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Abstract. In this paper, we aim to design sparse D-optimal (determinant-
optimal) pose-graph SLAM problems through the synthesis of sparse
graphs with the maximum weighted number of spanning trees. Charac-
terizing graphs with the maximum number of spanning trees is an open
problem in general. To tackle this problem, several new theoretical results
are established in this paper, including the monotone log-submodularity
of the weighted number of spanning trees. By exploiting these structures,
we design a complementary pair of near-optimal efficient approximation
algorithms with provable guarantees. Our theoretical results are vali-
dated using random graphs and a publicly available pose-graph SLAM
dataset.
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1 Introduction

Graphs arise in modelling numerous phenomena across science and engineering.
In particular, estimation-on-graph (EoG) is a class of (maximum likelihood) es-
timation problems with a natural graphical representation that arise especially
in robotics and sensor networks. In such problems, each vertex corresponds to an
unknown state, and each edge corresponds to a relative noisy measurement be-
tween the corresponding states. Simultaneous localization and mapping (SLAM)
and sensor network localization (SNL) are two well-studied EoGs.

Designing sparse, yet “well-connected” graphs is a subtle task that frequently
arises in various domains. First, note that graph sparsity—in EoGs and many
other contexts—lead to computational efficiency. Hence, maintaining sparsity is
often crucial. It is useful to see graph connectivity as a spectrum, as we often need
to compare the connectivity of connected graphs. In engineering, well-connected



graphs often exhibit desirable qualities such as reliability, robustness, and re-
silience to noise, outliers, and link failures. More specifically, a well-connected
EoG is more resilient to a fixed noise level and results in a more reliable estimate
(i.e., smaller estimation-error covariance in the Loewner ordering sense). Con-
sequently, maintaining a sufficient connectivity is also critical. Needless to say,
sparsity is, by its very essence, at odds with well-connectivity. This is the case in
SLAM, where there is a trade-off between the cost of inference and the reliability
of the resulting estimate. This problem is not new. Measurement selection and
pose-graph pruning have been extensively studied in the SLAM literature (see,
e.g., [21, 12]). However, in this paper we take a novel graph-theoretic approach
by reducing the problem of designing sparse reliable SLAM problems to the
purely combinatorial problem of synthesizing sparse, yet well-connected graphs.
In what follows, we briefly justify this approximate reduction.

First, note that by estimation reliability we refer to the standard D-optimality
criterion, defined as the determinant of the (asymptotic) maximum likelihood
estimator covariance matrix. D-optimality is a standard and popular design cri-
terion; see, e.g., [13, 16] and the references therein. Next, we have to specify how
we measure graph connectivity. Among the existing combinatorial and spectral
graph connectivity criteria, the number of spanning trees (sometimes referred to
as graph complexity or tree-connectivity) stands out: despite its combinatorial
origin, it can also be characterized solely by the spectrum of the graph Lapla-
cian [9]. In [16, 17, 18], we shed light on the connection between the D-criterion
in SLAM—and some other EoGs—and the tree-connectivity of the underlying
graph. Our theoretical and empirical results demonstrate that, under some stan-
dard conditions, D-optimality in SLAM is significantly influenced by the tree-
connectivity of the graph underneath. Therefore, one can accurately estimate
the D-criterion without using any information about the robot’s trajectory or
realized measurements (see Section 3). Intuitively speaking, our approach can
be seen as a dimensionality reduction scheme for designing D-optimal SLAM
problems from the joint space of trajectories and graph topologies to only the
space of graph topologies [18].

Although this work is specifically motivated by the SLAM problem, designing
sparse graphs with the maximum tree-connectivity has several other important
applications. For example, it has been shown that tree-connectivity is associated
with the D-optimal incomplete block designs [7, 5, 1]. Moreover, tree-connectivity
is a major factor in maximizing the connectivity of certain random graphs that
model unreliable networks under random link failure (all-terminal network reli-
ability) [15, 30]. In particular, a classic result in network reliability theory states
that if the uniformly-most reliable network exits, it must have the maximum
tree-connectivity among all graphs with the same size [2, 23, 3].

