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Abstract – By nature, human beings are curious about their environment. Arriving in 

a new place, they observe, recognize and interact with their surroundings. People 

collect information about the new place, and locate objects in that space that help 

them to make further decisions. This is a typical scenario of spatial exploration. 

Spatial exploration is common human behavior, where humans explore unknown 

environments to acquire information and resources. It is pervasively seen in real-

world and virtual environments, from exploring new living/working spaces to 

charting the oceans or venturing beyond the boundaries of our planet. Just as humans 

explore ‘real’ environments, they also investigate artificial environments in video 

games. Computer agents, which perceive surrounding environments with limited 

visual range, often appear in exploration activities, acting as tools or partners for 

explorers. Despite the broad range of human activities that employ exploration 

behavior, this element has been insufficiently investigated and understood. 

Additionally, even though it is commonly accepted that believable agents benefit 

people in human-computer interaction systems, the research into creating computer 

agents with believable exploration behavior has been neglected. To solve these 

issues, I extract the patterns of human exploration behavior in virtual environments, 

and explore the methodologies of developing believable agents, which explore 

spatial environments in human-like ways. In the pursuit of this goal, this thesis 

makes the following four contributions to the emerging field of believable agent 

exploration: 1) I employed video games as a testbed to investigate human behavior 

of spatial exploration. Human players played specialized exploration games, 

verbalized their behavior during playing and discussed their thoughts in the post-play 

interview. Behavioral patterns were extracted based on replays of playing, think-

aloud data and interview data via thematic analysis. 2) Differences of exploration 
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behavior between human and computer agents were identified through a third-

person-observation assessment of believability. 3) A heuristic agent was developed, 

which mimics human exploration methods reflected via the behavioral patterns. 

Three heuristics, as components of the heuristic agent, were designed to filter 

potential options when the agent decides where to explore in each step. 4) An 

integrated agent was developed by filling the behavior gaps between human and 

computer agents, where an integrated architecture embedded expectations of human-

like exploration from mid-level players. Both the heuristic agent and the integrated 

agent passed the third-person-observation assessment of believability. Therefore, 

findings in this thesis contribute to fill the gaps in the fields of understanding human 

exploration behavior as well as developing believable agent.  

 

Index Terms – autonomous exploration, spatial exploration, real time strategy (RTS) 

games, Turing test, believability assessment, human-like intelligent agent, believable 

bot, thematic analysis, heuristic method. 
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Chapter 1. Introduction 

1.1 Spatial Exploration 

Human beings have a long history of exploration in the search for resources 

and knowledge. Notable human exploration stories, such as the Greek exploration of 

Northern Europe and Thule (Markham 1893), the Chinese exploration of Central 

Asia (Wood 2004; Wriggins 1998) and the Vikings (Fitzhugh & Ward 2000) have 

featured in many books and films. Exploration rose dramatically when European 

explorers sailed and charted much of the rest of the world in pursuit of power and 

material wealth (Parry 1981). Since then, much major exploration has occurred for 

reasons mostly aimed at information discovery.  

In the recent years, modern techniques enable humans to reach places they 

could not have reached independently. These techniques have increased the desire to 

explore deep waters and outer space. Taking the deep-dive ability of bathyscaphes, 

explorers measure the depth of trenches in the deepest parts of the ocean (such as the 

Mariana Trench) (Chan & Villagomez 2010), explore shipwrecks (Wall 2010) (for 

example the Titanic, which sank in the North Atlantic Ocean in 1912), and discover 

deep marine life (Johnson 2013). In terms of outer space, scientists observe the 

universe (Sparrow 2006) (such as stars, planets, galaxies and nebulae), detect the 

terrain and landforms in other planets (Adler & Trombka 2012) (for example craters 

on the Moon), and collect samples of materials (for example samples of soil on Mars) 

(Editors 2012). Humans fulfil the desire to explore by using special devices or 

deploying them to automated or semi-automated machines. 



2 

Many exploration-based tasks in human societies are also carried out with the 

assistance of machines to save labor, reduce risk and decreasing the risk of 

contamination. They are applied to save lives, study archaeology and conduct 

military operations. These applications often occur in environments which are 

dangerous or difficult to assess without additional technology (Thrun et al. 2004), 

such as using drones for aerial surveillance (Cavoukian 2012). For civil usage, 

autonomous robots are sent to scan unmapped places to construct digital maps 

(Celmins 2000)  and into otherwise inaccessible places, which are inconvenient for 

people to move in, for search and rescue missions (Tadokoro 2009). They are also 

applied in military scenarios to scout the environment and assess hostile strength 

(Carpenter 2016). In many of these cases, machines explore the environment, collect 

information and transfer the data to humans. Oftentimes, they execute operation 

commands from humans for further exploration or other exploration-based behavior. 

In such ways, humans and machines complete these tasks collaboratively.  

Exploration is not only a kind of group activity, but also a type of common 

behavior of individuals. A newly enrolled member of staff explores his or her 

working environment (such as office areas, laboratories, lounges, café, shops nearby 

etc.) Tourists explore roads, landmarks, museums, resorts and scenic spots when 

they arrive in a new city (Maitland & Ritchie 2009). Even a renovated shopping mall 

that is near to home is valuable for humans to explore to discover new opportunities 

and entertainment.  

1.2 Insufficiently Studied Spatial Exploration 

Exploration is a common discovery-based activity that players perform in 
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modern video games (Hamari & Tuunanen 2014). In some games, like Journey 

(thatgamecompany 2012), the game can be simply about exploration. In other games, 

ranging from adventure games to first-person shooter (FPS) games, exploration is a 

core game mechanism that is essential for players to advance in the game (Fullerton 

2014; Schell 2015). The most common type of exploration in games is spatial 

exploration, which includes:  

• mapping environments 

• collecting bonus items 

• discovering locations, landmarks and specific game items. 

Mapping game environments is a design manifestation of the spatial 

exploration mechanics in games, where players must reveal unknown environments 

by travelling on them (for example, uncovering the fog of war in a real-time strategy 

(RTS) game (Hagelback & Johansson 2008; Si, Pisan & Tan 2014a)). In these 

scenarios, players normally explore the game world to cumulatively build up their 

knowledge of the map, which makes it easier for them to navigate between locations 

to find game objects of interest. Often, exploration also adds to the variety of 

gameplay, for example, rewarding players when they uncover hidden trap doors to 

secret levels, or finding secret game items with special abilities (Wang & Sun 2011). 

Although spatial exploration is an essential activity of human beings, human 

behavior in performing this type of exploration tasks is insufficiently understood. 

Behavioral patterns and types of human exploration have not been fully investigated. 

Exploration is involved in many aspects of human life but there is no uniform 

scenario which reflects all kinds of exploration behavior. Rather than examine these 
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real-life scenarios, video games can be used as a virtual abstraction of the real-world 

to sample human exploration behaviors (Garris, Ahlers & Driskell 2002). To achieve 

this, the settings of virtual environments could be flexibly customized to seamlessly 

fit into real environments. In this manner, this research employs RTS games as a 

testbed to generate knowledge reveal how humans explore spatial environments.  

Prior work has devised several player types, which have been shown to 

effectively reflect the behavior features of different groups of players (Bartle 1996; 

Bateman, Lowenhaupt & Nacke 2011). Although the player typology derivations 

and findings are highly valuable to game design, they are lacking in terms of their 

consideration of player exploration behavior. Human exploration behavior even in 

virtual worlds has not been fully studied. 

Investigating how human players explore virtual game environments 

contributes to better game design, for example, how game objects are hidden and 

distributed around the map as well as the design of believable non-player characters 

(NPCs) that use human-like exploration techniques. It is also essential to develop an 

exploration component for computer agents in both real-life and virtual worlds. 

Within the exploration scenario mentioned above, computer agents that are capable 

of doing exploration play an important role in assisting humans. Hence, better 

exploration agents can improve the ways that humans explore.  

In this thesis, I utilize computer agents to represent computer programs that 

autonomously control a unit to conduct spatial exploration in virtual environments. 

They have a certain intelligence where they can also be regarded as a kind of 

intelligent agent. They are differentiated from humans since they do not have actual 

human intelligence. They can also be regarded as machines in the Turing test 
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(Turing 1950) scenarios as a means of distinguishing them from humans. Given the 

fact that experiments run in the video game environment, they also include computer 

game playing agents (“bots”) (Hingston 2009), which represent the software 

programs that play video games. In later chapters, I will consistently use computer 

agents to represent the terminologies of intelligent agents, machines and bots in the 

fields I focus on. 

1.3 Research on Autonomous Exploration 

Developing autonomous exploration agents is an active research area in the 

robotic field (Thrun 2002). Researchers design exploration algorithms to fulfil 

mapping and searching and to conduct tasks in unknown environments. The test beds 

mainly employ robots working on a setup scenario of the real world or a computer-

simulated environment. The testing methods normally get a set of algorithms to run 

for the same exploration task several times. Indicators such as time utilization, 

travelling distance, map coverage and goal achievement are collected for each run of 

the experiment. In general, the algorithm with less time expenditure, less travelling 

distance, more map coverage and more goal achievement is evaluated as the best one 

(Amigoni 2008).  

Those experiments assume the best algorithm is one that can achieve the 

goals of tasks efficiently and independently. In many cases, however, people cannot 

wait until the whole environment has been explored before making further decisions 

(Schenker et al. 2003). The exploration tasks can sometimes be endless. It is 

common that there are no explicit boundaries for unknown areas. Hence, exploration 

agents are required to continuously supply valuable information to provide support 
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to humans, in time-constrained missions (Schenker et al. 2003).  Intermediate 

results—including procedure, strategy and preferences of exploration—should make 

sense to people. One possible way to achieve this goal is to make exploration agents 

believable.  

1.4 Believable Agent 

Research on believable agents has been an active field crossing several areas 

of artificial intelligence (AI), human-computer interaction (HCI) and game research. 

Insights from virtual environments indicate that believable characters enhance player 

experience by playing with or against human players (Umarov & Mozgovoy 2012). 

They are key factors in constructing believable virtual environments. Believable 

agents can aid in improving the efficiency of work environments as well as quality 

of life by collaborating with and assisting human users. One of the first definitions of 

believability is an “illusion of life” (Bates 1994). Believability is a cognitive 

sensation created by virtual characters, which makes the people, whom the 

characters are interacting with, believe that these characters are thinking, feeling, 

intelligent and realism. It represents different meanings in different scenarios. A 

chat-bot illustrates believability by expressing a range of emotions (Bates 1994). 

Johansson et al. (2013) believed that emotions, social positioning and interaction of 

deliberating entities are three factors to create believability for NPCs in multiplayer 

games.  Avradinis, Panayiotopoulos & Anastassakis (2013) focused on human 

intentions which reflect on decision making as the source of believability. In this 

thesis, the believability discussed refers to human-likeness, or the degree to which 

the agent credibly and consistently demonstrates human-like behavior. The meaning 

of the word “behavior” varies among different researchers. Several studies focused 
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on the behavior illustrating the sense of believability in different means such as gaze 

(Poel et al. 2009), facial expression (Malatesta et al. 2009; Sloan, Cook & Robinson 

2009), gesture and posture (Corradini et al. 2004). The behavior, however, refers to 

navigation behavior and its domain-relevant extensions in this thesis.   

The Turing test provides the foundation for believability assessments, which 

is a benchmark in assessing the intelligence of computer programs. In the Turing test, 

participants were asked to distinguish humans from computer agents by textually 

communicating with them via a computer. The way that invites human judges to 

interact with, observe and compare the exhibitions of human and computer agents, 

which is presented by Turing, comes the basic theory to evaluate believability. Video 

game characters use more than just textual or verbal means in their interactions with 

players. In many cases, their believability is primarily exhibited via their behavior. 

Even though human players normally cannot converse directly with these characters, 

the actions exhibited by them that players observe directly enhance the gameplay 

experience (Iskander & Maxim 2012). A range of literature (Choi et al. 2007; Glende 

2004; Taatgen et al. 2003) has demonstrated that human-like characters in the virtual 

world enhance players’ feelings of immersion and increase the enjoyment of digital 

game play. This phenomenon encourages both game researchers and AI researchers 

to investigate and develop believable characters (for example, Reidl and Stern’s 

interactive narrative system for storytelling (Riedl & Stern 2006)).   

Several game AI competitions, such as Super Mario AI (Shaker et al. 2013; 

Togelius et al. 2012) and the 2K BotPrize Competition (Hingston 2009), encourage 

participants to develop believable AI (Livingstone 2006) bots. These competitions 

provide several promising directions for creating believable computer agents. The 
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applied, practical approaches vary from scene to scene. For example, in Super Mario, 

where the core gameplay is focused on moving and jumping to collect coins and 

avoid obstacles, A* (Hart, Nilsson & Raphael 1968)(a popular path finding 

algorithm, which solves problems by searching the solution with the smallest cost 

among all possible paths to the solution. It firstly considers possible paths that 

appear to lead most quickly to the solution by using a heuristic distance-evolution 

component.)  and other rule-based path finding strategies normally form the basis of 

the participants’  approaches (Shaker et al. 2013). In FPS games, such as Unreal 

Tournament used in the 2K BotPrize Competition, learning to use weapons is largely 

the focus of the participants’ approaches when developing gameplay agents 

(Hingston 2009).  

Even though developing believable agents has been investigated in many 

other game activities and genres, believability in reconnaissance and exploration in 

unknown environments has not been fully studied. Enabling gameplay agents to 

have believable exploration contributes to developing believable gameplay agents 

where game environments need to be explored. Reconnaissance and exploration in 

an unknown environment is a popular activity in terms of gameplay in a variety of 

digital games (for example searching for hidden portals in Role Playing Game (RPG) 

and spying on enemy forces in RTS games). Therefore, developing believable 

exploration agents can be of considerable benefit in creating believable gameplay 

agents.  

1.5 Research Questions 

The background introduced above reveals that understanding how humans do 
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spatial exploration and developing believable spatial exploration agents benefit many 

fields, such as understanding humans’ spatial recognition and navigation systems, 

designing digital navigators, designing game environments and developing general 

human-like computer agents. These two problems, so far however, have not been 

sufficiently researched and so this thesis aims to fill that gap.  

The objectives of this research are to understand how humans do spatial 

exploration and to investigate ways to develop believable spatial exploration agents. 

The medium which I employ to achieve these goals is a virtual environment in the 

RTS genre. The overarching research questions are:  

Q1. How do players explore virtual environments? What behavioral 

patterns do they exhibit? 

Q2. What behavioral differences exist between normal players and 

automated exploration agents? 

Q3. How do the behavioral patterns of human exploration contribute to 

believable exploration? 

Q4. How do we bridge the gap between human and computer agents’ 

exploration via a computer agent? 

The four research questions presented follow the logic that understanding 

human behavior in terms of exploration presents a valid assessment method to 

evaluate human-likeness in exploration, and then design exploration computer agents 

by mimicking human behavior and evaluating it with the assessment method 

presented. The four research questions are answered in the four chapters (from 

Chapter 3 - 6) separately. In Chapter 3, the game environments (three exploration 
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games) are developed, which are used as the testbed. The patterns of how humans 

explore spatial environments identified in Chapter 3 are used to develop human-like 

agents in Chapter 5, which contribute to creating heuristic option filters. The four-

phase thematic analysis developed in Chapter 3 is also used in subsequent chapters 

to analyze the verbal data collected from experiment participants. In Chapter 4, a 

believability assessment method is developed, which is used to identify the 

behavioral gaps of humans and computer agents, and to evaluate the developed 

exploration agents in Chapter 5 and Chapter 6 respectively.  

1.6 Experimental Environments 

Real or simulated robots are normally employed to test autonomous 

exploration algorithms. However, it is difficult to record the data of human 

explorations in such environments. Additionally, the interactive interfaces are not 

suitable to compare and distinguish exploration behaviors between human and 

computer agents. These environments, hence, are not suitable to conduct the 

experiments within this thesis.   

I selected the RTS game – StarCraft (Entertainment 1998) as the testbed, due 

to a number of experimental and practical considerations. The primary reason is that 

the StarCraft platform enables researchers to easily develop rich experimental 

environments by providing a virtual world editor. Researchers are able to customize 

the virtual terrain, import extra models and modify the attributes (such as moving 

speed, damage and armors etc.) of units. They have even been authorized to design 

game scenarios. This provides opportunities to gamify the exploration tasks, which, 

in turn, simplifies the process of conducting user studies. For the requirements of 
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understanding human behavior in exploration tasks and of evaluating believable 

behavior, a game platform needs to be convenient, agile and comprehensive. 

StarCraft offers the capability to conduct tests in its RTS game platform.  

Another reason is grounded in the consideration of the strategic purposes of 

either real world applications or virtual world functions. Exploration for constructing 

digital maps, searching specific items and scouting opponents acts as a foundation to 

support further strategic actions. The mechanism of RTS games is a vivid simulation 

of strategic battle scenarios. Making use of this mechanism, the output of the 

exploration module could be designed by involving the strong correlations with other 

modules. Normally, almost all other modules (such as battle management module, 

unit production module and building construction modules etc.) are affected by the 

information gained from scouting about terrain and opponents.  

Finally, the main application goal of this research is to make a contribution to 

developing believable characters, especially human-like gameplay agents, in RTS 

and other relevant games. After it was released in 1998, StarCraft was one of the 

most popular RTS games during the past 20 years. The game mechanism, design and 

implementation influenced the conceptualization of RTS games in players’ minds 

and pervasively affected the development of successor RTS games. Thanks to the 

StarCraft AI Competition, first hosted by the Artificial Intelligence and Interactive 

Digital Entertainment (AIIDE) Conference in 2010, StarCraft has become a notable 

testbed for evaluation of AI agents (Ontañón et al. 2013) and so in keeping with this 

existing literature I also utilize it for our experiments. 
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1.7 Contributions 

This thesis generates broad contributions ranging from identifying behavioral 

patterns of human exploration to developing believable exploration agents in 

different ways.  

1. Identify behavioral patterns by revealing four behavioral archetypes: 

Wanderers, Seers, Pathers and Targeters when humans explore virtual environments. 

Wanderers’ movements do not exhibit a definite destination or purpose. Seers aim to 

aggressively expand their visibility span when exploring unknown environments. 

The Pather archetype is characterized by elaborately structured cognitive maps of 

environments. And the Targeter archetype is objective-oriented towards terrain 

features. 

2. Understand how humans explore virtual environments by analyzing the 

four behavioral archetypes through the lenses of strategy, reasoning, perception and 

hesitation.  

3. Explore how gender, weekly gameplay time and real-life navigation 

abilities contribute to the determination of players’ behavioral types in exploring 

virtual environments.   

4. Develop an experimental framework based on a third-person-observation 

method to evaluate the believability of computer agents in exploring virtual 

environments.  

5. Build structured models to represent behavior differences extracted 

between human players and computer agents on aspects of interaction with 
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environments, game-goal orientation, navigation and sense of the mechanism, in 

exploration contexts, which construct a framework of believability criteria. 

6. Use heuristic methods to develop a computer agent to play exploration 

games. It mimics the way of humans explore and passed the third-person-

observation assessment of believability. Meanwhile, it performed well in completing 

exploration tasks efficiently.  

7. Develop a believable exploration agent by integrating components which 

bridges the behavioral gaps between humans and computer agents in terms of 

believability.  

The listed contributions filled gaps in the field of human behavior and 

believable agent. They also provide guidance for game design, believability 

assessment, and development of believable agent.    

1.8 Thesis Outline 

In this thesis, I employed an action-based research methodology, where 

human exploration patterns are exacted based on the analysis of their gameplay, and 

development and evaluation of believable agents are based on the gameplay of 

exploration games. In Chapter 2, I give an overview of the research on believability 

in games, RTS and gameplay AI, spatial exploration, human navigation and 

exploration and gamer types. Human behavior in exploring virtual environments is 

investigated in Chapter 3 and behavioral patterns are identified. In Chapter 4, an 

experimental framework is developed to evaluation believability of agent and 

identify the framework of believability criteria in exploration games. Chapter 5 

presents a heuristic agent mimicking human exploration based on behavioral 
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patterns identified in Chapter 3, where its believability and efficiency are evaluated. 

In Chapter 6, I develop an integrated agent which bridges the behavioral gaps 

between humans and computer agents identified in Chapter 4. Finally, I conclude 

with the findings and lessons of this thesis, and present future work extending this 

thesis in Chapter 7. 
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Chapter 2. Literature Review 

In this chapter, I review literatures in fields of believability, RTS and 

gameplay AI, spatial exploration, human navigation and exploration, and gamer 

types. In reviewing each of the field, I identify gaps that this thesis contributes to. I 

also highlight ideas, methodologies, trials and conclusions from previous research 

which support our work.  

2.1 Believability and Believable Characters in Games 

Improving the subjective feeling of enjoyment while experiencing games (i.e. 

playable) is a reasonable way to improve gaming (Nacke et al. 2009). The playable 

feeling is mainly grounded in feeling immersed (Jennett et al. 2008), presence and 

flow (Weibel et al. 2008). The implementation of the immersed feeling most likely 

relies on the techniques of computer graphics, which is outside the scope of this 

research. Flow represents a mental state that a person has with a feeling of energized 

focus, full involvement and enjoyment when performing an activity. Strong feelings 

of presence and flow can be elicited in playing against a human-controlled opponent 

(Weibel et al. 2008). That motivates our research direction to develop gameplay 

agents with believable behavior (human-like) for enhancing the feeling of enjoyment.  

2.1.1 Turing Test 

Turing (1950) proposed the question “Can machines think?”, from which he 

presented the famous Turing test to analyze the intelligence level of computer agents. 

The typical form of Turing test is that an interrogator in one room uses a computer to 

play a question-and-answer game with two subjects who are in another room. One of 
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the subjects is human while the other is a computer agent that attempts to fool the 

interrogator into thinking it is human. The task of the interrogator is to determine 

which is which. If the interrogator is unable to tell, then the computer agent must be 

considered intelligent (Figure 2.1).  

 

Figure 2.1 Turing test (Turing 1950) 

The Turing test encouraged researchers and developers to create a computer 

agent for passing the test. Turing test based competitions were also organized, 

providing a platform for practical Turing tests. The Loebner Prize 

(http://www.loebner.net/Prizef/loebner-prize.html) was first held by Hugh Leobner 

in 1991, which became an annual Turing test event. During the competition, the 

programmers were required to create a conversational program (called chatterbot or 

chatbot). The interrogator acted as a judge, who chatted with both the program and a 

human (“confederate”), and then made a determination as to which one was human 

and which one was the program. The format of the competition has changed over the 

years, so that the conversational restriction decreased while the chatting time was 

extended.  The competition has awarded the bronze medal every year for the 
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computer system that, in the judges’ opinion, exhibits the most “human likeness” 

among the year’s participants.  The silver and gold prizes have never been won so 

far. The silver prize is granted to the first chatbot that judges cannot distinguish from 

a real human. The gold prize is rewarded the first chatterbot that judges cannot 

distinguish from a real human in a Turing test which includes deciphering and 

understanding test, visual and auditory input. 

Aside from high endorsements, the Turing test has also has been widely 

criticized. The most renowned criticism was John Searle’s paper (Searle 1980), in 

which the “Chinese Room” was presented. He argued that the Turing test could not 

be the criterion for whether a machine could think. Searle noted that a conversational 

machine could pass the Turing test by simply manipulating symbols which it did not 

understand at all. Within that, it could not be identified as “thinking” in the sense 

that people think.  

Getting rid of the criterion of the “thinking” machine, the assessment theory 

that was implied in the Turing test could be used to reflect the human-likeness of 

programs’ conversational behavior. Human-likeness itself is meaningful in several 

applications. 

2.1.2 Definition of Believability 

Human-likeness of artificial entities that can think, feel and behave like 

humans is, grounded in the idea of believability. The first published page that 

describes believability is about  Disney animation (Thomas, Johnston & Rawls 

1981), starting with the words:  
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“Disney animation makes audiences really believe in … characters 

whose adventures and misfortunes make people laugh - and even cry. 

There is a special ingredient in our type of animation that produces 

drawings that appear to think and make decisions and act of their own 

volition; it is what creates the illusion of life.” 

The definition of believability as the “illusion of life” is widely adopted in 

the field of interactive agents. Believable agents refer to software programs “that 

provide the illusion of life, thus permitting [an] audience’s suspension of disbelief.” 

(Bates 1994). Riedl & Young (2005) present a precise definition of it: “Character 

believability refers to the numerous elements that allow a character to achieve the 

‘illusion of life,' including but not limited to personality, emotion, intentionality, and 

physiology and physiological movement.”  

In video games, human players commonly play with or against players who 

are controlled by AI. To apply believability to these cases, do we still have to pursue 

the goal of “creating characters to achieve the ‘illusion of life’”? Since video games 

themselves are running in a virtual environment, the feeling of “illusion of life” that 

human players are likely to get is, actually, the illusion of being controlled by 

humans (Livingstone 2006; Tencé et al. 2010). Therefore, the fulfilment of 

believability in video games is transferred to create a gameplay agent, which can 

make players believe that a human is controlling the agent.   

2.1.3 Believability Criteria 

Understanding the criteria of believability is a pre-requisite for designing 

believable agents. Laird & Duchi (2000) designed an in-game observation and 
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questionnaire-based assessing environment to explore the believable criteria with 

component-scaled Soar in the FPSgame – Quake (Software 1996). They found that 

decision time and aiming skills affect whether believability is convincing where bots 

with 0.1 second decision time and mid-level of aiming skill were mostly regarded as 

human players. Soar is an AI architecture in which long-term procedural knowledge 

is encoded (Laird, Newell & Rosenbloom 1987). The Hingston (2009) study showed 

that gameplay bots which applied pseudo-randomness and incorporated skill errors 

achieved success in performed believability. The judges’ comments suggested that 

measurements such as increasing the range of human-like behavior, eliminating 

obvious stupid behavior, increasing bot’s apparent aggression levels and exhibiting 

sound tactical play could increase the level of bots’ believability in FPSgames. 

Reynaud, Donnart & Corruble (2014) proposed that efficiency was another factor 

contributing to believability. In social scenarios, a study from Demeure, 

Niewiadomski & Pelachaud (2011) indicated that appropriate emotions and variable 

social-cognition could create high perceived believability. 

Tencé et al. (2013) proposed ten requirements for believability. First, the 

believable agent should react reasonably to other players and the variants of the 

virtual environment (Livingstone 2006; Wetzel 2004). The reaction time needs to be 

controlled as long as the human players react (Laird & Duchi 2000; Livingstone 

2006). Repeating the same action and behavior undermines the illusion of being 

human-controlled, which requires the agent to change their actions in different ways 

and even surprise players with unpredictable behavior (Bryant & Miikkulainen 2006; 

Isla 2005; Laird & Duchi 2000; Livingstone 2006; Loyall 1997). It is necessary to 

have similar perception ability to players with whom it interacts (Cass 2002). It 
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should memorize what was presented (Loyall 1997), understand players’ behavior 

(Isla 2005; Pinchbeck 2008) and be able to plan autonomously to avoid possible 

mistakes (Livingstone 2006). Finally, the agent has to evolve and adapt its behavior 

via interacting with the environment and players (Gorman & Humphrys 2007; 

Thurau, Paczian & Bauckhage 2005). The ability to evolve should also appear to be 

felt by the human players (Tencé et al. 2013).  

2.1.4 Believability Assessment 

Inheriting from the traditional Turing test, believability assessments are 

conducted through experiments where judges interact with both chatbots and 

humans in a first-person view and then evaluate the human-likeness of the entities 

that they communicate with. This approach is called first-person assessment, where a 

human player (judge) is engaged in a video game against two opponents, which are 

controlled by another human and an AI system separately. The judge’s task is to 

identify the human among the opponents (Hingston 2009).  

Gilbert & Forney (2015) designed an assessment environment where judges 

chat with 3D virtual chatbots and both the AI and psychological factors were 

evaluated. French (2012) showed that assessing the computer agents’ ability to 

process information and interact in a meaningful way is more crucial than just 

fooling a human. Karniel et al. (2010) organized a version of the hand-shaking 

assessment, in which judges physically shook hands with a mechanical arm, which 

was either controlled by a human or a program. Then, judges attempted to 

distinguish which was which. 

Many scenarios of video gameplay do not require players or characters to 
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interact consistently with each other. In 2K Botprize (Hingston 2009), the judges 

joined into the game but acted as bystanders. They used a voting gun to shoot and 

mark the characters which were reckoned as human players. Two potential 

weaknesses of the method are 1) it is difficult for judges to spend even time on each 

of the subjects, and 2) in-game operation may disturb the observations.  

Togelius et al. (2012) introduced a third-person assessment approach to 

evaluate Mario AIs, in which judges did not stand in the scenes of gameplay but 

watched video clips. Llargues Asensio et al. (2014) compared the first-person and 

third-person assessment methods in the context of BotPrize competition. The results 

suggested the third-person approach is more demanding than the first-person 

evaluation in the behavioral context.  

Selection of judges is also an important aspect of believability assessment. 

Within an assessment, keeping both human players and computer agents attempting 

to be a human that judges expect could reduce recognition errors and increase the 

accuracy of the Turing test (Warwick & Shah 2015). Hence, judges’ expectations of 

human-likeness involve assessments, which means that whether bots successfully 

convince judges relies on how much their behavior can match the judges’ 

expectations. Hingston (2009) believed AI and psychology experts who have a 

thorough understanding of the inner mechanism of AI were the ideal judges for these 

types of evaluations.  

An alternative approach is to employ automated analysis algorithms, which 

can analyze a series of stored action sequences, performed by human-controlled and 

AI-controlled characters, referring to ‘believability attributes’ (Umarov & Mozgovoy 

2012). One example is automated believability testing applied in detecting cheating 
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bots in Quake 2 (Pao, Chen & Chang 2010). The authors developed an algorithm to 

classify any given player as a human or an AI system by comparing the trajectories 

of characters with pre-recorded trajectories of human players and bots. 

2.1.5 Alternatives to Believability Assessment Solutions 

Motivated by the Turing Test, a lot of effort has been put into the research of 

exploring ways to produce computer agents that can operate their intelligence like 

humans and behave in a humanoid manner. The pre-condition is to have a practical 

and valid assessment methodology to indicate whether a computer agent is 

believable or not. In addition to validating the believability of a computer agent, the 

assessment also provides a deliberative guideline to develop human-like agents.  

The review of the literature above provides valuable trials in constructing a 

holistic approach that can be pervasively applied to believability assessment. 

Believability itself, however, is a complex trait for any entity. One potential 

approach is the divide-and-conquer idea, in which believability is tested in 

environments of different centric concepts, such as achievement, exploration, and 

sociability might be a potential direction to work. Accordingly, believability criteria 

within the central, established concepts can be extracted from the believability tests.  

The primary assessment methods observe and compare the behavior of 

subjects within in-game environments. Even though they are valid in assessing 

candidates of believable AI competitions, the efficiency is not good when they are 

used as a benchmark in the development of believable agents. In this scenario, both 

judges and participants need to be present for the experiments in person. Configuring 

in-game environments for each individual participant and recruiting sufficient 
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number of participants presents a significant disadvantage in scaling up this mode of 

assessment. Alternatively, standard online questionnaires which are easily 

distributed with interfaces to label the behavioral differences between human and 

agents under development might be potential solutions to this problem.  

2.2 Real-time Strategy Games and Gameplay AI 

2.2.1 RTS Games 

Real-time strategy (RTS) is a subgenre of strategy video games that 

emphasizes strategic challenges (Geryk 2008). Many of them provide economic 

challenges and exploration. Instead of operating in turn, players play the games in a 

real-time manner. They are required  to have skillful thinking and planning to 

achieve victory in  real-time conditions (Rollings & Adams 2003).  

RTS games can be viewed as simplified military simulations, where a player 

plays against a hostile counterpart within a conflict context. In a typical RTS game, a 

player orders multiple units and buildings to gather resources, construct expansions, 

build armies and battle against opponent players’ units. The winner is the player who 

eliminates all the enemy units. Gameplay operations progress in a real-time 

environment, where players conduct as many actions as they are physically able to 

make simultaneously, instead of taking turns (Ontañón et al. 2013; Robertson & 

Watson 2014). In RTS communities, people use Actions Per Minute (APM) to 

measure the number of actions a player can perform in a minute (Cheung & Huang 

2011). It reflects a player’s skill, which indicates he both knows what to do in the 

game and has manual dexterity to carry it out. Novice players have low APM counts, 

often below 50. Professional e-athletes (electronic athletes, refer to people who join 
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formal video-game competitions) usually have average APM scores around 300. Due 

to the fact that computer-controlled gameplay transfers instructions directly to the 

game without any physical operations, the APM count that a computer agent has can 

be far beyond human players, even at a million or billion level.  

Utopia (Daglow 1981) and Cytron (Software 1992) have been controversially 

considered as the first game of the RTS genre. Later, BYTE, in December 1982, first 

used the words - “real-time strategy” in describing the Cosmic Conquest as a “real-

time space strategy” game which possesses elements of management and war-

gaming (Sartori-Angus 1982). The real prototype for modern RTS games emerged 

with Westwood’s RTS game - Dune II: The Building of a Dynasty (Studios 1992), 

which featured all the core concepts and mechanics still used in today’s RTS games 

(Walker 2010). Total Annihilation then introduced 3D units and terrain. Some 

notable modern RTS games include Company of Heroes, Rise of Nations and the 

StarCraft, Warcraft, Command & Conquer and Age of Empires series.   

 

Figure 2.2 An example of beginning scenarios in RTS. In an opening scenario, a player has 

a base building and several basic units which are useful to gather resources and construct other 

buildings. 
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Figure 2.3 An example of gameplay of RTS. As the game proceeds, a player deploys his 

units distributed around the map. 

An official game starts with players joined into two camps with an equal 

number of players. In the base area (Figure 2.2) of each player, a base building 

accompanying with basic facilities and units are located. Players start constructing 

buildings, collecting resources and manufacturing units. As the economy grows, 

players construct more buildings, produce multiple units, research new techniques 

and expand their force to another resource site. Upgrading and constructing key 

facilities may unlock advanced units to be produced and techniques to be researched. 

