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ABSTRACT

Conjugate Generalized Linear Mixed Models with Applications

by

Jarod Yan Liang Lee

This thesis focuses on the development of conjugate generalized linear mixed

models (CGLMMs), which is a computationally efficient modelling framework for

longitudinal and multilevel data where the likelihood can be expressed in closed-

form. We focus on the scenario where the random effects are mapped uniquely

onto the grouping structure and are independent between groups. Compared with

conventional inference methods for generalized linear mixed models (GLMMs),

CGLMMs allow the parameters to be estimated directly without the need for

computational intensive numerical approximation methods. The proposed framework

has important implications in terms of distributed computing, privacy preservation in

large-scale administrative databases and discrete choice models, which we illustrate

using several real data. Altogether, CGLMMs prove to be a credible inference

framework and a good alternative to GLMMs, especially when dealing with a large

amount of data and/or privacy is of concern.
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Chapter 1

Introduction

1.1 Generalized Linear Mixed Models

Generalized linear mixed models (GLMMs) extend generalized linear models

(GLMs) (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989) by including

random effects in the linear predictor in addition to the usual fixed effects, hence

the term mixed models. Schall (1991) and Breslow and Clayton (1993) popularized

GLMMs by proposing approximate inference methods and providing example appli-

cations, although these models had a history before that (Harville, 1977; Laird and

Ware, 1982; Jennrich and Schluchter, 1986). Since then, there has been an explosion

of developments in GLMMs and their applications. In fact, a search of “generalized

linear mixed models” on Google Scholar returns 1.69 million results as of 17 August

2017. The field is vast and expanding rapidly as to preclude any attempt at exhaus-

tive coverage, but a selection of major books include Pinheiro and Bates (1978);

Rao (1997); Verbeke and Molenberghs (2000); Diggle et al. (2002); Fitzmaurice et al.

(2004); Hedeker and Gibbons (2006); Gelman and Hill (2007); Jiang (2007); McCul-

loch et al. (2008); Wu (2010); Goldstein (2011); Demidenko (2013); and Stroup (2013).

GLMMs have been used in a plethora of applications, ranging from species

abundance studies (Fornaroli et al., 2015), forecasting elections (Wang et al., 2015),

school performance studies (Marks and Printy, 2003), phylogenetic analysis in bioin-

formatics (Ronquist and Huelsenbeck, 2003; Stamatakis, 2006) to cancer screening

(Morrell et al., 2012), just to name a few. Certain richly parameterized models such
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as penalized splines, additive, spatial and time-series models can also be re-expressed

as mixed models, making them a rich and generic class of models (Hodges, 2013). In

general, GLMMs are useful for, but not limited to

• Modelling the dependence among outcome variables inherent in multilevel

and longitudinal data, including complex grouping structures such as crossed

random effects (Diggle et al., 2002; Fitzmaurice et al., 2004; Gelman and Hill,

2007; Goldstein, 2011),

• Accommodating overdispersion, often encountered in binomial and Poisson

distributions (Breslow and Clayton, 1993; Molenberghs et al., 2010),

• Producing shrinkage estimates, for example in small area disease mapping

(Chambers and Clark, 2012; Rao and Molina, 2015),

• Accounting for variation among experimental blocks, where the blocks are

viewed as a small subset of the larger set of blocks (Montgomery, 2017).

As an example, outcomes of patients within the same hospital are likely to be de-

pendent due to similar risk profiles and a common clinical management practice.

GLMMs provide a natural framework for modelling dependencies by allowing for

random group specific effects.

1.1.1 Model Formulation

Observation on unit j (j = 1, 2, . . . , ni) in cluster i (i = 1, 2, . . . , I) consists of a

univariate response variable yij, together with covariate vectors xij (p by 1) and zij

(q by 1), with zij often being a subset of xij. Denote the total number of observations

by N = ∑I
k=1 nk. Given a q-dimensional random effects vector b, y′

ijs are assumed

to be conditionally independent with distribution chosen from the one parameter
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exponential families. This formulation includes situations where the random effects

are nested within groups and when they are not. The conditional mean μij = E(Yij|b)

is related to the linear predictor ηij via a monotonic link function g(μij) = ηij, i.e.

