment temperatures of leaves of 41 Australian arid-zone species during 

summer. Heat stress was applied for 15 min at the five treatment temperatures (46, 48, 

50, 52 and 54 °C). Details of the recovery and health method are as for Table 2. For 

each series, n = 41. Higher DPSII values (difference between pre- and post-stress levels 

of photosystem health) indicate more long-term damage: FV/FM suppressed overnight. 

Higher RΦPSII (quantification of recovery from heat stress by considering the proportion 

of initial loss of photosynthetic efficiency that was recovered the next day) is indicative 

of species having a greater capacity for recovery. 

Figure 2.3 Bivariate relationships between the thermal tolerance threshold (T50) with 

thermal damage (DPSII) a) and recovery of photosynthetic functional efficiency (RΦPSII) 

b) in leaves of 41 Australian arid-zone species measured during summer. Damage and 

recovery are presented for a 15 minute heat stress at a 50 °C treatment. The points for 

Triodia irritans (open triangle) and Commersonia magniflora (open square) are 

indicated separately and discussed in text. Correlations resolved using independent 

contrast analysis are indicated in bold. A significance level of P < 0.001 is indicated as 

***. 
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Figure 3.1 Estimates of the impact of warming on insects by comparing the relationship 

between warming tolerance (WT, based on the annual mean temperature) and latitude 

with the projected magnitude of warming expected by 2100 (black line) (adapted from 

Deutsch et al., 2008, Copyright (2008) National Academy of Sciences, U.S.A.)) 

Figure 3.2 Species variation as a function of microhabitat type: Whigh, high water 

availability; Wlow, low water availability; Wvar, variable water availability. T50, mean 

summer thermal damage threshold a), WT, mean warming tolerance b). Filled 

diamonds, WT highest annual mean temperature; filled triangles, WT highest warmest 

quarter; open squares, WT highest mean annual maximum temperature; filled circles, 

WT highest warmest maximum period. Dashed lines are for ease of reading patterns. 

Points with letters different from one another are significantly different pairwise 

comparisons (*P < 0.05, **P < 0.01). (Note that the letters above the middle points 

apply to both sets of data points that overlap: solid triangles and open squares.) 

Figure 3.3 Pearson’s correlation (r) relationship between latitude and: species’ thermal 

damage threshold (T50) and the highest annual mean temperature across their Australia-

wide distributions (Thab) a); warming tolerance (WT, based on the highest annual mean) 

b). Latitude was defined as the most northerly distribution in Australia for each of the 

42 species investigated (see Table 3.2). More negative latitudinal values indicate that 

species’ distributions extend further south. Arrows on panel a are referred to in text in 

the Results. For panel b, microhabitat preference (see Fig. 3.2) is indicated for each 

species: Whigh (open circles), Wlow (black circles), Wvar (grey circles). 

Figure 4.1 Using linear interpolation, a species’ thermal damage threshold (T50) is 

defined as the temperature-dependent decline of FV/FM chlorophyll fluorescence from 

prestress values, a). Here, we employed a similar approach to estimate within-species 

variation of T50 from the 95% confidence interval (CI) around the sample mean of 

FV/FM at each treatment and control temperature (for each data point n = 10). First, for 

each species we determined values corresponding to upper and lower confidence limits 

around the mean FV/FM of each treatment and control temperature. These values define 

the range of a CI. Next, linear interpolation was used to determine the temperatures at 

which the upper and lower limits dropped to 50% of prestress (control) conditions (here 

upper50 and lower50), b). The difference between species’ upper50 and average T50, and 

lower50 and average T50 were then determined and their mean applied as the error term 
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around species average T50 seasonally (winter, spring, summer), c). In this way, the 

interpretation of seasonal patterns of change in individual species’ T50 could be kept 

consistent. In the example shown, the summer T50 (see panel a) for Eucalyptus 

camaldulensis ssp. camaldulensis was interpolated as 50.0 °C ± 0.83, where 0.83 is the 