Known Results. Graphs with the maximum weighted number of spanning
trees among a family of graphs with the same vertex set are called t-optimal.
The problem of characterizing unweighted t-optimal graphs among the set of
graphs with n vertices and m edges remains open and has been solved only for
specific pairs of n and m; see, e.g., [27, 5, 14, 25]. The span of these special cases



is too narrow for the types of graphs that typically arise in SLAM and sensor
networks. Furthermore, in many cases the (n,m) constraint alone is insufficient
for describing the true set of feasible graphs and cannot capture implicit practi-
cal constraints that exist in SLAM. Finally, it is not clear how these results can
be extended to the case of (edge) weighted graphs, which are essential for repre-
senting SLAM problems, where the weight of each edge represents the precision
of the corresponding pairwise measurement [18].

Contributions. This paper addresses the problem of designing sparse t-optimal
graphs with the ultimate goal of designing D-optimal pose-graph SLAM prob-
lems. First and foremost, we formulate a combinatorial optimization problem
that captures the measurement selection and measurement pruning scenarios in
SLAM. Next, we prove that the weighted number of spanning trees, under cer-
tain conditions, is a monotone log-submodular function of the edge set. To the
best of our knowledge, this is a new result in graph theory. Using this result,
we prove that the greedy algorithm is near-optimal. In our second approxima-
tion algorithm, we formulate this problem as an integer program that admits a
straightforward convex relaxation. Our analysis sheds light on the performance of
a simple deterministic rounding procedure that have also been used in more gen-
eral contexts. The proposed approximation algorithms provide near-optimality
certificates. The proposed graph synthesis framework can be readily applied to
any application where maximizing tree-connectivity is desired.

Notation. Throughout this paper, bold lower-case and upper-case letters are
reserved for vectors and matrices, respectively. The standard basis for Rn is
denoted by {eni }ni=1. Sets are shown by upper-case letters. | · | denotes the set
cardinality. For any finite set W,

(
W
k

)
is the set of all k-subsets of W. We use

[n] to denote the set {1,2, . . . ,n}. The eigenvalues of symmetric matrix M are
denoted by λ1(M) ≤ · · · ≤ λn(M). 1, I and 0 denote the vector of all ones, the
identity and the zero matrices with appropriate sizes, respectively. S1 � S2 (resp.
S1 � S2) means S1−S2 is positive definite (resp. positive semidefinite). Finally,
diag(W1, . . . ,Wk) is the block-diagonal matrix whose main diagonal blocks are
W1, . . . ,Wk.

2 Preliminaries

Graph Matrices. Throughout this paper, we usually refer to undirected graphs
G = (V,E) with n vertices (labeled with [n]) and m edges. With a little abuse of

notation, we call Ã ∈ {−1,0,1}n×m the incidence matrix of G after choosing an

arbitrary orientation for its edges. The Laplacian matrix of G is defined as L̃ ,
ÃÃ>. L̃ can be written as

∑m
i=1 L̃ei in which L̃ei is the elementary Laplacian

associated with edge ei = {ui,vi}, where the (ui,ui) and (vi,vi) entries are 1, and
the (ui,vi) and (vi,ui) entries are −1. Anchoring v0 ∈ V is equivalent to removing

the row associated with v0 from Ã. Anchoring v0 results in the reduced incidence
matrix A and the reduced Laplacian matrix L , AA>. L is also known as the
Dirichlet. We may assign positive weights to the edges of G via w : E → R>0.
Let W ∈ Rm×m be the diagonal matrix whose (i,i) entry is equal to the weight



of the ith edge. The weighted Laplacian (resp. reduced weighted Laplacian) is

then defined as L̃w , ÃWÃ> (resp. Lw , AWA>). Note that the (reduced)
unweighted Laplacian is a special case of the (reduced) weighted Laplacian with
W = Im (i.e., when all edges have unit weight).

