A novel Ranking-based Optimal Guides Selection Strategy in MOPSO

Li Lia, Wanliang Wang*a, Weikun Lia, Xinli Xua, Yanwei Zhaob

aCollege of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, P.R.China
bCollege of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, P.R.China

Abstract

A challenging issue with multi-objective particle swarm optimization (MOPSO) is the mechanism to select the optimal guides. This paper presents a new strategy based on ranking dominance and integrates into MOPSO. By using the ranking information and incorporating the Chebychev distance of particle in objective space, we implement the selection of gbest and pbest simply and elegantly. On the basis of ranking, we propose a new maintenance strategy for updating the external archive which can obtain a more diverse and uniform distribution. Furthermore, a qualitative and quantitative analysis in terms of convergence analysis over some benchmarks is presented, providing a basis for conclusions about the proposed method. showing that the proposed method performs better than the adopted algorithms.

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Organizing Committee of ITQM 2016

Keywords: Ranking-based Optimal, Guides Selection, MOPSO

1. Introduction

Particle swarm optimization algorithm [1] is a kind of swarm-based intelligence optimization method which simulates the behavior of birds flocking. The particles move in a given objective space searching for the promising solutions. Moreover, the particles communicate each other to optimize by using their previous best (pBest) and global best (gBest) information in swarm. PSO is an efficient algorithm for solving single objective problems [2][3][4] and achieving approving results. However, in the numerical optimization problems and practical engineering applications, there always exist multiple objectives that need to be met at the same time, which are too complex to simply apply the PSO to solve.

Recently, Multi-objective evolutionary algorithm (MOEA) has appeared to resolve such problems with desired results [5] [6]. It does not depend on the problem itself. By using randomized initial individuals in the solution space, the MOEA can find an ideal solution set. But the simple extension of the PSO to the multi-objective optimization problem will face some difficulties:

*Corresponding author. Tel.: +86-571-85290172.
E-mail address: ww1@zjut.edu.cn
a. Relaxed dominance. By enlarging the dominant space to improve the weakness of Pareto dominance, and it was claimed by Laumanns et al. [7]. To improve the effect of ϵ-dominance, Batista et al. [8] raised cone ϵ-dominance. Also, Zou et al. [9] proposed L-dominance which is a variation from Pareto dominance.

b. Non-Pareto dominance. Such as Weighted sum [10], weighted Tchebycheff [11], decomposition-based approach [12], Average ranking [13], Global Detriment [14] etc.

As for the optimal guides selection, there are several proposals in the literature for gBest and pBest selection. By using the roulette-wheel selection method, which is a random selection, Coello et al. [15] presents the MOPSO to choose the best local guide. Yen et al. [16] raised an adaptive cell-based technique guides selection. Mostaghim [17] uses the sigma for the selection of gBest. For a bi-objective problem, sigma method can be drawn as follows:

$$\sigma = \frac{f_1^2 - f_2^2}{f_1^2 + f_2^2}$$

This paper uses the ranking-based approach, by incorporating the distribution information of individuals in objective space, we put forward a new optimal guides selection strategy and apply it to the MOPSO. Different from the aforementioned complex gBest pBest selection, this paper uses the ranking strategy and density information of each particle in the whole population to gain the gBest and pBest which is elegant and efficient.

The paper is structured as follows. In section 2, some related works including MOPSO and ranking-based methods are briefly introduced. Section 3 proposes and details the proposed ranking method. Section 4 shows the performance assessment and statistical results among some classic MOEA and MOPSOs. Finally, section 5 draws the conclusion and proposes the future work.