mean difference between T50 and temperatures corresponding to lower50 (49.3 °C) and 

upper50 (51.0 °C), respectively, equating to the CI around T50 for this species (see panel 

b). Panel c compares seasonal differences in T50 between paired species contrasted on 

typical water availability in their native microhabitats: E. camaldulensis (high-water) 

and E. pimpiniana (low-water). In this panel, lines are for ease of reading patterns and 

do not represent continuous time. With estimated CI being applied, we can see that the 

error bars for T50 for each species do not overlap in spring, whereas clear separation of 

species T50 is not present in either winter or summer. Further, both species exhibit an 

Early Jump strategy (see Results and Fig. 4.4), defined for a given species as no overlap 

of their CI between winter and spring, but with overlap in spring and summer. 

Figure 4.2 Mean (± SE) thermal damage thresholds (T50) for species from each 

microhabitat across seasons: winter (n = 23), spring (n = 22) and summer (n = 42). 

Native microhabitat was defined by three levels of water availability, variable (Wvar), 

low (Wlow), and high (Whigh). Dashed lines are shown for ease of reading patterns and do 

not indicate continuous time. 

Figure 4.3 Relationships between T50 and PTmin a) and PTmax b) seasonally (winter, 

spring, summer). For corresponding ANCOVA results, see Table 4.3. 

Figure 4.4 Thermal damage thresholds (T50) measured seasonally for 22 Australian 

southern arid-zone species varying in their native microhabitat: variable water, Wvar; 

low water, Wlow; high water, Whigh a). Acclimatisation potentials (AP = winter T50 – 

summer T50) are listed below each species name; AP is not shown for ephemeral or 

facultatively deciduous species (dashed lines), the leaves of which were not present in 

summer. Species are arranged into groups reflecting differences in their thermal 

response with season (groups are colour-coded to match panel b). Theoretical 

representations of these groupings are shown in panel b): Avoid, species with an 

ephemeral life history and/or exhibiting facultative deciduousness during less 

favourable conditions; Early Jump, species exhibiting a step increase in T50 between 

winter and spring, with minimal change between spring and summer; Late Jump, 
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species exhibiting minimal changes in their T50 between winter and spring but a 

substantial jump from spring to summer; Steady Increase, species exhibiting a steady 

increase in T50 values from winter to summer, with no marked step increase from winter 

to spring or spring to summer; No Response, species showing little change in T50 

seasonally. Error bars are an estimation of within-species variation in T50 interpolated 

from 95% confidence intervals (see Methods and Results). For full species names see 

Methods and Table 4.1. 

Figure 5.1 Seasonal projections of plant species grouped by preferred native 

microhabitat on the plane defined by principal component axes (PC) 1 and 2. Diamond 

symbol, Whigh; round symbols, Wvar; Square symbols, Wlow (a – c). Solid lines indicate 

direction and weighing of vectors representing the seven traits considered: Leaf 

thickness, LT; leaf mass per area, LMA; near infrared reflectance, NIR; thermal damage 

threshold, T50; visible reflectance, VIS; effective leaf width, LW; water content, WC. 

Per cent variance explained by each axis indicated. 

 Figure 5.2 Mean seasonal (winter = 23 spp., spring = 22 spp., summer = 41 spp.) score 

distributions along the first (a – c) and second (d – f) principal components (PC1, PC2). 

Species grouped by preferred native microhabitat based on water availability Whigh, 

Wvar, Wlow. Variables loading moderately to highly (≥ ± 0.4) on each axis are presented 

to the left of each graph (see Table 5.1 for description of variables). Variables in bold 

consistently load across all seasons for a given PC axis. Variables in italics cross-load, 

having moderate loadings on both PC axes within a given season (≥ ± 0.4). Data points 

with different letters above differed significantly at * P < 0.05. Component loadings 

between ± 0.4 and ± 0.6 are moderate in strength, with values above and below 

considered weak and strong, respectively (see Methods). 