Spanning Trees. A spanning tree of G is a spanning subgraph of G that is also
a tree. Let TG denote the set of all spanning trees of G. t(G) , |TG| denotes the
number of spanning trees in G. As a generalization, for graphs whose edges are
weighted by w : E→ R>0, we define the weighted number of spanning trees,

tw(G) ,
∑
T∈TG

Vw(T). (1)

We call Vw : TG → R>0 the tree value function and define it as the product of
the edge weights along a spanning tree. Notice that for unit edge weights, tw(G)
coincides with t(G). Thus, unless explicitly stated otherwise, we generally assume
the graph is weighted. To prevent overflow and underflow, it is more convenient
to work with log tw(G). We formally define tree-connectivity as,

τw(G) ,

{
log tw(G) if G is connected,

0 otherwise.
(2)

For the purpose of this work, without loss of generality we can assume w(e) ≥ 1
for all e ∈ E, and thus τw(G) ≥ 0.3 The equality occurs only when either G is
not connected, or when G is a tree whose all edges have unit weight. Kirchhoff’s
seminal matrix-tree theorem is a classic result in spectral graph theory. This
theorem relates the spectrum of the Laplacian matrix of graph to its number of
spanning trees. The original matrix-tree theorem states that,

t(G) = det L (3)

=
1

n

n∏
i=2

λi(L̃). (4)

Here L is the reduced Laplacian after anchoring an arbitrary vertex. Kirchhoff’s
matrix-tree theorem has been generalized to the case of edge-weighted graphs.
According to the generalized theorem, tw(G) = det Lw = 1

n

∏n
i=2 λi(L̃w).

Submodularity. Suppose W is a finite set. Consider a set function ξ : 2W → R.
ξ is called:

1. normalized iff ξ(∅) = 0.
2. monotone iff ξ(B) ≥ ξ(A) for every A and B s.t. A ⊆ B ⊆W.
3. submodular iff for every A and B s.t. A ⊆ B ⊆W and ∀s ∈W \B we have,

ξ(A ∪ {s})− ξ(A) ≥ ξ(B ∪ {s})− ξ(B). (5)
3 Replacing any w : E → R≥0 with w′ : E → R≥1 : e 7→ αww(e) for a sufficiently large

constant αw does not affect the set of t-optimal graphs.



3 D-Optimality via Graph Synthesis

In this section, we discuss the connection between D-optimality and t-optimality
in SLAM by briefly reviewing the results in [16, 17, 18]. Consider the 2-D
pose-graph SLAM problem where each measurement consists of the rotation
(angle) and translation between a pair of robot poses over time, corrupted by
an independently-drawn additive zero-mean Gaussian noise. According to our
model, the covariance matrix of the noise vector corrupting the ith measurement
can be written as diag(σ2

piI2,σ
2
θi

), where σ2
pi and σ2

θi
denote the translational and

rotational noise variances, respectively. As mentioned earlier, SLAM, as an EoG
problem, admits a natural graphical representation G = (V,E) in which poses
correspond to graph vertices and edges correspond to the relative measurements
between the corresponding poses. Furthermore, measurement precisions are in-
corporated into our model by assigning positive weights to the edges of G. Note
that for each edge we have two separate weight functions wp and wθ, defined as
wp : ei 7→ σ−2pi and wθ : ei 7→ σ−2θi .

Let Var[x̂mle] be the asymptotic covariance matrix of the maximum likelihood
estimator (Cramér-Rao lower bound) for estimating the trajectory x. In [16, 17,
18], we investigated the impact of graph topology on the D-optimality criterion
(detVar[x̂mle]) in SLAM. The results presented in [18] are threefold. First, in
[18, Proposition 2] it is proved that

−2 τwp(G)− log det(Lwθ + γI) ≤ log detVar[x̂mle] ≤ −2 τwp(G)− τwθ (G) (6)

in which γ is a parameter whose value depends on the maximum distance between
the neighbouring robot poses normalized by σ2

pi ’s; e.g., this parameter shrinks
by reducing the distance between the neighbouring poses, or by reducing the
precision of the translational measurements (see [18, Remark 2]). Next, based
on this result, it is easy to see that [18, Theorem 5],

lim
γ→0+

log detVar[x̂mle] = −2 τwp(G)− τwθ (G). (7)

Note that the expression above depends only on the graphical representation of
the problem. Finally, the empirical observations and Monte Carlo simulations
based on a number of synthetic and real datasets indicate that the RHS of (7)
provides a reasonable estimate for log detVar[x̂mle] even in the non-asymptotic
regime where γ is not negligible. In what follows, we demonstrate how these
results can be used in a graph-theoretic approach to the D-optimal measurement
selection and pruning problems.

