

The characterisation of Shewanella algae

Jacqueline Amanda Melvold

A thesis submitted in fulfilment of the requirements for the degree

Doctor of Philosophy

from

University of Technology Sydney

2017

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as part of the

collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in

my research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

This research is supported by an Australian Government Research Training Program

Scholarship.

Signature of candidate:

Date: 13th October 2017

ii

Table of Contents

Certificate of Original Authorship	ii
Acknowledgements	vii
List of Publications	ix
Conference Proceedings	x
List of Figures	xii
List of Tables	xiv
Abbreviations	xvi
Abstract	xviii
Chapter 1 – An overview of the thesis	2
1.1 Introduction	
1.2 Aims of the thesis	
1.3 Dissertation organisation	6
Chapter 2 - Shewanella algae - an emerging human pathogen	10
2.1 Compound abstract	10
2.2 The genus Shewanella	11
2.2.1 Background and taxonomy	11
2.2.3 Biological characteristics	16
2.3 Role of Shewanella algae as an emerging human pathogen	21
2.3.1 Clinical manifestations	31
2.3.2 Outbreaks	34
2.3.3 Risk factors	34
2.3.4 Transmission	35
2.3.5 Treatment and antibiotic resistance	36
2.3.6 Prevention	40
2.3.7 Mechanisms of pathogenicity	40
2.3.8 Pathogenicity in human cells lines and animal models	42

2.3.9 Genomic and proteomic studies of Shewanella algae	45
2.4 Role of Shewanella algae as an animal pathogen	46
2.5 Role as a food spoilage agent	46
2.6 Future directions and concluding remarks	47
Chapter 3 – The draft genome sequence of Shewanella algae SA2	50
2.1 Compound abotract	50
3.1 Compound abstract	
3.3 Methods	
3.3.1 Strain isolation and genomic DNA preparation	
3.3.2 Genome sequencing, assembly and annotation	
3.3.3 Bacterial phylogeny	
3.3.4 Identification of potential virulence factors	
3.3.5 Identification of antibiotic resistance genes and	
susceptibility testing	
3.4 Results and Discussion	
3.5 Conclusion	
Chapter 4 - Differential expression of virulence factors in <i>S. algae</i> SA1.	65
4.1 Compound abstract	65
4.2 Introduction	66
4.3 Materials and Methods	69
4.3.1 Strain isolation and storage	69
4.3.2 Genomic sequencing and annotation	
4.3.3 Phylogenetic analysis	70
4.3.4 'All vs. all' genome comparison	70
4.3.5 Antibiotic sensitivity and haemolytic activity testing	
4.3.6 Proteomic analysis	
4.3.7 Identification of potential virulence factors	
4.4 Results	
4.4.1 Genome sequencing and assembly	
4.4.2 Phylogenetic analysis	
4.4.3 'All vs. all' genome comparison	
4.4.4 Antibiotic susceptibility and haemolytic activity	

4.4.5 Proteomic analysis	81
4.4.6 Identification of potential virulence factors	83
4.5 Discussion	93
4.6 Conclusion	103
Chapter 5 - Analysis of the Shewanella algae SA1 secretome ide	entifies novel
virulence factors	105
5.1 Compound abstract	105
5.2 Introduction	106
5.3 Methods	109
5.3.1 Determination of the growth phases of S. algae SA1	109
5.3.2 SA1 secretome and proteome harvest	110
5.3.4 Determination of bacterial cell viability	110
5.3.4 Protein extraction, fractionation and identification	111
5.3.5 Determination of protein subcellular location	112
5.3.6 Identification of putative virulence factors	115
5.4 Results	115
5.4.1 Growth curve of S. algae SA1	115
5.4.2 Viability of SA1 cells	116
5.4.3 The SA1 secretome 1D-SDS-PAGE	118
5.4.4 Identification and characterisation of the S. algae SA1 se	ecretome 118
5.4.5 Identification of proteins involved in bacterial pathogenes	sis121
5.5 Discussion	123
5.6 Conclusion	128
Chapter 6 – Identification of a novel qnrA allele, qnrA8, in e	nvironmental
Shewanella algae	130
6.1 Compound abstract	131
6.2 Journal of Antimicrobial Chemotherapy Correspondance	132
Chapter 7 - General discussion and concluding remarks	139
7.1 Collation of case studies representing infections caused by S	S. algae140
7.2 Genomic studies of S. algae	141
7.3 Proteomic analysis of S. algae to identify potential virulence to	factors143