ηij = g(μij) = xT
ijβ + zT

ijb,

where β is a p by 1 vector of fixed effects.

In matrix form, denote

y = (y11, y12, . . . , yInI
)T ,

η = (η11, η12, . . . , ηInI
)T ,

and the design matrices X (N by p) and Z (N by q) with rows xT
ij and zT

ij. The

linear predictor can then be written as

η = Xβ + Zb.

It is traditional to assume an independent multivariate normal distribution for b

with mean zero and variance-covariance matrix Σ, i.e.

b ∼ N(0, Σ),

although there is little information available to guide this choice.

1.1.2 Likelihood Inference

Inference for GLMMs are typically based on the marginal likelihood, although

there exist other methods based on generalized estimating equations (Ziegler, 2011)

and Bayesian inference (Fong et al., 2010). The marginal likelihood of GLMMs is
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obtained by integrating over all possible values of the random effects, i.e.

L =
∫

f(y|b)f(b)db.

Due to the assumption of multivariate normal distribution, the marginal likelihood

does not generally has a closed-form solution. Various approximation methods have

been proposed to circumvent this problem, which we review in Sections 2.1 and 4.1.

1.1.3 Are Normal Random Effects Necessary?

Imposing a normal distribution on the random effects is convenient when we want

to build in correlation structure. Normal distribution is also easy to interpret, with

computational methods widely implemented in common statistical software packages.

However, the normality assumption for random effects does result in analytical diffi-

culty of the marginal likelihood, except for a few simple models. Although the vast

majority of applications assume normal random effects, Stroup (2013) speculates that

non-normal random effects will be a commonplace in the future, just like GLMs and

linear mixed models are commomplace as of today but would have been considered

beyond the state of the art a few decades ago. In fact, there are already develop-

ments in the mixed models literature that move away from the Gaussian random

effects. A selection of examples include Lee and Nelder (1996); Verbeke and Lesaf-

fre (1997); Zhang and Davidian (2001); Zhang et al. (2008); and Tzavidis et al. (2015).

1.2 Contribution

This thesis aims to contribute advances in the computational aspects of GLMMs.

Focussing primarily on two-level data where the random effects are mapped uniquely

onto the grouping structure and are independent between groups, the novel contribu-

tions of this thesis can be summarized as follows:
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• Chapter 2, Conjugate Generalized Linear Mixed Models for Clustered Data.

– Motivated by tractable marginal likelihood representation of GLMMs, a

connection is drawn between the posterior in the Bayesian setting and the

marginal likelihood in the frequentist setting. By relaxing the independent

and identical assumptions of the standard Bayesian conjugacy theory,

a class of computationally efficient GLMMs for two-level data is devel-

oped that is able to incorporate unit-level covariates while maintaining

a closed-form representation of the marginal likelihood. The resulting

marginal likelihood can be maximized directly without having to resort

to approximate inference.

– Distributions considered include Gaussian, Poisson, binomial and gamma,

where we derived the most generic formulation such that the marginal

likelihood is tractable.

– It is shown that closed-form representation of the marginal likelihood for

binomial (and hence multinomial) mixed models does not exist regardless

of the random effect distribution, except for the special case when there

are no covariates. This is taken as a basis for subsequent methodological

development in Chapter 4.

• Chapter 3, Exploring the Robustness of Normal vs. Log-Gamma for Random

Effects Distributions: The Case of Count Data.

– Empirical performance of Poisson GLMMs vs. CGLMMs is investigated

in terms of estimation of fixed effects and prediction of random effects.

– The performance of both models are shown to be quite comparable in a

simulation study.
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• Chapter 4, On the “Poisson Trick” and its Extensions for Fitting Multinomial

Regression Models.

– A comprehensive review of the relationship between multinomial and

Poisson regresion models is provided for independent responses, where a

parsimonious strategy is presented when all the covariates are categorical.