Figure 5.3 Mean seasonal score distributions along the first (a – c) and second (d – f) 

principal components (PC1, PC2) for phylogenetically independent species contrasts. 

Species contrasted on preferred native microhabitat based on water availability, being 

mesic-adapted or xeric-adapted species, respectively. Results of paired t-test provided 

inset (α = .05). Refer to Fig. 5.1. for list of variables loading highly on each axis. 

Figure 5.4 Thermal protection strategies among arid-zone plant species fell along two 

principal component (PC) axes. Microhabitat preference successfully predicted species’ 
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placement along PC1. Xeric-adapted species had higher LMA and T50 and lower leaf 

water contents than their mesic counterparts. PC2 was consistently driven by variation 

in visible reflectance, and somewhat by leaf size (winter, spring) and T50 (spring, 

summer) but was independent of microhabitat. The strong association of LMA on PC1 

suggests a strategy relating to protecting long lived leaves; whereas thermal protection 

described by PC2 is independent of LMA and the leaf economics spectrum. Solid black 

arrows indicate the direction and strength of leaf traits loading highly on each axis: 1) 

For a given principal component, variables with high positive loading indicate a strong 

correlation with the component and explain a large proportion of the variation among 

species for that axis. Traits with strong negative loadings also explain a large proportion 

of the variation among species for that axis, but in the opposite direction to positively 

loaded traits. 2) Greater arrow thickness indicates a comparatively higher loaded 

variable. 3) Variables depicted further away from the axis have loadings that become 

progressively weaker as indicated by the reduced arrow thickness. LMA, leaf mass per 

area; % WC, per cent water content; T50, leaf thermal damage threshold; NIR, near 

infrared reflectance; VIS, visible reflectance; LW, effective leaf width. See Fig. 5.1 for 

seasonal results for these data.  

Figure 6.1 Example of the placement of data loggers within the canopy of the study 

species, Acacia papyrocarpa Benth. Inset upper right: close-up of temperature/ 

humidity data loggers and housing, shallow enough to allow adequate air flow around 

the sensor. Inset lower right: close-up of phyllodes. 

Figure 6.2 Effect of within-canopy height and aspect on a range of microclimatic 

indicators and leaf physiological response in Acacia papyrocarpa plants (n = 5). PCA-

determined climatic stress index (CSTRESS) a), predicted thermal time constant in 

seconds (τ) b), wind speed (m s-1) c), frequency with which wind speeds drop ≤ 0.5 (m s-

1) d), frequency of days that maximum temperatures exceeded the critical threshold 

temperature of 49 °C (AT49) e), and thermal damage threshold (T50) f) for outer canopy 

leaves at four positions: upper north-facing, UN; lower north-facing, LN; upper south-

facing, US; lower south-facing canopy, LS. PCA variable loadings are presented left of 

CSTRESS, where ATMAX, VPDMAX, and RHMIN are mean daily maximum ambient 

temperature (°C) and vapour pressure deficit (kPa), and mean daily minimum relative 
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humidity (%), respectively (for loading interpretation see, Methods). See Tables 6.1 and 

6.2, as well as text for statistical results. 

Supporting information: figures 

Figure S2.1 Photochemical quantum yield in response to heat stress treatments, as 

demonstrated in Acacia papyrocarpa during summer. Control measurements of 

maximum quantum yield of PSII (PSFV/FM) and effective quantum yield (PS∆F/FM′) were 

measured prior to heat stress. FV/FM was measured two hours after stress treatment and 

after a further recovery period of ca. 16 hours (D2FV/FM, indicating day two of 

measurements) at 46, 48, 50, 52 to 54 °C and a control temperature of 28 °C a). ∆F/FM′ 

was measured immediately following stress treatment, 1.5 hours after and on day two 

following dark-adapted measurements and an additional 15 minutes under control 

conditions in order to light-adapt samples b). The difference between pre- stress and day 

two maximum quantum yield (FV/FM) was used as a simple measure of damage (DPSII) 

to PSII where DPSII = 1- (D2FV/FM/ PSFV/FM), solid symbols. Recovery (RΦPSII) from heat 

stress was measured as the proportion of initial loss of photosynthetic efficiency 