Measurement Selection. Maintaining sparsity is essential for computational
efficiency in SLAM, especially in long-term autonomy. Sparsity can be preserved
by implementing a measurement selection policy to asses the significance of new
or existing measurements. Such a vetting process can be realized by (i) assessing
the significance of any new measurement before adding it to the graph, and/or
(ii) pruning a subset of the acquired measurements if their contribution is deemed
to be insufficient. These ideas have been investigated in the literature; for the
former approach see, e.g., [13, 26], and see, e.g., [21, 12] for the latter.



Now consider the D-optimal measurement selection problem whose goal is to
select the optimal k-subset of measurements such that the resulting log detVar[x̂mle]
is minimized. This problem is closely related to the D-optimal sensor selection
problem for which two successful approximation algorithms have been proposed
in [13] and [26] under the assumption of linear sensor models. The measurement
models in SLAM are nonlinear. Nevertheless, we can still use [13, 26] after lin-
earizing the measurement model. Note that the Fisher information matrix and
log detVar[x̂mle] in SLAM depend on the true x. Since the true value of x is not
available, in practice these terms are approximated by evaluating the Jacobian
matrix at the estimate obtained by maximizing the log-likelihood function using
an iterative solver.

An alternative approach would be to replace log detVar[x̂mle] with a graph-
theoretic objective function based on (7). Note that this is equivalent to reducing
the original problem into a graph synthesis problem. The graphical approach has
the following advantages:

1. Robustness: Maximum likelihood estimation in SLAM boils down to solving
a non-convex optimization problem via iterative solvers. These solvers are
subject to local minima. Hence, the approximated log detVar[x̂mle] can be
highly inaccurate and lead to misleading designs if the Jacobian is evaluated
at a local minimum (see [18, Section VI] for an example). The graph-theoretic
objective function based on (7), however, is independent of the trajectory x
and, therefore, is robust to such convergence errors.

2. Flexibility : To directly compute log detVar[x̂mle], we first need a nominal or
estimated trajectory x. Furthermore, for the latter we also need to know the
realization of relative measurements. Therefore, any design or decisions made
in this way will be confined to a particular trajectory. On the contrary, the
graphical approach requires only the knowledge of the topology of the graph,
and thus is more flexible. Note that the t-optimal topology corresponds to a
range of trajectories. Therefore, the graphical approach enables us to assess
the D-optimality of a particular design with minimum information and with-
out relying on any particular—planned, nominal or estimated—trajectory.

We will investigate the problem of designing t-optimal graphs in Section 4.

4 Synthesis of Near-t-Optimal Graphs

Problem Formulation. In this section, we formulate and tackle the combinato-
rial optimization problem of designing sparse graphs with the maximum weighted
tree-connectivity. Since the decision variables are the edges of the graph, it is
more convenient to treat the weighted tree-connectivity as a function of the edge
set of the graph for a given set of vertices (V = [n]) and a positive weight func-

tion w :
(
[n]
2

)
→ R≥1. treen,w : 2([n]

2 ) → R≥0 : E 7→ τw([n],E) takes as input a
set of edges E and returns the weighted tree-connectivity of graph ([n],E). To
simplify our notation, hereafter we drop n and/or w from treen,w (and similar
terms) whenever n and/or w are clear from the context.



Problem 1 (k-ESP). Suppose the following are given:

• a base graph Ginit = ([n],Einit)

• a weight function w :
(
[n]
2

)
→ R≥1

• a set of c candidate edges (either C+ or C-)
• an integer k ≤ c

Consider the following edge selection problems (ESP):

� k-ESP+

maximize
E⊆C+⊆([n]

2 )\Einit

tree(Einit ∪ E) subject to |E| = k. (8)

� k-ESP-

maximize
E⊆C-⊆Einit

tree(Einit \ E) subject to |E| = k. (9)

Remark 1. It is easy to see that any instance of (8) can be expressed as an
instance of (9) and vice versa. Therefore, without loss of generality, in this work
we only consider k-ESP+.

1-ESP+. Consider the simple case of k = 1. ∆uv , auvL
−1auv is known as

the effective resistance between vertices u and v. Here auv ∈ {−1,0,1}n−1 is the
vector enu−env after crossing out the entry that corresponds to the anchored ver-
tex. Effective resistance has emerged from several other contexts as a key factor;
see, e.g., [8]. In [19, Lemma 3.1] it is shown that the optimal choice in 1-ESP+

is the candidate edge with the maximum w(e)∆e. The effective resistance can
be efficiently computed by performing a Cholesky decomposition on the reduced
weighted Laplacian matrix of the base graph Linit and solving a triangular linear
system (see [19]). In the worst case and for a dense base graph 1-ESP+ can be
solved in O(n3 + c n2) time.