For balancing purposes, units for each player are not allowed to exceed a pre-set 

upper limit. Until existing units are eliminated, new units could be produced and 

refilled. Army forces and defense facilities are usually strategically deployed in 

many areas outside of the player’s base point (Figure 2.3). They functionally help for 

the purposes of offence and defense. A player (or a camp) wins a game when all the 

buildings, facilities, and units of the opponent are eliminated. In some games, a 

player’s remaining units will be forfeited when all the buildings are destroyed. Often, 

players terminate games by spontaneously claiming to give up when they feel they 
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have little chance to win.  

RTS games require players to order many units, operate with multiple game 

objectives and switch among dynamic scenarios and tasks. Several training studies 

have shown that playing RTS games can improve cognitive functions such as 

reasoning and visual short-term memory. Basak’s (Basak et al. 2008) research 

suggested that training old people to play RTS games significantly improved their 

cognitive functions such as task switching, working memory, visual short-term 

memory, and reasoning, where they used Rise of Nations: Gold Edition (Games 

2003) as the training tool. Comparing groups of students who were trained in 

environments of StarCraft and StarCraft II (Entertainment 2010) respectively, Glass, 

Maddox & Love (2013) found that gaming conditions that emphasized maintenance 

and rapid switching between various information and action sources leads to the 

enhancement of cognitive flexibility in fulfilling non-game tasks. Dobrowolski et al. 

(2015) compared cognitive abilities (measured by task switching and multiple object 

tracking) of two video game player groups of specific genres (FPS and RTS). The 

results indicated that players of RTS games demonstrated better cognitive abilities, 

especially in terms of object tracking, compared to players of FPS games after 

similar playing times.  

2.2.2 RTS Game AI 

Video games are commonly regarded as test platforms for advancing 

Artificial Intelligence (AI) via virtual environments simulating the real world, and a 

set of rules abstracted from real life. In that sense, AI techniques could be developed 

and evaluated within RTS games which can then be applied to solve real-world 

problems (Schaeffer 2001). Buro (2003) encouraged AI research based on RTS 
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games, where the achievements would contribute to solving real-world decision 

tasks. He highlighted problems that RTS games provide to AI research: resources 

management; decision-making under uncertainty; spatial and temporal reasoning; 

collaboration; opponent modelling and learning and real-time adversarial planning. 

A server-client RTS system is presented (Figure 2.4) that aims to establish a sandbox 

environment to develop RTS game AI. 

 

Figure 2.4 Server-client RTS game architecture. Clients connect to a central server which 

sends player views, receives actions for all objects, and updates the state of the world (Buro 2003) 

RTS games require players to balance multiple tasks. Players need to deploy 

military forces to attack domains of opponent players, while at the same time they 

need to arrange resources, research new technologies and construct new buildings 

and units. Resources and time limitations force players to choose between keeping 

an army with myriad but weak units and building one with a small group of 

advanced units. Thus, they need to deliberate about allocating time and resources to 

develop the economy, upgrade technologies and build military forces, all of which 

requires long-term decision-making and planning, often called macro-management 
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(Justesen & Risi 2017). I define strategic decision-making as macro-management in 

this thesis. 

In addition to strategic decision-making, players must maneuver units in a 

specific local scenario. They sometimes format a group of military units to surround 

and annihilate an enemy troop (Hagelbäck 2012). Many times, they retreat one 

specific unit with a low health point, apply the power of a unit to a specific object (a 

group) or control a specific unit to attack enemies that are in a weak situation (Zhen 

& Watson 2013). These operations are usually called micro-management 

(Szczepański & Aamodt 2009). Tactical decision-making includes operations of 

maneuvering specific units for specific purposes, which also refers to micro-

management in this thesis.  

2.2.3 Strategic Decision-making 

Previous research in strategic decision-making has approached this problem 

as a planning problem, a machine learning problem or a hard-coding behavior 

problem.  

Most commercial RTS games actively use hard-coding behavior approaches. 

Finite state machine (FSM) is acknowledged as the most common techniques 

(Houlette & Fu 2003). FSM divide AI behavior into manageable states, such as 

“attacking”, “retreating” and “launching magic,” and then bind conditions to these 

states. When the game process meets the specific conditions, the states are triggered 

and corresponding actions are taken. Hierarchical FSM is also an active approach 

applied in commercial games, in which states are composed of hierarchical 

structures (Houlette & Fu 2003). These hard-code approaches, however, are 
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challenged by issues of encoding dynamic, perceiving and exploiting by opponent 

players.  

Planning techniques organize AI behavior and produce adaptive plans for 

winning. One important approach is case-based planning (CBP), where AI analyses 

the case of the current situation and retrieves solutions from the past or hand-crafted 

similar cases. The first trial of applying CBP into RTS games was by Aha, 

Molineaux & Ponsen (2005), who developed a CBP system where complex states 

are abstracted and a set of actions are generated for each state. The ability to match 

states was then improved over multiple games. Ontañón et al. (2007) combined a 

behavioral language (ABL), introduced by Meteas and Stern with CBP to generate a 

real-time case-based system in playing Wargus (https://wargus.github.io/index.html) 

(a clone of Warcraft II (Entertainment 1995)). Cases are extracted from human-

annotated game logs, which can then be composed to formulate in-game strategies 

for winning the game. Mishra, Ontañón & Ram (2008) extended their work by 

adding a decision tree model which is used to assess situations when selecting cases 

(Figure 2.5). That helps to skip unnecessary attribute matching and emphasizes a 

relevant attribute, which in turn creates a better and faster version. One of the 

difficulties with CBP systems is retrieving and reusing cases where there are a large 

number of cases that need to be searched.  

Hierarchical-planning methods group similar cases together to solve 

problems in RTS gameplay. One example is the hierarchical task network (HTN), 

which maintains task goals, sequences and potential solutions. High-level tasks are 

decomposed into simple tasks that are stored in successor levels (Muñoz-Avila & 

Aha 2004). Laagland (2008) implemented a hand-crafted HTN into an open source 
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RTS game, named Spring.  

 

Figure 2.5 An example of implementing case-based planning in Wargus (Mishra, Ontañón 

& Ram 2008) 

This review of literature also includes automated planning, in which a start 

and a goal state, as well as a set of actions, are given to a gamebot. Normally, 

heuristic state-space planning with domain knowledge is used to search an action 

path leading to the goal state from the start state (Robertson & Watson 2014). The 

full round of RTS gameplay, however, has complex domain knowledge and varying 

situations. It is even difficult to tell whether achieving goals is going along with the 

plan, or whether the plan has failed. Therefore, planning to achieve a simple and 

single goal is a grounded direction. For example, Chan et al. (2007) and Churchill & 

Buro (2011) employed an automated planning method to find an optimal plan for 

constructing a particular set of buildings and units in a minimum amount of time.    

Regarding making strategies via machine learning techniques, Weber & 

Mateas (2009) employed supervised learning techniques to develop a strategy 

learning system, which learns strategies from labelled human-performed replays via 
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a data mining approach in StarCraft. Dereszynski et al. (2011) constructed a 

gameplay state transition graph and employed Hidden Markov Models (HMM) to 

estimate the probabilities of building construction sequences and the most probable 

behavior models in StarCraft. Hostetler et al. (2012) extended their work by adding a 

dynamic Bayesian network model, where the probabilities from scouting opponent 

players are considered to identify the strategies. Synnaeve & Bessière (2011) 

presented a Bayesian semi-supervised model to learn gameplay opening (early game 

strategies) patterns by observing replays. Then, they presented an unsupervised 

Bayesian learning model to learn replays, which was capable of predicting selected 

upgrades in the tech-tree (a tree-shaped diagram which provides a hierarchical visual 

presentation of what upgrades a player can take) based on observation (Synnaeve & 

Bessière 2011).  

2.2.4 Tactical Decision-making 

Tactical decision-making in RTS games is a gameplay behavior where 

decisions are made for specific game matter, including terrain analysis, reasoning 

about the formulation of a group of units, corresponding spatial information (terrain 

and position) and the military abilities and health circumstances of units in 

battlefields.  

Terrain analysis helps AI build up a structured map representation, which 

provides information for decision-making. A tile-based terrain representation system 

has been used in BANG – an RTS game (Pottinger 2000). In this system, game maps 

are separated into many small tiles, which are quad-shaped small spaces. Then tiles 

are grouped into two types of areas, the convex area and the non-convex area. After 

generating convex areas and non-convex areas, area connectivity is determined, 
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which is essential for tracking routes in the game.  

The qualitative spatial reasoning (Forbus, Mahoney & Dill 2002) technique is 

used to analyze game maps. Forbus, Mahoney & Dill (2002) introduced soft 

constraints into the design of the heuristic path-finding method, in which game units 

achieve dominant positions due to domain knowledge embedded in the algorithm. 

Compared to traditional map representation in path-finding scenarios, the qualitative 

spatial reasoning description defines a specific area into three different types—free 

travel space, narrow path and fire field—by using image processing techniques and 

Voronoi diagram computation methods (Figure 2.6). A Voronoi diagram is a 

distance-based region decomposition method.  

 

Figure 2.6 Detection of choke points and regions: (a) a map used in an online tactical 

decision game; (b) terrain that is severely restricted for armored units; (c) a Voronoi diagram; (d) 

free-space regions (white) and paths (black) (Forbus, Mahoney & Dill 2002). 
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Perkins (2010) extended the Voronoi diagram by introducing choke points. A 

choke point is a narrow space that links two expansive regions. Region nodes are 

identified from the Voronoi diagram, which has the maximal radius in one specific 

region. Then, the algorithm generates choke point nodes. The army that holds a 

choke point can easily defend against an enemy army which intends to pass through. 

Each choke point node is located between two region nodes with the shortest radius. 

Finally, obstacles and choke points, which are on each region node, are looked up to 

identify the edges of each region’s polygon. The novel process from Perkins was 

including pruning operations. To reduce invalid computation, Voronoi diagram 

pruning, adjacent region merging and choke points walling off are done before the 

next operations.  

The automatic-growth mesh technique is another way to do region partition. 

Hale, Youngblood & Dixit (2008) proposed the algorithm - DEACCON 

(Decomposition of Environments for the Creation of Convex-region Navigation-

meshes) which begins by seeding small quads in each field of the map. The quads 

grow on each edge until they encounter obstacles. Three different conditions are 

considered and handled. If an edge of a quad encounters an edge of an obstacle, the 

current edge stops while other edges go on growing. If an edge comes across a 

vertex of an obstacle, two new quads are seeded on each end of this edge with other 

edges extending. If a vertex encounters an edge, the current vertex will be deleted by 

generating two new vertices on the interaction line. The process is repeated until the 

whole map is covered by convex regions. Hale & Youngblood (2010) expands this 

automated navigation mesh generation method into 3D scenarios.  

Machine Learning and game tree search are the two most important 
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approaches for tactical decision-making. Hladky & Bulitko (2008) employed hidden 

semi-Markov models (HSMM) and particle filters for tracking game units in FPS 

games. Kabanza et al. (2010) combined HMM-based hostile task tracker and HTN-

based strategy encoding for predicting the plan and intent of opponent players. 

Sharma et al. (2007) combined case-based reasoning (CBR) and reinforcement 

learning to develop a plan-evolvable-and-reusable tactical component. They sped up 

the learning process of RL by grounding the simulation in a simple scenario and 

gradually increasing the complicity. Cadena & Garrido (2011) employed fuzzy CBR 

for strategic and tactical planning.  

Reinforcement learning (RL) is an important machine learning technique in 

maneuvering a small group of units. Shantia, Begue & Wiering (2011) implemented 

RL to control units in small scale battle, in which artificial neural networks are used 

to automatically formulate an expected reward for an action of a particular unit in a 

particular game state. Human assistance is introduced to RL by Judah et al. (2010) to 

accurately and efficiently learn to control units in a skirmish in Wargus. Finally, 

Marthi et al. (2005) present  hierarchical Q-learning to maneuver a group of units in 

a “one robot with multiple effectors” fashion.  

Applying searching techniques to play complex RTS games is still a difficult 

problem. There are, however, several successful trials in playing abstracted RTS 

games or making tactical decisions by using search-based algorithms. Sailer, Buro & 

Lanctot (2007) implement the theory of searching the Nash equilibrium among a set 

of pre-defined strategies in a simulated adversarial environment. Churchill, Saffidine 

& Buro (2012) present the Alpha-Beta Considering Duration (ABCD) algorithm for 

controlling a group of military units in a simplified StarCraft, named SparCraft, 
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which exclusively focuses on battle scenarios. Chung, Buro & Schaeffer (2005) 

applied Monte-Carlo planning to play a capture-the-flag simulation game with an 

open source RTS platform. To win the game, a player needs to maneuver a group of 

units, avoid obstacles and assaults from enemies, and take the flag from the 

opponent’s camp to his own. Balla & Fern (2009) applied a more novel Monte Carlo 

tree search method – Upper Confidence bounds applied to Trees (UCT) – to the 

tactical battle planning scenarios in Wargus.  

2.2.5 Holistic Solution 

A human-level method is invited into SORTS - a RTS game AI (Wintermute, 

Xu & Laird 2007). Script-based AI programs extensively run well in FPS games 

(shooting games in which players have a first-person visual angle). However, 

features like dynamic environment, multiple goals, rich knowledge and a large 

amount of data make the drawbacks of scripted AI agents more significant. In the 

SORTS system, the authors design an integrated AI agent with a perception module 

and an execution module, which are built on two platforms – Soar and the Open Real 

Time Strategy (ORTS) which is an open source RTS game engine developed at the 

University of Alberta. In the perception module, human perception helps to form 

unit groups and to focus attention. While in the execution module, both micro-

management and global coordinators employ FSM to handle unit behavior and make 

decisions separately. Additionally, McCoy & Mateas (2008) made progress on 

aspects of integration and of a component specialist.  They use ABL to combine 

modules in the AI agent. The authors develop five specialist competencies—strategy 

manager, income manager, production manager, tactics manager and recon 

manager—in which expert high-level strategic knowledge is incorporated to cope 
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with the multi-task environment in RTS games. These manager components 

interdepend on each other with the assistance of ABL. With the removal of one of 

them, the entire agent falls into a disadvantaged state, due to a lack of key 

information or partially uncontrolled facts.   

EISBot (Weber, Mateas & Jhala 2011) is a kind of transformation and 

extension of McCoy and Mateas’s work.  EISBot is a StarCraft AI agent, which 

inherits the ABL-based architecture. In terms of improving the ability of the reactive 

planner, the authors augment working memory by adding beliefs of the game 

environment, integrate external goal formulation with the enabling agent to pursue a 

new goal in parallel with the currently active goals, interface with the external goal 

planner and incorporate a case-based behavior activator.  

Unlike ABL-based agents, Young et al. (2012) present a hierarchical 

architecture by dividing the action space into macro-management and micro-

management. In the macro-management part, a belief management system is used to 

model the opponent and create strategies, while the task–based architecture 

organizes game units to achieve different goals, such as constructing buildings, 

assaulting the enemy, defending the enemy and scouting. Tasks are generated, 

evaluated and monitored while being executed. The behavior of each unit is handled 

in the micro-management layer. A combat evaluator helps the unit to analyze the 

environment around it, to decide when to attack or retreat.  

2.2.6 Game Bots 

Within the StarCraft AI competitions, gameplay bots are developed and 

submitted for competition. Ontañón et al. (2013) selected a set of brief structured 
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bots: Broodwar, BotQQ, Nova, UAlbertaBot, Skynet, SPAR, AIUR, and BTHAI, 

from the annually held AIIDE and the Computational Intelligence and Games (CIG) 

StarCraft AI competitions. They read and analyzed the source code of gamebots, and 

then diagrammed out components and architecture for each bot (Figure 2.7). 

 

Figure 2.7 The architecture of 7 StarCraft bots obtained by analyzing their source code. 

Modules with a black background sent commands directly to StarCraft. Dashed arrows represent data 

flow, and solid arrows represent control. (Ontañón et al. 2013) 

The design of game-bots (Kaminka et al. 2002)  (in Figure 2.7) solve 

problems in playing StarCraft by decomposing problems into sub-problems where 

each of them focuses on a specific aspect of gameplay. By analyzing the architecture 

of the bots, they put forward two main ideas behind the design.  

1. Abstraction: complex tasks can be abstracted hierarchically, where each task 

is put into different hierarchical layers. A simple multi-layer structure is a 

dual-layer of the strategic layer and tactic layer. For example, a strategy of 

launch “Zealot Rush” (Zealot is a kind of basic combat unit of the Zerg race 
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in StarCraft. Since training zealots does not require high technology and it 

costs very less resources for training one unit of zealots, it is possible to train 

a zealot army with an appreciable quantity at the beginning time of a game. 

“Zealot Rush” represents a strategy where Zerg players train a zealot army to 

destroy opponents’ base at the beginning time when opponent players do not 

get a chance to build up a defense force.) should be divided into two layers of 

tasks. In the strategic level, the task means to schedule resources to produce a 

sufficient zealot army and launch the rush in the right timing, while tasks of 

how to build a zealot army and decisions about what kind of army 

formulation would be required when rushing would be solved in the tactic 

layer. Correspondingly, the problem solvers are structured in hierarchical 

levels within the bot. For achieving a goal using a high-level module 

generating a series of abstracted actions and sequences, the actions 

determined by higher-level modules are considered as the goals of the lower 

level modules (Ontañón et al. 2013).  

2. Divide-and-conquer: Due to the complexity of RTS, gameplay requires 

fulfilling tasks on different functional facets, such as developing economies, 

scouting, harassing, constructing buildings and producing armies. 

Completing each of these tasks is relatively independent behavior. Each 

module is designed to focus on one specific facet. Modules occasionally 

collaborate to complete tasks, when a task relies on other tasks to be 

completed or processed in a particular timeframe (Ontañón et al. 2013).  

2.2.7 Open Areas of RTS AI 

The review of RTS AI literature indicates several open areas:  
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Automated Learning and Evolving 

Developing RTS game-bots commonly involves implementing domain 

knowledge (Aha, Molineaux & Ponsen 2005; Ontañón et al. 2013; Ponsen et al. 

2007). Domain knowledge that the AI developers have will determine the quality of 

gameplay bots, which are manually implemented (Ontañón et al. 2007) or learning 

(Weber, Mateas & Jhala 2011) from labelled gameplay examples. The development 

relies on the scope of an existing set of playing knowledge: strategies, tactics and 

tricks. Hence, the limitation of existing human-discovered knowledge has restricted 

the development of gameplay AI, let alone the constraints of knowledge 

representation and implementation. Gameplay bots can only be improved by playing 

knowledge being increased and implemented. Enabling AI to learn and improve their 

playing skills via consistently playing is a promising direction. Even though 

reinforcement learning (Judah et al. 2010) has been applied to maneuver units in 

small-scale scenarios, it is still a long way to go to extend it into formal full-round 

RTS game playing.  

Collaborative and Adversarial Play 

Playing with or against other players is commonly supported in RTS games, 

and many other video games such as FPS and RPG. A player needs to adaptively 

adjust his strategies to strategically collaborate with allies or beat opponents by 

taking advantage of their weaknesses. This process requires the player to 

continuously observe other players’ behavior, normally scouting opponents’ 

deployments due to the “fog of war” mechanics. In RTS games enemy units, and 

terrain are normally hidden from the player by a shade layer called fog of war. It is 

revealed when the area is explored, but the information is often fully or partially re-
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hidden when the player does not have a unit in that area (Adams 2014). Based on 

acquired information, a player could guess the strategies they are using and predict 

the next actions they will make. Many times, the information is incomplete. The 

player should make predictions with imperfect information while simultaneously 

devising scouting strategies to acquire information which is urgently needed.  

Player modelling techniques have been applied to predict the opponent’s 

opening strategies (Synnaeve & Bessière 2011) by observing their constructed 

buildings. Handling the situations of strategies changing and consistently scouting is 

still not solved. In many cases, AI players’ behaviors are observed by their allies or 

opponents. Making the behavior  believable could enhance the gameplay experience 

(Togelius et al. 2012). It is still an area which has not been sufficiently researched in 

RTS AI.  

Integration 

Playing a complex RTS game requires fulfilment of many concepts of tasks, 

such as resource gathering, determining building orders, placing buildings, 

expanding and deploying defense forces, scouting, harassing and attacking. In the 

review of literature above, many efforts are put into solving a specific task. It is 

common that optimal solutions for different tasks need different techniques. This 

leads to inconsistency in knowledge representation, architecture construction and 

information communication among components. Integrating different components is 

still an open problem in RTS AI research. Alternatively, borrowing ideas from other 

fields like Go AI (Silver et al. 2016), to apply techniques holistically for conducting 

all the tasks might be another possible direction.  
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Believable Gameplay Agent 

Techniques that allow the gameplay agent to learn strategies directly from the 

playing records of humans or employ the cognitive architecture that models how 

humans solve problems are actively applied in the literature. In this sense, 

researchers tend to approach AI’s playing to a human-level, which means making AI 

players beat human players without cheating. However, the direction of developing a 

believable gameplay agent is neglected in the RTS genre. As discussed in 2.1 

Believability and Believable Characters in Games, gameplay agents that exhibit 

believability can enhance the experience of human players. Therefore, having RTS 

AI with believable behavior is a promising but under-researched direction.   

2.3 Spatial Exploration 

In RTS games, the fog of war covers the detail of terrain and enemy units. 

Players can only notice the enemy units and map patches when these objects fall into 

the visual range of their own units. To capture information about enemy and terrain, 

AI agents assign scout units to detect the game environment. Therefore, how to plan 

the scout path to get more information is a difficult problem for the scouting agent. 

The scouting task shares common problems with spatial exploration where an entity 

with a limited visual range explores in a totally or partially unknown environment to 

map the terrain or to search for specific items.       

 

2.3.1 Terrain Exploration 

Building map information incrementally by gathering spatial environment 

data is a new approach for analyzing game terrain. The challenge is how to navigate 
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scout units in the right way; in other words, gathering more terrain data in a short 

time, and avoiding damage. One potential field technique (Hagelback & Johansson 

2008) has been used to deal with fog of war in Wargus, to reveal the covered map. 

Park et al. (2012) presented a heuristic navigation tactic for scout units to collect 

opponents’ information. They devised a navigation method where a scout walked 

around the enemy base. There is still no accepted algorithm to solve the unknown 

territory detection problem in the RTS game field.  

The primary goal of scouting strategies is to collect the spatial data in a 

particular area. It is similar to robotic exploration of unknown terrain. For robotic 

research, the problem is that computing an exploration path is a sub-field of the area-

mapping problem, in which a robot equipped with a detection sensor with limited 

visual range explores in an unknown planar environment to completely collect all the 

map information (Choset 2001). Since searching an optimal path for a map coverage 

robot (i.e. start from one point, then completely explore the map space and go back 

to the origin point) is still an NP-hard (non-deterministic polynomial-time hard) 

problem (Arkin, Fekete & Mitchell 2000), some algorithms are developed to fulfil 

the task approximately. For instance, wall following strategies are simple ways to 

collect segments of the movement space border, which are presented in (Lee & 

Recce 1997).  

Kim, Zhang & Egerstedt (2010) present a trajectory-based exploration 

strategy by constructing Voronoi diagrams. This solution relies on the pervasively 

distributed obstacles in the exploration space. Due to the incomplete knowledge of 

the space, there are many uncertainties in planning a path within several steps. A 

promising approach is to select the next-best-view (NBV) in each step, where less 
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distance is taken, while a big step achieves the final goal (i.e. collecting more 

territory information). Normally, the NBV is chosen from either observable position 

in a current view or explored locations in previous steps. A coverage-map-based 

strategy is presented by Stachniss & Burgard (2003), which formulates the map into 

occupied grids with a probability model. Amigoni & Caglioti (2010) present the 

theoretical aspects of the criterion for determining the best observation positions, in 

which entropy theory is employed to calculate the expected information gathering 

(Figure 2.8). A multi-criteria decision-making (MCDM) strategy for choosing NBV 

is presented by (Basilico & Amigoni 2009) by using Choquet Integral (Grabisch & 

Labreuche 2010) to combine criterion utilities. 

 

Figure 2.8 Observed candidate positions (Amigoni & Caglioti 2010) 

Tovar et al. (2006) present a one-step-look-ahead strategy by generating a 

search tree from candidate positions during exploration. Li, Amigoni & Basilico 

(2012) formulate finding exploration paths in the planar grid environment as a search 

problem, in which the occupation state of global grids is tested when doing next step 

planning. As investigated, the frontier-based map representation method proves to be 
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an effective way to filter candidate positions for evaluation (Amigoni 2008). 

Compared to grid-based map presentation, choosing the next potential points along 

frontiers intuitively provides more chances to gather knowledge of unknown areas.  

2.3.2 Coordinated Exploration 

The efficiency of exploration can speed up by assigning a group of units, 

which work collaboratively with each other. The agents can share their visual range, 

gathered information and data. In multi-entity cooperative scenarios, one 

fundamental problem that the system confronts is how to organize the entities, 

distribute sub-tasks and coordinate them while avoiding the overlap or redundancy. 

Three types of network organization architectures are presented in the state-of-the-

art literature. They are centralized, hierarchical and decentralized (Rone & Ben-Tzvi 

2013).  

In centralized architectures, there is an inner or outside controller which 

processes all communication and computation (Howard, Matark & Sukhatme 2002). 

The control entity is allowed to access the global states, and to manage all the 

entities. The entire system is a failure if the controller fails.  

Hierarchical architectures can be named as centralized hierarchical 

architectures, in which a single entity at the highest level, controls a group of other 

entities, and then each unit in this group coordinates another group of units. Units in 

the lowest level simply perform tasks. For instance, Nieto-Granda, Rogers & 

Christensen (2014) present a branching-reserve strategy, in which the original 

exploration tasks are distributed by a unit at its higher level when new possible 

branches are detected.  
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Decentralized architectures provide the greatest flexibility by not having 

controllers. All the entities compute and plan individually and communicate with 

others. There are many coordinated models within this architecture. A market model 

is introduced for developing a redistribution of assignments mechanism (Zlot et al. 

2002). In this approach, each agent has a set of priced targets generated from 

explored areas. Agents can trade their goals to maximize revenues, which, in turn, 

manage to achieve the global target effectively. The free-market approach has also 

been widely used in various multi-agent systems (Choi, Brunet & How 2009; Khan 

& De Silva 2014; Stentz & Dias 1999). Decentralized architectures are useful in 

performing cooperative tasks across different systems. With the free-market model, 

it is a promising architecture to solve the problem of coordinated exploration among 

the various players. 

2.3.3 Reconnaissance 

The potential field (Hagelback & Johansson 2008) technique is used to deal 

with fog of war in Wargus. The terrain map is represented by blocks of 4*4 terrain 

tiles. The visited flag of each tile determines whether a certain block has been 

explored.  A distance based piecewise function is used to calculate the exploration 

potential of unknown blocks. The value of potential field determines which block 

should be visited in the next step for scout units. The distance-based navigation 

tactic just makes the reconnaissance (or recon) unit avoid repeating the exploration 

of known blocks. However, the most interesting areas are not explored prior to this.  

Park et al. (2012) present a heuristic navigation tactic for recon units. 

Motivated by the behavior of human players, who almost always control their scout 

unit to walk around the enemy base to capture more information, the authors 
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developed an algorithm to assign the recon units to move around the enemy 

buildings they detected. The recon units modified their move direction when a new 

enemy building was found. The movement direction is perpendicular to the vector, 

which is calculated by setting the position of the recon unit as the start point and the 

location of the building as the end. If there is more than one building, the building 

vector is the sum of them.  Although these two recon algorithms contribute to the 

scout opponent’s buildings and units, there is still no efficient method to detect game 

terrain and to organize terrain areas that have been found. 

In terms of high-level planning for reconnaissance, the fact is not all terrain 

information is useful for the AI agent to make a decision. Experience shows that the 

areas from friendly base to opponent’s base are repeatedly reached by both sides of 

the units. The resources that are arranged to scout are very limited. Therefore, when 

to scout, where to scout and which units are assigned to scout are three difficult 

problems for a scout agent. Chung, Buro & Schaeffer (2005) employs the Monte 

Carlo method to create a planner for combat scenarios in RTS games. To simplify 

the experimental conditions, they create a flag capture game (two groups of units 

fight against each other to capture their opponent flag) based on ORTS.  

First, the planner generates a game plan for each AI player randomly and 

executes it.  Second, an evaluation function is developed to record the result of the 

execution. Third, the first two steps are repeated a number of times. Finally, the 

planner chooses the best plan for the AI agent based on the statistical result. 

Regarding evaluation function development, three classes of factors are calculated. 

These are the hit points (health) of the army, exploration, and visibility (whether the 

flag has been captured).   
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Another promising algorithm (Balla & Fern 2009) – UCT is used to make a 

tactical assault plan for RTS games. They aim to develop group-based planning 

rather than individual units. Two actions for planning are joining several army 

groups into a large group and uniting a friendly group to attack a certain army. In 

state formulating, hit points, friendly group action and current game time are 

calculated. Naves & Lopes (2012) present a stochastic search and planning method 

to solve the production planning of resources. The actions–collecting resources, 

construction building and unit producing—are described as consumers and producers 

(i.e. each action needs to consume some resources or produce some resources). 

There is still no strategy planning in spatial exploration or other related areas. 

However, the abstraction methods described above might be useful for us to describe 

states and actions when the scout planner is designed. 

2.3.4 Generating Believability in Movement 

Navigating the movement of scout units in a believable manner is an 

indispensable part of generating a human-like scouting agent. Several experiments 

have been made to simulate plausible movement behavior. Henry et al. (2010) 

employed inverse reinforcement learning to train a navigation agent in a crowded 

environment. Its weakness to maintain a plausible behavior in a crowded 

environment is that both the environment and the training data are generated by 

simulation. A genetic approach is used to evolve an artificial neural network that 

implements dynamic obstacle avoidance while following a direct path (Graham, 

McCabe & Sheridan 2005). In the video game field, research in developing 

plausibility is of more interest in the FPS genre, in which behavior in low-level 

movement such as changing direction, changing speed and jumping, as well as game 
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actions like aiming and firing, are considered. One proposed global architecture 

combines independent and hand-tuned neural networks for delivering human-like 

control (Gamez, Fountas & Fidjeland 2013). Thurau, Bauckhage & Sagerer (2003) 

developed a learning structure for the agent to learn primitive actions from the state 

of position and relative position of the enemy, by using self-organizing maps and 

artificial neural network approaches.  Tomai, Salazar & Flores (2013) employs 

spline representation to model human-player movements. Combining the human-

controlled movement data collected from a simple massive multi-player online role-

playing game (MMORPG)-like game and the spline, an algorithm is developed to 

mimic human-like movement in open world games. 

2.3.5 Human-like Exploration 

Automated exploration (AE) and human-controlled exploration (HCE) are 

the two primary ways that computer agents act as assistants to help humans reach 

somewhere humans themselves could not easily reach and gather spatial information 

that is totally unknown or incomplete to them. The advantages of these two 

approaches are grounded on different points. AE benefits humans with labor saving 

and focuses on the completeness of exploration in an acceptable time span, while 

HCE helps to effectively capture the spatial locations that humans are more 

interested in. In other words, these two ways are functionally complementary to each 

other. It is meaningful to unify their benefits in one system. A possible direction is to 

make human and computer explorers collaborate with each other in a better way, 

where human assign high-level tasks (for example, seeking source of water around) 

to computer explorers, meanwhile computer explorers are capable of automated 

exploration in a human manner. That means they could not only autonomously fulfil 
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exploration tasks but also prioritize gathering information that humans care more 

about. It requires intelligent explorers to make exploration decisions in a human-like 

way.  

Spatial exploration is a core concept of the design of video games. It is 

pervasively implemented in the playing of many game genre, including RTS, RPG, 

FPS and especially adventure games. A commonly focused area is to develop 

intelligent gameplay bots that play with and against human players. The philosophy 

is that enabling gameplay bots to be human-like (believable) can enhance the 

experience of players. Developing believable spatial exploration AI, which exhibits 

human-like exploration behavior, is a fundamental step to building human-like 

playing bots. 

Finally, most of the previous work has focused on developing human-like 

movement models in low-level perspectives (for instance, navigating in crowed 

environments (Henry et al. 2010), learning to avoid enemies (Thurau, Bauckhage & 

Sagerer 2003) and moving in curve trajectories (Tomai, Salazar & Flores 2013)). It 

is still an open problem to develop an agent to handle high-level tasks, like scouting, 

while mimicking human-like movement in a believable manner. 

2.4 Human Navigation and Exploration 

Understanding how humans navigate and explore is an important step to 

develop believable agents which can explore unknown environments in a human-like 

way.  
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2.4.1 Human Exploration and Way-finding in the Real World 

Understanding how humans explore and navigate in the real world is a well-

explored research area. Knowledge construction was deemed to be an important 

aspect of exploration (Kuipers 1978; Kuipers, Tecuci & Stankiewicz 2003; 

Meilinger, Knauff & Bülthoff 2008; Viswanathan, Lees & Sloot 2015). In particular, 

the variations among how people construct navigational knowledge in the form of 

cognitive maps (Eichenbaum 2017; Hartley et al. 2014; Howard et al. 2014; Pfeiffer 

& Foster 2013; Wu & Foster 2014) remains an active research area. Lynch (1960) 

proposed that the cognitive map for navigation is composed of five components: 

paths, edges, districts, nodes and landmarks. The case with which people can 

navigate in new environments is influenced by the number of choice points, visual 

access, the degree of structural differentiation and other factors which determine 

how cognitive maps are created (Evans & Pezdek 1980; Gärling, Lindberg & 

Mäntylä 1983; Gibson 2009; Gopal, Klatzky & Smith 1989; Weisman 1981). 

Pfeiffer & Foster (2013) firstly provided direct evidences for future-focused 

sequences of navigational activity in neurons (called place cells) of hippocampus in 

a realistic two-dimensional environment. Additionally, Wu & Foster (2014) 

presented that hippocampal replay captures the topological structures of learned 

environmental environment to support navigation.  Furthermore,  Howard et al. 