2. Related work

2.1. PSO algorithm

In PSO, each particle represents a solution in objective space. Two best guides exist in it, namely, the historical best solution discovered by the particle itself (pBest) and the historical best solution identified by the entire population (gBest). These two optimal guides are tracked and updated by the particles accordingly. The updating mechanism is described as Eq. (2) and Eq. (3):

$$v_i(k+1) = \omega v_i(k) + c_1 r_1 [P_i - x_i(k)] + c_2 r_2 [P_g - x_i(k)]$$

$$x_i(k+1) = v_i(k+1) + x_i(k)$$

where, $i = (1, 2, 3, \ldots, N)$ is the index of particle, N is the size of population; $v_i(k)$ represents the velocity of particle i in k-th iteration, similarly, $x_i(k)$ is the position of particle i in k-th iteration. w is the inertia weight and the constants c_1, c_2 are the acceleration coefficients, r_1 and r_2 are random values uniformly distributing in interval $[0, 1]$; P_i is the personal best performance found so far by particle i while P_g is the global best position discovered in the swarm.

2.2. Multi-objective optimization problems

Without loss of generality, a general minimized multi-objective problem can be stated as follows:

$$\min F_i(X) = (f_1(X_i), f_2(X_i), \cdots, f_M(X_i))^T$$

$$X = (x_1, \cdots, x_n)$$

$$Y = F(X)$$

$$s.t. x = (x_1, \cdots, x_n) \in X \subset \mathbb{R}^n$$

where the decision vector x claims to the decision space X, the objective function vector $F(X)$ consists $M (M \geq 2)$ objectives, $Y \subset \mathbb{R}^M$ represents the objective space, and $f : \mathbb{R}^n \to \mathbb{R}^M$ is the objective mapping function.
2.3. Ranking-based methods

The existing ranking-based methods mainly utilize a ranking function to gain the sort information in solution space so as to distinguish the merits of the individuals. Ranking-based methods have the advantage in some ways, they do not rely on Pareto dominance to push the population toward the Pareto front. In addition, as pinpointed by Mendez et.al [18], these ranking-based methods have good results in less time compared to some Pareto-based approaches. The existing methods mainly include the following.

Maximin: The maximin fitness function was proposed by Richard Balling and Scott Wilson in [19], where the maximin fitness of design i is defined to be:

\[\text{fitness}_i = \max_{j \neq 1} (\min_k (f_k^i - f_k^j)) \]

(5)

Adriana et.al [18] analyzed the merits and faults on maximin and carried out some improvements for it.

Average Ranking (AR): This method was proposed by Bentley and Wakefield [13]. AR selects one objective and builds a ranking list using the fitness of each solution for such objective. The AR is given as follows:

\[AR(X_i) = \sum_{m=1}^{M} r_m(X_i) \]

(6)

where \(r_m(X_i) \) is the rank of \(X_i \) for the m-th objective. \(M \) is the number of objectives. It can be seen from the definition of AR, it is easy to make individuals concentrated in a particular region especially the region close to the objective.

Global Detriment (GD) On the basis of analyzing the deficiency of Pareto-based method, Garza et al. [14] put forward Global Detriment and successfully applied to high-dimensional problems with a satisfactory results. The GD fitness of a solution \(X_i \) is calculated as follows:

\[GD(X_i) = \sum_{X_j \neq X_i}^{X} \sum_{m=1}^{M} \max(f_m(X_i) - f_m(X_j), 0) \]

(7)

A solution \(X_i \) is better than \(X_j \) if it holds that \(GD(X_i) < GD(X_j) \).

Particularly, the GD method can get approving results to some extent. However, it can be seen from the definition that it will assign large ranking value for the extreme points to be eliminated accordingly, whereas these extreme points are a significant reference for decision-maker [20], as well as the aspect of the distribution.

3. The proposed Algorithm

3.1. Fusion ranking approach

Since the Average Ranking is easy to aggregate on the edge of optimal front while Global Detriment is easy to exclude the extreme points, this paper integrates the strengths and weaknesses of AR and GD, and proposes a new ranking scheme called fusion ranking which is described as follows.

\[FR(X_i) = \omega_1 AR(X_i) + \omega_2 GD(X_i) \]

(8)

where, \(\omega_1 \) and \(\omega_2 \) are two coefficients in interval of [0,1] to coordinate the weight on AR and GD. We adopt 0.4 and 0.6 specifically. The lower of FR, the better the domination. Obviously, FR integrates the sequence of solutions which favor the objective with the relative information between individuals. So that individuals in the solution space can be more comprehensively assessed to guide the algorithm to converge.