– A novel approach for modelling correlated responses based on the Pois-

son CGLMMs is proposed, where the marginal likelihood can be ex-

pressed in closed-form. An estimation procedure based on the Expec-

tation/Conditional Maximization algorithm is derived, which can be

implemented using functions for fitting generalized linear models readily

available in standard statistical software packages.

– Our formulation is shown to perform favourably compared to the existing

approaches using Poisson GLMMs, when fitted to a yogurt brand choice

dataset.

• Chapter 5, Sufficiency Revisited: Rethinking Statistical Algorithms in the Big

Data Era.

– The closed-form marginal likelihood property of CGLMMs is exploited

for model fitting using sufficient and summary statistics in the context

of large-scale administrative databases. The summaries are based on

simple constructions such as sums and simple mathematical functions

(exponential and log), which is easy to calculate. Under Poisson CGLMMs,

using summary information does not result in any loss of information

compared to unit record data.

– Aside from offering benefits in terms of privacy protection, the proposed

methodology allows for potential analysis of confidentialized tabular data

at a finer geographical level.
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– The potential benefits of the proposed framework in terms of modelling

distributed data is illustrated via a hypothetical scenario of hospital

variation studies. Data from different hospitals can be analyzed directly

without the need to combine them, avoiding the sharing of sensitive

information.

Recommendations for future work are given in Chapter 6. Literature review that

is tailored for each project is provided within individual chapters throughout the

thesis, rather than in a separate section.

1.3 List of Publications

Part of the methodological chapters (Chapters 2, 4 and 5) in this thesis have

been published or are in submission. The most current version of the articles are

included “as it is”, and it is inevitable that the chapters differ in styles and notational

conventions due to the requirements of the journals being different. The full list of

journal papers are provided below:

J-1. Jarod Y. L. Lee, Peter J. Green and Louise M. Ryan. Conjugate Generalized

Linear Mixed Models for Clustered Data. In Submission.

J-2. Jarod Y. L. Lee, Peter J. Green and Louise M. Ryan. On the “Poisson Trick”

and its Extensions for Fitting Multinomial Regression Models. In Submission.

J-3. Jarod Y. L. Lee, James J. Brown and Louise M. Ryan (2017). Sufficiency Re-

visited: Rethinking Statistical Algorithms in the Big Data Era. The American

Statistician, 71(3), xxx-xxx (page numbers pending).
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1.4 List of Conference Presentations

Some of the materials in this thesis have been presented in conference held

locally and internationally, both invited and contributed. The full list of conference

presentations are provided below:

C-1. “Working with Distributed Data.” A Degustation of Australian Bureau of

Statistics Big Data Problems. Australian Bureau of Statistics, Canberra,

Australia, March 13, 2015 (Invited).

C-2. “Multilevel Modelling of Tabular Counts via Deconstructed Maximum Like-

lihood.” World Statistics Congress. Riocentro, Rio De Janeiro, Brazil, July

26-31, 2015.

C-3. “Multilevel Modelling of Counts with Gamma-Poisson Model.” International

Biometric Conference. Victoria Convention Centre, Victoria, Canada, July

10-15, 2016.

C-4. “On the “Poisson Trick” and its Extensions for Fitting Multinomial Regression

Models.” Australian Statistical Conference. Hotel Realm, Canberra, Australia,

December 5-9, 2016.

C-5. “Extracting More Value from Confidentialised Tabular Data.” International Sta-

tistical Institute Regional Statistics Conference. Bali International Convention

Center, Bali, Indonesia, March 20-24, 2017 (Invited).

C-6. “Exploring the Robustness of Normal vs Log Gamma for Random Effects

Distribution: The Case of Count Data.” International Conference on Robust

Statistics. University of Wollongong, Wollongong, Australia, July 3-7, 2017

(Invited).