(2014) reported that hippocampal contains both the Euclidean distance and the path 

distance to goals as distance representations during navigation.  Although these real-

life navigational studies can provide some insight into how people explore virtual 

environments, our research scopes out a new area of study that focuses on 

exploration in a new way.  
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As state-of-the-art simulation techniques enable virtual environments to be 

sufficiently similar to real environments, it allows simulation-based experiments and 

testing of navigational memory. Viswanathan et al. (2014) explored the role of 

memory in real-life way-finding by investigating user behavior in their self-

developed indoor virtual environment.  

2.4.2 Human Exploration and Way-finding in Virtual Environments 

Developing analysis tools to investigate players’ behavior by analyzing 

gameplay data is a popular way to understand players’ experience and inform game 

design in general (Chittaro, Ranon & Ieronutti 2006; Drachen & Canossa 2009; 

Moura, El-Nasr & Shaw 2011). ArcGIS (Esri 1999) was used by Drachen & Canossa 

(2009) in a video game context. It enabled researchers to visualize game metrics via 

multiple facets of data related to spatial environments. Chittaro, Ranon & Ieronutti 

(2006) developed a visualization tool named VU-flow, which presents visual 

components that allow users to observe and extract behavioral patterns from 

individuals as well as populations. In another work, Moura, El-Nasr & Shaw (2011) 

developed a visualization system that is capable of visualizing players’ actions in an 

active way which is used to analyze telemetry data, extract gameplay patterns and 

identify design issues (Figure 2.9). It provides protocols to visualize the time spent in 

each area of game maps, identify active regions and extract players’ navigation paths.  

Although these visualization tools provide a general solution for spatial analysis, 

they can only act in a complementary role when understanding human navigation 

and way-finding behavior, because experimental subjects vary from scene to scene.  
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Figure 2.9 The interface of a visualization system for way-finding data (Moura, El-Nasr & 

Shaw 2011) 

Regarding human navigation, Moura & Bartram (2014) investigated how 

players responded to different visual way-finding cues in several scenarios: maze, 

climbing room, waterfall room and exit room, based on the 3D action-adventure 

game, The Lost Island. They found that proper feedback guidance was highly 

demanded throughout navigation, and players were very sensitive about missing cues. 

Another study about developing a visual system for enhancing players’ 

navigation experience was conducted by Milam et al. (2011), in which the 

relationship between visual load, camera and motion attributes was investigated. 

Moura & El-Nasr (2015) summarized a set of design techniques that are currently 

used in navigation systems of 3D action-adventure games which include three 

aspects: navigation aids, level design choices affecting navigation and game 

mechanics related to navigation. Biggs, Fischer & Nitsche (2008) also attempted to 

understand players’ construction and comprehension of small-scale environment 

patterns in procedural environment generation applications. Their results showed 
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that players who interacted with structured patterns tended to be goal-oriented and 

preferred to construct cognitive maps.  

Using a different approach, Badler & Canossa (2015) designed experiments 

in a Tropical Island demo to analyze players’ camera movement and gaze 

displacement. They found that players’ gameplay gaze behavior resembled that of 

real-life activities.   

On the perspective of player personalities, the five factor model (FFM) 

(Goldberg 1993) framework has been broadly used to analyze exploration behavior. 

van Lankveld et al. (van Lankveld, Schreurs & Spronck 2009; van Lankveld et al. 

2011) presented links to preferences of an exploration map with the activity facet of 

the extraversion type in FFM. Yee et al. (2011) concluded that non-combat 

exploration and exploration with curiosity behavior could map to the agreeableness 

and openness personality traits respectively. Canossa et al. (2015) introduced players’ 

behavior of interacting with doors as a variable into game metrics when conducting 

correlation analysis between exploration behavior and the big five personalities 

which indicates that an explicated personality correlates with the type of the in-game 

environment as well as the behavior that the play is conducting, while Spronck, 

Balemans & Van Lankveld (2012) located triggers in optional areas of the 

experimental environments to test the openness of exploration behavior. Although it 

appears that current research has discovered several interesting connections between 

exploration behavior and players’ personalities, behavioral patterns of exploration 

remain to be explicitly identified.  
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Category Literature Contribution Sub-field 
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Evans & Pezdek (1980) 
Gärling, Lindberg & Mäntylä (1983) 
Gibson (2009) 
Gopal, Klatzky & Smith (1989) 
Weisman (1981) 

The number of choice points, visual 
access, the degree of structural 
differentiation determine how 
cognitive maps are created. 

Construction of 
cognitive map 

Lynch (1960) 
Cognitive map is composed of five 
components: paths, edges, districts, 
nodes and landmarks. Structure of 

cognitive map 
Wu & Foster (2014) 

Hippocampal replay captures the 
topological structures of learned 
environmental environment to 
support navigation. 

Pfeiffer & Foster (2013) 
Provided evidences for future-
focused sequences of navigational 
activity in neurons of hippocampus. 

Planning 

Howard et al. (2014) 

Hippocampal contains both the 
Euclidean distance and the path 
distance to goals as distance 
representations during navigation. 

Distance-
measurement 
instrument 

Viswanathan et al. (2014) 
Investigated the role of memory of 
real-life way-finding in indoor 
environments. 

Memory 
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Moura, El-Nasr & Shaw (2011) 

Developed a visualization system 
which could actively visualize 
players’ actions to analyze telemetry 
data, extract gameplay patterns and 
identify design issues. 

Visualization 
and analysis 
software 

Moura & Bartram (2014) 

Investigated how players responded 
to different visual way-finding cues 
in several scenarios: maze, climbing 
room, waterfall room and exit room, 
in a 3D action-adventure game. 

Environments 
effect 
navigation 
behavior 

Milam et al. (2011) 
Investigated the roles of visual load, 
camera and motion attributes in 
enhancing navigation. 

Navigation 
enhancement 

Moura & El-Nasr (2015) 

Summarized a set of design 
techniques navigation aids, level 
design choices affecting navigation 
and game mechanics related to 
navigation applied in 3D action-
adventure games. 

Game design 
for in-game 
navigation 

Badler & Canossa (2015) 
Found that players’ gameplay gaze 
behavior resembled that of real-life 
activities. 

Similarity of 
navigation in 
virtual 
environment 
and real-life 
way finding 

van Lankveld et al. (2011) 
Discovered the connection between 
the extraversion type in FFM and 
preferences of exploring a map. 

Connections 
between 
exploration 
behavior and 
personalities Yee et al. (2011) 

Mapped non-combat exploration and 
combat exploration to agreeableness 
and openness type respectively. 

Table 2.1 Key contributions in the fields of human navigation behaviors. 
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2.4.3 Archetypes of Spatial Exploration in Virtual Environments 

Discrete spatial systems of human cognition and behavior such as spatial 

memory, orientation, and navigation have aroused the interests of researchers and 

encouraged them to study them. However, the research area is still shrouded in 

darkness in terms of understanding people’s variations in using their systems. There 

are differences in their abilities, disabilities and preferences. Identifying archetypes 

and categorizing people into different spatial navigation types will contribute to 

better understanding. As the review of literature above shows and Table 2.1, 

exploring human behavior in terms of navigation and way-finding in real-life has 

been a subject of interest to researchers for some time but it is still an open area in 

virtual environments. Studies, in the literature, emphasized on general navigation 

and path-finding behavior. Spatial-exploration behavior, as an independent activity, 

has not been fully investigated. It would be much interesting to open the box of 

spatial-exploration behavior and categorize them into different types, which will 

enable us to have a better understanding human behavior of spatial-exploration.  

2.5 Gamer Types 

The broad field of research in classifying player behavior has drawn much 

attention from game user researchers for two essential reasons. The first reason is 

that understanding players’ personalities helps to design better games, which 

enhance players’ experiences. A deeper understanding of players’ needs and desires 

can be used for better game design, balancing game content, structuring experiences 

and selecting virtual goals (Charles et al. 2005). Another reason is it benefits the 

development of “gamification” for the game market, where research subjects 
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(gamers) are potentially  the consumers (Hamari 2013).   

The categories of typology studies of gamers’ internal segmentations are the 

psychographic basis and behavioral basis, which differ from external segmentations 

including geographic factors (where gamers live) and demographic features such as 

age, gender, education and occupation (Hamari 2013).  

2.5.1 Psychographic Basis 

The psychographic approach tries to group players according to their 

independent attitudes, interests, values, and lifestyles. Ip & Jacobs (2005) presented 

a two-type model, where players are divided into hard-core players and casual 

players. Compared to casual players, hard-core players as described by Ip & Jacobs 

are people who prefer to deliberate over their gameplay. They deliberately try to 

game in different ways, acquire comprehensive knowledge about games, play longer 

and more often, and actively participate in game-related forums. This model, 

however, has been criticized (for example Bateman, Lowenhaupt & Nacke (2011)) 

as too simplistic.  

Reviewing the research on human personalities which is embedded in game 

research, researchers have used both type-based models, such as the Myers-Briggs 

Type Indicator (MBTI) (Myers, McCaulley & Most 1985), and more recently trait-

based models, such as the FFM (Goldberg 1993). Type-based models assume that 

each personality is mutually exclusive. Myers, McCaulley & Most (1985) developed 

MBTI, using four bipolar axes to distinguish personality types in four dimensions. In 

each bipolar axis, two opposite psychological types are marked on the ends. The four 

groups of dimensions are: extroversion and introversion, sensing and intuition, 
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thinking and feeling, and judging and perceiving. Different permutations of these 

dimensions classify individuals into one of sixteen types. On the other hand, trait-

based models emphasize measuring traits, which can be defined as patterns of 

individual preferences in behavior, thought and emotion (Kassin 2003). The Five 

Factor Model (Goldberg 1981) includes five personality traits - openness, 

conscientiousness, extraversion, agreeableness, and neuroticism. The FFM is 

currently a leading model in personality psychology (Goldberg 1993). Correlations 

between players’ gameplay patterns and the FFM have been an active research area 

(Canossa et al. 2015; Spronck, Balemans & Lankveld 2012; Tekofsky et al. 2013; 

van Lankveld, Schreurs & Spronck 2009; van Lankveld et al. 2011; Yee et al. 2011). 

Bateman & Nacke (2010) offered insight into the underlying neurobiological 

mechanisms of gamer types and presented an interim gamer model – BrainHex, via a 

top-down lens. This model includes seven-gamer types: Seekers, Survivors, 

Daredevils, Mastermind, Conquerors, Socialisers and Achievers.  

Seeker – The Seeker type is interested in the game world and obtaining fun 

experiences through exploring environments. 

Survivor – These people enjoy experiencing the feeling of terror. For 

example, they gravitate towards environments with a horror context. 

Daredevil – Players of this type are thrill seekers and enjoy taking risks. 

Mastermind – This type enjoys solving puzzles, devising strategies and 

making more efficient decisions.  

Conqueror – Players that fit this type like challenges and winning easily does 

not satisfy them. 
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Socialiser – Players who come under the Socialiser archetype enjoy 

interacting with other players in games. They like talking to other players, 

collaborating with them to fulfil game tasks and attacking other characters 

intentionally or unintentionally. 

Achiever – Players of this type are motivated by the game goals. They 

especially focus on achieving long-term goals.   

Founded on neurobiological theories and validated with a large number of 

participants (50, 000 players (Bateman, Lowenhaupt & Nacke 2011)), the BrainHex 

model attempts to provide a more generalizable typological model across game 

genres. 

2.5.2 Behavioral Basis 

Behavioral approaches devote attention to identifying patterns of gameplay 

behavior within one or across several game genres. 

Some research looks into the essential nature of playful experiences. Efforts 

have been made to develop types of game mechanisms that surprise players. Barash 

& Caillois (2001) described four playful behavioral patterns, choosing words from 

different languages in order to reach the original concept. Agon referred to games 

that provide the challenge of direct competition. Alea described games with chances 

and randomness. Mimicry was used to describe the play as someone or something 

else. Ilinx described games with sensory stimulations.  

Lazzaro (2008) focused on the discovery of emotional patterns of fun when 

observing player studies. The result demonstrated four distinct patterns, which were 

termed the Four Fun Keys. The hard fun comes from achieving a goal when playing, 
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where a player fulfils a goal of the game or meets a challenge that they come across. 

It is related to the desires of BrainHex’s conqueror and achiever archetypes. Easy 

fun reflects the curiosity of virtual arts, unknown environments, well-designed 

mechanisms and dormant entities, which stimulates explorative play. Serious fun is 

related to immersive experiences, in which players find it exciting to engage in the 

game world. People fun is generated from the relationships with other players. For 

example, players have either competitive or collaborative sessions with others in 

multiplayer games.  

A direct way is to recognize patterns via observing gameplay behavior and 

analyzing data from playing. Drachen, Canossa & Yannakakis (2009) observed a set 

of players engaged in the adventure game Tomb Raider: Underworld and identified 

four types (Veterans, Solvers, Pacifists and Runners) of players that significantly 

correlated with the total number of deaths and the completion time. Veterans have 

the most reasonable playing style, where they have a rare number of deaths and 

complete the game very quickly.  Solvers spend relatively little time on solving 

puzzles encountered during the play. Pacifists complete the game very quickly but at 

the expense of dying frequently. Runners skip over the details of playing and play 

the game swiftly.  

Bartle’s (Bartle 1996) research is one of the most cited works in terms of 

player typology. Observing players’ behavior in the multiplayer strategy game 

Multi-User Dungeons (MUDs), he described a qualitative model with four player 

types (Killers, Achievers, Socialisers and Explorers) via a two-dimensional factor of 

playing, namely acting vs. interacting, and player vs. world (Figure 2.10). Achievers 

are players who are focused on fulfilling the tasks designed in the game, such as 
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gathering reward points and seeking treasures. They prefer actions and world-

oriented activities. Explorers are interested in revealing how the game mechanics 

work, which illustrates their preference to interact with the game world. Socialisers 

are more interested in interacting with players than the game world itself. They are 

motivated to know other players, formulate a relationship with them and play with 

them. Killers engage in playing competitively with other players, where they get 

satisfaction from beating others, and in many cases showing off their intelligence 

and skills. This type is more oriented towards action and other players. 

 

Figure 2.10 Bartle’s player type axes (Bartle 1996) 

2.5.3 Behavioral Types of Games’ Central Concepts 

Video game user research has focused on classifying players based on their 

preferences, but has not sufficiently accounted for the actual behavior of players 

when fulfilling specific game tasks and interacting with the game and other users. 

This behavior could be included in the core concepts of games: Achievement, 

Exploration, Sociability, Domination, and Immersion. Many models include some of 
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these concepts. For example, Bartle’s Achiever, Explorer, Socialiser, and Killer map 

to Achievement, Exploration, Sociability and Domination respectively. Yee’s model 

covers Achievement, Exploration, Sociability and Immersion. It is, however, 

necessary to discover a player’s typology in each concept. That means it is 

inadequate, for example, to reach conclusions about player achievement and 

sociability separate from the other dimensions in terms of overall categorization of 

players.  
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Chapter 3. Understanding Players’ Map Exploration 

In this chapter, I investigate how players explore game maps and identify the 

behavioral patterns of players. To achieve this, I answer Q1:” How do players 

explore virtual environments? What behavioral patterns do they exhibit?” by finding 

the answers to its three sub-questions.  

Q1.1 What behavior do players exhibit in exploring these virtual 

environments? 

Q1.2 Can we classify and extract types of exploration behavior? 

Q1.3 What factors affect exploration behavior? 

To answer the three questions, I organize gameplay experiments, in which 

thinking aloud (Tan et al. 2015), interviewing and in-game records help to capture 

the players’ behavior and the corresponding self-descriptions of players (Q1.1). To 

identify players’ types in exploration, I use an inductive research method that 

extracts commonalities and patterns from the yielded rich data set. Instead of starting 

from pre-determined personality typologies (Goldberg 1993) or following up the 

methods of neurobiology research (Nacke, Bateman & Mandryk 2011), I investigate 

players’ behavior directly. I extract patterns across the datasets collected during and 

after players’ gameplay sessions (Q1.2 and Q1.3). Thematic analysis provides a 

theoretically-flexible analysis method, which is suitable for tasks such as identifying 

themes from the users’ experiences (Braun & Clarke 2006). Using thematic analysis, 

I analyze data gathered from twenty-five participants’ exploration experiences when 

playing three different exploration games: the pure exploration game, the killing 
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game and the searching game, built with StarCraft: Brood War (Entertainment & 

Entertainment 1998).  

This research into the design of game environments can directly benefit two 

types of applications. The first type is the development of autonomous exploration 

agents. As Amigoni, Basilico & Quattrini Li (2014) has shown, several applications 

(ranging from classical map building to search and patrolling) fall within the scope 

of the broad exploration problem. Correspondingly, the pure exploration game 

simulates typical instances of classical map building applications; the searching 

game simulates the search applications; and the killing game simulates patrolling 

applications.  

The second type is the design of spatial exploration mechanics in digital 

games. These three exploration scenarios represent a broad range of exploration 

mechanics in games, such as mapping game environments, collecting items and 

discovering bonus chances or items. Understanding players’ behavior in the three 

different games promotes the development of human-like exploration agents and 

helps to identify the exploration mechanics in video games.  

3.1 Experiment Design 

Capturing and analyzing data from participants’ playing spatial exploration is 

the way of answering the research questions. The experiment is based on three 

custom-designed, time-restricted games created on the StarCraft: Brood War 

platform. Participants were instructed to perform concurrent think-aloud activities, 

and verbalize what they were looking at, doing and thinking during the gameplay. 

The think-aloud data was combined with a video-cued retrospective interview post 
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gameplay to obtain further insights into the participants’ experiences and thought 

processes. I recorded all participants’ think-aloud and interview videos, and then 

used NVivo (International 2017) to transcribe and analyze the transcripts.  To help 

contextualize our results, I will briefly describe the StarCraft platform and the games 

I developed.  

3.1.1 The StarCraft Game 

I chose StarCraft: Brood War as our testbed due to its well-established API 

and malleability. StarCraft is also representative of the popular RTS game genre. 

The StarCraft AI Competition, first hosted by the AIIDE Conference in 2010 (Weber 

2010), has become a notable testbed for evaluation of AI agents in academia (Buro 

& Churchill 2012).  

The goal of a typical RTS game is to destroy the opponents’ bases (structural 

real estate on the map) to conquer the entire play map. Players build and maneuver 

units to gather resources and go into combat with opposing units, in order to build 

more base structures and gain control of map regions. StarCraft’s premise is based 

on fictional interstellar wars where players are required to select a race among three 

options (Protoss, Terrans, and Zerg) when starting a game. Each race provides the 

player with different units and strategic options. 

The RTS game genre involves players making decisions for both high-level 

strategies and low-level tactical actions. It generally requires players to have good 

situational awareness in order to play well. The efficient uncovering of map 

information and effective use of this information is crucial to the success of players, 

which makes spatial exploration a core component of gameplay. Spatial exploration 
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also enables the discovery and management of resources, which are used to either 

manufacture more units, including production units and combat units, or to acquire 

advanced techniques to enhance combat and general abilities. These resources are 

usually strategically placed on the maps, but are randomly generated for each new 

game instance. 

The StarCraft provides a 2.5D top-down view as well as an interface that 

includes a mini-map (bottom-left of Figure 3.1) and terrain visuals (the main 

working window in Figure 3.1). This type of interface design can be seen in both 

early-generations of RTS games and it has been adopted by modern successors as 

well. It shows an overall view of the game state which allows players to maneuver 

units at a strategic level. This feature meets our requirement for investigating human-

exploration strategies. Moreover, the RTS game genre is the primary application 

genre which this research attempts to expand upon.     

 

Figure 3.1 The game environment of StarCraft: Brood War. The entire environment is 

covered by the fog of war (black shadows). The global map – left-down, the information window – 

middle - down, the control panel – right-down and the middle – the window of main view.   
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3.1.2 Test Game Environments 

To collect detailed representative data about exploration activities, I 

developed three different game environments: the pure exploration game, the killing 

game and the searching game. In all the game environments, maps are covered by 

the fog of war – an artificial “fog” that blackens out territory that no units have 

travelled over yet (Figure 3.1). 

Information about what the terrain looks like, and what items are under the 

fog is initially hidden from the players. Participants need to explore the environment 

by navigating a unit with a limited perception range through the unknown areas. 

These areas are then revealed to players when “perceived” by the game unit as it 

travels through them. Each game requires players to finish a specific task within a 

limited time frame. 

• In the pure exploration game, players are required to explore the 

whole map as fast as possible within three minutes. 

• In the killing game, there are 41 opponent space construction vehicles 

(SCVs) - a basic StarCraft unit - located on the map. Players are 

required to hunt 20 of the 41 SCVs within five minutes. 

• In the searching game, participants are required to find the 

opponent’s base within four minutes. In order to provide them with 

some guidance in terms of finding the opponent’s base, participants 

are told that the opponent’s base is located near a mineral site, and 

that the opponent’s supply depots (basic StarCraft buildings) are 

distributed around the base area.  
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For the purposes of the experiment, only a small subset of the StarCraft game 

mechanics was used. There were no enemies fighting back, no resources had to be 

gathered by the player and the player did not have to build any units or factories. 

These simplifications were necessary to provide an exploration focus for the 

experiment. For the searching and pure exploration games, attacking actions were 

disabled. For the killing game, an on-screen counter showing the number of enemy 

units the player had to find and kill was added. For all three games, a timer was 

placed on the screen to indicate the remaining time left to complete the given task (Si, 

Pisan & Tan 2016).   

The underlying feature of the three games is the common activity of 

exploring terrain. The pure exploration game was exclusively designed to evaluate 

the players’ strategies and behavior in relation to revealing an unknown map. While 

the killing game and the searching game work based on exploration, players are 

encouraged to plan optimal routes to discover more items and to focus on where a 

specific item is located in the killing and searching game respectively. These two 

games allow us to investigate exploration behavior which is affected by the goals of 

searching and collecting.  

3.1.3 Participants 

Participants were recruited via undergraduate and postgraduate university 

mailing lists, public social networks and public areas in the university. The invitation 

of joining the experiment was broadcasted within the full range of the public 

network.  
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ID Gender Age Hours Game types usually played Familiarity with 
RTS games 

Experience of 
StarCraft 

Recognition 
of StarCraft 

maps 

P1 M 33 10 - 20 
FPS, Strategy, RPG, 

Simulations, Puzzle, CB, 
Sports, RFS 

5 3 4 

P2 M 28 < 1 Sports 1 1 1 

P3 M 27 1 - 5 Strategy, Puzzle 5 3 2 

P4 M 29 < 1 FPS 5 1 2 

P5 F 27 < 1 None 1 1 1 

P6 M 21 5 - 10 FPS, Strategy, CB, PBG 5 5 5 

P7 F 35 10 - 20 Strategy, RPG, Simulations 5 4 2 

P8 M 35 1 - 5 Strategy, RPG 3 2 3 

P9 M 22 10 - 20 FPS, Strategy, W&T 5 3 3 

P10 M 26 < 1 CB, PBG, RLS 1 1 4 

P11 M 20 1 - 5 FPS, Strategy, Simulations, 
Puzzle, PBG 4 2 2 

P12 F 24 < 1 RPG, Puzzle 2 1 2 

P13 M 23 10 - 20 FPS, RPG, Sports, RLS 5 1 1 

P14 M 25 > 20 FPS, Strategy, RPG, PBG 5 5 5 

P15 M 44 1 - 5 RPG 3 1 2 

P16 M 30 < 1 FPS 1 1 1 

P17 M 27 1 - 5 Sports 3 1 1 

P18 F 22 < 1 Simulation, Puzzle, CB 1 1 1 

P19 F 32 < 1 Strategy, CB, Social 1 1 1 

P20 M 36 < 1 FPS, Puzzle, W&T, CB, 
Sports 2 1 1 

P21 F 27 < 1 Puzzle 2 1 2 

P22 F 28 < 1 Social, Sports 1 1 1 

P23 M 33 < 1 Strategy 3 2 1 

P24 M 39 1 - 5 FPS, Puzzle, Sports, RLS 2 1 1 

P25 M 23 1 - 5 Strategy, Social 5 2 2 

        
FPS First – person Shooters RPG Role-playing Games CB Chance - based 
PBG Physical Board Games RLS Real-life Sports W&T Word & Trivia 

Table 3.1 Demographic information and gameplay experience of participants 

After posting the invitation for one week, I received intentions from twenty-

five participants (7 females, 18 males), all of whom, then, signed up in this 

experiment. IRB approval was applied and granted before recruiting participants. A 

detailed description of experiment, including purposes, content, procedure, tasks, 



69 

and video-recording configurations etcetera, was shown to each participant before 

each experiment session. After orally consenting to the study, participants filled an 

online pre-play survey to collect basic demographics like age, gender, gaming 

interests, gaming habits, and how familiar they were with RTS games and StarCraft 

in particular. 

Participants were aged between 20 and 44 (M = 29, SD = 6.01). Except for 

two participants, most have rich video game experiences. Eleven participants usually 

play strategy games, ten participants play FPSgames, seven participants play sports 

games, seven participants play RPGs, four participants play simulation games, seven 

participants play puzzle games and three participants play social games. Of the 

twenty-five participants, ten indicated that they were familiar with RTS games, three 

claimed that they were experienced StarCraft players and four claimed that they 

could recognize some StarCraft maps. One participant indicated that he plays games 

for more than 20 hours per week, four participants between 10 to 20 hours, one 

participant between 5 to 10 hours, seven participants between 1 to 5 hours and 

twelve participants less than 1 hour per week. The demographic information and 

gameplay experiences of participants are shown in the Table 3.1.  

3.1.4 Procedure 

Participants were scheduled to attend the experiment individually at different 

times. After a participant completed the survey, the experimenter (the researcher 

who conducted the experiment) displayed a game demo to illustrate how to control 

and navigate game units. The participant was invited to practice control and 

navigation skills in the demo environment until he/she indicated that they were 

familiar with the gameplay. Then, the experimenter explained the targets that need to 
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be achieved in each game. After that, participants started to play the games. Each 

participant was given the same time for playing a game (three minutes for the pure 

exploration game, five minutes for the killing game, and four minutes for the 

searching game). A game could be terminated in advance if the player completes the 

task and wins the game within the configured time.  The order of the three games 

was randomized for each participant to avoid order effects and counter bias that 

might otherwise be introduced to the results with a fixed order.  

During gameplay, participants were asked to perform the concurrent think-

aloud. They were encouraged to describe what strategies they used to play the game 

and what their instant strategic thoughts and preferences were, and to explain their 

behavior to the experimenter. When a participant kept silent for a long time, and if 

the intent of his / her actions was not apparent to the experimenter, prompting was 

performed to encourage the participant to verbalize continuously. Short questions 

like “What are you doing now?”, “What is your strategy at the moment?” were used. 

After each game was completed, participants filled out a post-game questionnaire, in 

which they indicated their gameplay behavioral preferences and tendencies. After 

they filled out the post-game questionnaire, a post-game interview was conducted 

while watching a video replay of the game they had just completed. Here, 

participants had an additional opportunity to explain what they were thinking and 

feeling during gameplay, in case they missed out any important thoughts during the 

think-aloud. For both the think-aloud and interview, video data was recorded by two 

cameras: one facing the participant, and the other facing the screen where the actual 

gameplay or the video replay was running. The data collection of actual in-game 

behavior as well as verbal descriptions from the think-aloud and interview aims to 
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answer the research question Q1.1. The entire experiment, ranging from the survey 

to the data analysis, was conducted in Games Studio (CB11.06.401, University of 

Technology, Sydney). The place was also employed to conduct all of the 

experiments in the rest of the thesis.  

3.2 Thematic Analysis 

Thematic analysis is an established tool for qualitative research (Guest, 

MacQueen & Namey 2011). Its common approaches are pinpointing, examining and 

recording themes (patterns) across data sets (Braun & Clarke 2006). Themes are 

defined as patterns within data, which highlight descriptions of common 

phenomenon that are normally associated with a specific research question (Daly, 

Kellehear & Gliksman 1997). For this experiment, thematic analysis was used to 

process both the verbalized think-aloud and interview data. Due to its flexibility in 

exploring data from a deep and structural perspective, thematic analysis helped us to 

extract strategic and preference patterns of exploration behavior as well as structural 

traits. The results of thematic analysis contributed to answer the Q1.2. Grounded in 

the typical thematic analysis process (Braun & Clarke 2006), I applied a four-phase 

inductive method as follows (Si, Pisan & Tan 2016). 

3.2.1 Develop Proposal Codes and Themes 

Data analysis began at the stage of collecting verbalized think-aloud and 

interview data, in which the data analyzer observed the entire process of data 

collection. In our experiment, the analyzer was the same person as the experimenter, 

participating as they did in the experimental design and conducting the data 

interpretation and thematic analysis. This arrangement allowed the analyzer to be 
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fully immersed in the data by being involved in the data collection process as well. 

This, in turn, led to a better understanding of participants’ experiences. It also helped 

to keep the verbal and transcribed data consistent. I nonetheless acknowledge the 

potential for greater experimental bias. To minimize the possibility of bias, the 

analyzer was required to meticulously record the data analyzing process, including 

detailed approaches for handling each part of the data as well as emergent issues and 

solutions worked out in the regular meetings with colleagues.  

Similar responses were highlighted and noted by the analyzer while the 

experiments were conducted. After all the participants completed the experiments, 

the analyzer summarized his notes according to topics related to strategic preferences, 

reasoning processes and characteristics. These structured topics were used as initial 

draft themes for the data analysis.   

3.2.2 Data Preparation and Familiarization with Data 

For this phase, I collected verbal data within the think-aloud and interview, 

and the video records of game replay. The game replay and verbal data was recorded 

synchronously. This enabled the analyzer to review the audios of either the think-

aloud or interview and the game replay videos synchronously, which provided a 

succinct way of recovering what happened during the experiments. Raw data from 

audio resources was transcribed into textual files to meet the requirements of 

marking and coding in the later stages of analysis. The verbal data was transcribed 

into textual form, along with game situation descriptions, participant behavior and 

comments in NVivo. The analyzer, who was present through all gameplay recording, 

was completely familiar with the data owing to repeated reading in an immersive 

way.  



73 

3.2.3 Code the Data and Extract Themes 

In this phase, I extracted features from the data into codes. A code refers to 

“the most basic segment, or element, of the raw data or information that can be 

assessed in a meaningful way regarding the phenomenon” (Boyatzis 1998, p. 63). 

The coding process mainly focused on the textual data that described the act of 

exploration. The gameplay videos were used as supplementary content to better 

understand the transcripts.  

The process of extracting themes began by constructing a hierarchical 

preliminary theme structure based on the initial theme drafts generated in the first 

phase. The analyzer encoded the data and categorized them into the relevant 

potential themes. If there was no corresponding theme, a new theme was created and 

inserted into the structure. The process continued until all the data was processed. 

3.2.4 Reviewing and Re-constructing Themes 

This phase started with the analyzer reviewing the themes from the previous 

phase. It involved the refinement, redefinition and reorganization of the themes. For 

example, some of the themes that lacked sufficient support from the data were 

pruned. 

Following this, the themes were reorganized into common aspects of spatial 

exploration. This resulted in four main themes: 

• strategy, which represents what strategies people make in playing the 

games; 

• reasoning, or how they reason about situations and options; 
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• conception, which represents what spatial conceptions about the 

environments are mapped in their minds; and 

• hesitation, referring to a reluctance to move when encountering 

certain instances of the game.   

Each theme encapsulated common behavioral aspects that participants 

exhibited in the three exploration games. When reviewing the data sets grouped into 

these four themes, I further discovered that players had clearly distinguishable 

preferences. Within each theme, I then embarked on an iterative code-mapping 

process to re-organize the codes into different groups according to these preferences. 

For example, within the theme reasoning, a code-map was generated, 

structured around sub-themes about what types of options: unexplored areas, paths, 

targets and other factors players appear to have considered in making choices 

(Figure 3.2). I merged similar themes and re-structured the code-maps by focusing 

on the objectives of the types of reasoning participants used, to give us the purpose 

of participants’ reasoning. The resulting sub-themes of reasoning are: paths, terrain 

layouts, targets and unexplored areas. The themes that were subject to these sub-

themes were more detailed objectives, specific goals and ways of reasoning (Figure 

3.3). 

Based on the map in Figure 3.3, I re-categorized the codes via the ways 

people do reasoning to distinguish behavior patterns among the themes. In this step, 

the preferences of methods (for example the theme “Special Items” means that 

people prefer to reason about the options by using their judgment about special items 

that they are tracking) were converted to be direct subtopics of reasoning, while 
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other factors were grouped within different behavior preferences. I then generated a 

preference-centered code-map of reasoning (Figure 3.4). 

 

Figure 3.2 Initial codes map for the reasoning theme 

 

Figure 3.3 Objective-centered structure of the reasoning map 
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Figure 3.4. Preference-centered structure of the reasoning map 
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limitation. At the end of the process, the map structure facilitates the articulation of 

player archetypes on the reasoning theme. The main branches are grouped with the 

consideration preferences (Figure 3.4). For example, “Barrier-consistency”, along 

with the branch “Limited view”, are re-structured. Then, “Barrier-consistency” is 

renamed as “Following Barriers”, because it represents the decision-making and 

situation-analyzing process better.    

By using the same typological methodology, I re-organized the code-maps of 

the other three themes: strategy, conception and hesitation. Similar sub-themes are 

found across code-maps. For example, the sub-theme “limited view” exists in the 

strategy, reasoning and hesitation code-maps.  

These sub-themes are identified as players’ preferences within the four 

aspects of behavior. By grouping these sub-themes across the four maps into four 

groups, I define four archetypes: Wanderers, Seers, Pathers and Targeters, which 

are comprehensive enough to encompass and identify participants’ common 

behavior patterns. Sub-themes and codes within these four aspects are then 

regrouped into these four archetype-themes. The characteristics of these archetypes 

and their performances on the aspects are discussed in the next section. 