The following is a small example to illustrate this case. For an optimization problem with two objectives, Fig. 1 shows the six individuals from \(p1 – p6 \) and Table ?? lists the ranking values obtained by AR, GD, FR respectively.

As can be seen from the Fig.1, AR gains the same two sort values and \(\{p1, p2, p6\} \) are three top points, whereas GD put the \(\{p1, p2, p3, p4\} \) into the front seats. However, FR combines both advantages to obtain a relatively satisfactory sort.
<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>GD</td>
<td>2</td>
<td>0.4</td>
<td>1.2</td>
<td>2.3</td>
<td>3.5</td>
<td>2.7</td>
</tr>
<tr>
<td>FR</td>
<td>3.6</td>
<td>1.84</td>
<td>3.52</td>
<td>4.18</td>
<td>6.1</td>
<td>4.02</td>
</tr>
</tbody>
</table>

Table 1. Ranking values obtained by AR, GD and FR

Fig. 1. A graphic illustration on AR, GD and FR

3.2. Optimal guides selection and archive maintenance

In mono PSO, the swarm pursues the orientation of pBest and gBest and can converge rapidly. More importantly, the gBest and pBest can be identified easily and explicitly because of the sole objective. However, optimal guides are not so simple to be determined in the general MOP, due to the fact that the Pareto-based dominance cannot obtain a specific relation facing multimodal or weak efficient solutions, but the optimal guides are crucial for the convergence of algorithm. At this point some of the random selection such as roulette selection strategy will reduce the efficiency and effectiveness of the algorithm.

Notice that in section 3.1, we have gained the ranking information that the individual among the whole population, so we can get the merits of individual, which can clearly portray the relation between individuals.

On the other hand, the diversity of obtained solutions is also a primary concern of an algorithm [21][22], which can offer more reference information to the decision-maker. Since the optimal guides is the manipulator of the swarm, their direction will determine the way of the algorithm directly.

In order to give greater redundancy to optimal guides, we use the sum of Chebychev distance [23] of particle to the rest of the items in objective space as a measurement of particle’s density to obtain the distribution of the particles in the solution space. Let M be the number of objective. Then the Chebychev distance of any two individuals is shown in the Eq. (9).

\[d(\vec{p}^i, \vec{p}^*) = \max_{1 \leq j \leq M} \| p_j^* - p_j \| \] \hspace{1cm} (9)

For particle \(X_i \), the density information is stated as follows:

\[D(X_i) = \sum_{j=1}^{\text{pop}} d(X_i, X_j) \] \hspace{1cm} (10)
where, $D(X_i)$ is the chebychev distance between X_i and X_j. The greater $D(X_i)$ is, the fewer the particles are around it with a better distribution. After obtaining the distribution of the particles, we combined the merits of the individuals to gain the comprehensive ranking which is shown in Eq. (11).

$$CR(X_i) = \frac{FR(X_i)}{D(X_i)} \quad (11)$$

By Eq. (11), we get the properties of the particles that contain the dominance and distribution. Consequently, in this paper, we take the first 50% of CR value into the external archive directly. In each iteration, after acquiring the CR value, the external file set is updated, which discards the complex external archive maintenance method. In optimal guides, as the overall ranking information of the swarm has been obtained including the merits and the distribution of the particles, we take the following approach for the selection of optimal guides.

gBest: According to the CR value, the particle with the minimum CR value is taken as the $gBest$ of the swarm;

pBest: Compare the current CR value of the individual with the historical value. Take the smaller one as the $pBest$ to participate in the iteration. We call this algorithm MOPSO-CR

3.3. Algorithm Procedure

In light of the framework of PSO and ranking operations, the MOPSO-CR process is described as follows.