4.1 Approximation Algorithms for k-ESP+

Solving the general case of k-ESP+ by exhaustive search requires examining
(
c
k

)
graphs. This is not practical even when c is bounded (e.g., for c = 30 and k = 10
we need to perform more than 3×107 Cholesky factorizations). Here we propose
a complementary pair of approximation algorithms.

I: Greedy. The greedy algorithm finds an approximate solution to k-ESP+ by
decomposing it into a sequence of k 1-ESP+ problems, each of which can be
solved using the procedure outlined above. After solving each subproblem, the
optimal edge is moved from the candidate set to the base graph. The next 1-
ESP+ subproblem is defined using the updated candidate set and the updated



base graph. If the graph is dense, a naive implementation of the greedy algo-
rithm requires less than O(kcn3) operations. An efficient implementation of this
approach that requires O(n3 + kcn2) time is described in [19, Algorithm 1].

Analysis. Let Ginit = ([n],Einit) be a connected base graph and w :
(
[n]
2

)
→ R≥1.

Consider the following function.

Xw : E 7→ tree(E ∪ Einit)− tree(Einit). (10)

In k-ESP+, we restrict the domain of Xw to 2C
+

. Note that tree(Einit) is a constant
and, therefore, we can express the objective function in k-ESP+ using Xw,

maximize
E⊆C+

Xw(E) subject to |E| = k. (11)

Theorem 1. Xw is normalized, monotone and submodular.

Proof. Omitted due to space limitation—see the technical report [19].

Maximizing an arbitrary monotone submodular function subject to a cardinality
constraint can be NP-hard in general (see, e.g., the Maximum Coverage problem
[11]). Nemhauser et al. [24] in their seminal work have shown that the greedy
algorithm is a constant-factor approximation algorithm with a factor of η ,
(1 − 1/e) ≈ 0.63 for any (normalized) monotone submodular function subject
to a cardinality constraint. Let OPT be the optimum value of (8), Egreedy be

the edges selected by the greedy algorithm, τgreedy , tree(Egreedy ∪ Einit) and

τinit , tree(Einit).

Corollary 1. τgreedy ≥ ηOPT + (1− η) τinit.

II: Convex Relaxation. In this section, we design an approximation algo-
rithm for k-ESP+ through convex relaxation. We begin by assigning an auxiliary
variable 0 ≤ πi ≤ 1 to each candidate edge ei ∈ C+. The idea is to reformulate
the problem such that finding the optimal set of candidate edges is equivalent to
finding the optimal value for πi’s. Let π , [π1 π2 · · · πc]> be the stacked vector
of auxiliary variables. Define,

Lw(π) , Linit +
∑
ei∈C+

πiw(ei)Lei = AWπA>, (12)

where Lei is the reduced elementary Laplacian, A is the reduced incidence matrix
of G• , ([n],Einit ∪ C+), and Wπ is the diagonal matrix of edge weights assigned
by the following weight function,

wπ(ei) =

{
πiw(ei) ei ∈ C+,

w(ei) ei /∈ C+.
(13)

Lemma 1. If Ginit is connected, Lw(π) is positive definite for any π ∈ [0,1]c.



As before, for convenience we assume Ginit is connected. Consider the following
optimization problems over π.

maximize
π

log det Lw(π)

subject to ‖π‖0 = k,

0 ≤ πi ≤ 1, ∀i ∈ [c].

(P1)

maximize
π

log det Lw(π)

subject to ‖π‖1 = k,

πi ∈ {0,1}, ∀i ∈ [c].

(P′1)

P1 is equivalent to our original definition of k-ESP+. First, note that from the
generalized matrix-tree theorem we know that the objective function is equal
to the weighted tree-connectivity of graph G• = ([n],Einit ∪ C+) whose edges are
weighted by wπ. The auxiliary variables act as selectors: the ith candidate edge
is selected iff πi = 1. The combinatorial difficulty of k-ESP+ here is embodied in
the non-convex `0-norm constraint. It is easy to see that in P1, at the optimal
solution, auxiliary variables take binary values. This is why the integer program
P′1 is equivalent to P1. A natural choice for relaxing P′1 is to replace πi ∈ {0,1}
with 0 ≤ πi ≤ 1; i.e.,

maximize
π

log det Lw(π)

subject to ‖π‖1 = k,

0 ≤ πi ≤ 1, ∀i ∈ [c].