7.4 Analysis of the S. algae secretome to identify secret	ted virulence factors
	145
7.5 Concluding remarks	147
Supplementary Material	149
References	153

Acknowledgements

It takes a village to write a PhD thesis, and what an incredible village of people I had supporting and guiding me. First and foremost, I must thank my primary supervisors Steven Djordjevic and Ian Charles for allowing me the opportunity to complete a PhD. As my primary supervisors, your combined wisdom, guidance, knowledge, and philosophy have helped me gain a thorough understanding of the scientific mind. I thank you for challenging me to become the best scientist I can be.

Secondly, I am eternally grateful to my co-supervisors Matthew Padula, the proteomic wizard, and Piklu Roy Chowdhury, the bioinformatics genius. This project would not have been possible without either of you as my co-supervisors. Your daily patience and understanding while teaching me techniques, answering my many trivial questions and guiding me through my data analysis was always a source of energy and enthusiasm. You gave constant words of wisdom and ensured me there was always a light at the end of the tunnel. You were both instrumental for the completion of this PhD and I cannot than you enough.

To my family, especially my mother Christine, my sister Vanessa, my brother Eric and the four legged members of the family (Cookie, Frankie, Atticus and Finn), your love, support and encouragement throughout these past 4 ½ years has been unwavering. You have been my pillar of strength the many years I have been a student and you all sacrificed something in your own way to help me get here. I would not have been able to make this milestone without you. I must also thank my extended family for

constantly seeking clarification on exactly what I do and joking about my eternal time as a student.

To my friends - whether you were completing a PhD alongside of me or encouraging me to get through mine. Emma, Joel, and little Arlo Ray, Kate, Samira, Megan, Louisa, Mac, Samara, Charlotte, Emma, Andy, Krish, Ben, Taryn, Isa, Michael, Ronnie, Marz, Kayla, Brendan, Ethan, Jess, and Cam - with all of you I have created memories which will never be forgotten and that will make epic stories to be passed along.

I must also thank the University of Technology Sydney, the Faculty of Science and the ithree institute for allowing me to complete a PhD. To the Science administration team, Dan, Jason, Shannon and Kristine, thank you for always being there for support, humour, wisdom, and optimism, and constantly remind me there was a light at the end of the tunnel. To the colleagues in my new home, the Faculty of Transdisciplinary Innovation, thank you for encouraging me on the home stretch of this journey and allowing me the time to complete this dissertation. I have never felt like I belonged more in a workplace and cannot wait to continue my adventure with you all.

I must also thank the Australian government, as this research is supported by an Australian Government Research Training Program Scholarship.

Finally, I would like to thank the markers in advance, for reading and reviewing this dissertation.

List of Publications

- Islam, A., Labbate, M., Djordjevic, S. P., Alam, M., Darling, A., **Melvold, J. A.**, Holmes, A. J., Johura, F. T., Cravioto, A., Charles, I. G. et *al*, *Indigenous Vibrio cholerae* strains from a non-endemic region are pathogenic. Open biology, 2013, 3(2):120181.
- Melvold, J. A., Chowdhury, P. R., Padula, M. P., Djordjevic, S. P. and Charles, I. C., The development of a proteogenomic pipeline to characterise the type VI secretory system (T6SS) of Gram-negative bacteria, in ASM Syntrophy. 2015, Australian Socirty for Microbiology. p. 3.
- Melvold, J. A., Wyrsch, E. R., McKinnon, J., Row Chowdhury, P., Charles, I. G. and Djordjevic, S. P., *The identification of a novel qnrA allele, qnrA8, in environmental Shewanella algae*, Journal of Antimicrobial Chemotherapy, 72(10):pp 2949-2952.