BEGIN
1. Initialize: pop. Size N, objective number M,
2. For each particle i,
 - Generate the position and velocity of each particle randomly,
 - Evaluate
3. Update external archive
4. For $t=1$ to max generations (max.gen)
 - For each particle i in swarm,
 - Calculate the FR (Eq. (8)) D (Eq. (9)) CR (Eq. (10))
 - Obtain the $gBest$ and $pBest$;
 - Update the velocity, position of each particle (Eq. (2), Eq. (3))
 - Push the particles on top 50% of CR values into external archive
 - End For
 - For each particle j in External archive
 - Calculate the FR (Eq. (8)) D (Eq. (9)) CR (Eq. (10)) of each particle in external archive
 - Merge the swarm
 - End for
 - Update external archive
 - $t \leftarrow t + 1$
5. End For
END

3.4. Computational complexity analysis

By analyzing the procedure in section 3.3, we can see that the main complexity of the algorithm lies in the calculation of CR value. The complexity of some main scenarios are shown in Table.2.

It can be seen that the complexity of the proposed algorithm is $O(MN^2)$, the same as the NSGA-II.
Table 2. Computational complexity on MOPSO-CR

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Time complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion Ranking</td>
<td>$O(MN^2)$</td>
</tr>
<tr>
<td>Selection of pBest</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Election of gBest</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Updating the velocity and position</td>
<td>$O(MN)$</td>
</tr>
<tr>
<td>External archive maintenance</td>
<td>$O(MN)$</td>
</tr>
</tbody>
</table>

Table 3. Adapted parameters for each candidate

<table>
<thead>
<tr>
<th>Method</th>
<th>MOPSO-σ</th>
<th>MOPSO-CD</th>
<th>MOPSO-CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_c=1.0$</td>
<td>w=0.4</td>
<td>w=0.4</td>
<td>w=0.4</td>
</tr>
<tr>
<td>$P_m=1/n$</td>
<td>c1=2</td>
<td>c1=2</td>
<td>c1=2</td>
</tr>
<tr>
<td></td>
<td>c2=2</td>
<td>c2=2</td>
<td>c2=2</td>
</tr>
<tr>
<td></td>
<td>Mr=0.03</td>
<td>Mr=0.03</td>
<td>Mr=0.03</td>
</tr>
</tbody>
</table>

4. Performance assessment

4.1. Experimental setup

To test the effectiveness of the algorithm, this section offers the performance comparisons among some representative and specialized algorithms (NSGA-II [24], MOPSO-σ [17], MOPSO-CD [25]) which validate on some standard benchmark functions including KUR [26], ZDT{1, 2} [27], DTLZ{1, 2} [28]. The selected benchmarks cover types of MOPs, with linear, convex, concave, etc., with two or three optimization objectives. The parameters of adopted algorithms and benchmark suites are shown in Table 3 and Appendix A respectively.

4.2. Performance metrics

Generally speaking, the assessment of an algorithm are mainly from the convergence and diversity. Due to this fact, the following two widely used metrics are adopted to perform the proposed approaches:

Generational distance (GD) [29]: measures the difference between the obtained approximation set of non-dominated solutions and the true Pareto front. This metric is defined as Eq. (11):

$$GD \triangleq \frac{1}{n} \sqrt{\sum_{i=1}^{n} d_i^2}$$ \hspace{1cm} (12)

where d_i is the Euclidean distance between the non-dominated solution i and its nearest member in Pareto front. The smaller the GD, the better the performance. A value of zero indicates all the found non-dominated solutions lie in the Pareto front.

Error Ratio (ER) [29]: measures the error percentage of obtained non-dominated solutions. It is defined as:

$$ER = \frac{1}{n} \sum_{i=1}^{n} e_i$$ \hspace{1cm} (13)

For ER, the smaller, the better. A value of zero reveals that all found non-dominated solutions belong to the true Pareto front.