(P2)

The feasible set of P2 contains that of P′1. Hence, the optimum value of P2 is an
upper bound for the optimum of P1 (or, equivalently, P′1). Note that the `1-norm
constraint here is identical to

∑c
i=1 πi = k. P2 is a convex optimization problem

since the objective function (tree-connectivity) is concave and the constraints
are linear and affine in π. In fact, P2 is an instance of the MAXDET problem
[29] subject to additional affine constraints on π. It is worth noting that P2 can
be reached also by relaxing the non-convex `0-norm constraint in P1 into the
convex `1-norm constraint ‖π‖1 = k. Furthermore, P2 is also closely related to
a `1-regularised variant of MAXDET,

maximize
π

log det Lw(π)− λ ‖π‖1

subject to 0 ≤ πi ≤ 1, ∀i ∈ [c].
(P3)

This problem is a penalized form of P2; these two problems are equivalent for
some positive value of λ. Problem P3 is also a convex optimization problem
for any non-negative λ. The `1-norm in P3 penalizes the loss of sparsity, while
the log-determinant rewards stronger tree-connectivity. λ is a parameter that
controls the sparsity of the resulting graph; i.e., a larger λ yields a sparser vector
of selectors π. P3 is closely related to graphical lasso [6]. P2 (and P3) can be
solved globally in polynomial time using interior-point methods [4, 13]. After
finding a globally optimal solution π? for the relaxed problem P2, we ultimately
need to map it into a feasible π for P′1; i.e., choosing k edges from the candidate
set C+.

Lemma 2. π? is an optimal solution for k-ESP+ iff π? ∈ {0,1}c.



Rounding. In general, π? may contain fractional values that need to be mapped
into feasible integral values for P′1 by a rounding procedure that sets k auxiliary
variables to one and others to zero. The most intuitive deterministic rounding
policy is to pick the k edges with the largest π?i ’s.

The idea behind the convex relaxation technique described so far can be seen
as a graph-theoretic special case of the algorithm proposed in [13]. However, it
is not clear yet how the solution of the relaxed convex problem P2 is related to
that of the original non-convex k-ESP+ in the integer program P′1. To answer
this question, consider the following randomized strategy. We may attempt to
find a suboptimal solution for k-ESP+ by randomly sampling candidates. In this
case, for the ith candidate edge, we flip a coin whose probability of heads is πi
(independent of other candidates). We then select that candidate edge if the coin
lands on head.

Theorem 2. Let the random variables k∗ and t∗w denote, respectively, the num-
ber of chosen candidate edges and the corresponding weighted number of spanning
trees achieved by the above randomized algorithm. Then,

E [k∗] =

c∑
i=1

πi, (14)

E [t∗w] = det Lw(π). (15)

Proof. See [19] for the proof.4

According to Theorem 2, the randomized algorithm described above on aver-
age selects

∑c
i=1 πi candidate edges and achieves det Lw(π) weighted number

of spanning trees in expectation. Note that these two terms appear in the con-
straints and objective of the relaxed problem P2, respectively. Therefore, the
relaxed problem can be interpreted as the problem of finding the optimal sam-
pling probabilities π for the randomized algorithm described above. This offers
a new narrative:

Corollary 2. The objective in P2 is to find the optimal probabilities π? for sam-
pling edges from C+ such that the weighted number of spanning trees is maximized
in expectation, while the expected number of newly selected edges is equal to k.