(∆F/FM′) that was recovered by day two of measurements, i.e., RΦPSII = (D2∆F/FM′ – 1.5 

hr.)/ (PS∆F/FM′ – 1.5 hr.), open symbols c). For all data points n = 10 ± SE. Dashed lines 

are for ease of reading patterns and not representative of continuous time. 

Figure S2.2 Phylogenetic tree showing the relatedness among the 41 Australian 

southern desert plant species used in the study. 

Figure S4.1 Species used in the current study were grown in a common environment at 

the Australian Arid Lands Botanic Garden (AALBG), located in Port Augusta, within 

the southern arid region of South Australia. Plants were sourced by the AALBG from 

locations throughout Australia’s southern arid-zone, where the average annual rainfall is 

< 250 mm (information sourced: AALBG, 2016).  

Figure S5.1 PCA biplot combining species data from all three seasons, winter (blue 

symbols), spring (green symbols), summer (orange symbols). Species grouped by 

preferred native microhabitat: diamond symbol, Whigh; round symbols, Wvar; Square 

symbols, Wlow. Lines indicate direction and weighing of vectors per season for the 

seven traits considered: Leaf thickness, LT; leaf mass per area, LMA; near infrared 
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reflectance, NIR; thermal damage threshold, T50; visible reflectance, VIS; effective leaf 

width, LW; water content, WC.  The approximate positions of some example species 

are shown. 

Figure S5.2 Mean (± SE) effective leaf width a), percentage of visible reflectance b), 

and percentage of near infrared reflectance c) for Australian arid-zone plant species 

from three seasons: winter (n = 23), spring (n = 21), summer (n = 41). Results show a 

general tendency for effective leaf width to decrease and spectral parameters to increase 

over the course of the year, from winter to summer. Results shown inset are for Welch’s 

ANOVA with post-hoc comparisons based on the Games-Howel test. Data points with 

different letters above differed significantly at * P < 0.05. 

Figure S6.1 Half-hourly measurements of light levels (PAR μmol photons m−2 s−1) 

adjacent to the canopy for a representative Acacia papyrocarpa tree. Measurements 

shown are for a single day between 900 to 1600 hrs for the north- and south-facing 

canopy. 

Figure S6.2 Mean daily maximum ambient temperature (ATMAX, °C) a) and daily 

minimum per cent relative humidity (RHMIN, %) b) at four positions in the outer canopy 

of Acacia papyrocarpa: upper north, lower north, upper south, and lower south canopy 

(UN, LN, US, LS) (n = 5). Data also presented as north- and south-facing positions 

combined (n = 10) c), and upper and lower positions combined (n = 10) d). Mean 

maximum daily vapour pressure deficit is not presented, but mirrored temperature 

trends. 

Figure S6.3 Mean daily maximum ambient temperature (ATMAX, °C) (a – c), daily 

minimum per cent relative humidity (RHMIN, %) (d – f), and mean daily maximum 

vapour pressure deficit (VPDMAX, kPa) (g – i) measured at four positions of height 

(upper, lower) and aspect (north, south) and jointly: upper north canopy, UN; lower 

north canopy, LN; upper south canopy, US; lower south canopy, LS. The significance 

of main effects for factorial ANOVA is indicated: α = 0.05, *** P < .001, ** P < .01, * 

P < .05. Interaction effects were nonsignificant. 