9

Chapter 2

Conjugate Generalized Linear Mixed Models for
Clustered Data

Summary

This chapter concerns a class of generalized linear mixed models for clustered data,

where the random effects are mapped uniquely onto the grouping structure and

are independent between groups. We derive necessary and sufficient conditions

that enable the marginal likelihood of such class of models to be expressed in

closed-form. Illustrations are provided using the Gaussian, Poisson, binomial and

gamma distributions. These models are unified under a single umbrella of conjugate

generalized linear mixed models, where “conjugate” refers to the fact that the

marginal likelihood can be expressed in closed-form, rather than implying inference

via the Bayesian paradigm. Having an explicit marginal likelihood means that these

models are more computationally convenient, which can be important in big data

contexts. Except for the binomial distribution, these models are able to achieve

simultaneous conjugacy, and thus able to accommodate both unit and group level

covariates.

Keywords: Generalized linear mixed model; longitudinal data; multilevel model; unit

level model; random effect.
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2.1 Introduction

Generalized linear mixed models (Jiang, 2007; Stroup, 2013; Wu, 2010) are a

broad class of models that can account for the dependency structure inherent within

multilevel and longitudinal data, where the responses of units within a group are

correlated. The grouping structure can be hospital, postal area, school, individual

etc., and the goal is to model the response as a function of unit and group level

covariates while accounting for group to group variability. For example, outcomes

of patients within the same hospital are likely to be dependent due to similar risk

profiles and a common clinical management practice. Generalized linear mixed

models provide a natural framework for modelling dependencies by allowing for

random group-specific effects.

Despite being popular for application in areas such as marketing, biological and

social sciences, generalized linear mixed models are computationally intensive to fit,

especially for large scale applications such as recommender systems (Perry, 2017)

and discrete choice modelling (Hensher et al., 2015; Train, 2009). Inference for gener-

alized linear mixed models is typically likelihood based, involving a multidimensional

integral which usually does not have an analytic expression. Common estimation

procedures include “exact” methods such as numerical quadrature (Rabe-Hesketh

et al., 2002) and Monte Carlo methods; approximate methods such as Laplace

approximation (Tierney and Kadane, 1986) and penalized quasi-likelihood (Bres-

low and Clayton, 1993); hierarchical likelihood (Lee and Nelder, 1996); simulated

maximum likelihood (Train, 2009, p.238–239). Some of these approaches apply

an expectation-maximization algorithm that treats the random effects as missing

data (McCulloch, 1997). “Exact” methods can approximate the likelihood with

arbitrary accuracy but are computational expensive. Approximate methods avoid
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the intractable integrals but may result in non-negligible bias (Lin and Breslow, 1996).

For large scale applications, it is important that models can be fit in a reasonable

time. Several methods have been proposed in various settings. Zhang and Koren

(2007) exploit the sparsity of predictors to achieve speedup for Bayesian hierarchical

models. Luts et al. (2014) use variational approximations to fit real-time Bayesian

hierarchical models to streaming data. Perry (2017) proposes a moment-based proce-

dure that is non-iterative. Scott et al. (2016) propose a fitting strategy based on the

divide and recombine principle, where data are partitioned into manageable subsets

and the intended statistical analysis are performed independently on each subsets

before combining the results. The methods proposed by Perry (2017) and Scott et al.

(2016) are well suited for implementation in the context of distributed computing.

In this chapter, we are concerned with a class of generalized linear mixed models

for two-level data, where the random effects are mapped uniquely onto the grouping

structure and are independent between groups. We derive necessary and sufficient

conditions that enable the marginal likelihood of such class of models to be expressed

in closed-form. Having an explicit marginal likelihood means that one can proceed

directly to maximization without having to resort to approximate inference. We

consider the most common distribution families, that is, Gaussian, Poisson, binomial

and gamma. These models are unified under a single umbrella of conjugate generalized

linear mixed models, where “conjugate” in this context refers to the tractable form of

the marginal likelihood, rather than implying inference via the Bayesian paradigm.
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2.2 Exponential Family and Conjugate Prior

The likelihood of a one parameter exponential family with dispersion can be

written in the general form:

fY |θ(y|θ, φ) = exp {(yθ − b(θ))/φ + c(y, φ)} , (2.1)

for some specified functions b(θ) and c(y, φ), where θ is the canonical parameter and

can be expressed as a function of the mean θ(μ), and φ is the dispersion parameter,

assumed known.