In other words, P2 can be seen as a convex relaxation of P1 at the expense of
maximizing the objective and satisfying the constraint, both in expectation. This
new interpretation can be used as a basis for designing randomized rounding pro-
cedures based on the randomized technique described above. If one uses π? (the
fractional solution of the relaxed problem P2) in the aforementioned randomized
rounding scheme, Theorem 2 ensures that, on average, such a method attains
det L(π?) by picking k new edges in expectation. Finally, we note that this new

4 A generalized version of this theorem that covers the more general case of [13] is
proved in [19].



interpretation sheds light on why the deterministic rounding policy described
earlier performs well in practice. Note that randomly sampling candidate edges
with the probabilities in π? does not necessarily result in a feasible solution for
P′1. That being said, consider every feasible outcome in which exactly k candi-
date edges are selected by the randomized algorithm with probabilities in π?.
It is easy to show that the deterministic procedure described earlier (picking k
candidates with the largest π?i ’s) is in fact selecting the most probable feasible
outcome (given that exactly k candidates have been selected).

Near-Optimality Certificates. It is impractical to compute OPT via ex-
haustive search in large problems. Nevertheless, the approximation algorithms
described above yield lower and upper bounds for OPT that can be quite tight in
practice. Let τ?cvx be the optimum value of P2. Moreover, let τcvx be the subopti-
mal value obtained after rounding the solution of P2 (e.g., picking the k largest
π?i ’s). The following corollary readily follows from the analysis of the greedy and
convex approximation algorithms.

Corollary 3.

max
{
τgreedy,τcvx

}
≤ OPT ≤ min

{
Ugreedy,τ

?
cvx

}
(16)

where Ugreedy , ζτgreedy + (1− ζ)τinit in which ζ , η−1 ≈ 1.58.

The bounds in Corollary 3 can be computed by running the greedy and convex
relaxation algorithms. Whenever OPT is beyond reach, the upper bound can be
used to asses the quality of any feasible design. Let S be an arbitrary k-subset
of C+ and τS , tree(S ∪ Einit). S can be, e.g., the solution of greedy algorithm,
the solution of P2 after rounding, an existing design (e.g., an existing pose-graph
problem) or a suboptimal solution proposed by a third party. Let L and U denote
the lower and upper bounds in (16), respectively. From Corollary 3 we have,

max
{

0,L− τS
}
≤ OPT− τS︸ ︷︷ ︸

optimality gap

≤ U− τS. (17)

Therefore, U−τS (or similarly, U/τS ≥ OPT/τS) can be used as a near-optimality
certificate for an arbitrary design S.

Two Weight Functions. In the synthesis problem studied so far, it was im-
plicitly assumed that each edge is weighted by a single weight function. This is
not necessarily the case in SLAM, where each measurement has two components,
each of which has its own precision, i.e., wp and wθ in (7). Hence, we need to
revisit the synthesis problem in a more general setting, where multiple weight
functions assign weights, simultaneously, to a single edge. It turns out that the
proposed approximation algorithms and their analyses can be easily generalized
to handle this case.

1. Greedy Algorithm: For the greedy algorithm, we just need to replace Xw with
Yw : E 7→ 2Xwp(E) +Xwθ (E); see (7). Note that Yw is a linear combination of



normalized monotone submodular functions with positive weights, and there-
fore is also normalized, monotone and submodular.

2. Convex Relaxation: The convex relaxation technique can be generalized to
the case of multi-weighted edges by replacing the concave objective function
log det Lw(π) with 2 log det Lwp(π) + log det Lwθ (π), which is also concave.

Remark 2. Recall that our goal was to design sparse, yet reliable SLAM prob-
lems. So far we considered the problem of designing D-optimal SLAM problems
with a given number of edges. The dual approach would be to find the sparsest
SLAM problem such that the determinant of the estimation-error covariance is
less than a desired threshold. Take for example the following scenario: find the
sparsest SLAM problem by selecting loop-closure measurements from a given
set of candidates such that the resulting D-criterion is 50% smaller than that of
dead reckoning. The dual problem can be written as,

minimize
E⊆C+

|E| subject to Xw(E) ≥ τmin. (18)

in which τmin is given. In [19] we have shown that our proposed approximation
algorithms and their analyses can be easily modified to address the dual problem.
Due to space limitation, we have to refrain from discussing the dual problem in
this paper.

4.2 Experimental Results

The proposed algorithms were implemented in MATLAB. P2 is modelled using
YALMIP [22] and solved using SDPT3 [28].