Figure S7.1 Damage (being the difference between pre- and post-stress levels of 

photosystem health, DPSII, ± SE) of Acacia papyrocarpa leaves exposed to 28 (control), 

48, 50, 52 °C treatment temperatures for three a) or fifteen minutes b) duration. Note, 
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higher DPSII values indicate greater long-term damage. Treatments varied in the number 

of stress events and duration of recovery phases. For instance, comparisons in panels a – 

b are for a single stress event followed by a single 90 min recovery phase under sub-

saturating conditions and an extended overnight recovery phase (RON), or three 

consecutive heat stress events interspersed with recovery phases varying in duration: 90 

minutes (R90), 30 minutes (R30) and 10 minutes (R10). In all instances, final recovery 

phases under sub-saturating light were followed by an extended overnight recovery 

phase. Comparison of DPSII after single 3 (grey symbols) and 15 minute (black symbols) 

heat stress at control and treatment temperatures c). Comparison of DPSII after a single 

heat stress event at 50 °C followed by an overnight recovery phase (RON) and three 

consecutive heat stress events of 3 and 15 minutes, also at 50 °C d). Recovery phases 

for consecutive stress treatments are as described above. All treatment combinations 

were replicated three times randomly over the course of the 2-week measurement 

period. 
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LIST OF TABLES 

Main text tables 

Table 2.1 Thermal tolerance thresholds (T50) in degrees Celsius measured for 41 

Australian southern arid plant species in situ during summer. 

Table 2.2 Pearsons correlation (r) relationships between damage and recovery after five 
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Results are for the most parsimonious models, assuming Gaussian distributions with 

identity link functions. Significant differences in bold (α = 0.05). Omnibus tests 
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ABSTRACT  

Many aspects of the Earth’s climate are predicted with high certainty to undergo 

substantial and rapid changes in the near future, potentially resulting in a plethora of 

new high stress conditions to which plants must respond to survive. Living in extreme 

environments, desert plants are expected to be among the most vulnerable. Due to the 

thermal dependence of photosynthesis, changes in temperature are particularly 

important for plants. Extreme high-temperature events are becoming more frequent and 

intense and projected to increase in many regions. General expectations are that species’ 

vulnerability to increased temperatures varies with latitude, but less is known about how 

local-scale habitat variation influences thermal tolerance. Variation in the ability to 

plastically adjust thermal tolerance will undoubtedly influence the distribution of 

different species and affect community composition. Yet, the extent of variation in 

thermal acclimatisation in plant species is poorly understood. The overall objective of 

my PhD research was to provide insight into leaf-level thermal responses of plants 

under extreme high temperatures in light of a warming climate. Through a series of 

linked experiments, my research demonstrates how dynamic and varied the heat stress 

response can be, including cross-species variation of critical thermal limits, heat stress 

recovery, acclimatisation patterns within and among species over time, and spatial 

differences relating to native microhabitat. I developed a novel protocol for measuring 

biologically relevant, species-specific thermal damage thresholds (Chapter 2), which I 

subsequently used to demonstrate seasonal and spatial effects on species’ thermal 

responses (Chapters 3 and 4). The latter findings emphasise that a deeper understanding 

of plant thermal responses requires insight into their capacity to shift their thermal 

response over time and space. I then showed that species’ innate physiological thermal 

tolerance aligns in multi-trait space with two alternative leaf-level morphological 

pathways of thermal protection (Chapter 5). This raises the possibility that other thermal 

protective processes, e.g., heat shock protein production and increased membrane 

stability, may also sit along these axes. Lastly, I demonstrated intracanopy variation in 

leaf-level physiological response, which expands our mechanistic understanding of 

plant-environment interactions and could benefit models predicting the cost to species 

of a warming climate (Chapter 6). By revealing these and other key thermal response  
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patterns, this thesis offers a meaningful contribution to the field of plant ecophysiology, 

and provides information that is crucial for our understanding and management of 

desert– and potentially many other – ecosystems.
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