3.3 Classification of Gameplay Instances 

The archetypes that emerged above depict behavioral traits in various 

exploration scenarios. The analysis in this phase aims to answer the Q1.3.  I 

categorized all the gameplay instances into the four archetypes to investigate the 

distribution of the four behavioral types (Si et al. 2017). To reduce bias and embed 

the results of classification, I conducted the analysis with two independent coders 
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and assessed the inter-coder reliability (ICR) in the process. The two coders were 

research assistants in the lab. Both of them have been trained to conduct thematic 

analysis, and had experiences of qualitative analysis.  

The definitions and traits of the four archetypes were generated via the 

thematic analysis process described above. The archetypes were discussed and 

reviewed in group meetings that involved the two coders, in order to generate a set 

of classification criteria. Then, a set of instances were randomly selected from the 

entire instance data set as the sample. It contained the gameplay instances of 7 out of 

25 participants. The two coders then classified the sample instances independently.  

After independent classification was complete, the overall coding agreement 

and Kappa coefficient (Cohen 1960) were calculated to assess the ICR within the 

sample set. Consequently, the two coders collectively discussed the results with a 

third researcher to re-assess the classification criteria accordingly. In fact, since all 

three-people agreed on the initial rules, they were directly applied for classification. 

The overall agreement rating and the Kappa coefficient for this first wave of 

classification were 85.83% and 0.807 respectively, which provided enough 

confidence to continue the coding on the basis of existing rules (Landis & Koch 

1977). In the next step, coders coded the rest of the 18 participants’ data. Finally, the 

ICR was assessed over the entire data set by calculating the two coefficients. 

3.4 Results 

3.4.1 Player Exploration Archetypes 

 Our findings can basically be derived from the descriptions and 

characteristics of the four player exploration archetypes (PEAs) that were generated 
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and evaluated by the procedure described in the prior section. I borrowed and 

recreated four English words: Wanderers, Seers, Pathers and Targeters to represent 

the four archetypes respectively. 

Wanderers 

Regardless of the game type, Wanderers move around without a definite 

destination or purpose. Wanderers do not have an explicit understanding of their 

location nor do they have specific plans on how to reach their next destination. They 

concentrate exclusively on getting around local map regions and discovering items 

that fall within the immediate cone of the exploration unit’s vision. Wanderers prefer 

local landmarks and terrains, and they use them as references to navigate. For 

example, a typical Wanderer’s preference: “I think I just followed the edge [the 

terrain boundary that divides the map into regions]. But I didn’t do it on purpose.” 

(P21 – Interview – pure exploration game) This shows that he had no set targets and 

that he had minimal awareness of map features. 

Seers 

Seers aim to aggressively expand their visibility span when exploring 

unknown environments. Being able to see as much information as possible is the 

main priority for Seers. They seek to reveal as much of the unexplored map in the 

quickest time possible. For example, I observed a Seer (P11, which represents the 

participant number) employing a clockwise circular walking strategy to explore 

environments efficiently. His actions were supported by his interview statements 

(pure exploration game): “I referred to the map [overview map] at that point. I 

headed to the top of the screen. I was on top of this map. I used the clockwise to 
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explore all the area. And I just followed the map down, to the major unexplored area.” 

He had an explicit global view of the environment as well as eagerness to expand his 

visual field efficiently.    

Pathers 

The Pather archetype is characterized by elaborately structured cognitive 

maps of environments. Terrain features such as high land, low land, ramp, bridges 

etc., are highlighted, perceived, slotted and grouped by Pathers. Pathers will 

categorize a map into known-pattern classes by analyzing its appearance and 

reasoning about its functional features. Although in most cases the view of the entire 

environment is not available for players, Pathers consistently attempt to keep track 

of highlighted map features in order to cumulatively construct patterns which are 

then classified based on their prior map knowledge. An example of a Pather’s 

response is: “At this point, I was confused by the map, because I realized there was a 

layer. But, I forgot. I completely forgot where the way was.” (P21 – Interview – 

Killing game) When asked by the experimenter on what the ‘layer’ referred to, the 

participant answered, “The high land. At the point, I realized that this high land was 

somehow kind of a bridge [linking] to different areas. So, I needed to climb, maybe, 

up and down to find a way out [from areas to the bridge].” This shows that she was 

trying hard to construct a structured-map representation in her mind.  

Targeters 

The Targeter archetype is objective-oriented towards terrain features. Their 

behavior appears to have specific targets underpinned by clear tactical plans. 

Targeters seek landmarks, items and any other identified objects that can serve as 
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hints of target locations, such as resources and opponent locations. They keep 

predicting the locations of these targets, and verifying their predictions. They then 

adjust their plans with each new discovery. For example, a Targeter (P20 – 

Interview – Searching game) said: “I just realized that I was getting close to [the 

base]. Then I thought it was in the corner, to be honest. Then I thought [that I have] 

to go and check that corner. I thought [it] may be there, maybe in the small corner 

that I can’t see. That’s why I explored it and, OH NO, it was not there. Then I went 

back. Here, I couldn’t believe that I was wrong.” The participant’s disappointment 

shows her level of confidence about her prediction. When asked by the experimenter 

to elaborate, she also mentioned: “[The base should be] exactly between these two 

[mineral sites]. Now, yeah, I began to find [it]. Then I saw this [supply depot]. I 

thought, OK, it could be something around this area [pointing to the middle black 

area of the map]. And then I saw a path there.” It appeared that she was keeping 

track of hints, as well as analyzing them continuously, in order to locate the 

opponent’s base. 

3.4.2 Behavioral Aspects of Archetypes 

Within this section, I describe how the behavior of the four archetypes differ 

in terms of the four behavioral aspects: strategy, reasoning, conception and 

hesitation. For each aspect, the behavior of each archetype is described. It should be 

noted that not all the archetypes have corresponding behavior for all the aspects, 

which means that for some of the aspects below, not every archetype is described 

underneath. For example, there is no description of Targeters on the strategy aspect, 

because Targeters’ strategy behavior is not explicitly identified according to the data 

set.  
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Strategy 

“A plan of action designed to achieve a long-term or overall aim.”(Dictionary 

2007b) The term “strategy” is employed, here, to represent the “plan of action” 

players make to “achieve” their “overall aims”. Different archetypes express their 

strategies differently based on their preferences. 

Wanderers do not possess any systematic strategies. At the early stages of 

exploration, a Wanderer is more likely to choose a random direction to move 

forward. Their typical thought processes are “I have no idea” (P5 – Think aloud – 

Pure exploration game) and “I was just exploring. I had no preferences” (P18 – 

Interview – Killing game). Subsequently, tracking terrain features, for example, 

boundaries, is a common type of behavior. A Wanderer (P2 – Interview – Killing 

game) described his exploration strategy as: “I don’t know where to go, because I 

don’t know how to find a path. And there is no way.”  

Seers keep a global view of the environment. Their general strategies are 

normally direction-oriented, which include an explicit sequence of exploration to 

cover different sections of the map. A Seer (P4 – Interview – Killing game) 

described his strategy as, “I found [realized] the overview map. I found I was on the 

top [side of the map]. So, I wanted to go down [side of the map] to search another 

place.” Additionally, this sole focus on map uncovering is also a strategic priority for 

Seers when considering strategies in the killing game and the searching game, where 

uncovering unknown terrain is not the main task. For instance, a Seer (P11 – 

Interview – Searching game) said, “I continued [using] my clockwise pattern to 

cover the most areas.”  
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Pathers take advantage of the structure in maps. They normally define 

enclosing areas where they have already explored, and prefer to uncover a region 

completely before they move to explore another area. For example, when a Pather 

was asked why he went a certain direction, he replied “Because I thought if I go 

down [side to the area], I don’t have to like go back.” (P19 – Interview – Pure 

exploration game). Another behavior identified was that they are actively looking for 

terrain connections among different parts of maps, for example, “I just want to 

search a connection between this part and another part.” (P2 – Think aloud – Pure 

exploration game) 

Reasoning 

In this thesis, the concept reasoning refers to practical reasoning which is 

defined as “a kind of goal-directed reasoning that seeks out a prudential line of 

conduct for an agent in a particular situation.”(Walton 1990, p. 405)  During the 

process of exploration, players reasoned about unexplored areas, paths and targets 

based on what they have already discovered. Different archetypes approach this 

differently.  

Wanderers normally choose where to go within the limited local view of the 

map based on random guesses. For example, I observed a participant who navigated 

his unit towards the path to the right side of the map. When asked why he didn’t go 

to the path that leads downwards, he said, “I didn’t see the overview [map] clearly. 

So, I turned right.” (P17 – Interview – Searching game) 

Seers prefer navigational options that can result in larger visible regions. For 

example, a Seer participant explained his choices as, “There is also much area to 
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explore. So, I move down [side of the map] for efficiency. So, I start going south 

[down side of the map]. There is no more area to the east [right side of the map].” 

(P11 – Interview – Killing game) 

Pathers keep a structured representation of the map and a clear prioritized 

sequence of where to go in strategic order. For example, I observed a Pather 

participant choosing a certain path, as opposed to an alternative path, to an area 

which she had partially uncovered. When asked about her reasoning, she said, 

“Because I saw it [the area] from the other side. I couldn’t access it. So, I go to that 

[area] first, clean that area.” (P19 – Interview – Pure exploration game) 

Targeters reason in a way that is consistent with their objective-oriented 

preferences, i.e. finding key objects of interest such as the opponent’s base. Their 

reasoning process is anchored on the accumulation of hints from map features in 

order to predict locations of targets within unexplored areas. For example, when 

asked about the reasoning on why a Targeter participant chose to search in the high 

platform (which led him to find the opponent base eventually), he replied, “Because, 

at that point, I think that base is really close. The first time I saw that one ... At the 

first time, I saw this building [supply depot], and after a few seconds I saw another 

one, I think it’s because these buildings are around the enemy [opponent] base, so I 

think maybe it’s in the middle. So, I go up.” (P13 - Interview – Searching game) 

Conception 

The conception specifically refers to the concept of space, which is 

considered as a fundamental way to understand the physical world (Ekholm & 

Fridqvist 2000). I use the word “conception” here to represent the way of how a 
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player constructs a cognitive representation of the game map, which also varies 

among different archetypes.  

Seers apply a direction-based approach in structuring the cognitive map, for 

example, segregating a map into the top-left, top-right, bottom-left and bottom-right 

parts. An example of this type of segregation can be seen in a Seer participant’s 

thought process: “My strategy is just to walk from left [side of the map], and to the 

right [side of the map]. And up [side of the map] and from right [side of the map] to 

left [side of the map].”  (P25 – Interview – Pure exploration game) 

Pathers cumulatively maintain a structured cognitive map based on each new 

acquired knowledge of the environment. They normally have a pre-conceived notion 

of the layout of the environment, and cumulatively construct the cognitive map by 

incorporating the gradually acquired spatial knowledge. Topological-map-like 

structures normally exist in Pathers’ minds. For instance, a participant (P3) who 

preferred to use computer science terminologies (depth-first search and breadth-first 

search) to describe his exploration behavior, described his initial strategy in the 

killing game as such (Interview): “I need to search in detail, which means I can’t 

leave any black patches. So, I just go depth-first search. And then, I followed the left 

edge [the terrain boundary that divides the map into regions] and keep going”. In the 

searching game, he employed both the depth-first search and breath-first search 

techniques to position the enemy base. He explained (Interview), “I saw a bridge 

first, so I just go through it, and follow the edge … Actually, this was kind of depth-

first search.” When he discovered an enemy cue, he said: “I could see the landmark, 

which was the oxygen supply [supply depot]. So, I thought I should start the breadth-

first search now.” 
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Hesitation 

The word “hesitation” normally means “The action of pausing before saying 

or doing something.” (Dictionary 2007a) Sometimes, the “pausing” is expressed as 

recycling, where “a normal pattern is to recycle to the beginning of the utterance 

(perhaps more than once).” (Hymes 2008, p. 14) I use the word “hesitation” to 

represent a common behavior observed is travelling back and forth in explored areas. 

The reasons, however, are highly varied and situation-specific. I define and classify 

these kind of behavior as hesitation. Different archetypes are driven by different 

motivations to perform hesitations.  

Wanderers hesitate for two reasons: a lack of specific strategies and 

unfamiliarity with environments. The combination of these two reasons is especially 

apparent in the killing game. “Why did you keep on moving forward and backward 

within the areas you have explored?” asked the experimenter. “Because I am sure 

that I have been here at the first time, and I regarded the fly thing as an enemy 

[opponent unit]. But I was wrong. I think I didn’t have a CLEAR VISION of the 

map. I didn’t have some theories about how to explore the new enemies [opponent 

units]. So, I just moved back and forward.” (P2 – Interview – Killing game) said.  

Pathers’ hesitation behavior stems from their hesitations in ordering the 

sequence of visiting points.    For instance, one participant (P16 – Interview – Pure 

exploration game) explained his hesitant movements as follows: “I didn’t take the 

other view - the right-side view. I missed one connecting path, so I return there. So, I 

thought maybe if I come back to the same place. Then I would find a way to go to 

the right [side of the map]. Then I went to up [side of the map] again, I can’t find 

way to right. I spent some time near here.” When I looked at the game replay, I 
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found that he had explored the left part of the map, and was attempting to find a 

connection to explore the right side.  

The Targeters’ hesitation in exploring environments with behavior of 

walking back and forth is caused by their goal of tracking objects. A typical example 

is a participant (P20 – Interview – Searching game) who gave up moving on his 

current path and returned to explore repeatedly. The experimenter asked, “Why did 

you go back?” and the answer was, “Because previously there wasn’t a mineral site 

nor a lot of places, but, when I saw this one [supply depot], I changed my mind. 

Because there were more buildings.” 

3.4.3 Archetypes in Different Instances 

 Pure Exploration Game Killing Game Searching Game 

Wanderer P5, P18, P21, P22 P2, P18 P10, P17, P18, P22, P23 

Pather P1, P2, P3, P7, P9, P13, 
P15, P16, P19, P20, P23 

P3, P21 P8 

Targeter  P1, P7, P9, P10, P14, 
P15, P17, P20, P22, P24 

P1, P5, P6, P7, P9, P13, 
P14, P15, P19, P20, 
P21, P24, P25 

Seer P4, P6, P8, P11, P12, P14, 
P17, P24, P25 

P4, P6, P8, P11, P12, 
P13, P16, P23, P25 

P4, P11, P12 

a. Archetype distributions in each game type 
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 Pure exploration game Killing game Searching game 

P1 P T T 

P2 P W N 

P3 P P N 

P4 S S S 

P5 W N T 

P6 S S T 

P7 P T T 

P8 S S P 

P9 P T T 

P10 N T W 

P11 S S S 

P12 S S S 

P13 P S T 

P14 S T T 

P15 P T T 

P16 P S N 

P17 S T W 

P18 W W W 

P19 P N T 

P20 P T T 

P21 W P T 

P22 W T W 

P23 P S W 

P24 S T T 

P25 S S T 

    

b. Categorization of each participant in different games 

Table 3.2 Archetype classification of participants for each game type 

The consensus classification between the two coders is shown in Table 3.2. 

With 25 participants, there were 75 gameplay instances in total. The two coders 

attained consensus categorization in 69 out of the 75 instances. In the searching 

game, most players (59% of instances) tend to exhibit the traits of the Targeter. In 

the killing game, players were roughly evenly distributed in the Targeter (43%) and 

W Wanderer S Seer P Pather T Targeter N None 
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Seer (39%) archetypes respectively. In the pure exploration game, it was interesting 

that no players exhibited the Targeter archetype. In the searching game, most 

players exhibited the Targeter (79%), with a few exhibiting the Seer (14%) 

archetype. 

The classification results in Table 3.2 produced satisfactory reliability. The 

reliability measurement consists of an overall agreement rating of 90.82% and a 

Kappa coefficient of 0.892, based on our inter-coder assessment across the entire 

data set. 

3.4.4 Exploration Types & Demographic Types 

Gender 

Different genders of players express rather different archetypes across the 

three games, except for the Targeter archetype, which I classified a significant 

portion of both male (34%, n = 17) and female (32%, n = 6) participants as Targeters. 

It is consistent with the prior observation that the Targeter archetype represents the 

majority of overall players across the games. Meanwhile, the Seer (36% of male 

instances, n = 18) and Wanderer (37% of the female instances, n = 7) archetypes 

were the dominant archetypes for males and females respectively (Figure 3.5.a). 

In Table 3.1, we can see that six of the seven female participants played 

games for less than one hour per week, and one of them played games for ten to 

twenty hours per week. This presents a possibility that low gameplay proficiency 

may have an effect on the results for analyzing the gender factor. The population of 

female players (one person P7) who comparatively played lots of hours per week is 

too small to analyze. In Figure 3.5.b, the archetype distribution is compared across 



90 

genders with same level of gameplay time by eliminating instances where the 

gameplay hours are more than one. Interestingly, the Seer (33% of male instances, n 

= 5) and Wanderer (44% of the female instances, n = 7) archetypes still dominate for 

male and female groups respectively (Figure 3.5.b).  

 

a. Original data 

 

b. Novices’ data whose gameplay hours are less than one  

Figure 3.5 Relation between gender groups and the archetypes 
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Gameplay Hours 

I compared the proportion of participants for each archetype based on the 

number of hours played per week (Figure 3.6). The most glaring observation is that 

91% of participants who play games for less than one hour per week are Wanderers, 

which shows that being unfamiliar with gameplay forges Wanderers (Figure 3.6). 

This is consistent with the notion that Wanderers possess the least “gamer-savvy” 

attributes, i.e. they are the least strategic and do not give deep thought to the 

exploration task, a game feature which is central to many modern video games.  

I also compared the proportion of participants across archetypes for each 

category of weekly gameplay hours. Here I observe that 50% of participants who 

spend 1-5 hours per week on playing games are Seers, while 63% of those who 

spend more than 5 hours are Targeters (Figure 3.7). This, again, is consistent with 

the fact that more avid gamers (who spend more time each week) tend to exhibit 

more elaborate behavior (i.e. those characterized by Seers and Targeters) that 

involve deeper analysis for their resulting actions. It is also interesting to note that 

the Pather archetype lends itself well to more avid gamers, but it is exhibited to a 

lesser extent in our study.  
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Figure 3.6. Relation between weekly gameplay hours and the archetypes – grouped by types 

Figure 3.7. Relation between weekly gameplay hours and the archetypes – grouped by 

playing time 

Real-life Navigation Abilities 

Within the pre-game questionnaires, I employed three five-point Likert scale 

(Likert 1932) questions to evaluate people’s navigation experience in real-life. They 

are: 

1. I keep a clear egocentric distance and direction of my home in my 

mind, every time I leave home; 
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2. I am easily disoriented in an unfamiliar environment; and  

3. I have a good spatial memory of places, where I have been to. 

These questions serve to evaluate the three key aspects of spatial navigation 

abilities: distance estimation (Jeffery 2007; Moser & Moser 1998; Wilson et al. 

2003), spatial orientation (Hegarty et al. 2002; Iaria et al. 2009) and spatial memory 

(Montello et al. 1999). Previous research has focused on developing evaluation 

scales to test these abilities respectively. Instead of combining them into a 

comprehensive version, I evaluated participants’ navigation abilities via the three 

questions in the pre-play questionnaire, which helps participants to concentrate on 

game playing sessions without too many distractions. The summarized scores of the 

three questions are shown in Table 3.3: 

 Wanderer Pather Targeter Seer 

Means 9.91 10.93 11.17 10.38 

Standard Deviation 1.76 2.09 2.55 
 

2.27 

Table 3.3 Real-life navigation abilities. Means and standard deviations of the total scores 

representing participants’ real-life navigation abilities. The total scores are a sum of 3 Likert scale (1-

5) items (max score of 15). 

The participants who exhibit the Wanderer archetype have the poorest real-

life navigation abilities (M = 9.91, SD = 1.76), while participants who exhibit the 

Targeter archetype have the best real-life navigation abilities (M = 11.17, SD = 2.55).  

This might imply that, other than gameplay experience affecting their behavior in 

exploration, real-life navigation abilities might also play a part in explaining the 

behavior participants exhibit, for example, poorer real-life navigation relates well to 

more non-systematic exploration behavior typical of the Wanderer archetype. In one 
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example, a Wanderer (P22 – Interview – Pure exploration game), who marked 10 in 

the real-life navigation ability testing, ignored a bridge, which was explicitly shown 

in her main view. She explained the reason why she ignored it as: “Maybe I thought 

that’s the same bridge, the one that I found in the beginning.” 

3.4.5 Preferences for Different Terrain Features 

In the post-game questionnaire, participants were also evaluated on their 

preferences to seek and follow the four types of environmental features present in the 

game: (1) open space; (2) edges such as walls, obstacles, cliffs and riversides; (3) 

connections such as connecting paths, bridges and narrow ramps; and (4) landmarks, 

such as buildings, creatures and other special items. Their responses are summarized. 

The means and standard deviations are calculated and listed in the Table 3.4:  

 

Table 3.4 Preferences to terrain features. Means (M) and standard deviations (SD) of the 

evaluations of participants’ preferences to different terrain features. 

From Table 3.4, it can be seen that Wanderers have the strongest preference 

for connections (M =3.73, SD = 0.72). Pathers have the strongest preference for 

edges (M = 4.04, SD = 0.82). Targeters have strong preferences for both open spaces 

(M = 3.65, SD = 0.88) and landmarks (M = 3.54, SD = 1.09). Seers have strong 

preferences for both open spaces (M = 3.67, SD = 1.15) and connections (M = 3.76, 



95 

SD = 0.78). 

The strongest preferences of each archetype were all consistent with the 

think-aloud responses of participants classified into that archetype, for example, for 

the Pather archetype, P1(Think aloud – Pure exploration game), whose preference 

value to edges is 5, said “I suspect that there was a big ocean there. I am goanna 

check this. Try to find way to here. There might be a lake here. I suggest it's a lake.” 

This provides additional confidence that these are the behavioral tendencies 

distinguishable between the different archetypes I have uncovered in this chapter.  

3.5 Discussion 

3.5.1 Mapping with General Gamer Types 

Even though the four archetypes I discovered were based on our unique study 

environments aimed at investigating exploration behavior, it is interesting to note 

that they are relevant to other more general gamer types devised in prior research 

(Nacke, Bateman & Mandryk 2011). The connections between our four archetypes 

and Nacke’s types are described below: 

• The Wanderer can be connected to Nacke’s Seeker and Survivor 

types. The Seekers’ preference of seeking instant and easy enjoyment 

from the environment could map to the Wanderers’ characteristics of 

exploring local items. In relation to Nacke’s Survivor type, 

Wanderers’ fear emotions as what Survivors have may motivate 

players to focus exclusively on their immediate localities and not see 

or plan for the broader exploration task. 
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• The Seer can be connected to Nacke’s Seeker and Daredevil types. 

The Seer is similar to the Seeker as both of them have interests in the 

environments themselves. Unlike the Wanderer archetype, in which 

players’ behavior can be associated with a sense of being lost, the 

Seer archetype tends to be more aggressive and risk-taking. This 

element coincides with the characteristics of the Daredevil type. 

• The Pather can be connected to Nacke’s Seeker and Mastermind 

types. The Pather has similar characteristics as the Seeker but with 

the addition of maintaining a structured mental map. On the other 

hand, the Pather’s preferences for making elaborate strategies to 

reveal the structure of virtual environments could be mapped to the 

Mastermind type. 

• The Targeter can be connected to Nacke’s Achiever and Mastermind 

types. The Targeter is similar to the Achiever as the objects that 

Targeters hunt for are similar to the goals that Achievers attempt to 

complete. The Targeter also prefers to reason about acquiring 

information for discovering the target items, which maps to the 

characteristics of enjoying solving puzzles in the Mastermind type. 

A player may exhibit several types of exploration behavior depending on 

game environments and tasks. The summarized connections help to better 

understand the four behavioral types discovered in map exploration, and provide a 

lens to predict possible exploration behavior that specific Nacke’s player traits may 

lead to. Factors that determine a specific type of exploration behavior are discussed 

below. 
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3.5.2 Different Archetypes for Different Games  

I found that the archetypes exhibited by a participant might not be consistent 

across all three exploration games. In further analysis of these instances, it was 

apparent that participants who didn’t exhibit consistent archetypes in all three types 

of games possessed multiple archetypes themselves. They expressed one dominant 

archetype, alongside other minor archetypes in different games. 

Game mechanics could be one vital element that led to this common 

variation. For example, when observing P6’s (Interview - Seer) gameplay, whenever 

he avoided narrow paths he aggressively expanded his map viewing area in the 

killing game, saying, “My main attention at this point was to EXPLORE ALL 

[emphasis added] the high ground. So, I just continue walk on the high ground.” 

Interestingly, he also exhibited the Targeter archetype along with the Seer archetype 

in playing the killing game. He said, “I think, at the point, I realized that SCVs are 

near minerals,” when he reviewed the early stages of playing, which potentially 

indicates that he extracted the knowledge of positioning targets very quickly. Later, 

instead of continuing to explore the remaining parts of a region, where he had 

already revealed part of it, he gave that up and moved on to other regions, in which 

he explained: “I realized it was too narrow for minerals.”  

In contrast, whilst in the searching game, his Targeter archetype dominated 

behavior (Interview): “At this point, I was around here, and I saw a supply depot. I 

was not sure whether it [the target enemy base] was going to this part [the highland 

at the top of the map] or that one [the high land in the middle part of the map]. 

Before going further down, I thought I’d have to check.” His explanation of his 

behavior indicates that he was sensitive to the cues, and made substantial reasoning 
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of the target location. This is typical behavior of a Targeter.  

In this example, I discovered that P6 possessed two archetypes - the Seer and 

the Targeter, which emerge in varying intensities in the participant’s behavior in 

different games (the killing game – Seer, the pure exploration game – Seer, and the 

searching game - Targeter). The differing game goals in the three game types (for 

example, seeking targets was the primary goal in the searching game) led to 

different dominant archetypes observed in the players across the games. It should be 

noted that some of these game goals might occur in more than one game type; 

nonetheless, the primary goal for each game remains explicitly different, which 

facilitated the differing behavior observed across the games. For example, seeking 

targets was an explicit primary goal of the searching game; players in the killing 

game had to hunt for targets as well; however, in this case it was an implicit goal 

compared to the primary goal of destroying these targets. Moreover, different game 

mechanics (for example, sparse distribution of enemy units in the killing game) also 

contributed to the variation in gameplay across the three game types.  

3.5.3 Different Archetypes in One Game 

As mentioned in section 3.5.2, I noticed that a participant might significantly 

exhibit more than one archetype in a single gameplay instance. For instance, when 

P8 was playing the killing game, he, sometimes showed obvious effort in 

recognizing the map structure: “Because mostly the parts of the map are downside, 

so I tried to go to…”, and manifested explicit attempts at finding opponent units, “I 

thought, when I was playing some games, I saw enemies are always hiding in some 

corners.” (Interview). This shows some traits of a Pather. However, his dominant 

behavior was classified as a Seer, as they employed a general mapping strategy, 
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“Maybe go upside. Cross the whole upstairs, upside and downside. And explore the 

whole area”, and prefers to explore open spaces, “Just go explore the open space … 

To explore [the dark area].” This might be attributed to studies that have shown that 

players’ mostly exhibit multiple personal characteristics in games, such as emotions, 

play skills, social preference and obsessive tendencies (Bateman, Lowenhaupt & 

Nacke 2011). It was even rare that a player exclusively possesses one single trait in 

playing one type of game. This phenomenon appears to surface in our findings as 

well, although through our analysis, I do find that we are able to confidently identify 

a dominant archetype in most cases. The archetype table (Table 3.2) lists the 

eventual dominant archetypes derived from our coding process.  

3.5.4 Impact of Player Demographic on Archetype 

As shown in the Results section, player demographics like gender, weekly 

gameplay hours and real-life navigational abilities appear to have an effect on the 

exploration behavior, i.e. the player’s archetype. Many of these findings appear to 

conform logically to the archetype behavior. For example, participants who play less 

hours and are less familiar with games, as well as those with lesser real-life 

navigational abilities, tend to be Wanderers. However, these relationships are not 

conclusive as they were not the primary focus of this research, and further research 

needs to be done to establish these relationships. I suggest this as possible future 

work. 

3.5.5 Preferences for Terrain Features 

In the results, I found that strategic preferences on environmental features 

support the exploration behavior characteristics of each archetype. For example, 
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Wanderers prefer connections, which provides them with an easy way to find 

visiting spots, as they do not have a systematic strategy for exploration. In contrast, I 

found that Pathers prefer edges the most, which fits their typical behavior of paying 

more attention to the structural definition of terrain features. 

3.6 Conclusion 

In this chapter, I answer the research question Q1 by presenting a study that 

examined the game exploration traits of 25 players playing three types of custom-

designed exploration games on the StarCraft: Brood War platform. By using 

thematic analysis on both concurrent think-aloud and video-cued retrospective 

interviews, I uncovered four behavioral aspects - strategy, reasoning, conception and 

hesitation - that provided several angles from which to understand exploration 

activities in a virtual game world (Q1.1).  

By distinguishing behavior according to the four behavioral aspects, I further 

showed that players can exhibit one or more of four player exploration archetypes, or 

PEAs, that represent different explorative archetypes: Wanderers, Seers, Pathers and 

Targeters. Inter-coder classification analysis was conducted to identify each 

gameplay instance into a certain archetype. The results also show that the dominant 

archetypes for participants vary in different game types (Q1.2).  

Analyzing the relationships between the behavior in the derived archetypes 

and the behavior inferred from the survey responses, I found that gender, weekly 

gameplay time and real-life navigation ability had significant effects on the eventual 

archetypes into which I classified players. Additionally, participants’ preferences for 

different terrain features, which I collected from the survey responses, match the 
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traits of the archetypes corresponding to each player (Q1.3).  

The findings about how human doing spatial exploration are implemented to 

design a believable exploration agent in Chapter 5, where I employ a heuristic 

method. The experiment environment designed in this chapter is also consistently 

utilized in the following chapters. In next chapter, I investigate the differences of 

behavior patterns between human players and computer agents in exploring virtual 

environments.  
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Chapter 4. Understanding Believability of Spatial 

Exploration Agents in Digital Games 

This chapter aims to answer the research question Q2: “What behavioral 

differences exist between normal players and automated exploration agent?” It is 

divided into three sub-questions. 

Q2.1 Can an external observer distinguish between human players and 

computer agents in spatial exploration scenarios?  

Q2.2 What behaviors are identified as distinctly belonging to computer 

agents? 

Q2.3 What behaviors are identified as distinctly belonging to human 

players? 

To answer these three questions, I developed a third-person assessment 

system to evaluate the believability of human players as well as several state-of-the-

art automated exploration agents. Independent judges rated the believability of 

gameplay subjects on a Likert scale-based questionnaire. Semi-structured interviews 

were also used to obtain more elaborate descriptions of believable versus 

unbelievable behavior. I used a thematic analysis method to extract behavioral 

patterns in the lens of believability. 

4.1 Game environment 

The game environments are same as those developed in Chapter 3 (see 3.1.2 

Test Game Environments).  In the following chapters, the game environments are all 
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the same as those in Chapter 3.  

4.2 Computer-agent Objects 

Computer agents are implemented according to several state-of-the-art 

autonomous exploration algorithms, which reflect the three major approaches in this 

area: (1) artificial potential field (APF) (Holz et al. 2010), (2) multiple criterion 

decision-making (MCDM) (Basilico & Amigoni 2009) and (3) topological (Akdeniz 

& Bozma 2015). As a baseline, I also create a computer agent that explores and 

plays in a random way.   

Frontier-based (Li, Amigoni & Basilico 2012) and information entropy 

(Amigoni & Caglioti 2010; Charrow et al. 2015; Holz et al. 2010) are two major 

methodologies in developing autonomous exploration agents within one single agent 

systems (Juliá, Gil & Reinoso 2012). Many studies illustrated that frontier-base 

algorithms were simple but efficient strategies (Holz et al. 2010). Algorithm random, 

APF and MCDM are all frontier-based, meanwhile MCDM also integrates 

information entropy. Topological method is a representation of classical structured 

searching methods, which constructs topological structure in searching space, and 

determine visiting operations on it.  

The typical process of automated exploration by a unit with a limited visual 

range in an unknown environment is summarized by (Amigoni & Caglioti 2010; Si, 

Pisan & Tan 2014b) as: 

a) The computer agent perceives the surrounding environment. 

b) The map patches perceived are integrated into the explorer’s map-

representation system.  
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c) Candidate next-best positions are identified from its map 

representation system, according to a specific identification strategy. 

d) The identified positions are evaluated via an evaluation approach. 

e) An optimal position is chosen as the goal of next movement after the 

evaluation.  

f) The explorer goes to the selected optimal position and continues from 

step a). 

The basic map representation system used in the following four algorithms is 

a grid-based approach, where the environment map is divided into equal-size squares. 

Each square is labelled as known or unknown, referring to whether the exploration 

unit has been perceived it or not.   

4.2.1 Random 

This strategy acts as the baseline of the performance of computer agents’ 

exploration strategies. A computer agent employing the random strategy selects the 

target from candidate positions to explore in a random manner. Candidate positions 

are selected from frontiers by doing exploration. Frontiers are defined as edges 

located between explored areas and unknown areas.  The pre-condition is that the 

strategy cares about the areas and targets which are unknown and undiscovered. 

Therefore, each movement decision is to expand to move towards a discovered 

enemy item.  

4.2.2 Artificial Potential Field 

In this algorithm (Holz et al. 2010), the points that are located on the frontiers 
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are considered as the candidate points in each step, where the agent decides where to 

go. Distance is the sole factor used to evaluate potential points. The candidate 

position with the nearest distance from the current explorer’s location is selected as 

the next optimal location.  

4.2.3 Multi-criterion Decision-making 

Candidate positions of MCDM are selected from frontiers as well. This 

algorithm combines the potential values from different criteria: travelling distance, 

potential revealing areas, and potential revealing segments, in order to evaluate and 

select the next-best position at each step. Our implementation is based on (Basilico 

& Amigoni 2009), where the Choquet fuzzy integral (Grabisch & Labreuche 2008) 

technique is employed to eliminate the overlaps when accumulating the potential 

values.   