Random Graphs. Figure 1 illustrates the performance of our approximate
algorithms in randomly generated graphs. The set of candidates in these experi-
ments is C+ =

(
[n]
2

)
\Einit. Figures 1a and 1b show the resulting tree-connectivity

as a function of the number of randomly generated edges for a fixed k = 5
and, respectively, n = 20 and n = 50. Our results indicate that both algo-
rithms exhibit remarkable performances for k = 5. Note that computing OPT
by exhaustive search is only feasible in small instances such as Figure 1a. Never-
theless, computing the exact OPT is not crucial for evaluating our approximate
algorithms, as Corollary 3 guarantees that τ?greedy ≤ OPT ≤ τ?cvx; i.e., the space
between each black · and the corresponding green ×. Figure 1c shows the re-
sults obtained for varying k. The optimality gap for τcvx gradually grows as
the planning horizon k increases. Our greedy algorithm, however, still yields a
near-optimal approximation.

Real Pose-Graph Dataset. We also evaluated the proposed algorithms on
the Intel Research Lab dataset as a popular pose-graph SLAM benchmark.5 In
this scenario, Einit is chosen to be the set of odometry edges, and C+ is the set

5 https://svn.openslam.org/data/svn/g2o/trunk/data/2d/intel/intel.g2o

https://svn.openslam.org/data/svn/g2o/trunk/data/2d/intel/intel.g2o
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(c) n = 50, |Einit| = 200

Fig. 1: k-ESP+ on randomly generated graphs with C+ =
(
[n]
2

)
\ Einit.

of loop closures. The parameters in this graph are n = 943, |Einit| = 942 and
|C+| = 895. Note that computing the true OPT via exhaustive search is clearly
impractical; e.g., for k = 100, there are more than 10134 possible graphs. For
the edge weights, we are using the original information (precisions) reported in
the dataset. Since the translational and rotational measurements have different
precisions, two weight functions—wp and wθ—assign weights to each edge of the
graph, and the objective is to maximize 2 τwp(G) + τwθ (G). Figure 2 shows the
resulting objective value for the greedy and convex relaxation approximation
algorithms, as well as the upper bounds (U) in Corollary 3.6 According to Fig-
ure 2, both algorithms have successfully found near-t-optimal (near-D-optimal)
designs. The greedy algorithm has outperformed the convex relaxation with the
simple deterministic (sorting) rounding procedure. For small values of k, the up-
per bound U on OPT is given by Ugreedy (blue curve). However, for k ≥ 60, the
convex relaxation provides a significantly tighter upper bound on OPT (green
curve). In this dataset, YALMIP+SDPT3 on an Intel Core i5-2400 operating at
3.1 GHz can solve the convex program in about 20-50 seconds, while a naive

6 See also https://youtu.be/5JZF2QiRbDE for a visualization.

https://youtu.be/5JZF2QiRbDE
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Fig. 2: k-ESP+ for pose-graph SLAM on the Intel Research Lab dataset.

implementation of the greedy algorithm (without using rank-one updates) can
solve the case with k = 400 in about 25 seconds.

5 Conclusion

We presented a graph-theoretic approach to the problem of designing sparse re-
liable (i.e., near-D-optimal) pose-graph SLAM. This paper demonstrated that
this problem boils down to a combinatorial optimization problem whose goal is
to find a sparse graph with the maximum weighted number of spanning trees.
The problem of characterizing t-optimal graphs is an open problem with—to
the best of our knowledge—no known efficient algorithm. We designed two ef-
ficient approximation algorithms with provable guarantees and near-optimality
certificates. First and foremost, we introduced a new submodular graph invari-
ant, i.e., weighted tree-connectivity. This was used to guarantee that the greedy
algorithm is a constant-factor approximation algorithm for this problem with a
factor of (1 − 1/e) (up to a constant normalizer). In another approach, we for-
mulated the original combinatorial optimization problem as an integer program
that admits a natural convex relaxation. We discussed deterministic and ran-
domized rounding schemes. Our analysis sheds light on the connection between
the original and the relaxed problems. Finally, we evaluated the performance of
the proposed approximation algorithms using random graphs and a real pose-
graph SLAM dataset. Although this paper specifically targeted SLAM, we note
that the proposed algorithms can be readily used to synthesize near-t-optimal
graphs in any domain where maximizing tree-connectivity is useful. See, e.g.,
[10, 20, 3, 19] for applications in Chemistry, RNA modelling, network reliability
under random link failure and estimation over sensor networks, respectively.
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