4.3. Results and discussion

Before proceeding to any inference, it is instructive to visualize the experiment to gain some insight on the features of the obtained results. Fig.2-Fig.6 show the convergence and distribution of the candidates.
In bi-objective issues, each algorithm can achieve a proximate and uniform solutions which indicates the candidates can deal with these simple bi-objective problems easily and efficiently. And MOPSO-CR gained the stable performance compared to other algorithms. However, the situation is a little different in tri-objective issues.

NSGA-II has a little deviation on DTLZ1, a proportion of solutions are diverged from true pareto front. Like bi-objective, MOPSO-CR gains the decent behaviour.

After visually demonstrating the results, we implement a quantitative analysis on metrics of GD and ER which are shown in Table 4 and Table 5. Thirty independent runs are implemented for each test problem to avoid randomness, and the statistics values include mean value (Mean) and standard deviations (Std.). Bold number is the winner in such corresponding performance metric.
Fig. 5. Non-inferior solutions obtained by candidates on DTLZ1. (a) NSGA-II (b) MOPSO-σ (c) MOPSO-CD (d) MOPSO-CR

Fig. 6. Non-inferior solutions obtained by candidates on DTLZ2. (a) NSGA-II (b) MOPSO-σ (c) MOPSO-CD (d) MOPSO-CR

Table 4. Comparison results of NSGA-II, MOPSO-σ, MOPSO-CD and MOPSO-CR based on IGD.

<table>
<thead>
<tr>
<th>Instance</th>
<th>NSGA-II</th>
<th>MOPSO-σ</th>
<th>MOPSO-CD</th>
<th>MOPSO-CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std.</td>
<td>Mean</td>
<td>Std.</td>
</tr>
<tr>
<td>KUR</td>
<td>5.20E-03</td>
<td>4.26E-04</td>
<td>4.90E-03</td>
<td>3.83E-04</td>
</tr>
<tr>
<td>ZDT1</td>
<td>4.41E-03</td>
<td>3.25E-04</td>
<td>3.79E-03</td>
<td>5.60E-04</td>
</tr>
<tr>
<td>ZDT2</td>
<td>3.19E-03</td>
<td>4.34E-04</td>
<td>7.31E-03</td>
<td>5.29E-04</td>
</tr>
<tr>
<td>DTLZ1</td>
<td>6.79E-03</td>
<td>5.37E-04</td>
<td>4.81E-03</td>
<td>4.11E-04</td>
</tr>
<tr>
<td>DTLZ2</td>
<td>3.52E-03</td>
<td>4.42E-04</td>
<td>3.19E-03</td>
<td>5.99E-04</td>
</tr>
</tbody>
</table>

Table 5. Comparison results of NSGA-II, MOPSO-σ, MOPSO-CD and MOPSO-CR based on ER.

<table>
<thead>
<tr>
<th>Instance</th>
<th>NSGA-II</th>
<th>MOPSO-σ</th>
<th>MOPSO-CD</th>
<th>MOPSO-CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std.</td>
<td>Mean</td>
<td>Std.</td>
</tr>
<tr>
<td>KUR</td>
<td>1.72E-01</td>
<td>6.77E-02</td>
<td>8.33E-02</td>
<td>2.98E-03</td>
</tr>
<tr>
<td>ZDT1</td>
<td>9.70E-02</td>
<td>3.22E-02</td>
<td>5.63E-02</td>
<td>1.27E-03</td>
</tr>
<tr>
<td>ZDT2</td>
<td>5.22E-02</td>
<td>3.10E-03</td>
<td>8.94E-02</td>
<td>4.30E-02</td>
</tr>
<tr>
<td>DTLZ1</td>
<td>3.27E-01</td>
<td>8.90E-02</td>
<td>3.90E-02</td>
<td>1.45E-02</td>
</tr>
<tr>
<td>DTLZ2</td>
<td>9.42E-02</td>
<td>2.27E-02</td>
<td>8.70E-02</td>
<td>4.12E-02</td>
</tr>
</tbody>
</table>
5. Conclusion and future work