4.2.4 Topological 

This algorithm procedurally generates and maintains a topology map, in 

which the visited key points or candidate positions are the nodes of this map 

(Akdeniz & Bozma 2015). In the beginning of gameplay, an empty topology map is 

created. New nodes are inserted in the map as places are perceived. Nodes, where the 

places surrounded are revealed, are labelled as visited. Others are labelled as 

unvisited. The labels are updated in each step when new areas are perceived. 

Unvisited nodes are selected as candidate positions in each step. I use multi-criteria 

from MCDM to evaluate candidate positions, and select the best one as the optimal 

position. 
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4.3. Experiment Design 

Our experimental approach employed a third-person observation assessment 

to evaluate the believability of computer agents. Gameplay videos of the three game 

scenarios from both human and computer agents were recorded. Seven judges then 

viewed the two-minute clip of each video, attempting to distinguish human players 

from computer agents’ based on the gameplay video. Both online questionnaires and 

semi-structured interviews were used to obtain responses from the judges. The 

questionnaires evaluated believability ratings, and the interviews probed further into 

why the judges made their judgements (for example, explained their scores using 

appropriate video segments). 

4.3.1 Judge Selection 

Believability relies on the judgments of observers, who watch the behavior of 

characters or playing bots in video games. It is difficult to claim one computer agent 

is absolute believability or not, due to varieties in the judges’ personalities, 

preferences, and life experiences. The degree of the judges’ expertise is an important 

subjective factor in identifying the believability of a character, as in Hingston’s 

choice in the BotPrize (Hingston 2009), where he believes the professional 

knowledge of judges guarantees high accuracy in terms of judgments. The judges’ 

domain knowledge of game playing, however, takes a more pivotal role. This is 

because human behavior varies from situation to situation. In-game actions are, 

sometimes, entirely different from what people will do in real life, and this is due to 

the different settings. Therefore, I invited players who regularly play video games 

and have substantial knowledge in the domain of RTS games as the judges. I chose 



107 

judges who are neither novice players nor game gurus, but mid-level players. As 

Warwick and Shah’s research suggests (Warwick & Shah 2015), keeping both 

human players and computer agents attempting to be a human that judges expect 

could reduce recognition errors and increase the accuracy of the Turing test. Another 

advantage of having mid-level players as judges is that they will be the major 

potential consumers of the games with believable characters and bots. Seven judges 

were involved in this research. Their demographic information and gaming 

experience are shown in Table 4.1. All of the judges have years of gameplay 

experiences in the RTS genre and relevant others. They are also playing video games 

for several hours every week. Their experiences in gameplay satisfy our 

requirements to judges. Their demographic information listed is only used to 

demonstrate their characteristics instead of comparing the variances.   

ID Gender Age Years of 
gameplay 

Gameplay hours 
per week 

Game types usually played 

J1 M 28 > 10 10 - 20 RTS, RPG 

J2 M 24 > 10 1 - 5 FPS, RTS, RPG, Simulations, W&T, CBG, 
Sports, PBG, RLS 

J3 M 26 > 10 1 - 5 FPS, RTS, RPG, Simulations, CBG, 
Sports, PBG, RLS 

J4 M 25 5 -  10 1 - 5 FPS, RTS, RPG, Simulations, CBG, 
Sports, PBG, RLS 

J5 M 23 < 2 1 - 5 FPS, RTS, RPG, Simulations, Puzzle, 
Sports 

J6 M 24 2 - 5 10 - 20 RTS, Social, Sports, RLS 

J7 M 23 5 -  10 5 - 10 FPS, RTS, Sports 

 
RTS First – person Shooters RTS Role-playing Games CB Chance - based 
PBG Physical Board Games RPG Role-playing Games RLS Real-life Sports 
W&T Word & Trivia     

Table 4.1 Demographic information and gameplay experience of judges 

4.3.2 Procedure 

The experiment was conducted as follows:  
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1. The researcher introduced the background of the experiment (for 

example the platform, purpose, procedure, and tasks needed to be 

completed) to the judges. 

2. Judges filled in the pre-game survey which consisted of general 

demographic questions and gameplay background questions. 

3. Judges played the three different games to familiarize themselves 

with the context. 

4. Gameplay videos for the same game were displayed to each judge in 

a pairwise manner. The permutation of video pairs as well as the 

sequence of displaying was randomized to minimize biases. After 

watching each couple of gameplay videos, each judge was required to 

answer the Likert scale questions with five scales (i.e. definitely a 

computer agent, most likely a computer agent, unsure if it is a 

computer agent or human, most likely human and definitely human) 

to evaluate the human-likeness of each video. The next question asks 

judges to elaborate and provide support for their evaluation. They 

were encouraged to identify segments of playing videos that 

supported their reasoning.   

5. After judges had evaluated all the gameplay videos, the researcher 

conducted a semi-structured interview with each judge to discuss in 

detail their expectations of what believable gameplay agents would be 

like. 

Each judge completed the experiment together with the researcher 
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respectively. All of the judges played the games, watched videos and filled out the 

questionnaires without interruption or any interaction with the researcher. Interview 

sessions were recorded via webcam, transcribed and then analyzed.  

4.3.3 Semi-structured Interviews 

 Main Questions Additional Questions Clarifying Questions 
1.  

Is it easy to distinguish human gameplay 
from the set of clips? 

 

OR 

Are there any difficulties you confronted 
in distinguishing human and computer 
agents’ gameplay? 
 

 
How did you 
distinguish human 
gameplays? 
 
What difficulties did 
you confront with? 
 
How did you cater for 
these problems? 
 
What strategies did you 
use to make the 
judgment? 

 
 

Can you expand a little 
on this? 
 
Can you tell me 
anything else? 
 
Can you give me some 
examples? 

2. Can you please summarize several key 
behaviors which you believe were 
exhibited by human players within the 
clips? 

Why did you choose 
them? 

 

3. Can you please summarize several key 
behaviors which you believe were 
exhibited by computer agents from the 
clips? 

Why did you choose 
them? 

 

Table 4.2 Semi-structured interview questions 

Semi-structured interviews were organized to collect qualitative data in-depth. 

They were used to investigate the judges’ expectations of believable agents as well 

as their perceptions of believable and unbelievable behavior referring back to their 

personal experiences. An interview session was organized after completing the 

online questionnaire for each participant. The main theme of the interview was how 

they distinguished human gameplay from computer agent gameplay, which includes 

investigating their strategies, and the concepts as well as patterns of behavioral 
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difference that they discovered. The initial set of planned questions as well as the 

additional and clarifying questions asked during the interviews are outlined in Table 

4.2. 

4.4 Thematic analysis 

Thematic analysis was employed to analyze the post-game interview data as 

well as judgment comments within the questionnaire responses. As a primary aim of 

this study is to identify behavioral patterns that impact the believability of spatial 

exploration agents (see Q2.2 and Q2.3), thematic analysis was chosen to categorize 

the judges’ comments about gameplay performance. A four-phase inductive method 

(Si et al. 2017) developed in Chapter 3 (see 3.2 Thematic Analysis) is used here. I 

used NVivo to help us transcribe interview records, process textual data and conduct 

thematic analysis. 

Initially, textual data was coded via the common topics judges spoke about 

(Figure 4.1). The code tree is centered around the major theme - behavioral patterns 

- which is the main aim of this research. The first level of nodes, such as mapping 

strategies, forward and backward, corners, bridges, and search patterns, represent 

the aspects where human players and computer agents show distinct actions. For 

example, mapping strategies coded descriptions about how players (human and 

computer agents) map the environments. Bridges refer to the manners in which 

players interact with bridges. The leaf nodes appear in pairs, where H means the 

identified features of a human while C represents those of computer agents. 

Next, let’s move on to the phase of reviewing and re-constructing themes 

(3.2.4 Reviewing and Re-constructing Themes), where the refinement, redefinition 
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and reorganization of themes are involved. Themes that lacked sufficient support 

from the data were pruned.  New themes which were supported with sufficient data 

were created. The first level sub-nodes were evaluated, re-coded, deleted and merged 

in the code tree (Figure 4.1). For example, the node of neutral units was merged into 

the obstacles node, since neutral units can be regarded as a kind of special obstacle. 

The direction changes node was eliminated because a conflict arose from the judges’ 

comments about this aspect. The mapping strategies node and enemy node were re-

named and re-coded into exploration, killing and searching (Figure 4.2), because 

these aspects of behavior were highly associated with the goal of each game.  

 

Figure 4.1 Code tree of textual data 

Investigating inner relationships among nodes in Figure 4.1, I discovered that 

they could be grouped into four categories: interaction with environments, game-

goal orientation, navigation and sense of mechanical (Figure 4.2). A description of 
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these four categories and details about patterns of the behavioral differences between 

human and computer agents are introduced in the section examining the behavioral 

differences defined by judges.  

 

Figure 4.2 Themed code tree of textual data 

4.5 Results 

4.5.1 Believability Ranking Results 

Figure 4.3 and Figure 4.4 illustrate the ranking results that are cumulated 

from questionnaire responses. All seven judges observed gameplay videos and 

scored each of them. The five response choices I used in this experiment are 

“balance”, where the Likert item has an equal number of counterparts to the “unsure 

if it is a computer agent or human” on both sides. Carifio and Perla (Carifio & Perla 

2008; Carifio & Perla 2007)  suggested that responses to Likert scale can be treated 

as numeric data. Norman’s (Norman 2010) study proved that “Parametric statistics 

can be used with Likert data, with small sample size, with unequal variances, and 

with non-normal distributions, with no fear of ‘coming to the wrong conclusion’.” 

We, hence, mapped the responses to the choices into numbers from 1 – 5, and 

calculate the means and standard errors of them to compare the believability across 
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the objects in this and following chapters.    

In Figure 4.3, the value represents the average score for each player.  It is 

calculated via the Formula (4.1). 

                          (4.1) 

where, Vp represents the ranking value for each player, NJ means the number 

of judges, NG means the number of games and vij is the ranking score given by the 

judge i for the gameplay in game j. The value in Figure 4.4 demonstrates the average 

score for each player in playing each game. It is computed via Formula (4.2). 

                                   (4.2) 

where, Vg represents the ranking value for each player in playing one game 

and vi is the ranking score given by the judge i. The human 2 has the highest score, 

while the Random agent has the lowest. MCDM performs the best among computer 

agents. Investigated by game types, the killing gameplay of the human 2 reached the 

full score - 5, while the Topological agent’s playing of the killing game was ranked 

as the least believable. The difference in believability between humans and computer 

agents was most pronounced in the killing game. 
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Figure 4.3 Believability ranking for each player  

Figure 4.4 Believability ranking for each player in each game 

Figure 4.5 illustrates the average score of believability that each player 

achieved in each game, where human players’ score is higher than that of computer 
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agents’ in all the games. Scores in the pure-exploration game show that the APF 

agent’s behavior of environment mapping significantly approach human players in 

believability, where the APF has a score of 3.14 while the human has a score of 3.71. 

By contrast, the APF’s scores are far lower than the human players’ in the killing 

game and the searching game. 

 

Figure 4.5 APF’s gameplay is approaching human’s performance in the pure exploration 

game

Even though the players’ performance of believability varies considerably in 

the different games, the human players’ performances are significantly better than 

the computer agents. In Figure 4.6, the lines of human players’ scores stay higher 

than those of the computer agents in all three games. 
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Figure 4.6 Human’s performances are significantly better than the computer agents’ 

performance 

Judgments of the seven participants are shown in Figure 4.7, where the blue 

color represents the higher score while the grey color means the lower score. Heat 

maps in Figure 4.7 highlight two points:   1) In the killing game, higher scores of 

believability are concentrated in the columns of human subjects, and lower scores 

are mostly distributed in the columns of the computer agent subjects (Figure 4.7.b). 

Comparably, the distributions of the higher and lower scores are sparse in the 

searching game and the pure exploration game. 2) Some judges prefer to give higher 

scores, such as J3 in the pure exploration game (Figure 4.7.a). Some prefer to give 

lower scores, such as J1 and J2 in the pure exploration game and the searching game 

(Figure 4.7.b and Figure 4.7.c). 
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a. Distribution of scores in the pure exploration game 

 

b. Distribution of scores in the killing game 
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c. Distribution of scores in the searching game 

Figure 4.7 Score distributions in the three games 

 

Figure 4.8 The trend of performances among the three games 
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The average score for players in each game reveals the trend of performance 

among the three games (Figure 4.8), where the lines represent the average value of 

the scores given to human and computer agents respectively, and the corresponding 

fitting areas illustrate the ranges of the standard errors. This figure shows the trend of 

scores among the three games. The human players’ ranking scores decreased from 

the killing game to the pure exploration game via the searching game, while the 

computer agents’ scores increased. 

4.5.2 Misjudgment 

Misjudgment is defined as a human player is judged as a computer agent and 

vice versa. Figure 4.9 shows the percentages of misjudgments among three types of 

games for each player. Misjudgments in the pure-exploration gameplay are high in 

both the human and computer agent sides. The APF agent has the highest number of 

misjudgments in playing exploration among computer agents. In many cases, there is 

no misjudgment in the killing game (for players of Topological, APF, Random and 

human 2) and the searching game (for players of Topological, APF, and Random). 

The killing gameplays have the least number of misjudgments. In both the killing 

game and the searching game, among computer agents, only the MCDM agent 

puzzled judges as it was regarded as a human player, while the other three strategies 

were not even misjudged once in the two games. The misjudging percentages are 

therefore reported as zero in Figure 4.9. 
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Figure 4.9. Misjudgment summary 

4.5.3 Behavioral Differences Defined by Judges 

From the questionnaire and interview data, four aspects of behavioral 

differences were extracted using thematic analysis: interaction with environments, 

game-goal orientation, navigation and sense of mechanical.  

Interaction with Environments 

It was commonly observed that players interact with environments in three 

types of games. The behavior was exhibited in relation to the global scene, with 

multiple factors, such as the outline of terrains and involvement, and interaction with 

particular items, such as edges, obstacles, bridges, corners, and enemies. The 

differences were presented in terms of environment perception, cognition and 

reactions. The humans had advantages in perceiving the outline of environments 

quickly and reacting in a reasonable way while agents could compute accurately, but 

sometimes their behavior didn’t make sense to people.  
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Computer agents perform well in simple and small-scale local areas, but 

poorly in large and complex environments due to the complexity of computations. 

By contrast, human players conquer the complexity well because they are capable of 

recognizing surroundings quickly. As judge 4 put it during the interview, “Like what 

I observed, human and machines performed in an approximately same way in a 

simple and flat area. However, in areas, where there are a bunch of corners, 

highlands, lowlands and possible paths, machines’ behavior was not stable. They 

stopped and were confused where to go next. This would not happen to human 

players because they would know the situation by just having a look.” The agents’ 

weakness in perceiving global environments was illustrated in an example from the 

questionnaire response (J2 – Topological–Searching game –most likely a computer 

agent). “It seems that this agent did not know how to use the mini-map since it went 

right at first but it was evident that the agent was located in the top-left corner of the 

map.”  

When interacting with special objects, such as edges, obstacles and bridges, 

human players are capable of perceiving them efficiently, conducting proper 

reasoning, and performing appropriate reactions. Computer agents are not sensitive 

to these items. They respond slowly or even totally ignore them.  For example, judge 

5 said “AIs did not play well at the beginning of the games. They were not sensitive 

to some special objectives, such as bridges. They did not behave well at corners of 

maps as well.” Human players could perceive environments and make decisions 

quickly. This is apparent from questionnaire comments, “It could quickly find the 

path by using the mini-map at 44 seconds [The Explorer made a decision among two 

choices, a ramp, and a bridge to the bottom side of the map].”  (J2 – Human 2 – 
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Killing game –definitely human) And “This is a human agent since he chose the path 

by what he saw. When he found the obstacles, he stopped immediately and selected 

another way [at time frames, 14”, 29,” 30,” 33,” 34,” 38” and 40”].” (J2 – Human 2 

– Searching game – definitely human). Computer agents were identified by their 

ignorance of special objectives. For example, as judge 2 commented in the 

questionnaire: “This should be a computer agent since when the SCV first moved 

down on the map, however, there was a bright new path [bridge] on the right but it 

chose to turn left at 15 seconds.” (APF – Searching game – definitely a computer 

agent). Human players react efficiently, as the questionnaire response makes evident: 

“The reactions were quick and correct. There were few redundant movements in the 

videos.” (J4 – Human 1 – Killing game – most likely a human player). Judges 

sometimes were confused by computer agents, when they observed the special items 

but did not react. In the killing game, judge 7 (APF – definitely a computer agent) 

commented “When it found the target, it spent too much time to think what to do. 

For example, it spent much time on walking around and attacking the last enemy in 

the first enemy campsite from 15 seconds to 20 seconds. It also missed the target that 

located in the top-right corner at 50 seconds and 1 min 59 seconds.” Different 

manners of reacting to various types of particular items are summarized in Table 4.3. 
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Edges 

H Follows edges but does not attach 
to them 

J6 – Human 1 – Pure exploration game – mostly likely human 
“The robot went alongside boundary but sometimes ignored the 

corner. [It walked a big circle in regions, but didn’t go further into 
corners, such as top-left corner at 53” and top-right mineral 

corner at 1’48”].” 
 

C Attaches to edges 

J7 – Topological – Searching game – definitely a computer agent 
“It always moved near the edge, for getting more view. human 
should not do this. When it found a mineral site [top-left corner 
behind mineral site from 13” to 22”], it stopped and searched in 

tiny and narrow channels.” 

Obstacles 

H Alters movement paths in time 
when confronting with obstacles 

J2 – Human 2 – Searching game – definitely human 
“This is a human agent since he chose the path by what he sees. 
When he found the obstacles, he stopped immediately and chose 
another way [The behavior could be observed at 14”, 29,” 30,” 

33,” 34,” 38,”40”].” 

C Could not identify obstacles or be 
disturbed by obstacles 

J2 – APF – Pure exploration game – definitely a computer agent 
“It always hit the obstacles [It hit river banks and stopped at 26,” 

31,” 43,” 56,” 1’18,” 1’22,” 1’32”, and hit a monster at 35”] 
which seems not a human behavior.” 

J2 – MCDM – Killing game – most likely a computer agent 
“The unit spent a little bit longer time to find enemies when there 

were obstacles between it and the enemies.” 
 

Bridges 

H Behaved reasonably around 
bridges 

J5 – Human 1 – Pure exploration game – definitely human 
“This should be human since the SCV took a look around the 

bridge to clean the starting area with a smart movement before it 
went through.” 

C Was stuck or hesitated on bridges 

J2 – APF – Searching game – definitely a computer agent 
“This should be a computer agent since when the SCV first 

moved down on the map, there was clearly a new path [bridge] on 
the right but it chose to turn left at 15.” It had hesitation to go 

through the bridge.” 

Corners 

H Captured corners and moved 
away efficiently 

J3 – Human 2 – Pure exploration game – definitely human 
“The searching path was always in the middle of roads. It did not 
search unnecessary edge or corner [It moved away from the top 
corner at 25”, the top-right corner at 1’18”, and the right bottom 

corner at 1’54”].” 

C Wasted time or was stuck around 
corners 

J1 – APF – Pure exploration game – definitely a computer agent 
“The player tried to walk across an uninformative corner twice at 

4” and 48.” It is definitely not a human being.” 

Table 4.3 Reaction to subjects (H – Human player, C – Computer agent) 

Game-goal Orientation 

Global goal-awareness of human players’ behavior is another aspect of the 

differences revealed by the judges. Since each game has an explicit goal with a time 

limitation, the judges assumed that reasonable human gameplay should exhibit 

fulfilment of complete goals rather than wasting time or going idle. Computer agent 

subjects were also identified according to this assumption.  
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As explained in the section 3.1.1 Test Game Environments, mapping the 

entire game environment within a time limitation is the task of the pure exploration 

game. Having well-planned strategies, keeping a global view and spending less time 

around uninformative areas indicated human behavior. This is because this behavior 

displayed positive actions to complete the mission. This is illustrated by a quote 

from the questionnaire response: “It had planned when it moved to the unknown map. 

It chose a route with more horizon. When it needed to be back, it selected [a] short 

route.” (J7 - Human2 - Pure exploration game – definitely human). Judge 5’s 

observation indicated that human 2 had a global view: “This seems to be human 

since the movement of the SCV was reasonable and it had a global view of the 

exploration.” (J5 – Human 2 – Pure exploration game – most likely human). The 

computer agents’ behavior of exploring without plans, being stuck and wasting time, 

and re-visiting uninformative places (especially the starting area) were also 

highlighted by judges. For example, “In a pure exploration game with a time 

limitation, I don't think a human player will return to the path that he/she has already 

explored. At 1’40”, if I was that player, I would definitely go to the north direction 

instead of the starting point.” (J1 – MCDM – Pure exploration game – definitely a 

computer agent) and “It wasted too much time on the throat [at 19” and 22”]. Its 

movement looks like [it is] without [a] plan” (J7 – MCDM – Pure exploration game 

– definitely a computer agent).  

In the killing game, units should be attacking enemies immediately and 

efficiently as the game goal requires players to kill as many enemies as possible in a 

limited time. For example, “The soldier killed SCVs immediately when it saw them 

[from 10” to 16”, and from 44” to 54” at the top-right corner].” (J3 – Human 1 – 
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Killing game – definitely human) and “It had planned, did not miss targets and kept 

discovering the map” (J7 – Human 2 – Killing game – most likely human). Computer 

agents were recognized since they didn’t hunt enemies that immediately appeared 

within their visual range.  Judge 1 commented “If the player was a man, the player 

would kill the SCV immediately at 46” in the video. However, the player did not.” 

(J7 – Topological – Killing game – definitely a computer agent). Sometimes they 

even ignored enemy units and passed by. As judge 5 said, “This should be a 

computer since the gunner missed the two SCVs at the top-right corner of the map 

twice [at 41” and 1’18” in separate].” 

The searching game requires players to search the enemy base by reasoning 

in relation to the environment and the clues discovered. Exhibiting reasoning 

behavior convinced judges to classify the certain subject as a human player. For 

example, “It kept moving. Meanwhile, it continuously analyzed situations, and they 

were human actions. The operation was fluent. When it found out the target building, 

it discovered more places. That looks like what [a] human would do [discovering a 

clue building and moving back to have a look at 41”].” (J7 – Human 2 – Searching 

game – most likely human). Judges distinguished computer agents when observing 

the exploring unit travelling into unreasonable areas. For instance, “Since the player 

should know the target base could not be located at such [a] narrow corner of the 

map, a normal human player would never do that like what the SCV did [visited the 

top-left corner] at 14 seconds of the video.” (J1 – Topological – Searching game – 

definitely a computer agent). 

Navigation 

Navigation is a very typical behavior in video games. It also takes a big 
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proportion of the gameplay, since exploration itself can be regarded as a particular 

type of navigation. In the experiment, two themes of navigation: the “stop and go” 

rhythm and walking back and forth, are extracted to distinguish humans from 

computer agents. 

The “stop and go” rhythm refers to the navigation phenomenon where the 

game unit is controlled to walk and stop in pace. The frequency, length of the 

stopping time and stopping locations are three key factors. Human players tend to 

have low frequency and acceptable time when stopping. For instance, “The operation 

was fluent. But it had a clearly thinking time [Stopping at the right edge of the map 

at 57”].” (J7 – Human 1 – Searching game – most likely human). Computer agents, 

however, have a high frequency of stopping. Stopping locations are normally 

random points of open spaces. For example, “This SCV had visible stops when it 

moved [at time frames of 3”, 7”, 11”, 15”, 19”, 28”, 38”, 1’3”, 1’12”, 1’20”]. 

However, there were no obstacles in front or next to it.” (J2 – MCDM – Pure 

exploration game – most likely a computer agent). Sometimes, their stopping time 

was quite long. Judge 4 commented: “The agent was like a computer due to the facts 

that it sometimes goes to the 'dead corner' [from 1’56” to 2’02”] and that its 

decision-making period was quite long. But I think this might also happen for a 

'newbie' player. I am not quite sure it was controlled by a computer.” (J4 – APF – 

Pure exploration game – unsure if it is a computer agent or human). 

During gameplay, players navigate the game unit to walk back and forth in 

some cases. The difference between humans and computer agents is that human 

players normally have a clear purpose while computer agents’ purposes are obscure. 

For example, “SCV went back the path it just passed within a purpose [It discovered 
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a clue building and moved back to have a look at 41”, and captured the frame of the 

top-right region, and turned back to the main path soon at 57”].”  (J3 – Human 2 – 

Searching game – most likely human) and “This should be a computer agent since 

the SCV repeated the moving loop [Moved back to visited areas at 1’11”] and it had 

hesitation to go through the bridge.” (J5 – APF – Searching game – definitely a 

computer agent). 

Sense of the Mechanical 

Perceiving a sense of the mechanical from the gameplay gives judges an 

insight to distinguish the controller of the gameplay. Computer agents sometimes 

release a sense of the mechanical by making obvious mistakes. Judge 6 commented: 

“The design of process has some errors, so the robot kept the same action nearly four 

times. If this were a human player, there would not be [these] kind of mistakes.” (J6 

– APF – Killing game – definitely a computer agent). They sometimes exhibited 

programmed behavior patterns. For example, “We can tell that the searching path 

followed some patterns, for example explore each direction in the same distance.” 

(J3 – APF – Searching game – definitely a computer agent). Ultra-fast movements 

also produced senses of the mechanical. Judge 3 said, “The searching path followed 

some patterns. The operation was too smooth.” (J3 – MCDM – Killing game – 

definitely a computer agent). To be identified as human, players present senses of the 

anti-mechanical. Highlighted tricks could be displaying random behavior, hiding 

behavioral patterns and altering strategies. Examples are exhibited if we consider 

several questionnaire comments by judges. “The searching path is more [random] 

than AI.” (J3 – Human 2 – Killing game – definitely human). “SCV went back the 

road it just passed within a purpose. I cannot tell any operations following a pre-set 
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pattern.” (J3 – Human 2 – Searching game – definitely human). “The searching 

pattern changed from the beginning to the middle period of the game. It sometimes 

followed the edge of the road, but sometimes not. The operations were not always 

kept at the same speed.” (J3 – Topological – Pure exploration game – most likely 

human). 

4.6 Discussion 

4.6.1 Human Players Are Distinguishable from Computer Agents 

The results of the experiment illustrate that spatial exploration behavior of 

computer agents and human players were easily distinguishable by mid-level RTS 

players. Even though some cases show that a computer agent’s (APF) performance is 

approaching the human players’ in the pure exploration game, a human’s 

performance is still significantly better than the computer agents in all cases. The 

behavioral gaps among human players and computer agents demonstrate that the 

game environment is an important factor that impacts the results of judgments.  

Human players were consistently ranked higher than computer agents (Q2.1). 

During the interview sessions, most of the judges indicated that it was not difficult to 

distinguish human players from computer agents in the videos. Human performances 

exhibited a higher level of believability in all three games (Figure 4.6). This fact 

indicates that 1) the performances of human players and state-of-the-art computer 

agents are significantly distinguishable in spatial exploration games; and 2) a third-

person observation approach is suited to identify believability in this context.  

Even though the overall scores of human players are much better than the 

computer agents, APF’s human likeness score is closer to that of human players in 
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the pure exploration game (Figure 4.5). APFs also have a high rate of being 

perceived as human players in the pure exploration game (Figure 4.9). A possible 

reason is that the algorithm drives the exploration unit to reveal frontier areas which 

are close to the unit. This kind of behavior is similar to the manner in which human 

players explore when extra information (for example layout of terrain and special 

items) is given. 

4.6.2 Complexity of Environments Affect the Results of Testing 

The game environment is an important factor in assessing the believability of 

spatial exploration. Gameplay records of computer agents in the pure exploration 

game achieved higher scores than those in the searching game and the killing game. 

In contrast, gameplay cases in the pure exploration achieved lower scores than those 

in the searching and killing games (see heat maps in Figure 4.7). In addition, Figure 

4.8 shows that believability scores for human players decrease from the killing game 

to the pure exploration game, while the scores of computer agents’ increase. It 

reveals the fact that the gap between the believability scores of humans and 

computer agents is decreasing from the killing game to the pure exploration game.  

Investigating the size of maps and the complexity of terrains and tasks in 

each game, we can see that the killing game (which has the largest map, multiple 

highlands, lowlands and regions, and multiple tasks) is the most complex game. The 

pure exploration game (which has a flat terrain with a single task) has the least 

complexity (Figure 4.10 and Table 4.4). Corroborating this with the results which 

show the biggest distinction is in the killing game while the smallest distinction is in 

the pure exploration game, I conclude that believability of subjects can be more 

distinctly identified in complex environments than in simple environments. For 
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example, gameplays in complex games have a lower rate of misjudgment that in 

simple games (Figure 4.9). Some judges also proposed similar conclusions in their 

interview comments, for example “Generally, I think the computer behaves poorly in 

complex environments … It depends on how much information can be provided 

from the video. In simple environments [say] a flat area, the performances of human 

and computers are similar.” (Interview - judge 4). 

Games Environments Tasks 

Size(pixel) Regions* Regions 
on high 
lands 

Regions 
on low 
lands 

Pure exploration game 64 * 64 5 0 0 Map environment 

Killing game 64 * 96 13 5 2 Map environment and kill 
enemies 

Searching game 96 * 64 8 4 0 Map environment and search the 
enemy base 

* Regions refer to enclosure areas which connect with other areas via narrow paths (Forbus, 

Mahoney & Dill 2002)  

Table 4.4 The complexity of game environments and playing 

4.6.3 A Framework of Believability Criteria 

Based-on participants’ comments and interview responses, I extracted a 

structured framework of believability criteria in spatial-exploration, which reflects 

on four aspects:   

1) interaction with environments 

2) game-goal orientation 

3) navigation 

4) sense of the mechanical.  
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a. pure exploration game b. killing game 

c. searching game 

Figure 4.10 Game environments 
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It reveals the behavioral differences between humans and computer agents in 

performing exploration in video games. Interaction with environments reflects the 

way in which players react to the environmental elements discovered (for example 

layout of terrains, obstacles, and bridges). Judges highlight their attention on the 

reactions of players when observing special items. As the results indicate, the human 

players’ reaction times and manners are different to those of computer agents. Laird 

and Duchi’s (Laird & Duchi 2000) discovery that decision time is a factor to 

distinguish humans and computer agents has a linkage to our findings.  Reaction 

time to terrain items is a factor in exhibit human-likeness on this aspect. Illustration 

of abilities which have a human-like cognition of terrain patterns (for example 

corners, bridges and layout of terrains), and apply corresponding reaction manners, 

however, is what a human-like computer agent needs to deeply exhibit.  

Oriented by game goals, human players attempt to have corresponding 

strategies to achieve goals efficiently. Computer agents, however, sometimes, do not 

exhibit that their behavior is game-goal oriented. Hingston (Hingston 2009) reported 

that judges expected believable bots would exhibit sound tactical play, and Reynaud, 

Donnart & Corruble (2014) suggested efficiency is another factor to distinguish 

humans and computer agents. Those findings are relevant to the patterns on the 

game-goal orientation. Additionally, the game-goal orientation emphases much on 

the exhibition of tracking goals, instead of the completion of game goals. 

Navigation highlights two notable patterns: “stop-and-go” rhythm and 

hesitations. “Stop-and-go” rhythm represents a pattern of movement pace. A “stop-

and-go” action at a right position (for example connection points) with a proper time 

exhibits a sense of thinking. While flush and uncontrolled “stop-and-go” actions ruin 
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the sense of human-likeness. It is interesting that ultra-fast behavior, instead of 

having proper “stop-and-go” actions, was regarded a kind of sense of the mechanical. 

This finding extends Reynaud’s (Reynaud, Donnart & Corruble 2014) criterion of 

efficiency. Having hesitations with clear purposes is a criterion of believability. It is 

also an evidence, and a special instance of exhibiting game-goal orientation.  

The aspect of the sense of the mechanical covers machinery behavior that 

computer agents perform in applications of spatial exploration. The behavior of 

obvious mistakes has a linkage to the finding of “obvious stupid behaviors” in 

Hingston’s experiment (Hingston 2009). Programmed behavioral patterns and ultra-

fast movements are another two highlighted criteria to distinguish computer agents 

from human players. I also summarized sense of the anti-mechanical from humans’ 

behavior which provides a potential way to eliminate the exhibition of programmed 

behavioral patterns by displaying random behavior, hiding behavioral patterns and 

altering strategies. Combining proper “stop-and-go” actions is a potential way to 

reduce the sense of the mechanical that ultra-fast movements generate. 

The four aspects of behavior patterns construct a framework of believable 

criteria which could be extended and applied to evaluate and create believable 

computer agents in virtual environment. Because the four aspects are commonly 

appearing, and constitute a major frame of gameplay in other genres. For example, a 

computer agent that plays FPS games has a clear game-goal (for example 

eliminating opponent units in Counter-Strike (L.L.C. 2000)) needs to interact with 

environments (for example following walls to approach enemies), and navigate itself 

to search enemies or achieving other goals. The frame of sense of the mechanical is 

also presented to this computer agent. Our framework is applicable to computer 
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agents in FPS games. Some more criteria, such as collaboration with teammates, 

need to be integrated into the framework as extensions. 

Behavioral differences summarized in interaction with environment and 

navigation reflects general patterns of differences between computer agents and 

human when navigating in virtual environments. Interaction with environments 

reveals the believable criteria of behaving within terrain patterns as well as 

interacting with common terrain objects (such as walls, obstacles and bridges etc.). 

Patterns in navigation provide a way to evaluate the pace of movements and 

hesitations – a noted behavior. Those findings present a basic idea of evaluating the 

believability of movements and navigation behavior in general virtual environments.  

4.6.4 Guideline of Developing Believable Exploration Agents 

Extracted patterns of behavioral differences provide insights for the design of 

believable exploration agents. Intuitively, the believability of computer agents can be 

improved via bridging the behavioral gaps with human players on each aspect 

presented above. For instance, a hierarchical model could be devised where the 

navigation pattern and the obvious mistakes in the sense of the mechanical pattern 

reflect the low-level behavior, while interaction with environments and game-goal 

orientation aspects could be improved in a high-level layer. It will be discussed in 

Chapter 6, where I designed an integrated agent to play exploration games in a 

human-like way.   