Publications in Review

Melvold, J. A., Row Chowdhury, P., Charles, I. G. and Djordjevic, S. P., *The draft* genome of Shewanella algae SA2, under review at Gut Pathogens.

Conference Proceedings

BacPath 13: Molecular Analysis of Bacterial Pathogens, Victoria Poster presentation	2015
'The development of a proteogenomic pipeline to identify bacterial virulence factors'	
The Australian Society for Microbiology, Annual Scientific Meeting, Canberra Oral presentation	2015
'The development of a proteogenomic pipeline to characterise the type VI secretory system of Gram-negative bacteria'	
The Australian Society for Microbiology Benton Dickson Awards, Sydney Oral presentation	2015
'The development of a proteogenomic pipeline to characterise the type VI secretory system of Gram-negative bacteria'	
Launch of AusGEM, Sydney Poster presentation	2014
'Uncovering potential virulence factors of the emerging human pathogen Shewanella algae'	
"Proteomics and Beyond" Symposium, Sydney Poster presentation	2014
'Uncovering potential virulence factors of the emerging human pathogen Shewanella algae'	
The 19th Lorne Proteomics Symposium, Victoria Poster presentation	2014
'Investigations into the type VI secretory system of an emerging bacterial pathogen, Shewanella algae, using a proteogenomic approach'	
BacPath 12: Molecular Analysis of Bacterial Pathogens, Queensland Oral presentation	2013
'Development of a proteogenomic approach to characterise the Type VI secretory system (T6SS) of Gram-negative bacteria'	
The 5 th Congress of European Microbiologists (FEMS) Conference, Germany Poster presentation	2013
'The secreteomes of indigenous Vibrio cholerae from Sydney water reveal pathogenic characteristics similar to O1 serotype Vibrio cholerae'	

The 18th Lorne Proteomics Symposium, Victoria (Poster)

'The secretomes of indigenous Vibrio cholerae from Sydney water reveal numerous pathogenic characteristics'

The Australian Society for Microbiology, Annual Scientific Meeting
Poster presentation
'Shewanella algae: A wolf in sheep's clothing'

List of Figures

Figure 1-1 A diagram representing the overall aims of the project
Figure 2-1 The history of Shewanella algae13
Figure 2-2 Phylogenetic tree of complete Shewanella spp. genomes and draft S. algae
genomes
Figure 2-3 (A) Phase contrast images of Shewanella algae isolate SA1. (B) Scanning
electron microscopy images of <i>S. algae</i> 18
Figure 2-4 Frequency of different clinical presentations of infection caused by
Shewanella algae33
Figure 2-5 The prevalence of different co-morbidities associated with Shewanella algae
infection of humans33
Figure 3-1 RAST subsystems and their relative abundance in the S. algae SA2 genome,
where 51% of the CDS have been assigned to the subsystems in RAST57
Figure 3-2 Phylogeny tree of complete Shewanella genomes and draft S. algae
genomes based on PhyloSift58
Figure 4-1 RAST subsystem analysis of <i>S. algae</i> SA175
Figure 4-2 Phylogeny of the complete Shewanella and draft S. algae genomes, as
determined by PhyloSift77
Figure 4-3 A heat map depicting the results of the 'all vs. all' protein clustering genome
comparison
Figure 4-4 Alpha haemolytic activity of <i>S. algae</i> SA1
Figure 4-5 1D-SDS-PAGE of the SA1 differential proteome
Figure 4-6 Venn diagram of the differentially expressed proteins identified in the S.
algae SA1 proteome in LB broth, LB agar, blood agar, TCBS agar and BHI broth. 83
Figure 4-7 A Venn diagram of the differentially expressed virulence factors identified in
the S. algae SA1 proteome in LB broth, LB agar, blood agar, TCBS agar, and BHI
broth85
Figure 4-8 The T6SS gene cluster found in SA1 and its closest relatives identified by Psi-
BLAST analysis101
Figure 5-1 Growth curves of <i>S. alage</i> in LB broth and BHI broth