For such an exponential family, there exists a family of prior distributions on θ

such that the posterior is in the same family as the prior. Such a conjugate prior for

θ is defined as:

fΘ(θ|χ, ν) = g(χ, ν) exp{χθ − νb(θ)}, (2.2)

where χ and ν are parameters and g(χ, ν) denotes the normalizing factor.

The posterior can be obtained by multiplying the likelihood and the prior (up to

a constant of proportionality):

fΘ|y(θ|y, χ, ν, φ) ∝ exp{c(y, φ)}g(χ, ν) exp{θ(χ + y/φ) − b(θ)(ν + 1/φ)}, (2.3)

which has the same kernel as the prior, but with different parameters. The updated

parameters, based on a single observation y, are

χ̃ = χ + y/φ, ν̃ = ν + 1/φ.

For n independent and identically distributed observations yj, j = 1, . . . , n, it is

straightforward to show that conjugacy still holds and the updated parameters are

χ̃ = χ +
∑

j

yj/φ, ν̃ = ν + n/φ.
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These are the standard results for independent and identically distributed data in

the Bayesian context. In this chapter, we aim to achieve explicit marginal likelihood

for generalized linear mixed models in the frequentist setting. This is attained by

establishing a connection between the posterior in the Bayesian paradigm and the

marginal likelihood in the frequentist paradigm, and relaxing the assumption of

identical distribution. The result is a class of models where unit level covariates

can be conveniently incorporated while maintaining a closed-form representation of

the marginal likelihood, which we refer to as conjugate generalized linear mixed models.

2.3 Conjugate Generalized Linear Mixed Models

2.3.1 From Bayesian formalism to frequentist inference - group level

models

We now make a transition from the Bayesian paradigm, where θ is a parameter

and its distribution is the prior, to the frequentist paradigm, where θ is a group

specific random effect and its distribution describes the variation between groups.

Specifically, consider the two-level setting where the responses yij, j = 1, . . . , ni are

grouped within a higher level structure indexed by i = 1, . . . , I, with n = n1 + · · ·+nI

being the total number of observations across all groups. The responses are assumed

to come from the same exponential family. Random effects with a specified distribu-

tion are introduced at the group level to account for the correlation between units

in a given group. Within each group, the responses are conditionally independent

given the group specific random effects. Such data structure is common in many

scenarios, for instance students within schools, patients within hospitals, residents

within postal areas and repeated measurements from individuals.
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For this model setup, the distribution from which the responses are drawn is

governed by a group specific parameter θi which itself is drawn from a distribution

chosen so that the resulting marginal likelihood is explicit. The marginal likelihood,

obtained by integrating out the random effects, is given by

L =
∏

i

∫ ∏
j

fY |θi
(yij|θi, φ)fΘi

(θi|χ, ν)dθi,

where the integrand is proportional to the posterior in (2.3).

Imposing a conjugate prior distribution on the random effects would ensure that

the integrand comes from a recognizable density function, which would enable the

marginal likelihood to be expressed in closed-form. Solving for the integral, the

likelihood contribution for the entire data is

L =
∏

i

⎧⎨
⎩

exp
(∑

j c(yij, φ)
)

g(χ, ν)
g
(
χ +∑

j yij/φ, ν + n/φ
)
⎫⎬
⎭ . (2.4)

This is the formulation for group level models in the absence of of unit level

covariates. Although the random effects θi = θ(μi) are typically expressed in terms

of a monotonic transformation of μi, interest usually lies in the distribution of μi.