4.7 Conclusion 

In this chapter, I present the experimental framework to evaluate the 

believability of computer agents in spatial-exploration contexts. A third-person 
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observation approach was employed to distinguish human and computer agent 

gameplay, in which Likert scale responses and written comments were collected 

from judges. Semi-structured interviews were also conducted to collect in-depth data 

after the survey sessions. The experiment was running under a pre-condition that 

both judges and human players in the subjective gameplay were average players who 

had some experience of RTS games.  The game environments were three self-

designed exploration games based on the StarCraft: Brood War platform.  

The results of the experiments provided substantial insight for the three 

research questions presented in the Introduction. Third-person observation 

assessment identified significant variances between the human and computer agents 

(Q2.1). Believability scores from judges indicated that the state-of-the-art computer 

agent exploration behavior demonstrated a big gap with human exploration behavior. 

It is notable that the variances become more distinct when game environments 

increase in complexity. This third-person observation method was also shown to be a 

practical assessment method in distinguishing believability, where human players 

were clearly distinguished from computer agents via observing and comparing 

excerpts of gameplay videos.  

Performing thematic analysis on qualitative questionnaire responses and 

interview records enabled us to extract human-and-computer behavioral differences, 

which constitute a framework of believability criteria on aspects of interaction with 

environments, game-goal orientation, navigation and sense of the mechanical. The 

behavior of computer agents, according to our analysis results, tend to perceive, 

recognize and react to environmental elements in an inappropriate way. The 

exhibited behavior sometimes did not align with the orientation of game goals. 
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Movement did not have an acceptable “stop-and-go” pace, and failed to exhibit clear 

purposes after moving backward-and-forward. Observable programmed behavioral 

patterns, ultra-fast movements, and obvious mistakes illustrate a sense of the 

mechanical (Q2.2). In contrast, human players exhibited sense-making interaction 

with environments and goal-oriented strategic behavior patterns. Their navigation 

behavior was much more natural and appeared purposeful. Random behavior, hiding 

behavior patterns and altering strategies make humans’ behavioral patterns look 

natural and non-programmed (Q2.3). 

In this Chapter, I designed a framework of experiments to evaluate 

believability in virtual environments, which are used to evaluate own developed 

computer agents in the following chapters. The extracted patterns construct a 

structured framework of believability criteria which provides a lens to understand the 

behavioral differences between humans and computer agents, and an extendable 

foundation to evaluate and develop computer agents in playing virtual-environment-

based video games. The patterns of behavioral differences also contribute to the 

development of believable intelligent exploration agents.  They are integrated to 

develop believable agents in Chapter 6. In next chapter, I investigate the way of 

creating believable agent by mimicking human exploration patterns discovered in 

Chapter 3.  
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Chapter 5. Developing Believable Exploration Agent: A 

Heuristic Approach 

This chapter seeks to answer Q3: “How do the behavioral patterns of human 

exploration contribute to believable exploration?” This question is divided into three 

sub-questions:  

Q3.1 How can heuristic methods be applied in developing spatial 

exploration agents? 

Q3.2 Do heuristic methods contribute to the believability of an exploration 

agent? 

Q3.3 Does the heuristic exploration agent perform efficiently in exploring 

virtual environments? 

To answer these three questions, I firstly investigate the process of 

exploration, and apply heuristic methods to prune useless options of decision-making 

in the exploration process. Search spaces that are currently costly in terms of time 

and resources are pruned, and search spaces that have heuristic attractions to humans 

are given high priority when searching (Q3.1). Then, a third-person observation 

method is used to assess the believability of our exploration agent in specially-

developed exploration games by comparing its gameplay with that of the state-of-

the-art exploration agents as well as human players (Q3.2). Finally, I test the 

efficiency of our developed agent in several abstracted maps of simulated 

environments, where time-consumption and distance-travelling are adopted as the 

evaluation-criteria (Q3.3). 
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5.1 Problem Description 

Spatial exploration is an activity where subjects search around an unknown 

environment to acquire information or resources. Subjects normally have a limited 

visual range. Situations where subjects have unlimited visual range within the 

environment are outside the scope of this research because subjects acquire all the 

information of the environment without moving. In this research, the subjects 

specifically refer to a game unit controlled by a computer agent. The problem is 

described as: A game unit with limited visual range travels in a spatial environment 

which is unknown to the unit, to acquire spatial information and search for special 

items based on spatial information acquired. The environment is gradually revealed 

to the unit completing the activity of exploration, as the unit detects areas which are 

within its visual range when travelling. Based on that, the tasks of spatial exploration 

are often exhibited as outlining spatial environments, collecting special items and 

searching hidden objectives.  

The normal objective of design of automated-exploration agents is to 

complete the tasks efficiently (travelling less distances, spending less time and 

costing less energy etc.).  The problem of developing an optimal solution of this 

issue is of equal complexity to the problem of finding shortest tours/paths for “lawn 

mowing” and “milling” problems. Arkin has proved that the later problem is a NP-

hard problem (Arkin, Fekete & Mitchell 2000), where we can infer that the former 

one is also a NP-hard problem. It is much more challenging to develop an 

exploration-agent whose exploration behavior optimally approaches human-likeness, 

while still having a good performance in solving the classic problem of automated 

exploration.  
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5.2 Methodology 

In this section, I introduce the algorithm framework of exploration that the 

heuristic agent follows, the three heuristics (i.e. hierarchical, region based and field 

of view) and how they are used to filter candidate positions. This section also 

includes the description of the environment representation and the evaluation method 

of candidate positions.  

5.2.1 Algorithm Framework 

The general process of exploration is different from the traditional path-

planning algorithm. In the problem of traditional path-planning, a clear initial 

position and a goal position have been set. The algorithms aim to find the shortest 

path from the initial position to the goal position. The exploration algorithm does not, 

however, aim to tackle the issue of finding a path from the initial location to the goal, 

but rather seeks to manage the overall reconnaissance task. The core issue of the 

exploration problem is to decide where to travel during the entire working period.  

Our algorithm follows the framework described in section 4.2 Computer-

agent Objects. From the general exploration framework, I abstract that the essential 

methodology of exploration is that of greedily searching an optimal position for the 

next movement. The selection of next position is a two-step process. The first 

recognizes candidate positions from the game map. The second selects an optimal 

position from the candidate positions accordingly.  

5.2.2 Heuristic Component 

In-between the two-step process described above, I insert a heuristic 
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component to pre-process the identified candidate positions in the first step, filtering 

sets of positions which are intuitively not good for the agent to choose in terms of 

believability. Heuristics are efficient cognitive processes that ignore part of the 

information, which are commonly employed by humans in making decisions 

(Tversky & Kahneman 1975). Gigerenzer & Gaissmaier (2011) present that 

heuristics can be more accurate than more complex strategies even though they 

process less information. According to the human’ behavioral patterns revealed in 

Chapter 3 (see 3.4 Results), I present three position-filtering heuristics: hierarchical, 

region based and field of view. 

Hierarchical 

Humans naturally use a hierarchical structure to represent their spatial 

environment (see 3.4.1 Player Exploration Archetypes)(Si et al. 2017). I replicate 

this insight by dividing the environment into local levels and the global level, 

according to distances between places and the position of the exploration unit. This 

means places near to the exploration unit are defined as local, while the global level 

covers all the areas within the environment. I employ the hierarchical mechanism to 

filter candidate positions when evaluating how to identify the best position. 

Candidate positions in local levels are allocated high priority for evaluation, which 

mimics a human’s tendency to give high priority to local options (see 3.4.1 Player 

Exploration Archetypes) (Si et al. 2017). Positions which have higher priority will be 

evaluated prior to those with lower priority. I define four levels - three local levels 

and a global level (Figure 5.1). Evaluation priorities of positions in inner local levels 

are higher than outer levels.  
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Figure 5.1 Hierarchical position-filtering levels 

Region Based 

 Decomposing game terrain into regions, which are walled up by obstacles 

and cliffs and connected by narrow paths (‘choke points’) is a common gameplay of 

RTS games. RTS players reason explicitly about controlling, crossing and occupying 

regions of space. Building on this insight, I define the region-based algorithm where 

regions are walled-up by obstacles and connected by narrow paths. Region-based 

exploration is also the featured behavior of Pathers (Si et al. 2017), the exploration 

archetype defined in the Section 3.4.1. Artificial intelligence researchers have 

pervasively realized the fundamental role of region-decomposition, where they 

developed algorithms to automatically decompose RTS game maps into regions and 

choke points (Forbus, Mahoney & Dill 2002; Halldórsson & Björnsson 2015; 

Perkins 2010) (see Figure 5.2). 
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Figure 5.2 An example of region decomposition (Perkins 2010)

The region based approach is the second position-filtering heuristic, which 

works together with the hierarchical heuristic in-between the two-step process of 

position selection. Positions are grouped according to the regions where they are 

located. It then makes sure positions within the same region are consistently visited, 

which avoids the behavior of repeatedly travelling among different regions that are 

less likely to affect players’ behavior.  

Field of View 

Directional consistency is defined as the preference to continue travelling in 

the current direction rather than changing directions frequently or travelling back and 

forth. Human players display a high degree of directional consistency (Si et al. 2017), 

whereas computer agents choose optimal destinations (see 3.4.2 Behavioral Aspects 

of Archetypes).  This is because the human players can instantly observe the 

potential positions located within their field of view which is a restricted range that 

the human eye can see at any given moment. Human players then select the next 
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position to move to within the field of view of the direction the exploration unit is 

heading to. I divide the environment into three areas: field of view, forward area and 

backward area according to the sequence where humans observe the surrounding 

environments (Figure 5.3). In the Figure 5.3, vector - OF is the direction of 

movement; area – a is the field of view; area – b is the part where the forward area 

excludes the field of view; area – c is the backward area.

Figure 5.3 Field of view 

Heuristic Candidate Position Filtering 

Heuristic position-filtering is executed between the Step c) and the Step d) of 

the algorithm frameworks (see 4.2 Computer-agent Objects), after the candidate 

positions have been identified from the frontiers of the environment. The heuristic 

algorithm (see Algorithm 1) filters candidate-positions by combing the heuristics of 

hierarchical, region based and field of view. Within the condition that there are 

candidate positions at the local-level 1, the algorithm filters candidate positions by 

the region based heuristic and then field of view heuristic. If there are no candidate 

positions at the first local-level, the algorithm filters candidate positions by the 

hierarchical heuristic and then the field of view heuristic. The candidate-position set 
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selected from this algorithm will be evaluated in Step d). The next best position is 

then chosen from the set.  

Algorithm 1 

 
WorkingSet Empty 
GlobalSet  IdentifyCandiatePositions () 
LocalLevel1, LocalLevel2, LocalLevel3, GlobalLevel  HierarchicalDecomposeMap () 
LocalSet1, LocalSet2, LocalSet3  SeparatePositions(GlobalSet) 
 
Do EnquireRegionInfo(LocalLevel1) 
 
If LocalSet1 is not empty, then 

For all positons in LocalSet1 do 
  If pos j is in region i then 
   Put pos j into regionSet i 
  End if 

End for 
If the regionSet(currentRegion) is not empty, then 

  FovSet, ForwardSet, BackwardSet  Fieldofview(regionsSet) 
If the FovSet is not empty, then 

   WorkingSet  FovSet 
Else if the ForwardSet is not empty, then 

  WorkingSet  ForwardSet 
Else 

  WorkingSet  BackwardSet 
End if 

Else 
  WorkingSet  regionSets – regionSet(currentRegion) 
 End if 
Else 
 SetList  LocalSet2, LocalSet3, GlobalSet 
 For all Sets in SetList do 
  If the Set is not empty, then 
   FovSet, ForwardSet, BackwardSet  Fieldofview(Set) 

If the FovSet is not empty, then 
    WorkingSet  FovSet 

Else if the ForwardSet is not empty, then 
   WorkingSet  ForwardSet 

Else 
   WorkingSet  BackwardSet 

End if 
Break For 
End if 

 End for 
End if 
 
 

Where the WorkingSet is the filtered set of candidate positions that are 

evaluated in Step d); LocalLevel1, LocalLevel2, LocalLevel3 and GlobalLevel are 
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the levels of maps (see Figure 5.1); LocalSet1, LocalSet2, LocalSet3 and GlobalSet 

are the set of candidate positions corresponding to each level of the map. The 

function IdentifyCandidatePositions identifies candidate positions from the frontiers 

at the specific moment when the computer agent needs to decide where to explore 

next. The function HierarchicalDecomposeMap divides the entire game map into 

levels based on the position of the unit’s location. The function SeparatePositions 

separates a certain position set into three local sets and a global set according to the 

position located in each level. The function EnquireRegionInfo enquires about the 

region information of the candidate positions in a certain range. The variable 

currentRegion is the region that the exploration unit is currently located in. The 

function regionSet is the return a set of candidate positions located in a certain 

region. The function Fieldofview divides the candidate positions into the three sets: 

FovSet, ForwardSet and BackwardSet, based on the relative positions within the 

location of the exploration unit (see Figure 5.3).  

There are three benefits for filtering set of the candidate positions before 

evaluation in a heuristic way. First, it promotes the efficiency of computation. 

Within the algorithm frameworks, it is necessary to have a step-look-ahead for 

evaluating the information expected to be gained in the next possible position. 

Computational resources (for example time and central processing unit (CPU)) need 

to be assigned to the evaluation activities according to the specific algorithm that is 

used. Obviously, for utility-based evaluation approaches, the cost of computational 

resources increases when the number of utilities goes up. The circumstance becomes 

severe if candidate positions are massive, as in large-scale game maps.  

Secondly, the position-filtering method decreases the travel distance, moving 
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from the current unit’s location to the next best position. It is unavoidable to travel a 

long distance for exploration of an unknown region, even if areas around the 

exploration unit have not been completely explored, and when all of positions on the 

global frontier are evaluated in step d). This leads to the need for areas which were 

temporarily ignored to be revisited in the later exploration process when travelling 

for longer distances. Even though some automated-exploration strategies (Amigoni 

& Caglioti 2010; Li, Amigoni & Basilico 2012; Stachniss & Burgard 2003) consider 

the travel cost during evaluation, a candidate position with rich expected information 

in a relatively long distance away is commonly chosen. Alternatively, if the impact 

factor of distance cost is increased manually, the possibility of unreasonable 

prediction for the information gained in the next potential positions goes up.  

The final reason is that heuristic methods, which reduce the options for 

decision-making according to common sense, are frequently used by humans to 

make decisions. The three key heuristics of hierarchical, region based and field of 

view used by human players in exploring the virtual environment have been 

discovered in Chapter 3 (see 3.4 Results). Therefore, applying them into the 

exploration of computer agents will contribute to an increase in the believability of 

these agents by mimicking the behavior of human players.  

5.2.3 Environment Representation  

The exploration strategy works on 2.5D environments. In this article, I 

employ a multiple map-representation methodology (i.e. the combination of grid-

based, segment-based and feature-based) to re-organize map-information for 

exploration agents to understand the environment, as well as provide search clues. 
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Grid-based Representation 

The grid-based method divides game maps into square tiles. Each tile is 

marked unknown, free-movement or occupied. Unknown tiles refer to the tiles that 

have not been explored, and players do not know whether they are walkable or 

occupied by solid obstacles or other game units. Free-movement tiles can be walked 

through. If a tile is flagged occupied, the tile is un-walkable. The exploration unit 

only walks through walkable tiles. Tiles that are close to unit and in the visual range 

of the unit are not unknown, and should be either free-movement or occupied. An 

unknown tile is changed into a walkable or un-walkable tile when it is detected by 

the unit, i.e. it spatially falls into the unit’s visual range.  

Segment-based Representation 

Candidate positions are identified on the boundary between explored areas 

and unexplored areas. Segment-based representation, then, acts as the boundary 

identifier. Areas are presented by boundary polygons composed of line segments. 

Globally, the frontiers which separate unknown areas and unexplored areas are 

identified by an algorithm that recognizes polygons from the border of detected 

region (Perkins 2010). The algorithm converts the two-dimensional exploration array 

into a geometric polygon-boundary representation. This process is also called 

“vectorization”. In each exploration step, the vectorization process is conducted 

when the exploration unit arrives at the previous next-best position. Hence, the new 

frontier vertex set is updated before evaluating the next next-best position. Normally, 

some frontier segments overlap with obstacle segments. As a requirement of 

candidate evaluation, the overlapping parts need to be identified. In other words, 

frontier segments that are on the border of obstacles are recognized before evaluation. 
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An analysis approach on its 8-trajectory tiles is used to deduce whether a frontier 

vertex is on obstacle or on unknown area.  

Feature-based Representation  

Special elements such as unique buildings and landmarks play an important 

role in terms of spatial information in both the real world and virtual environments. 

For example, in the domain of RTS games, the development of game situations 

basically depends on the reconnaissance of these featured elements. Special elements 

like gases and minerals provide economical support to StarCraft gameplay. Given 

that, all the bases are built in mineral areas in StarCraft. Similarly, neutral campsites, 

stores and taverns in Warcraft III affect gameplay by recruiting neutral heroes or 

offering special properties. Thus, it is necessary to gather information of these 

elements during exploration. I define these elements as special objects with specific 

geometric and functional properties. 

5.2.4 Candidate Position Evaluation 

When considering the computation of potential-position evaluation, I borrow 

ideas from the A* algorithm, which combines a goal-evaluation component and a 

heuristic component to evaluate candidate nodes. To gather more information 

costing less time or resources (travelling distance), the algorithm needs to balance 

these two aspects. Hence, two components are developed: the distance-based 

component and the utility component.  

Distance-based Component 

The Euclidian distance is employed to compute the distance in this 
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component, which calculates the length of straight line between two points as the 

distance. In order to constrain the value of the heuristic component to the same 

magnitude as the utility component, the equation below is developed: 

                                 (5.1) 

where d(c, p) represents the estimating distance from the current position c to 

the candidate position p. The term - r denotes the radius of the exploration unit. For 

the requirement of component combination, the value of each component is limited 

to between 0 ~ 1. The feature of the exponential function indicates that its value is 

positive, and less than 1, when the variable is less than 0. The equation above 

guarantees that nearer candidate points acquire higher heuristic value, because the 

variation of the distance and the exponential function value follows an inverse 

proportion trend. 

Utility Component 

The acquisition of three types of environmental information is computed in 

this component. They are the walkability of map tiles, the outline of obstacles and 

special game elements. Technically, the knowledge of walkability of map tiles helps 

the game system make better path-finding decisions. It includes not only the troop 

maneuvering in later combat scenarios, but also supports further exploration tasks. 

The outline of obstacles plays a pivotal role when helping computer agents 

functionally divide game maps into different regions. The state-of-the-art 

methodologies typically separate map space into free-movement regions (allowing 

large groups of troops to move through side-by-side, or building extension locations 

on), narrow corridors (where ambushing always happens), and corridors. These 
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region divisions are the foundations for strategy and for predicting opponents’ 

possible options by just considering spatial factors. Special game elements vary in 

different RTS games and shape player strategies. 

 

Figure 5.4 Information gain estimated with different criteria 

Then, the evaluation of information gained for these three types of data is 

introduced. To unify the value of each utility, the circumstance of each criterion is 

presented by percentage.  iGrid(p) presents the possible un-walkable tiles gathered in 

the candidate position p. As shown in Figure 5.4 (a), point p is the candidate position, 

while circle c illustrates the edge of unit’s visual range if it is located on p. 

Tiles in the shadow area are expected to be gained. The equation to calculate 

u(iGrid) is: 

                                (5.2) 

In the second estimate, the amount of the potential edge line that is visible in 

position p, is computed by iSeg(p). I assume that the frontier line segments, which 

are falling in the visual range of the exploration unit, are obstacle segments. Figure 

5.4 (b) illustrates that AB is a frontier line segment, and BC is a line segment of 
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obstacles. The computation equation is: 

               (5.3) 

For the third elements, the expectation of obtainable game features in 

position p is predicted based on an area of gathered features, which fall within the 

visual range of p. It is illustrated by iFea(p) (see Figure 5.4 (c)). The computing 

follows the equation: 

         (5.4) 

where area j includes area k, and k is the patch of explored features in the 

current view point, while j is the explored area. The term - i is the area, which is 

expected to be revealed in position p. A weight-based utility combination approach 

is used, which is demonstrated by: 

                                (5.5) 

where ui(p) means the utility value of the candidate position p with criterion i, 

Ai(p) is the weight of each utility. It satisfies the formula below: 

                                                     (5.6) 

Combination of Components 

A linear model is developed to combine the two components. It is illustrated 

by: 

                            (5.7) 

The parameters (α and β) mean the weights that the two components have 
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separately in the summary evaluation value. Their values satisfy the equation (  

0.4  in following experiments): 

                                                               (5.8) 

5.3 Case Study - Believability Assessment 

Having a game agent with heuristic mechanisms based on common sense 

exploration will contribute to generating the illusion of believability. Hence, I design 

a believability-assessment experiment to evaluate it, which is based on the design 

from Chapter 4 (see 4.3 Experiment Design). It is based on a third-person 

observation. Judges watch videos of gameplay from each participant, and distinguish 

human players from computer agents.  

A theory that is embedded in the believability evaluation is that of judges 

comparing their expectations of believable entities with the performances they 

observe in the videos (see 4.3.1 Judges). Given that, I consistently select average 

players who have similar gameplay knowledge and skills to the judges. It also 

includes our considerations of the fact that this player group constructs the major 

population of game players. In this experiment, I evaluate how the heuristic 

(hierarchical) method reflects believability in spatial exploration activities. The game 

environments are consistent with Chapter 3 and Chapter 4.  

Along with the heuristic agent developed in this chapter, the computer agents 

(1) multiple criterion decision-making (MCDM), (2) topological and (3) random, 

which are developed in Chapter 4 constitute the computer-agent objects.  
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5.3.1 Human Subjects 

Human players involved in this experiment, and their playing of the three 

games were recorded acting as reference objects when evaluating the believability of 

computer agents.  The playing videos were selected from the experiment of Chapter 

3 (see 3.1.3 Participants) to categorize how players do spatial exploration in virtual 

environments. They were invited via University mailing list. As the responses to the 

demographic survey illustrate, their skills and expertise vary from novice to game 

guru. I filtered the extremes on the two ends and left the mid-ranges, in which 

players have mid-level playing skills, spend moderate hours (5 ~ 10) playing video 

games a week and have medium degrees of familiarity with RTS games. Players 

who have mid-level skills and moderate playing-time allocation make up the 

majority population in both games in terms of consuming and playing markets. This 

fact encouraged us to select this group of people as the subjects in this experiment. 

5.3.2 Judge Selection 

I invited video game players, who have substantial domain knowledge and 

regularly play video games. They were neither novice players nor game gurus, but 

average game players who make up a significant proportion of the population of 

players. They were invited via the university e-mail list, social media and direct 

invitations in public areas. Their demographic information and experience of 

gameplay are illustrated in Table 5.1. The same methodology of recruiting is also 

used in the Chapter 6. For preventing judges getting access to the game-video 

contents before the experiments, I deliberately employed different judges in the 

experiments of Chapter 5 and Chapter 6 respectively. Because these two experiments 

share same computer agents and human subjects. 
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ID Gender Age Years of 

gameplay 

Gameplay hours 

per week 

Game types usually played 

J1 M 30 2-5 1-5 Strategy, CB, RPG 

J2 M 28 > 10 10 - 20 RPG  

J3 M 36 > 10 6 - 10 FPS, Strategy, RPG, Puzzle, Sports, CB, 

RLS, Simulations 

J4 M 31 > 10 10 - 20 FPS, Strategy, RPG, Simulations, CBG, 

Sports, PBG, RLS, W&T, Social 

J5 M 26 6 - 10 6 - 10 FPS, Strategy, RPG 

J6 M 27 > 10 10 - 20 Strategy, Social, Sports, RLS 

J7 F 36 > 10 > 20 Strategy, RPG 

J8 M 25 > 10 1 - 5 Strategy, Simulations, CB, Sports, RLS 

J9 M 25 6 - 10 1 - 5 FPS, Strategy, RPG, CB, Sports, RLS 

J10 M 28 > 10 6 - 10 FPS, Strategy, RPG, CB, PBG, RLS 

      

FPS First-person Shooter RLS Real-life Sports CB Chance - based 
PBG Physical-Board Games RPG Role-playing Games W&T Word & Trivia 

Table 5.1 Demographic information and gameplay experience of judges 

5.3.3 Procedure 

The entire experiment is conducted online via a Google questionnaire form. 

1. The participant reads a paragraph about a brief introduction to the experiment, 

then watches an embedded online video which introduces the three games. 

2. The participant fills in the demographic questions. 

3. The participant reads an information board to remind him/her of the player 

characteristics and the tasks to be completed: 

a. Watch 18 videos, evaluate human likeness for each of them and 

present a reason for the judgment.  
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b. Answer questions to summarize their video-watching-and-evaluating 

sessions. 

c. Human subjects are mid-level RTS players and the computer agents 

are designed to imitate mid-level players. 

4. The participant watches videos and answers questions.  

5.3.4 Believability: Ranking Results  

Figure 5.5 illustrates the ranking results collated from questionnaire 

responses. The five Likert scale options (i.e. definitely a computer agent, most likely 

a computer agent, unsure if it is a computer agent or human, most likely human and 

definitely human) for rating human-likeness are mapped to numerical integer values 

(1 ~ 5).  

In Figure 5.5, the value represents the average score for each player.  It is 

calculated via Formula (4.1). Figure 5.5 shows that the average believable score of 

the heuristic agent across the three exploration games is higher than that of the other 

three computer agents.  Meanwhile, it is in-between the two human players.  

The value in Figure 5.6 demonstrates the average score for each player in 

playing each game. It is computed via Formula (4.2).  Figure 5.6 illustrates that the 

believability of the heuristic agent is significantly higher than that of other three 

computer agents in all three games. Its believability scores are in-between those of 

the two human players in the pure exploration game and the killing game. Even 

though, it is lower in the searching game, the difference values, comparing to the 

scores of the two human players, are quite small with 0.4 (3.9 – 3.5) and 0.5 (4.0 – 

3.5) respectively.   
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Figure 5.5 Believability of the heuristic agent 

 

Figure 5.6 The believability scores of the heuristic agent are significantly higher than other 

computer agents, and between two human players 

5.3.5 Human-like Behavior and Non-human-like Behavior 

On the questionnaires, judges were required to explain their decisions about 

the believability of each subject. Judges’ responses about this question were 
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processed and classified by the category of descriptions of human-like behavior and 

descriptions of non-human-like behavior. Table 5.2 shows how the ten judges 

responded to the subject (Heuristic agent –Pure exploration game).  

I arrange the judges’ responses to the three kinds of subjects, humans, 

heuristic agent and other computer agents. Then, the judges’ descriptions of playing 

behavior are analyzed by using the thematic analysis method (see 3.2 Thematic 

Analysis). Themes are extracted from the descriptions, where each theme represents 

several common descriptions of playing behavior. For example, the stop-and-think 

theme represents all the statements that describe the behavior of stopping, which 

illustrates a sense of thinking.  

Human-like Behavior 

Reasonable behavior around landmarks means that the unit exhibits human-

like behavior near landmarks, such as bridges, narrow slopes and enemy buildings. 

The unit normally shows proper awareness and reactions to these landmarks when it 

perceives them.  

Natural movements refer to the fact that the movements look natural and 

human-like. For example, “The movements were very natural. It looked like the 

player was always looking for the clues.” (J3 – Human1 – Searching game – most 

likely human)  
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Human-like behavior Non-human-like behavior 

J1 
No fault was shown in searching a 

map. 
The unit spanned in a small corner at 

1:42, which looked unnatural. 
J3 

J2 
It stopped sometimes. I think it 

would be thinking. 

1. SCV tried to explore areas which 

were obvious boundaries of the map. 
2. SCV got stuck on the left side of 

the bridge 
 

 

J4 

J5 
1. Searching path is random.  
2. The unit revisited the path that 

was just explored.  

Sometimes, the behavior was too 

smooth.  
J8 

J6 
The SCV moved towards to the 

enemy side before completely 

discovering the friendly side.  
  

J7 

The unit expressed deliberate 

movement combing with some 

backtracks to get a missed few 

pixels.   

  

J8 
Basically, the unit explored by the 

best paths.  
  

J9 
1. The unit went in straight lines.  
2. It made decisions very quickly.  

  

J10 

1. The robot just walked along the 

map.  
2. The mind was clear for the game 

goal.  
3. It almost never wasted time. 

  

 

Table 5.2 Human-like behavior and non-human-like behavior observed in the playing of the 

pure exploration game by the heuristic agent 
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Fluent actions mean the process of game playing is fluent. For example, 

“This should be a human player since it moved freely and smoothly.” (J5 – Human 2 

– Searching game – most likely human)  

Revisit incompletely-explored areas shows that the unit changes its current 

moving direction and returns to the places which it has visited but not completely 

explored. The unit normally goes back to incompletely-explored areas with specific 

purposes. For instance, “[The unit] double checked the area after finding the supply 

depot. [It then] found the enemy base quickly.” (J4 – Human 2 – Searching game – 

most likely human) 

Stop-and-think behavior exhibits the intention of selecting path around 

conjunction points of paths. For instance, “According to the behavior of the SCV, it 

stopped sometimes. It would be thinking. I feel it was like humans’ behavior.” (J2 – 

Heuristic agent – Pure exploration game – most likely human) 

Deliberate exploration represents exploration behavior that the unit 

rigorously explores the current area before moving to others. For example, 

“Deliberate movement combined with some backtracking to get a missed few pixels 

makes me fairly sure it was a human.” (J7 – Heuristic agent – Pure exploration 

game – most likely human) 

Reasonable killing behavior represents behavior that is expected as human 

players when the game character confronts enemy units in the killing game. For 

example, “The way of looking for enemies looked like humans. The shooting 

process was random without any certain patterns. It should be a human player.” (J8 – 

Human 2 – Killing game – most likely human) 
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Consistent movements mean the direction of movements keeps a certain 

consistency. For example, “[The unit] went straight lines, and made decisions very 

quickly.” (J9 – Heuristic agent – Pure exploration game – most likely human), and 

“The robot just walked along the map. The mind was clear for the game goal. It 

almost never wasted time.” (J10 – Heuristic agent – Pure exploration game – most 

likely human) 

Random path selection means the unit exhibits the sense of randomness in 

selecting a path. For example, “The searching path was random. … It took the path 

just searched.” (J5 – Heuristic agent – Searching game – most likely human) 

Ignore uninformative areas represents the unit ignore some areas, such as 

small corners, outlined boundaries, and completely explored areas, which do not 

provide useful information. For example, “The player acted in a deliberate manner 

and abandoned exploration of an area once he could see no base in range.” (J7 – 

Heuristic agent – Searching game – most likely human) 

Non-human-like Behavior 

Idle behavior represents the scene where judges hardly recognized the 

purposes of the behavior. It normally is exhibited by blind and limited local 

exploration. For instance, “The object walked in an idle way around the base area. It 

definitely was not a human.” (J8 – Random – Searching game – definitely a 

computer agent) 

Revisit explored areas includes behavior of visit an area repeatedly or of 

travelling back to an area which has been explored before from a place where there 

many obvious potential points to explore. It is normally regarded as redundant 
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behavior. For example, “The unit seemed to return and check places that have 

already been covered. It kept making many small returns.” (J4 – Random – Pure 

exploration game – definitely a computer agent) 

Unreasonable stops represent the behavior of pauses when moving with no 

understandable purposes or a high frequency. For example, “The SCV stopped a lot 

and had weird behavior near the bridge.” (J3 – MCDM – Searching game – 

definitely a computer agent), and “The robot walks slowly on the plain, and stops 

near the tree.” (J10 – Topological – Searching game – definitely a computer agent) 

Stick to boundaries represents the behavior that the unit still moved forward 

to explore boundaries when they were obviously revealed and easily recognized by 

the human. For instance, “The SCV checked against the map edge too closely when 

it has already been revealed that it is an edge.” (J4 – MCDM – Pure exploration 

game – definitely a computer agent) 

Fixed patterns mean game playing videos exhibit easy recognized behavioral 

patterns which are regarded as programmed behavior. For example, “I can tell 

searching patterns. The searching path followed the map margin. Regular pauses 

were exhibited when searching.” (J5 – Topological – Searching game – definitely a 

computer agent) 

Unreasonable killing behavior constitute behavior that is not convincing as 

human players when the game character confronts enemy units in the killing game. 

Ignoring enemy units or exhibiting hesitations are typical unreasonable killing 

behavior. For example, “Some unnecessary movements appeared before or after 

shooting, such as going further to the corner where there is no SCV [enemy units] 
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after shooting, sudden stops and going forward a bit before shooting.” (J3 – Human 

2 - Killing game - definitely a computer agent) 

Unreasonable behavior around landmarks means that the unit expresses 

unexpected behavior near landmarks, such as bridges, narrow slopes and enemy 

buildings. For example, “The behavior that the object rigorously approached supply 

depots with a certain distance looked like machines.” (J8 – Topological – Searching 

game – most likely a computer agent) 

Unnatural movements represent unexpected movement trajectories. For 

example, “The object hesitated several times and went with strange paths.” (J9 – 

Human 1 – Pure exploration game – most likely a computer agent) 

Spin in a corner represent the situation that the unit appears temporally stuck 

in a corner. For example, “Overall [its behavior was] natural, but spinning in a small 

corner at 1:42 looked unnatural.” (J3 – Heuristic agent – Pure exploration game – 

most likely a computer agent) 

5.3.6 Behavior-based Evaluation 

The content from transcripts is labelled via themes of behavior generated 

above. Labelled pieces of content for each theme are counted within each group of 

subjects. I employ the “pie of pie” chart to represent the themes of both human-like 

behavior and non-human-like behavior for each group of subjects, and the frequency 

of each theme in the transcripts. Each pie represents the percentages taken by themes 

of non-human-like behavior or human-like behavior.  The right pie is smaller and 

takes lower percentages. It shows the group of behavior themes (i.e. human-like 

behavior or non-human-like behavior) that takes lower percentages for a certain 
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subject group (i.e. humans players, computer agents or the heuristic agent). 