For the average ranking is easy to aggregate on the edge of optimal front and Global Detriment is easy to exclude the extreme points, this paper integrates the merits and drawbacks of AR and GD, and proposes a new ranking scheme called fusion ranking which incorporates the average ranking and global detriment. On the basis of ranking and density information which obtained by chebychev distance among particles, we propose a new optimal guides selection strategy. Furthermore, in aspect of external archive updating, we present a new maintenance strategy by utilizing the ranking and density information, which makes the obtained solutions have more diversity and uniformity. The following performance assessment verifies the effectiveness of the proposed method.

Further work remains to be conducted on incorporating the ranking strategy into some other evolutionary algorithms and algorithms with higher dimensions.

Acknowledgements

This work was supported by the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2012BAD10B01) and National Natural Science Foundation of China (61379123).

References

Appendix A. Related benchmark functions

<table>
<thead>
<tr>
<th>Instance</th>
<th>Expression</th>
<th>Dim.</th>
<th>Obj.</th>
<th>Domain</th>
<th>Properties</th>
</tr>
</thead>
</table>
| KUR | $f_1(x) = \sum_{i=1}^{n} (-10 \exp(-0.2 \sqrt{x_i^2 + x_{i+1}^2}))$
$f_2(x) = \sum_{i=1}^{n} (|x_i|^{0.8} + 5 \sin(x_i^3))$ | 3 | 2 | $-5 \leq x_i \leq 5$
$(i = 1, 2, \cdots, m)$ | Disconnected
PF |
| ZDT1 | $f_1(x) = x_1$
$f_2(x) = g(1 - \sqrt{f_1/g})$
g(x) = 1 + 9 \sum_{i=2}^{m} x_i/(m-1)$ | 30 | 2 | $0 \leq x_i \leq 1$ | Convex
PF |
| ZDT2 | $f_1(x) = x_1$
$f_2(x) = g(1 - (f_1/g)^2)$
g(x) = 1 + 9 \sum_{i=2}^{m} x_i/(m-1)$ | 30 | 2 | $0 \leq x_i \leq 1$ | Non-convex
PF |
| DTLZ1 | $\min f_1(x) = 0.5x_1x_2 \cdots x_{m-1}[1 + g(x_m)]$
$\min f_2(x) = 0.5x_1x_2 \cdots (1 - x_{m-1})[1 + g(x_m)]$
\vdots
$\min f_{m-1}(x) = 0.5x_1(1 - x_2)[1 + g(x_m)]$
$\min f_m(x) = 0.5(1 - x_1)[1 + g(x_m)]$
g(x_m) = 100|x_m| + \sum_{x_i \neq x_m} (x_i - 0.5)^2 - \cos(20\pi(x_i - 0.5))$ | 10 | 3 | $0 \leq x_i \leq 1$
$(i = 1, 2, \cdots, m)$ | Linear
PF |
| DTLZ2 | $\min f_1(x) = [1 + g(x_m)] \cos(x_1^3/2) \cdots \cos(x_{m-1}^3/2) \cos(x_{m-1}^3/2)$
$\min f_2(x) = [1 + g(x_m)] \cos(x_1^3/2) \cdots \cos(x_{m-1}^3/2) \sin(x_{m-1}^3/2)$
$\min f_3(x) = [1 + g(x_m)] \cos(x_1^3/2) \cdots \sin(x_{m-1}^3/2)$
\vdots
$\min f_m(x) = [1 + g(x_m)] \sin(x_1^3/2)$
g(x_m) = \sum_{x_i \neq x_m} (x_i - 0.5)^2$ | 10 | 3 | $0 \leq x_i \leq 1$
$(i = 1, 2, \cdots, m)$ | Concave |