‡UTS

Figure 5-2 An example of the live dead staining of SA111
Figure 5-3 The percentage of SA1 cell lysis in LB broth and BHI broth and mid
exponential and stationary time points11
Figure 5-4 (A) 1D-SDS-PAGE of the SA1 proteome, mid-exponential and stationary
secretome grown in LB broth. (B) 1D-SDS-PAGE of the SA1 proteome, mid
exponential and stationary secretome grown in BHI broth119
Figure 5-5 Venn diagram displaying the proteins identified in LB broth and BHI brotl
and mid-exponential and stationary time points120
Figure 5-6 Proteins in the S. algae SA1 secretome identified by PSORTb, SecretomeP
SingalP and predTAT. The number following the prediction tool is the total
number identified by that tool123

List of Tables

Table 2-1 Physical and biochemical characteristics of Shewanella algae and Shewanella
putrefaciens22
Table 2-2 Summary of case studies of Shewanella algae infections in humans24
Table 2-3 Reports of antibiotic drug resistance in clinically-derived Shewanella algae
isolates39
Table 2-4 Genomic, proteomic, and transcriptomic studies of Shewanella algae45
Table 2-5 Genomic features of <i>Shewanella algae</i> strains
Table 3-1- Genome properties of <i>S. algae</i> SA256
Table 3-2 List of genes associated with resistance toxic compounds in the S. algae SA2
genome61
Table 3-3 Antibiotic susceptibility of <i>S. algae</i> SA2 determined by the Vitek 262
Table 3-4 Antibiotic susceptibility of <i>S. algae</i> SA2 determined by the CDS method63
Table 4-1 Genome properties of <i>S. algae</i> SA174
Table 4-2 Antibiotic susceptibility of <i>S. algae</i> SA1 determined by the Vitek 279
Table 4-3 Antibiotic susceptibility of <i>S. algae</i> SA1 determined by the CDS method80
Table 4-4 Potential virulence factors expressed in the S. algae SA1 differential
proteome86
Table 5-1 Bioinformatic tools utilised in the secretome analysis113
Table 5-2 Potential virulence factors in the <i>S. algae</i> SA1 secretome122
Table 6-1 The nucleotide sequence of qnrA genes 1-8. Differences in the nucleotide
sequences are highlighted in red. GenBank accession numbers are in brackets.
Table 6-2 (A) Amino acid sequence of QnrA alleles. (B) Mauve alignment of S. algae
SA1 (top) chromosomal qnrA8 and K. pneumoniae plasmid IncAC-LS6136
Table S-1 RAST annotation of the <i>S. algae</i> SA2 genome150
Table S-2 MP3 analysis of the S. algae SA2 genome to identify pathogenic
proteins150
Table S-3 RAST annotation of the <i>S. algae</i> SA1 genome150

Table S-4 'All vs. all' protein comparison of the genus Shewanella150
Table S-5 Peaks output of proteins in S. algae SA1 proteome with protein scores,
number of peptides, unique peptides and protein coverage150
Table S-6 <i>S. algae</i> SA1 proteome summary151
Table S-7 MP3 analysis of the S. algae SA1 genome to identify pathogenic
proteins151
Table S-8 MP3 analysis of the <i>S. algae</i> SA1 proteome151
Table S-9 Peaks output of proteins in S. algae SA1 secretome with protein scores,
number of peptides, unique peptides and protein coverage152
Table S-10 <i>S. algae</i> SA1 secretome summary152
Table S-11 Label free quantitative analysis of the S. algae SA2 secretome using spectral
counting, the emPAI and the NSAF152
Table S-12 MP3 analysis of the S. alage SA1 secretome