 

Figure 5.7 Distributions of behavior themes for computer agents (Percentages are computed 

based on the counts of statements in each theme.) 

Figure 5.7 shows the human-like behavior and non-human-like behavior of 

the three computer agents. They are presented by the ten judges’ responses to the 

questionnaire. It also illustrates how many times one type of behavior is recognized 

and mentioned by percentages. The count of human-like behavior is 14 percent while 

the statements of non-human-like behavior is 86 percent. For obviously recognized 

computer agents, non-human-like behavior is significantly more than human-like 

behavior.   

The highlighted non-human-like behavior are unreasonable killing behavior, 

stick to boundaries and idle behavior. Several themes evenly share the rest pie of 

human-like behavior. Each of them only takes a small percentage of the total pie.  
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Figure 5.8 Distributions of behavior themes for human players (Percentages are computed-

based on counts of statements in each theme.) 

Figure 5.8 shows the human-like behavior and non-human-like behavior of 

human players. Human-like behavior occurs more than non-human-like behavior as 

it takes 61 percent of the total.  

The highlighted human-like behaviors are natural movements, fluent actions, 

and revisit incompletely-explored areas. The count of these three themes takes the 

major part of human-like behavior. They are followed by themes of deliberate 

exploration and reasonable killing behavior, which take 8 percent each. Meanwhile, 

the highlighted non-human-like behaviors are unnatural movements, unreasonable 

killing behavior and unreasonable behavior around landmarks.  

Figure 5.9 shows the human-like behavior and non-human-like behavior of 

the heuristic agent. Human-like behavior is more than non-human-like behavior as it 

takes 66 percent of the total. This demonstrates how the heuristic agent achieves 

high scores in believability.  
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Figure 5.9 Distribution of behavior themes for the heuristic agent (Percentages are 

computed-based counts of statements in each theme.) 

The highlighted human-like behaviors are consistent movements, natural 

movements and revisit incompletely-explored areas. Other themes of human-like 

behavior almost evenly share the rest of the percentages. Meanwhile, the highlighted 

non-human-like behaviors are revisit explored areas and spin in a corner.  

5.3.7 Discussion  

The believability scores shown in Figure 5.5 and Figure 5.6 show that the 

heuristic agent I developed is believable in playing exploration games. Within the 

experiment, the score that the heuristic agent achieved is significantly higher than 

the other computer agents and in-between human players. The position-filter-based 

heuristic method is valid in achieving believability for the exploration of virtual 

environments.  

 According to Figure 5.9, several themes with relatively high percentages of 

human-like behavior are generated by the heuristic factors. In general, the heuristic 

method filters potential positions before making decisions, which leads to the 

illusion of revisit natural movements and fluent actions. The field of view heuristic 
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factor gives a high priority to potential positions which are in front of the exploration 

unit. The unit changes movement directions only when there are no potential 

positions that it faces, which generates a sense of consistent movements. The region 

based heuristic factor guarantees the exploration unit visits all the potential positions 

before heading to other regions, which is regarded as deliberate exploration and 

revisit incompletely-explored areas. The heuristic agent normally keeps a local 

exploration strategy where it consistently explores local areas if there are potential 

positions in local areas. It occasionally does employ a global strategy to search 

potential positions globally, when there are no positions to visit in local areas. In this 

sense, it may travel to the places that it has partially explored. Since the global 

exploration behavior happened reasonably, the revisit incompletely-explored areas in 

many cases are regarded as human-like behavior.  

The design of the heuristic agent matches the pattern of human exploration 

behavior. Humans are hierarchical when making spatial decisions like the Seer 

archetype who does local exploration but with a global conception. Human players 

may not strictly follow the rule of considering global choices only if there are no 

local choices. They may also revisit a partially explored place when they 

occasionally would like to gather more information or evaluate the knowledge they 

acquired about the area previously. Generally, however, keeping to local exploration 

most of the time and doing global searching occasionally is the behavioral pattern of 

the human. In this research, I employ a restricted hierarchical-heuristic method, 

where the unit evaluates candidate positions only if there are no local choices 

(Algorithm 1). It is a simple and efficient way to create believability in exploration. 

Nominated human-like behavior such as revisit explored areas and make decision 
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quickly exhibit this mechanism.  

As the Pathers archetype reveals (see 3.4.1 Player Exploration Archetypes), 

having region based perception of spatial environment is also a highlight feature of 

players. Human players perceive, represent and memorize spatial environments with 

a region based structure, where a game map is divided into regions which are 

connected by choke points (narrow paths). Players make decisions based on the map 

of region connections. In the chapter, the heuristic agent employs a region based 

heuristic component. It compulsively makes the agent primarily evaluated potential 

points that are in the same region as the exploration unit. If there are no potential 

points in the same region, it then evaluates those in the nearest region. That 

contributes to generate deliberate exploration.  

Hesitations, referring to the behavior of travelling back and forth, are also 

one kind of common behavior of human exploration. Reasons that cause hesitation 

behavior vary among different archetypes. According to our experiences, the reasons 

are not easily figured out by purely observing. Complex and unreadable hesitations 

may appear unreasonable because they could not be understood by observers (see 

4.5.3 Behavioral differences defined by judges). The hierarchical heuristic has 

generated a kind of hesitation behavior – revisit explored areas, which occasionally 

happens. More frequent hesitations would make them incomprehensible, since 

observers need more time to discover exhibited purposes. The field of view heuristic 

helps to keep the agent in a consistent direction when exploring (consistent 

movements), and it also reduces hesitations.  

In the case study, the results illustrate that the heuristic agent passed the 

believability test. I evaluate the efficiency of the heuristic agent in abstract 
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environments to see whether it could have a good performance in terms of efficacy.  

5.4 Case Study - Efficiency Evaluation 

In this section, I evaluated whether the heuristic approach that filter candidate 

positions conducted exploration tasks efficiently. This experiment emphasis on 

testing whether the position-filtering heuristic approach was efficient in the 

corresponding tasks or not. Hence, I implemented a simple version of the heuristic 

agent with the hierarchical heuristic, instead of its full version in this study. 

Additionally, abstract environments were developed where each computer agent was 

tested many times in each game map, and started with different positions in each 

round of exploration.  

5.4.1 Experiment Design 

To test the efficiency of our method, I developed a simulator in C++ using 

openFrameworks (Lieberman, Watson & Castro 2016). I collected 45 game maps 

from three commercial RTS games (StarCraft: Broodwar, StarCraft II and Warcraft 

III (Entertainment 2002)), analyzed them, and extracted five common patterns: base-

location pattern, base-location-and-the-first-extension pattern, turtle-shape pattern, 

corridor pattern and extensions pattern (Si, Pisan & Tan 2014b).  

This simulator is independent to any specific platforms. The developed game 

maps represent the common traits of maps in different commercial games. The 

simulated system also satisfies the requirements of simulations that have a balance of 

test maps, where the exploration units need to start the exploration at different start 

points.  
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• Base-location pattern represents the starting area, where the player’s base is 

located in RTS games. It is often surrounded by obstacles or un-walkable 

terrain elements, such as seas and cliffs. A passageway, usually referred to as 

a choke point, connects this region to the rest of the map.  

• Base-location-and-the-first-extension pattern presents a pattern where a 

starting area connects to a resource-rich area. The resource-rich area is 

frequently explored in the first several minutes of gameplay.  

• Turtle-shape pattern defines terrain where there is a large free-movement 

space in the center of the region and small regions containing resources 

connected to the main region through narrow corridors.  

• Corridor pattern is a corridor-shaped common area, where narrow 

passageways are twisted.  

• Extensions pattern is used to summarize a specific type of terrain frequently 

observed in Warcraft III. A group of semi-open extensions (i.e. regions rich 

in resources close to the base-location) are connected by an open space. This 

inner-connected large area is normally reachable from other regions through 

one or two narrows. 

I have created abstract maps (Figure 5.10) based on these patterns. In these 

abstract maps, areas in black represent walls and obstacles, while areas in white 

represent walkable spaces. Resources are represented by blue polygons. The purpose 

of the experiment is to test the ability of our strategy to explore the spatial 

environment. Therefore, there is no enemy designated on these maps. 
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Figure 5.10 Game maps used in experiments (numbers represent starting locations) 

For all experiments, I chose the visual range of exploration units as 40 pixels, 

which forces recon units to make a significant number of steps to complete the 

exploration. Simulation is terminated when 99.5% area of the map has been explored 

or when the allocated time (800s) for exploration runs out. This percentage is enough 

to reflect the completeness of space information gathering. It is meaningless to 

compare the remaining 0.5% exploration in evaluating exploration algorithms. I 

describe the four strategies used in our experiments below. 
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Random Strategy 

The candidate positions are randomly selected from explored areas, and the 

next movement position is randomly selected from the candidate positions i.e. the 

evaluation function is not used. This strategy represents an uninformed agent 

intended as a worst-case strategy for exploration. 

Visual Strategy 

In the visual strategy, candidate positions are chosen from the current unit’s 

visual range, and often along the edge of visual range to maximize the new area. 

Candidate positions are evaluated using the same MCDM strategy as the Heuristic-

Frontier Strategy described below. Integrating this strategy gives us a chance to 

compare the performance of exploration algorithms between frontier-based and non-

frontier-based.  

Frontier Strategy 

This strategy is a modified version of the Gonzáles-Baños and Latombe’s 

exploration strategy (GB-L strategy) (Gonzalez-Banos & Latombe 2002) and is used 

to determine the performance contribution that can be attributed to the hierarchical 

position filtering mechanism. As part of MDCM, candidate positions from frontier 

vertices are identified and evaluated by the following formula: 

                       (5.9) 

where A(p) is an estimate of the unexplored area visible from p, L(p) 

represents the real distance from the current location of the exploration unit to the 

candidate position p. λ denotes the weighting between exploring large areas and 

travelling less distances. The value of λ is set to 1/300, meanwhile the value of A(p) 
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is constrained to [0~1], and the value of L(p) is in [0~1000]. That helps to balance 

A(p) and L(p) at the same magnitude as well as to keep their contribution for the total 

evaluation value in a proportion of 2/3. The value of λ is empirically chosen and 

varying this value is part of our future research. In terms of unexplored area 

estimation, two criteria are taken into account: unknown map-grid gathering and 

obstacle-segment collecting. This strategy is a representative example of the state-of-

art in NBV-based strategies used to solve robotic exploration problems.  

Heuristic-Frontier Strategy 

It employs Heuristic-Frontier (H-Frontier) candidate identification strategy to 

filter potential positions before evaluation (Si, Pisan & Tan 2014b). H-Frontier 

strategy is a simple version of the heuristic agent, where it mainly uses a 

hierarchical heuristic. In terms of the weights of position evaluation, I focus more on 

grid gathering and segment gathering, since these two kinds of information are used 

to reconstruct the outline of the map territory. Then, the parameters of utility 

component (Equation (5.5)) are set as: 0.4, 0.4 and 0.2 for A(iGrid), A(iSeg) and 

A(iFea) respectively. Compared to distance travelling, I give priority to information 

gathering in the next view. In equation (5.7), the weights I have chosen give priority 

to information gathering over travelling less distances with α set at 0.4 and β set at 

0.6. 
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5.4.2 Results

 

(a) H-Frontier spent relatively less time to complete the exploration task in each map comparing to 

other three algorithms.  

 

(b) H-Frontier travelled relatively less distance to complete the exploration task in each map 

comparing to other three algorithms. 

 

(c) H-Frontier achieved the most percentage of grid in all the five maps. 
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(d) H-Frontier achieved the most percentage of segment in all the five maps. 

 

(e) H-Frontier achieved the most percentage of features in all the five maps. 

Figure 5.11 Performance of strategies in different criteria 

For each map, I have chosen 16-24 possible starting positions (shown in 

Figure 5.10), determined by the complexity of the map. Each game map is evaluated 

using the four different strategies with all the different origin positions. Box plots, 

shown in Figure 5.11, aggregate the results from simulation runs with different 

origin positions. The five criteria used to evaluate the performance of the strategies 

are: time cost (seconds), travelling distance (pixels), percentage of free-movement 

grids collection, percentage of obstacle segments, and percentage of game features 

(such as resources) gathered during exploration. The horizontal line in the box plot 
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indicates the median value, box-boundaries are the 25th and 75th percentiles, and 

whiskers are the 10th and the 90th percentiles.  

The percentage plots illustrate that the H-Frontier strategy is the only one that 

is able to statistically complete exploration tasks in all the game maps and for all the 

origin positions. Figure 5.11(c), 5.11(d) and 5.11(e) illustrate that the 10-percentile 

value of map information-gathering percentage for H-Frontier strategy is over 99.5% 

in map 1, 2, 3, and 5, and that the 25-percentile value is over 99.5% in map 4. The 

10-percentile value of the Frontier strategy is just over 99.5% only in map 4. The 

other two strategies perform even worse, rarely completing exploration tasks.  In 

terms of time spending, the H-Frontier strategy performs significantly better than 

other strategies in each map. Almost all the time spent on the H-Frontier is less than 

the other three strategies in all the maps (Figure 5.11(a)). Furthermore, the H-

Frontier also travels less distance in completing the exploration tasks in all the maps 

(Figure 5.11(b)). 

For a few cases in maps 1, 2, 3 and 4 the Frontier strategy travels less 

distance than the H-Frontier strategy, but in these cases the Frontier strategy fails to 

complete the exploration mission. As demonstrated by the percentage plots, the 90-

percentile value of distance of the H-Frontier strategy is even lower than the median 

value of the Frontier Strategy in maps 1, 2 and 3. To summarize, the Heuristic-

Frontier-Based strategy I presented performs better than the others for exploration in 

RTS game environments based on the five different criteria outlined above.  

5.4.3 Discussion 

In this case study, I evaluated our algorithm with other four strategies, and 

demonstrated that our algorithm performs the best within each criterion. Generally, a 
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good strategy is gathering more terrain information (revealing grid, segment and 

features) and spending less resources (time and travelling distance). Figure 5.11 

indicates that frontier-based strategies achieved overwhelmingly better results that 

the other two strategies. Because candidate positions are on frontiers, where there are 

the closest places to unknown areas. Intuitively, exploring these places as a priority 

can also save time.   

Among the frontier strategies, the H-Frontier performs better than Frontier 

strategy in all five criteria, which means the former can collect more spatial 

information whilst travelling less distance during less time. In most position 

evaluation processes, the H-Frontier only computes the utility value of local 

positions, while the Frontier strategy conducts it globally. Obviously, time spent on 

evaluating computation is saved. Additionally, evaluating all candidate positions 

globally may cause a phenomenon of back-and-forth movement. It is common that a 

candidate position that is far away from the current spot with potential to gather 

more environmental data is selected as the next-best view. The fact is, however, that 

the unit must travel back again for the completeness of exploration. In this 

experiment, the exploration settings (such as α, β and the visual range for the unit) 

have been kept constant. In our algorithm, since the local candidates are given high 

priority, the phenomenon of back-and-forth across long distances is eliminated.  

5.6 Conclusion 

In this chapter, I applied the heuristic method in solving the problem of 

spatial exploration, where a heuristic approach is used to pre-process the set of 

candidate positions before estimating each step by using A*. To be specific, the 

heuristics of hierarchical, region based, and field of view are used to reduce the 



177 

choices when making decisions. The idea was generated from common sense human 

navigation, where they intuitively consider local areas rather than taking the global 

view in each step. The pattern of terrain is another common-sense area where 

humans prefer to go to the places that are easier to move to, and humans prefer 

looking forward within the field of vision first rather than looking around elsewhere 

(answer Q3.1).    

I organized two experiments to evaluate both the believability and efficiency 

of our method. The results in the experiment of believability assessment illustrate 

that our heuristic method can achieve believability in the spatial exploration field 

(answer Q3.2). The results in the experiment further demonstrate that the heuristic 

method contributes to saving time and resources in terms of travelling because it 

effectively reduces the behavior of moving back and forth. The performance of our 

method also shows that coverage of environments (segment, grid and resources) is 

better than algorithms in the control group (answer Q3.3). 

In this chapter, I developed a heuristic agent by mimicking the way that 

humans do exploration, discovered in Chapter 3. The heuristic agent was evaluated 

within the experimental framework developed in Chapter 4 for assessing its 

believability. The results illustrate that it achieves believability in exploring virtual 

environments. The heuristic agent was also tested in an abstract simulated 

environment, where its performance was proved to be efficient for doing exploration.  

In next chapter, I will investigate the way of integrating players’ expectations of 

human-like gameplay in a computer agent, and evaluate its believability in the three 

exploration games.  
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Chapter 6. Development of Believable Spatial Exploration 

Agents – An Integrated Approach 

This chapter aims to answer Q4: “How do we bridge the gap between human 

and computer agents’ exploration via a computer agent?” I divide this question into 

two sub-questions. 

Q4.1 How can we implement believable expectations of spatial exploration 

from mid-level players in an integrated architecture? 

Q4.2 Does the believability of intelligent exploration agents increase when 

it meets the expectations of mid-level players? 

For answering Q4.1, I employ the methodology that create a believable agent 

by satisfying mid-level players’ expectations of believability. Hence, I firstly extract 

the expectations about believable spatial exploration agents from mid-level players 

which act as the requirements of believable agents. The expectations are collected 

from the experiments conducted in Chapter 4 (see 4.5.3 Behavioral Differences 

Defined by Judges). The requirements then are transferred into three components: 

environmental knowledge, behavioral rules and controller rules, which are 

implemented in the integrated frameworks of the exploration agent. The developed 

exploration agent is then evaluated by the questionnaire-based third-person-

observation assessment used in Chapter 4 and Chapter 5 (aiming to answer Q4.2). In 

the experiments, I employ three self-developed exploration games: pure-exploration 

game, killing game and searching game, where the gameplays reflect three different 

aspects of exploration skills.  
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6. 1 Judges’ Expectations 

From the experiment conducted in Chapter 4, I summarize the judges’ (mid-

level players) expectations of believable exploration-behavior in four aspects: 

Interaction with Environment, Game-goal orientation, Navigation, and Sense of the 

mechanical, which map to the four types of behavioral differences (see 4.5.3 

Behavioral Differences Defined by Judges). The expectations are then summarized 

as the requirements of the believable exploration agents.  

6.1.1 Interaction with Environment 

1. Complex Environment 

a. Computer agents keep a stable and determined performance in 

complex environments, where they should have a high-level 

perception of environments and a sense of orientation without 

exhibiting inconsistencies.  

2. Special Objects 

a. Computer agents perceive enemy units immediately when enemies 

appear within the field of vision of the exploration unit. 

b. Computer agents express the awareness of perceived objects by 

reacting to, interacting with and making decisions about them within 

a proper time interval. 

c. Computer agents avoid colliding with edges or obstacles when 

travelling. 

d. Computer agents keep a certain distance from edges when walking 

along. 
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e. Computer agents have well-planned behavior around choke points 

like bridges, passing them in a determined and quick way or 

exploring unknown surrounding areas before passing through. 

6.1.2 Game-goal Orientation 

3. Pure exploration game 

a. Computer agents have well-planned strategies without too much 

undetermined behavior.   

b. Computer agents allocate time reasonably to visit areas based on how 

much information can be gained.  

4. Killing game 

a. Computer agents are sensitive to enemies, and they normally kill 

enemies immediately within a spatial sequence upon perceiving them.  

5. Searching game 

a. Computer agents exhibit the behavior of exploring around discovered 

clues (for example enemy buildings). 

6.1.3 Navigation 

6. Stop and go rhythm 

a. Computer agents move smoothly without frequent stops.  

b. Computer agents sometimes have a brief stop on intersections, 

pretending to make decision among several paths.  

7. Forward and backward 

a. Computer agents keep a low frequency of moving forward and 

backward. 
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b. Computer agents make forward and backward behavior reasonable. 

Each forward and back movement needs to end up with a determined 

purpose which means it should be explicitly shown that the behavior 

has a clear destination to visit. 

6.1.4 Sense of the Mechanical   

8. Obvious mistakes 

a. Computer agents do not walk or stand in an idle manner.  

b. Computer agents do not exhibit failure in taking actions, for example 

failing to kill enemy units. 

9. Over planning 

a. Computer agents do not exhibit over-planned behavior. For example, 

a structured exploration, where the exploration unit visits places 

around a center within the same distance, was easily recognized as a 

computer agent in the experiment of Chapter 4. 

 

6.2 Environmental Knowledge 

Environmental knowledge refers to the short-term memory that the computer 

agent keeps when exploring.  

1. Computer agents have a cardinal direction system, which demonstrates the 

relative locations where the exploration unit is located. It maps to players’ 

oral expressions of “left-top”, “right-top”, “left-bottom” and “right-bottom” 

of the map (see Chapter 3). Hence, computer agents maintain knowledge 

about their relative locations which represent the relative part (i.e. “left-top”, 
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“right-top”, “left-bottom” and “right-bottom”) of the map. It helps to make 

global decisions when the computer agent decide to give up local exploration 

and plan to select the next-best position globally.  

2. Computer agents also acquire knowledge about the boundaries of obstacles, 

edges, and frontiers perceived as the exploration progresses. The frontiers 

refer to the boundaries between locations, exploration areas and unknown 

areas.  

3. Computer agents have knowledge about the decomposed map with the 

representations of regions, choke points and relationships among them. It is 

an important cognitive way of spatially reasoning the strategy that players 

normally use (Halldórsson & Björnsson 2015; Perkins 2010).  

4. Computer agents acquire and store knowledge of enemy units discovered. In 

the memory of the computer agents there is the location of enemy units that 

appear in the visual range of the exploration unit. Their information (location, 

type and status of life) is maintained in the memory of the computer agents.   

  

6.3 Behavioral Rules 

Behavioral rules are rules that computer agents follow to exhibit human-

likeness during exploration.  

1. Computer agents explore the environment with collision-free behavior. The 

behavior of consistently knocking obstacles and edges was explicitly marked 

as that of computer agents in Chapter 4. The exploration unit’s knocking 
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edges behavior illustrates its unawareness of edges and obstacles. A 

behavioral rule set for the computer agent is to navigate the exploration unit 

with a collision-free model, where I simply make the computer agent ignore 

candidate positions which are too close to edges.  

2. Computer agents have a proper way to interact with discovered special 

objects. Ignorance of them may be clearly identified as computer agents’ 

behavior. To be specific, interacting with special objects refers to killing 

enemies in a natural way in the killing game. It also refers to immediately 

looking around to search for further clues when enemy buildings are 

discovered in the searching game.  

3. Computer agents have a consistent direction of movement. Going frequently 

back-and-forth is easily recognized as the behavior of computer agents. A 

behavior rule set for computer agents is to keep a certain consistency of 

direction during exploration. I implement that rule by using the field of view 

heuristic (see 5.2.2 Heuristic Component).  

4. Computer agents illustrate the behavior of doing reasoning about the location 

of the enemy base according to the explored clues in the searching game. 

The experiment in Chapter 4 indicates that behavior of exploring 

surroundings after discovering enemy buildings is normally regarded as the 

gameplay from human players. Hence, the surrounded unexplored areas are 

given a high priority to be explored in following steps when enemy buildings 

are found by the computer agent in the implementation of the behavioral rule.    

5. Computer agents stop and express an illusion of making decisions around 

highlighted connections, such as bridge or ramps, among regions. Frequent 

stops are distinguished as the behavior of computer agents, while a few stops 
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around intersections are regarded as the behavior of human player. This 

behavioral rule exhibits the tendency of thinking about where to move next, 

which is normally the behavior of humans.  

6. Computer agents allocate differentiated priority to candidate positions 

according to the informative possibility that they have. For example, ignoring 

the non-informative corners is a common behavior of humans in doing 

exploration. Hence, enabling computer agents to mimic this behavior would 

help to create the sense of humanness. 

6.4 Controller Rules 

Controller rules act as supervision rules which control and correct computer 

agents’ behavior in a higher level.  

1. Computer agents exhibit flexible plans when conducting exploration tasks. 

Exhibiting fixed and structured planning is easily recognized as computer 

agents’ behavior. This fact encourages developers to implement randomness 

into computer agents. Unfortunately, too much randomness exhibited takes 

the performance to another level which is regarded as the performance of a 

computer agent. Hence, a mechanism that controls randomness well is 

necessary to be implemented. It determines when and how randomness is 

applied within the system. 

2. Computer agents have a natural movement rhythm. Controlling the 

movement of the exploration unit through a natural “stop and go” rhythm is 

another key factor to make it believable. As the judges suggested in Chapter 

4, computer agents normally have a disordered and unreasonable “stop and 
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go” rhythm. Hence, having a reasonable “stop and go” rhythm for intelligent 

exploration agents would be a distinct feature of believable agents.   

3. Computer agents correct their behavior when errors occur. Recognized 

computer agents sometimes exhibit behavior that is marked by systematic 

errors, such as being stuck, moving in an idle fashion, and failing to shoot. 

Therefore, implementing a mechanism of behavior-status evaluation, which 

could help diagnose issues when computer agents go wrong, would 

contribute to preventing exploration agents from making such errors.   

4. Computer agents react to special objects in the right time. When the 

exploration unit observes one or a group of special objects, the controller can 

determine when to pause the ongoing process and react to special objects.    

6.4 Relationship between Implementation and Requirements 

The implementation of environmental knowledge, behavioral rules and 

controller rules satisfies judges’ expectations (see 6.1 Judges’ Expectations) of 

believable agents. Judge’s expectations act as requirements of developing believable 

agents in this chapter. Each instance of the implementation maps to one or more 

requirements. Table 6.1 illustrates the map, where R is short for requirement, EK is 

short for environmental knowledge, BR is short for behavioral rules and CR is short 

for controller rules.  

6.5 Design of the Architecture of the agent 

The design of the architecture consists of six components (see Figure 6.1).  

Exploration Pipeline refers to the framework of the exploration algorithm 
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described in the section 4.2 Computer-agent Objects.   

Implementation Requirements 

Environmental Knowledge 

EK1 R1.a 

EK2 R2.c, R2.d 

EK 3 R3.a, R1.a, R2.e 

EK4 R2.a, R2.b, R4.a, R5.a 

Behavioral Rules 

BR1 R2.c, R2.d 

BR2 R2.b, R4.a, R5.a 

BR3 R1.a, R3.a, R7.a, R7.b 

BR4 R5.a 

BR5 R2.e 

BR6 R3.b 

Controller Rules 

CR1 R3.a, R9.a 

CR2 R6.a, R6.b 

CR3 R8.a, R8.b 

CR4 R2.a, R2.b 

Table 6.1 Mapping implementation to requirements 

Environment Recognition & Analysis conducts environment analysis where 

knowledge about detected environments is extracted and maintained. It provides 

recognized patterns and objects to components of Global Controller, Goal 

Controller and Navigation Controller.  

Global Controller can pause, recover and jump forward among the 

exploration loops in the Exploration Pipeline. 

Goal Controller rules the behavior of exploration agents to achieve the game 

goal in each exploration game. 
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Navigation Controller controls the track of movement when the agent is 

doing exploration.  

Error Controller monitors the status of the computer agent. It also keeps 

detecting the behavior errors of the exploration unit, and then, handles the errors. 

Navigation Controller

Environment Recognition 
& Analysis

Global 
Controller

Goal Controller

Error Controller

Exploration Pipeline

Direction controller

Pace-controller

NBP selection

Stop-and-go

Region, chokepoint and corners

Edges, boundaries and obstacles

Patterns &
 objects

Patterns & objects

Pause &
 recover

Cardinal direction system

Pure exploration game

Killing game
Searching game

Collision free path-
finding

Enquire paths

Status management

Error detection 
& handle

Objects

 

Figure 6.1 The integrated architecture of the exploration agent 

Except for the Exploration Pipeline, each of the other five components 

provides mechanisms for the implementation of believable exploration agents. Table 

6.2. shows the map of which implementation is contained within which component.  
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Components Implementation 

Environment Recognition & Analysis EK1, EK2, EK3, EK4 

Global Controller CR1, CR4 

Goal Controller BR2, BR4, BR5, BR6 

Navigation Controller BR1, BR3, CR2 

Error Controller CR3 

Table 6.2 Map of implementation in the components 

6.6 Experiment 

In this experiment, I have the same human subjects and experimental 

procedure as the 5.3 Case study – Believability Assessment (see 5.3.1 Human 

Subjects and 5.3.3 Procedure). 

Along with the integrated agent developed in this chapter, the computer 

agents (1) multiple criterion decision-making (MCDM), (2) topological and (3) 

random, which are developed in Chapter 4 constitute the computer-agent objects.  

6.6.1 Judge Selection 

Believability relies on the judgments of observers who watch the behavior of 

characters or playing bots in video games. Completely distinguishing human players 

and computer agents is technically impossible at the current time. I invited video 

game players who have substantial domain knowledge and regularly play video 

games. They are neither novice players nor game gurus but normal game players 

who make up the significant population of players. Their demographic information 

and experience of gameplay were illustrated in Table 6.3. 
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ID Gender Age 
Years of 

gameplay 

Gameplay hours per 

week 
Game types usually played 

J1 M 29 2 - 5 1 - 5 FPS, Strategy, Sports 

J2 M 24 > 10 6 - 10 
FPS, Strategy, Simulations, RPG, 

CB, Sports, PBG 

J3 M 26 2-5 6 - 10 Strategy, CB 

J4 F 25 6 - 10 6 - 10 RPG, Puzzle 

J5 M 28 >10 10 - 20 Strategy, RPG, Simulations, CB 

J6 M 25 6 - 10 1 - 5 FPS, Simulations 

J7 M 32 >10 6 - 10 FPS, RPG, CB, Sports, PBG 

J8 M 28 2 – 5 10 - 20 FPS, Sports 

J9 M 28 <2 6 - 10 FPS, Strategy, Sports 

J10 M 25 2 - 5 6 - 10 FPS, Strategy, Sports, RLS 

 

RTS First –person Shooters RLS Real-life Sports CB Chance - based 
PBG Physical Board Games RPG Role-playing Games   

Table 6.3 Demographic information and gameplay experience of participants 

6.6.2 Believability: Ranking Results  

In Figure 6.2, the value represents the average score for each player. Average 

scores are computed via Formula (4.1). The believability of the integrated agent 

across the three exploration games is higher than the other three computer agents. It 

almost approaches the believability of human 2, and is in fact higher than that of 

human 1.   
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Figure 6.2 Believability of the integrated agent 

Figure 6.3 The believability scores of the integrated agent are significantly higher than the 

other computer agents, and between two human players 

In Figure 6.3, the average score of each player in each game is calculated via 

Formula (4.2). The believability score of the integrated agent is significantly higher 



191 

than the other three computer agents in all three games. The integrated agent is 

regarded as more believable than the two human players in the pure exploration 

game. Its believability is in-between the two human players in the killing game. The 

believability score of the integrated agent is quite near to that of the human players 

with small differences of 0.1 (3.6 – 3.5) and 0.2 (3.7 – 3.) respectively in the 

searching game.  

Figure 6.2 and Figure 6.3 underscore the fact that the integrated agent I 

developed is believable in terms of playing exploration games. 

6.6.3 Human-like Behavior and Non-human-like Behavior 

In this chapter, the themes of human-like behavior and non-human-like 

behavior are extracted from questionnaire responses via thematic analysis as well. 

The process is same as that in Chapter 5 (see 5.3.5 Human-like Behavior and Non-

human-like Behavior).  

Most themes extracted in this chapter have been observed and identified in 

Chapter 5 (see 5.3.5 Human-like Behavior and Non-human-like Behavior). The 

thematic analysis conducted in this chapter discovered two more themes which do 

not appear in Chapter 5. 

Human-like Behavior 

Have a global view means the unit exhibits the sense that it has a global view 

when finding paths and making decisions. For example, “When the player saw an 

edge of the map, he turned right away to the other side. The player had a clear view 

of the whole map that made it like a human player.” (J3 – Integrated agent – Pure 

exploration game – most likely human) 
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Non-human-like Behavior 

Explored uninformative areas represents the unit explores some areas, such 

as small corners, outlined boundaries, and completely revealed areas, which do not 

provide useful information. It illustrates a sense that the unit strictly explores 

everywhere without an ability to recognize outlined terrain. For example, “The unit, 

sometimes however, visited very narrow areas where buildings were very less likely 

to be built. That makes me feel it was an AI.” (J5 – Human 1 – Searching game – 

unsure if it is human or a computer agent) 

6.6.4 Behavior-based Evaluation 

The count for each theme is represented by percentage it takes from total and 

visualized by “pie of pie” chart within each object group.  

Figure 6.4 shows the human-like behavior and non-human-like behavior of 

the three computer agents. The count of human-like behavior takes 16 percent while 

the statements of non-human-like behavior takes 84 percent. As obviously 

recognized computer agents, non-human-like behavior is observably more than 

human-like behavior.   

The highlighted non-human-like behavior is unreasonable killing behavior, 

idle behavior, revisit explored areas and unreasonable stops. Several themes evenly 

share the rest of the pie of human-like behavior. Each of them only takes a small 

percentage of the total pie.  
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Figure 6.4 Distributions of behavior themes for computer agents (Percentages are computed 

based on the counts of statements in each theme.) 

 

Figure 6.5 Distributions of behavior themes for human subjects (Percentages are computed 

based on the counts of statements in each theme.) 

Figure 6.5 shows the human-like behavior and non-human-like behavior of 

human players. Human-like behavior occurs more than non-human-like behavior as 

it takes 69 percent of the total.  
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The highlighted human-like behaviors are fluent actions, and have a global 

view. They are followed by themes of natural movements, reasonable behaviors 

around landmarks and reasonable killing behavior, which take 11 percent 

respectively. Meanwhile, the highlighted non-human-like behaviors are explore 

uninformative areas, unreasonable killing behavior and unreasonable behavior 

around landmarks. 