Abbreviations

One dimensional - sodium dodecyl sulphate 1D-SDS-PAGE

polyacrylamide gel electrophoresis

Two dimensional - sodium dodecyl sulphate

2D-SDS-PAGE

polyacrylamide gel electrophoresis

A5 Andrew and Aaron's Awesome Assembly pipeline

BHI Brain heat infusion

BLAST Basic local alignment search tool

CDS Calibrated dichotomous sensitivity

DNA Deoxyribose nucleic acid

E. coli Escherichia coli

emPAI Exponentially modified protein abundance index

HCl Hydrochloride

Hcp Hemolysin co-regulated protein

HMM Hidden Markov models

LB Luria Bertani

LC Liquid chromatography

LC-MS/MS Liquid chromatography tandem mass spectrometry

LGT Lateral gene transfer

m/z Mass-to-charge ratio

MS Mass spectrometry

MSHA Mannose sensitive haemagglutinin

NSAF Normalized spectral abundance factor

OD Optical density

ORF Open reading frame

PAGE Polyacrylamide gel electrophoresis

PBS Phosphate buffered saline

PCR Polymerase chain reaction

PI Propidium iodide

RAST Rapid annotation subsystems technology

rpm Revolutions per minute

S. algae Shewanella algae

S. oneidensis Shewanella oneidensis

S. putrefaciens Shewanella putrefaciens

S. woodyi Shewanella woodyi

SA1 Sydney strain of Shewanella algae SA1

SA2 Sydney strain of Shewanella algae SA2

SDS Sodium dodecyl sulphate

SVM Support Vector Machine

T6SS Type VI secretion system

TBP Tributylphosphine

TCBS Thiosulfate citrate bile salts agar

V. cholerae Vibrio cholerae

VgrG Valine-glycine-repeat protein G

Abstract

The genus *Shewanella* comprises an extremely diverse group of facultative anaerobes that are widely distributed in freshwater and marine environments, including intertidal and benthic zones, their sediments and oil field wastes throughout the world [1, 2]. They are Gram-negative bacilli that are $1 - 2 \mu m$ in length and $0.4 - 0.7 \mu m$ in width which are motile via a single polar flagellum, exhibit un-paralleled respiratory diversity, and have robust sensing and regulatory systems which allow them to survive environments with low temperatures (less than 4°C), high salt concentrations and an extensive range of barometric pressures [3, 4]. These features lend themselves to phenotypic and physiological differences within the genus, but also have elicited interest in their use in biotechnology, including for bioremediation and microbial fuel cells [5, 6].

There are 63 species that comprise the *Shewanella* genus [7], and a handful of these are known to cause disease in humans and animals. The main species associated with human infection is *Shewanella algae* (*S. algae*) [1, 8], which naturally resides in aquatic environments and has been isolated from marine and freshwater sediments, oil fields, animals, marine life (including fish, sea lions, echinoderms, birds and poultry), and from human clinical material as the causative organism of diseases such as otitis media, cellulitis, septicemia and increasingly gastroenteritis [9-15]. To date, there have been limited studies investigating the mechanisms of pathogenicity and antibiotic resistance of *S. algae*.

The work presented in this dissertation has sought to address a number of gaps in knowledge regarding the pathogenesis of the emerging human pathogen *S. algae* using a systems biology approach. *S. algae* has the ability to cause mono-microbial infections in humans, ranging from infections of the skin and soft tissues, to blood borne and enteric infections. This thesis presents the first genome sequences of *S. algae* isolated from Sydney, Australia, and the first proteomic investigations which, combined, identify the presence and expression of potential virulence in this emerging human pathogen.

This dissertation has linked the *S. algae* genotype to the phenotype, giving a more holistic understand of the bacterium which is crucial to understanding any roles it has in pathogenesis. We identified a range of genes encoding putative virulence factors in *S. algae*, including toxins, haemolysins, adhesins, secretion systems, proteases and genes required for biofilm formation and motility/chemotaxis. Furthermore, the investigation into the expression of these proteins, via the differential growth media in the proteome and secretome, have highlighted that many of the genes encoding for these virulence factors require specific conditions for their expression.