 

Figure 6.6 Distributions of behavior themes for the integrated agent (Percentages are 

computed based on the counts of statements in each theme.) 

Figure 6.6 shows themes of the integrated agent’s human-like behavior and 

non-human-like behavior and the frequency of them appearing in the judges’ 

comments. Human-like behavior takes 63 percent of the total counts of themes, 

while non-human-like behavior gets only 37 percent. That is consistent with the fact 

that the integrated agent achieved a high score in the believability ranking. 

Outstanding human-like behavior constitutes reasonable behavior around 

landmarks, reasonable killing behavior, stop-and-think and have a global view. 

Meanwhile, the highlight non-human-like behaviors are unnatural movements, 

unreasonable behavior around landmarks and revisit explored areas, which take the 
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major percentages of non-human-like behavior.  

6.7 Discussion 

6.7.1 Believability of the Integrated Agent 

The believability scores shown in Figure 6.2 and Figure 6.3 reveal the fact 

that the integrated agent I developed is believable in playing exploration games. 

Within the experiment, the score that the integrated agent achieved is significantly 

higher than other computer agents, and on the same level with human players. The 

integrated agent which integrates components that fill the behavioral gaps between 

humans and computer agents is valid for achieving believability in exploring virtual 

environments.  

 According to Figure 6.6, several themes (i.e. reasonable behavior around 

landmarks, reasonable killing behavior, stop-and-think, and have a global view), 

which take relatively large percentages of human-like behavior are controlled by 

components of the agent. Reasonable behavior around landmarks was primarily led 

by the component of Environment Recognition & Analysis, where landmarks are 

recognized. The proper behavior is also controlled by the components of the Goal 

Controller and Global Controller. Similarly, reasonable killing strategies are 

generated by the component of Goal Controller and Global Controller. Stop-and-

think behavior is driven by the Pace Controller, which is part of the Navigation 

Controller. The components of Environment Recognition & Analysis and Global 

Controller contribute to the behavior of have a global view.  
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6.7.2 Different Human-like Behavior between the Integrated Agent and the 

Heuristic Agent 

Believability assessment experiments recruited different judges to evaluate 

same human subjects and same computer agents in Chapter 5 and Chapter 6 

respectively. Even though the themes labelling behavior are not exactly same, the 

patterns outlined do not show big differences.  

Next, I look at the similarity of distribution of themes in the major type of 

behavior (either human-like behavior or non-human-like behavior) between the 

corresponding group of objects. The similarity is evaluated via two criteria. One is 

the number of overlaps between the top four themes, which take higher percentages. 

More overlaps mean high similarity. Another is the number of mismatches. One 

mismatch means a theme appears in one group but does not in the other. More 

mismatches mean low similarity. The bold numbers highlight top four themes for 

each group, and one dash means one mismatch in Table 6.4, 6.5 and 6.6. The raw 

data where how many times was each theme counted in judges’ statements are 

shown in Table A.7-A.9 and Table A.11-A.13. 

Non-human-like behavior Computer Agents 
(Chapter 5) 

Computer Agents 
(Chapter 6) 

unreasonable killing behavior 25 % 14 % 
stick to boundaries 11 % 8% 

idle behavior 14% 11% 
revisit explored areas 9% 14% 
unreasonable stops 8% 10% 

revisit explored areas 9% - 
unreasonable behavior around landmarks 8% 6% 

fixed patterns 7% 3% 
unnatural movements 4% 8% 

explore uninformative areas - 8% 

Table 6.4 Comparison of non-human-like behavior between computer agents in Chapter 5 

and Chapter 6 
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Table 6.4 illustrates the groups of computer agents has 3 overlaps in themes 

of unreasonable killing behavior, idle behavior and revisit explored areas and 2 

mismatches in themes of revisit explored areas and explore uninformative areas.  

Human-like Behavior Human (Chapter 5) Human (Chapter 6) 
natural movements 19% 11% 

fluent actions 11% 12% 
revisit incompletely-explored areas 9% - 

reasonable killing behavior 8% 11% 
deliberate exploration 8% 1% 

reasonable behavior around landmarks 3% 11% 
stop-and-think 3% 3% 

have a global view - 15% 

Table 6.5 Comparison of human-like behavior between human subjects in Chapter 5 and 

Chapter 6 

Table 6.5 represents the group of human subjects has 3 overlaps in themes of 

natural movements, fluent actions and reasonable killing behavior and 2 mismatches 

in themes of revisit incompletely-explored areas and have a global view.  

Human-like Behavior Heuristic Agent Integrated Agent 
consistent movements 14% - 

natural movements 11% - 
revisit incompletely-explored areas 8% - 

reasonable behavior around landmarks 6% 15% 
random path selection 6% 2% 

ignore uninformative areas 6% - 
fluent actions 5% 7% 

deliberate exploration 5% 2% 
stop-and-think 5% 12% 

have a global view - 10% 
reasonable killing behavior - 15% 

Table 6.6 Comparison of human-like behavior between the integrated agent and the 

heuristic agent 

Table 6.6 shows that the heuristic agent and the integrated agent have 1 

overlap in the theme of reasonable behavior around landmarks and 6 mismatches in 

themes of consistent movements, natural movements, revisit incompletely-explored 

areas, ignore uninformative areas, have a global view and reasonable killing 

behavior. Table 6.4 and Table 6.5 show that the subject groups, human players (in 
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Chapter 5 and Chapter 6) and computer agents (in Chapter 5 and Chapter 6), 

achieved same and relatively high similarity in comparing the marks of their major 

behavior (i.e. non-human-like behavior for computer agents and human-like 

behavior for human players). That means same subjects group achieved relatively 

high similarity. Meanwhile, the similarity between the heuristic agent in Chapter 5 

and the integrated agent in Chapter 6 is relatively much lower shown in Table 6.6. 

The comparison of the similarities demonstrates the fact that the human-like 

behavior of the heuristic agent is obviously different from that of the integrated 

agent, even though both have passed the believability test. That is because the 

mechanisms of their implementations are different as discussed in 5.5.2 Design of 

Heuristic Agent from Humans’ Behavioral Patterns and 6.7.1 Believability of the 

Integrated Agent. Here, I just used judges’ statements about subjects’ behavior to 

explore the difference of these two algorithms in exhibiting behavior. The 

exploration in this topic could help to formulate further investigations. The initial 

conclusions also need to be evaluated by statistic evidences from more specialized 

experiments.  

6.8 Conclusion 

In this chapter, I transferred players’ expectations to believable exploration 

agents, which were identified in Chapter 4,  into environmental knowledge, 

behavioral rules and controller rules. Then, an integrated framework was developed, 

in which I implemented these requirements by integrating them into a generally 

accepted exploration pipeline (answer Q4.1). The integrated agent was evaluated in 

the experimental framework of believability assessment developed in Chapter 4. The 

results show that our integrated framework can achieve believability in the spatial 
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exploration field (answer Q4.2). Even though, both the heuristic agent and the 

integrated agent have passed the believability test, the different mechanisms 

implemented made them exhibit different believable behavior.  
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Chapter 7. Conclusion 

In this thesis, I studied one type of common human behavior – spatial 

exploration. People do spatial exploration to gather information, locate resources and 

map environments. Human beings, as large-scale collaborative groups, have a long 

history of exploration, where civilized societies organize to discover unknown lands. 

Nowadays, they have expanded the exploration to deep oceans and space. 

Exploration is a way that humans discover themselves and interact with the 

environment. It is a complex decision-making problem for an individual to decide 

where to visit and then observe continually according to their perceptions, 

understandings and purposes. This research is driven by the insufficient examination 

of human exploration behavior, and the importance of that behavior on human 

development. Furthermore, the boom of artificial intelligence technology 

accompanying societal demands hastens the need to develop human-like computer 

agents. Even though autonomous exploration has become an active research area, 

human-like exploration has rarely been mentioned by researchers. These facts have 

motivated this thesis to explore the patterns of how human spatial exploration and to 

present effective ways to design human-like exploration agents.  

To understand how humans doing spatial exploration, three exploration-

based modifications were developed on top of the StarCraft video game. An 

experiment was conducted by having human players play the games and verbalize 

their feelings, strategies and descriptions of their behavior both simultaneously and 

after reviewing gameplay videos. Thematic analysis was used to identify behavioral 

archetypes of human players (see Chapter 3). 
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To define gaps between normal human players and computer agents in doing 

exploration, a third-person observation-based believability assessment was 

developed to evaluate the human-likeness of the computer agent as well as the 

human players in exploring virtual environments. Comments from evaluation 

questionnaires and interview records were deeply mined to summarize the 

behavioral gaps between humans and computer agents on several aspects of 

exploration activities (see Chapter 4).  

To explore methods to develop human-like exploration agents, the heuristic 

method was employed as it aims to mimic humans’ heuristic decision-making. I 

developed three heuristic option filters—hierarchical, region based and field of 

view—which were extracted from the mechanisms that humans exhibit in doing 

exploration (see Chapter 5).  

I also employed another way to develop human-like exploration agents, 

where players’ expectations were integrated. Based on the behavioral gaps between 

human and computer agents identified in this research, the requirements of human-

like exploration agents were generated. Then, environmental knowledge, behavioral 

rules and controller rules were developed. An integration framework was designed 

to integrate them into an exploration agent. Both the heuristic agent and the 

integrated agent were assessed by the believability assessment method developed in 

this thesis (see Chapter 6).  

7.1 Discussion 

7.1.1 Heuristic Agent Mimicking an Average Person 

Four archetypes (Wanderers, Seers, Pathers and Targeters) were developed 
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in Chapter 3, and the design of the heuristic agent was generated by mimicking the 

four archetypes. The behavioral pattern of the heuristic agent does not match any 

individual in the four archetypes. That means it mimics an average person of four 

archetypes, where the heuristic agent takes behavioral features across the four 

archetypes. The three heuristic filters hierarchical, region based and field of view are 

applied in the heuristic agent, and are extracted across the four archetypes instead of 

from any one of them.  

The results of evaluating the heuristic agent indicate that it achieved 

believability in doing spatial exploration. Its human-likeness has the same level of 

two human players. Since the heuristic agent mimics an average person, its human-

likeness to an average person instead of a specific individual or an archetype is 

accepted by normal players. In fact, there might not be an individual who has exactly 

same behavior as the heuristic agent, even though it was believed to be the human 

player. The characteristics and preferences of the heuristic agent should be quite 

different from that of a real human player. To create a human-like exploration agent 

which has the behavior of a real human is an interesting topic to explore further.  

7.1.2 Humans’ Non-human-like Behavior 

Human players have also exhibited behavior which is regarded as non-

human-like (see 5.3.6 Behavior-based Evaluation). It reflects some uncertainty that 

exists in believability assessment. One kind of behavior could not be strictly 

confirmed to be human-like behavior or non-human-like behavior. It mostly depends 

on whether the intentions of the behavior can be understood by observers or not. 

Having observers and players with similar common sense and backgrounds would 

reduce the rate of misjudgments. The misjudgments, however, cannot be thoroughly 
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eliminated.  

One possible reason is that different people have different preferences and 

behavioral patterns. As Chapter 3 revealed, human players exhibited four different 

archetypes in playing the exploration game. Their behavioral differences were 

exhibited in several aspects. The intentions of behavior might not be mutually 

understood among players in different types. A Seer hardly understands why a player 

always searches the environment locally – a common behavior of a Wanderer. Even 

though hesitation behavior was exhibited by all four archetypes, they could still be 

mutually misunderstood across archetypes because of different underlying purposes.  

7.1.3 Benefit to Human-like Computer Agents 

Exploration is a kind of basic behavior. The spatial information gathered 

contributes to many other forms of decision-making. Almost any of behavior within 

an unknown environment relies on discovered spatial information. For example, a 

computer agent needs to know spatial information to assist it to maintain resources 

and define defensive and offensive strategies in play scenarios of RTS games. The 

computer agent needs to know the information of the surrounding terrain to deploy 

defensive forces, mineral sites to build up expansions, and the location of enemy 

bases to attack. As an important part of a computer agent, believable exploration 

plays an essential role in creating a human-like computer agent.   

Believable exploration agents can be integrated into a general human-like 

computer agent seamlessly without leading to other systematic problems. As 

discussed in the literature review, one popular way of developing a computer agent 

is to divide the task that the computer agent does into sub-tasks, and then develop 



204 

components separately to fulfil them. For example, a gameplay bot needs to fulfil 

tasks like gathering resources, producing units, upgrading techniques, harassing etc. 

The believable exploration agents developed in this thesis can be retrieved by a 

general human-like computer agent as an independent component when it needs to 

do exploration. Moreover, the integrated agent could be integrated into a general 

computer agent on the component level. A simple example is that the Exploration 

Pipeline component stays independent. Other components can be integrated into the 

corresponding components (if there are any) of the general computer agent; 

otherwise they can be kept independent. The Goal Controller is revised according to 

the requirements of the tasks.   

7.1.4 Benefit to Game Design 

The findings in the thesis will also benefit game design, especially the design 

of game maps and navigation systems. The four exploration types (defined in 

Chapter 3) reveal how players mentally map game environments and devise 

strategies to find their way. The types also outline differences in player behavior. 

This contribution enables game designers to produce user-centered navigation-

assistant systems. For example, since Seers have a direction-based mental map, 

game designers could create mutual-mapping compasses for the window of the mini-

map view and the main window respectively. They could also develop an assist 

mechanism that can automatically generate the structure of discovered areas of the 

map to enhance the Pathers’ ability to structure game environments.  

Our research can also help designers produce more immersive game maps. 

Taking the Targeters’ feature as an example, their reasoning in terms of 

environments and way-finding relies on the key items found. This requires map 
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designers to place conspicuous and informative items, which act as important 

navigation guidance aside from other existing mechanisms, in the maps.  

The enhancements of game design suggested above not only provide a better 

navigation experience for Seers, Pathers, and Targeters, but also stimulate 

Wanderers to learn to use external tools to explore. According to the findings about 

hesitation behavior, the improvements might also be expected to reduce players’ 

hesitation when exploring maps to improve the flow experience.    

7.1.5 The Number of Judges 

The population of judges (seven in Chapter 4, ten in Chapter 5 and Chapter 6 

respectively) might be statistically weak in doing the evaluation. 2014 University of 

Reading Competition employed thirty judges, and the Super Mario AI competition 

had sixty judges. There isn’t, however, a standard setting of the number of judges. 

More judges could intuitively decrease the error rate in estimating the convinced 

believability of an object. For having a deep exploration and understanding of 

objects, judges need to observe objects in multiple scenarios and give comprehensive 

statements, which is not practical to invite a large number of judges. The Loebner 

Prize, where organizer increased the interaction duration many times, have four 

judges. In the BotPrize 2014, the five judges were required to observe the objects in 

different scenarios. In our experiments, judges observed the behavior of each object 

in three different games. They were encouraged to identify the evidence of their 

judgements from the videos, and to give deeper statements of their findings via the 

questionnaire and the interview.   
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7.2 Limitations 

Studies in the thesis focus on exploratory research with qualitative analysis to 

build a theoretical and practical foundation in the field and help in formulating 

relevant hypotheses for more definite investigation. Once a theoretical framework 

has been established, quantitative analysis can be used to fine-tune the parameters of 

the framework using a larger set of participants. The experimental data in Chapter 3 

is not suitable for quantitative analysis. I collected players’ demographic 

backgrounds and preferences for diverse terrain features to establish the theoretical 

framework on how these parameters affect archetypes. The experiment was intended 

to establish insights into this new domain not for performing quantitative analysis. 

However, I did run one-way ANOVA tests to analyze how real-life navigation 

abilities impact archetypes as well as the preferences of archetypes to terrain features 

by generating p-values via the SPSS (Corporation 1968) software. After reviewing 

the tests, as expected, I found that the results with the given groups sizes broke the 

homogeneity assumption of the ANOVA test (Keppel 1991) and would not be 

reliable. My contribution is in establishing the theoretical framework in 

understanding spatial exploration and how believable agents can be built based on 

these principles. Further fine-tuning of this framework will be part of future research.  

The process of classifying gameplay instances into archetypes is also a 

limitation for future researchers wishing to repeat this work in other genres. When 

categorizing an instance into an archetype, the think-aloud, interview as well as in-

game data were comprehensively collected and analyzed. This requires coders to 

meticulously observe and read players’ behavior and statements within the context of 

the genre across the data set. Due to the complexity and variability of behavior and 
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responses, focusing on coding is difficult and time consuming. Hence possible future 

work would be to investigate better ways of collecting and coding such data. 

The experiment environments were developed based-on StarCraft: Brood 

War, which has a direct top-down 2.5D view. It provides high-level views to players, 

hides some details of objects which would be shown in three dimensional 

environments and allows players to have spatial information of extended areas. 

These features intuitively assist players to make clear strategies in doing exploration. 

However, players’ behavior may differ from the behavior of those in full three-

dimensional environments. Furthermore, players have a third-person view in the top-

down model of StarCraft. Players’ visual ranges are more open than those of the 

first-person view. The accompanying visual attention is also different from that of 

the first-person view. Those constraints limit the findings in this research to be 

directly transferred to other genres, for example, first-person shooters games, where 

players have first-person views for during the major gameplay.  

In the three exploration games: pure exploration game, killing game and 

searching game, players concentrated on the tasks closely relevant to spatial 

exploration. They provided us with chances to observe and analyze players’ behavior 

which is exclusively about exploration. In real scenarios, even though a lot of 

gameplay behavior (such as offence, defense and harass) is based on information 

gathered from exploration, those behaviors affect exploration. Therefore, the 

exploration behavior which is affected by other behavior cannot be observed and 

included in the conclusion.  

The experiment participants were invited within the university. They were all 

students, although enrolled in different courses throughout the university. This fact 
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indicates that the knowledge about human exploration that I gained in this study 

might not correspond exactly to a broader cross-section of players. Despite this 

limitation, it is common and widely-accepted research practice that university 

students are used in experiments across many domains.   

7.3 Closing Remarks on Research Questions 

In this thesis, I deeply understand humans’ spatial exploration behavior in 

virtual environments by classifying their behavioral patterns. The spatial exploration 

behavior of humans is categorized into four archetypes: Wanderers, Seers, Pathers 

and Targeters. The behavioral features of these four archetypes is exhibited through 

the lenses of strategy, reasoning, perception, and hesitation, which are the four main 

aspects of understanding exploration behavior. Categorizing gameplay instances in 

the three exploration games allows us to confirm that factors of gender, weekly 

gameplay time and real-life navigation abilities also affect how a players’ behavior 

is classified in which archetype within a specific type of exploration game (answer 

Q1).  

Evaluation from third-person observations of normal players indicates that 

state-of-the-art exploration computer agents have a gap between normal human 

players in terms of human-likeness in playing exploration games. Behavioral 

differences are evident on aspects of interaction with environments, game-goal 

orientation, navigation and sense of the mechanical, which observers are commonly 

drawn to when watching gameplay videos of exploration games (answer Q2). 

Humans often heuristically consider groups of options with high priorities 

when making decisions, especially in fulfilling spatial exploration in complex 
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decision-making tasks. Based on the pattern of humans doing exploration discovered 

in Chapter 3, I developed a heuristic agent with mechanisms of hierarchical, region 

based and field of view position filtering. The results of believability assessment 

illustrated that the agent achieved believability, where each position filtering 

mechanism created outstanding human-like behavior. The agent also proved to be 

able to acquire information efficiently with less time expenditure and travelling 

distance than in another abstracted simulation experiment (answer Q3).  

The behavioral gaps between human and computer agents identified in doing 

spatial exploration are regarded as requirements for developing human-like 

exploration agents. Based on the algorithm framework of identifying and 

approaching next-best-position as the basic exploration pipeline, I designed an 

integrated architecture. Requirements were mapped to behavioral rules, controller 

rules and environmental knowledge, which were then implemented and folded into 

the integrated architecture. The results of the believability assessment illustrated that 

the integrated agent approached believability. Several forms of highlighted human-

like behavior created by components of the integrated agent were recognized by 

judges. The assumption that humans compare the behavior observed and the 

expectations of the human-like agent when evaluating the human-likeness of a 

computer agent was correct (answer Q4).    

A major research methodology employed in this research is exploratory 

research. I used thematic analysis to identify behavioral patterns of exploration and 

behavioral gaps between humans and computer agents from content data from 

interviews, thinking aloud and a questionnaire. The number of participants ranged 

from seven to twenty-one. The findings from our experiment have not been 
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statistically verified. One of our future tasks is to design experiments which are 

easily run within a large population to verify and solidify the theory I have presented 

about behavioral patterns and behavioral gaps. 

In this thesis, I have identified several expectations of human-like exploration 

agents. Integrating them in an agent generates a valid way to create human-like 

exploration agents. The major studies conducted are exploratory research, where I 

aim to establish a fundamental theory and practice of the field in developing human-

like agent for doing spatial exploration. The contribution made in this thesis 

encourages people to investigate further regarding this field. For example, it is still 

not clear how each expectation affects the human-likeness acquired by the 

exploration agent. As a fundamental exploratory research, this thesis will also lead to 

formulate relevant hypotheses for more definite investigation (Kothari 2004, p. 4). 

For instance, a potential hypothesis could be “Believability is determined by several 

expectations of judges instead of any individual criterion in spatial exploration field.” 

This research may also initiate many other research topics in the future. What is the 

weight of each criterion when they work together to evaluate the human-likeness of a 

computer agent? It would be valuable to design a standard protocol to evaluate the 

human-likeness of a computer agent by scoring it with each criterion respectively. 

Based on such a protocol, the design of human-like exploration agents could achieve 

detailed confirmed-scientific guidance. It would be a meaningful extension of thesis.  

Overall, this work is a significant contribution to the field of gamer research, 

game design, and believable agents. It deepens our understanding of exploration 

behavior in gameplay, provides classifications of exploration behavior, frames and 

extracts structured believability criteria, develops heuristics to mimic human 
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exploration, integrates requirements of believability to bridge the gap between 

human and computer-generated exploration behavior.  
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Appendix 

Materials appended in this section are examples of full transcribed think-

aloud and interview conversations, which provide additional insights into how the 

experiments are conducted, and what kind of data prepared for thematic analysis. 

Presenting all the transcribed data would extend this thesis too long, and generating 

redundant information. Hence, I give three typical conversations to achieve the 

purpose.  

A.1 A Sample of Think-aloud Data in Chapter 3 

A think-aloud conversation which from the participant 9 during playing the 

killing game, is listed below where P represents participant, and E presents 

experimenter. 

Speaker Start Time End Time Manuscript 

P 0 00.0  0 41.4  I suppose any directions at this point. Move down, a 

little.  
E 0 41.4  0 43.5  Why did you go down? 

P 0 43.5  2 24.5  Oh, that's a different thing [click and observe the creature 

for a while.] I don't down, just seem like a thing I can do. 

I am wondering there are more minerals near there. It 

looks like I see me at the edge, that probably not, at the 

point, wondering around too much in that area. I am 

thinking. So, go back out. I guess keep going before 

knowing more than that. OK, that's another one. OK, I 

guess going this way let's fill out the entire below area 

what's before. OK, let's see somewhere. I assume it 

should be down somewhere. I am on the way out. So, I 

am going this way to find the way to the entrance, which 

looks like I did miss one back up there. OK, let's see 

where that is. Kill this one. Enter the map there. I guess it 

is worthwhile to clear up the bit blank area. There might 
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be something in there. Oh, a good choice. Looks like I 

am near the bottom of the map. I am trying to find some 

new areas. And go up, from where I started. It looks like 

a bit of unexplored on the top in the general map. From 

my experience, there possibly be a life in the down. This 

area is that I can go anyway.  

  

A.2 A Sample of Interview Data in Chapter 3 

An interview conversation which from the participant 9 after playing the 

killing game, is listed below where P represents participant, and E presents 

experimenter. 

Speaker Start Time End Time Manuscript 

P 0 00.0  0 22.8  At this point, I didn't really have any strategy. I was trying to 

explore. 
E 0 22.8  0 24.0  Why did you directly go right? I mean there was a whole 

blank here.  

P 0 25.6  0 31.0  I don't know. I think probably I directly head to. 

E 0 31.0  0 35.1  Then, you found the slop, right?  

P 0 35.1  
 

1 00.7  Yeah. And I started to think they might be located near to 

minerals. Generally, minerals probably were down this area, 

for some example, but, didn't know that were consistent. Yes, 

as I mentioned before, it looked like a container area, I just 

saw too many points around there.  

E 1 00.7  1 09.7  So even though you found this slop that you could go through. 

But you chose to go down [side of the map].  

P 1 09.7  1 10.1  I ignored that one. 

E 1 10.1  1 11.4  Oh, you just ignored it.  
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P 1 11.4  1 34.9  I ignored to see anything. I wanted to complete this area. I 

found another one near mineral site that seems I felt 

deliberative at that point. I guess I was just following the edge 

around.  

E 1 34.9  1 37.1  Following the edge? 

P 1 37.1  1 45.2  Yeah, well. Tried to find a way down. Already the knew the 

edge above that area.  
E 1 45.2  1 46.0  OK, here, you already saw some enemies, right? 

P 1 46.0  1 58.4  Yes. So now I was trying to find a way down.  

E 1 58.4  2 05.5  So, are you just focusing on finding a path to go down? 
P 2 05.5  2 13.7  Yes. I know there are some objectives down there. So, it has 

to be somewhere around this edge. I tried to path down, finish 

those off and head back out. At this point, there were [areas] 

just a bit of explored above. So, I can go to make sure there 

was nothing there. I found something. I guessed they were 

enemies just down and upside areas. I was going down to, 

basically, find the bottom of the map to make sure there were 

enemies or anything there. I was going where [was a] bit of 

completion.  

E 3 26.4  3 31.8  Here is a slop. But, you just ignored it. 

P 3 31.8  3 38.9  I probably missed. I didn't observe it.  

E 3 38.9  3 42.0  You haven't recognized it, right? 

P 3 42.0  3 48.3  No. I don't remember, liberally, ignoring it or going around 

it.  

E 3 48.3  3 54.6  At that point, there was only one enemy left. And what were 

you trying to do? 

P 3 54.6  4 10.8  I just tried to find external unexplored base, you know. I 

notice that I have kind of assume I have done anything below, 

I just was going up to do the top.  
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E 4 10.8  4 19.2  I assumed that the overall strategy you used is to explore the 

middle of the map first, right? 

P 4 19.2  4 46.5  Yes, well it is kind of, not really, I am looking for [in] random 

direction. And I guess, once, once, I explored and found 

some. It was kind of looking for minerals, and immensely just 

trying to pick up areas by haven't seen yet.  

 

 
 
 
B.1 A Sample of Interview Data in Chapter 4 

 
An interview conversation which from the judge 4 in the experiment of 

Chapter 4, is listed below where P represents participant, and E presents 

experimenter. 

 

Speaker Start Time End Time Manuscript 

E 0 00.0  0 22.7  Do you think it is easy to distinguish AI players from the 

videos? 

J 0 22.7  0 44.3  I think there are signs in some videos [which] help me to 

judge whether they are human or AIs. But, for some 

videos, they didn't have significant signs. In those cases, I 

was not quite sure whether they were computers [or not]. 

E 0 44.3  0 50.3  Do you have some specific strategies to make the 

judgements? 

J 0 50.3  2 00.0  Yeah, generally I think the computer behave poor in 

complex environments. In narrow areas, computers did 

not act smoothly. Sometimes I could not figure out what 

they were trying to do, since they usually got stuck there, 

without any explicit strategies. But for human players, 

they were clever and quick. They could act precisely by 

observing surroundings. My conclusion is that human 

behaves much better than machines in complicated 

environments.    
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E 2 00.0  2 17.6  Let's move into the three games. For each game, have you 

recognized some highlight behaviors, which indicate 

human or machine players? 

J 2 17.6  3 11.7  For the pure exploration [game], I think AIs behaved 

much poor in corner areas. They normally went into and 

hanged around corners. It takes quite a long time for 

computers to get out. But for humans, they quickly went 

into corners and recognized them [corner patterns]. Then 

went out very quickly.  

E 3 11.7  3 13.4  For the killing game? 

J 3 13.4  4 05.5  For the killing game, I think the main highlight behavior 

is: for humans, they saw enemies and killed them, it's 

simple, while for computers, they saw enemies but 

ignored them. I don't know why it happened. But it made 

computers look so stupid. For the searching game, there 

are no specific highlight signs. But issues are quite 

similar to the pure exploration game.  

E 4 05.5  4 51.7  OK. I see. Let's get rid of these three exploration games 

and consider much more general scenarios. According to 

what you mentioned, you have good gameplay 

background and played many games. When you played 

with or against players, did you found any highlight 

behavior that could indicate whether they were human or 

machine players, in commercial games? 

J 4 51.7  6 15.7  According to my experience, I played Counter-Strike and 

DotA (Eul, Feak & IceFrog 2003). They all have AI bots. 

When considering whether I could tell they are AIs, there 

are two facts. AI acted very precisely in small-scale 

behaviors.  For example, they shoot more precise than 

human, and react more precisely than human. The speed 

is abnormal. On the other hand, computers do not have 

strategic behavior. They only kill and run, without 

strategies. But for human, we group together, collaborate 

with each other and kill enemies, which is much better 

than computers.  
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C1. Raw data 

Category 
Percentage 

Male – 50 
instances 

Female – 19 
instances Total – 69 instances 

Wanderer 8% 37% 16% 
Pather 22% 16% 20% 

Targeter 34% 32% 33% 
Seer 36% 16% 30% 

Table A.1 Data visualized in Figure 3.5 a  

Category 
Percentage 

Male – 15 
instances 

Female – 16 
instances Total – 31 instances 

Wanderer 20% 44% 32% 
Pather 27% 13% 20% 

Targeter 20% 25% 23% 
Seer 33% 19% 26% 

Table A.2 Data visualized in Figure 3.5 b 

Category 
Percentage 

Less than 1 hour 
– 31 instances 

1 to 5 hours 
– 22 instances 

More than 5 hours 
– 16 instances 

Wanderer 91% 9% 0% 
Pather 43% 29% 29% 

Targeter 30% 26% 43% 
Seer 38% 52% 10% 

Table A.3 Data visualized in Figure 3.6 and Figure 3.7 

Average Score 
Human 1 3.62  
Human 2 4.14  
Random 1.48  
APF 1.86  
MCDM 2.33 
Topological 1.62  

Table A.4 Data visualized in Figure 4.3 

Pure exploration game Killing game Searching game 
Human 1 3.71  3.86  3.29  
Human 2 3.43  5.00  4.00  
Random 1.86  1.29  1.29  
APF 3.14  1.14  1.29  
MCDM 2.57  1.86  2.57  
Topological 2.14  1.00  1.71  

Table A.5 Data visualized in Figure 4.4 
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Average Score 
Human 1 3.62  
Human 2 4.14  
Random 1.48  
APF 1.86  
MCDM 2.33 
Topological 1.62  

Table A.6 Data visualized in Figure 5.5 

Themes Count 

unreasonable killing behavior 22 

unreasonable stops 7 

fixed patterns 6 

stick to boundaries 10 

unnatural movements 3 

revisit explored areas 8 

idle behavior 12 

unreasonable behavior around landmarks 7 

stop-and-think 3 

fluent actions 2 

ignore uninformative areas 2 

revisit incompletely-explored areas 1 

random path selection 2 

reasonable killing behavior 2 

reasonable behavior around landmarks 2 

Table A.7 Data visualized in Figure 5.7 
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Themes Counts 

natural movements 12 

reasonable behaviors around landmarks 2 

revisit incompletely-explored areas 6 

stop-and-think 2 

reasonable killing behavior 5 

fluent actions 7 

deliberate exploration 5 

stick to boundaries 3 

unreasonable behavior around landmarks 5 

unreasonable stops 2 

fixed patterns 3 

unnatural movements 6 

idle behavior 1 

unreasonable killing behavior 4 

Table A.8 Data visualized in Figure 5.8 

Themes Count 

stop-and-think 2 

deliberate exploration 2 

fluent actions 2 

consistent movements 5 

ignore uninformative areas 2 

natural movements 4 

random path selection 2 

revisit incompletely-explored areas 3 

reasonable behavior around landmarks 2 

spin in a corner 3 

stick to boundaries 2 

revisit explored areas 3 

unreasonable killing behavior 2 

unnatural movements 2 

Table A.9 Data visualized in Figure 5.9 
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Participant Average Score 
Human 2 3.53 
Integrated 3.5 
Human 1 3.3 
MCDM 2.3 
Random 2.1 
Topological 1.73 

Table A.10 Data visualized in Figure 6.2 

Themes Count 

unreasonable killing behavior 14 

unnatural movements 8 

revisit explored areas 14 

fixed patterns 3 

stick to boundaries 8 

unreasonable stops 10 

explore uninformative areas  8 

idle behavior 11 

unreasonable behavior around landmarks 6 

stop-and-think 4 

fluent actions 2 

ignore uninformative areas 1 

natural movements 3 

revisit incompletely-explored areas 2 

have a global view 2 

reasonable killing behavior 1 

reasonable behavior around landmarks 1 

Table A.11 Data visualized in Figure 6.4 

 

 

 

 

 

 



221 

Themes Count 

natural movements 7 

deliberate exploration 1 

have a global view 10 

explore uninformative areas  3 

stop-and-think 2 

reasonable killing behavior 7 

fluent actions 8 

reasonable behaviors around landmarks 7 

stick to boundaries 2 

unreasonable behavior around landmarks 4 

unreasonable stops 1 

unreasonable killing behavior 4 

unnatural movements 3 

explore uninformative areas  4 

fixed patterns 2 

Table A.12 Data visualized in Figure 6.5 

Themes Count 

stop-and-think 5 

deliberate exploration 1 

have a global view 4 

fluent actions 3 

reasonable killing behavior 6 

random path selection 1 

reasonable behavior around landmarks 6 

unreasonable killing behavior 1 

revisit explored areas 4 

explore uninformative areas  1 

unnatural movements 3 

stick to boundaries 2 

unreasonable behavior around landmarks 3 

Table A.13 Data visualized in Figure 6.6 
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D1. Ethic application 
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