Consonni and Veronese (1992) and Gutiérrez-Pẽna and Smith (1995) showed that the

conjugate distribution on μi coincides with the prior on μi induced by the conjugate

distribution on θi if and only if the exponential family has a quadratic variance

function. This holds for some of the most widely used distribution, including the

Gaussian, Poisson, binomial and gamma (Morris, 1983), providing a convenient way

to incorporate group level variables, for example, via the mean μi using a monotonic

link function.
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2.3.2 Relaxing the assumption of identical distribution - unit level mod-

els

Relaxing the assumption of identical distribution, we consider the regression set-

ting where each observation yij is allowed to have a separate parameter θij = θ(xij)

that is a function of the covariates, while φ, if present, is constant across all obser-

vations. We want to explore the most generic formulation that leads to marginal

likelihood simplification using the idea of Bayesian conjugacy, and thus we leave

open the functional dependence of θij on xij at this stage.

Denote θ0 = θ(x0) as the baseline parameter where x0 is an arbitrary baseline

covariate value. In this chapter, we assume x0 = 0, but user can take any baseline

appropriate for the problem at hand. Technically, θ0 is also indexed by i to reflect

the group correlated data structure, but this can be suppressed without ambiguity.

Likewise, for ease of notation, the i and j indexing are suppressed for most of the

remaining chapter.

Remark 1. With this formulation, within a group, we can think of units with

covariate configuration that deviate from the baseline characteristics as modifying θ0.

This is as opposed to the standard formulation of generalized linear mixed models,

where for a given unit with a particular covariate configuration, it is the group

membership that modifies the linear predictor.

Imposing a conjugate prior distribution on θ0, the integrand of the marginal

likelihood for a single observation has the form

exp [{yθ(x) − b(θ(x))}/φ + χθ0 − νb(θ0)] . (2.5)
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Remark 2. The conjugate prior distribution is placed on θ0 = θ(x0), rather than

explicitly on each θij = θ(xij).

Equation (2.5) lies in the same family as (2.2) in its dependence on θ0 if and

only if both θ(x) and b(θ(x)) are affine functions of θ0 and b(θ0), i.e. if there exist

functions p, q, r, s, t and u of x such that

θ(x) = p(x)θ0 + q(x)b(θ0) + r(x) (2.6)

b(θ(x)) = s(x)θ0 + t(x)b(θ0) + u(x). (2.7)

We are interested in families where θ(x) has non-trivial dependence on x, that is,

at least one of p, q or r must depend on x. When this occurs, the induced prior for

θ(x) exhibits simultaneous conjugacy across all values of x, and the resulting model

is capable of incorporating unit level covariates while maintaining a closed-form

likelihood. Otherwise, this formulation reduces back to a group level model.

Remark 3. Since θ0 = θ(x0) and b(θ0) = b(θ(x0)), it is clear that p(x0) = 1,

q(x0) = 0, r(x0) = 0, s(x0) = 0, t(x0) = 1 and u(x0) = 0. These constraints need to

be satisfied when choosing the functional solutions for p, q, r, s, t and u.

Conditions (2.6) and (2.7) can be combined to obtain

b {p(x)θ0 + q(x)b(θ0) + r(x)} = s(x)θ0 + t(x)b(θ0) + u(x). (2.8)
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This is the key equation in deriving the functional solutions for p, q, r, s, t and

u. Under (2.8), the integrand of the marginal likelihood for a single observation is

exp [θ0{χ + (yp(x) − s(x))/φ} − b(θ0){ν + (t(x) − yq(x))/φ}] .

Solving for this integral, the likelihood contribution for the observations within a

single group is

L =
exp

(∑
j c(yij, φ)

)
g(χ, ν) exp

(∑
j(r(xij)yij − u(xij))/φ

)
g
(
χ +∑

j (yijp(xij) − s(xij)) /φ, ν +∑
j (t(xij) − yijq(xij)) /φ

) . (2.9)

For multiple groups, the likelihood contribution can be obtained by multiplying

(2.9) across the group index i.

2.4 Examples

2.4.1 Gaussian Distribution (with Known Variance)

The Gaussian density function (with known variance σ2 ≥ 0) can be written in

the form

exp
{

yμ0 − μ2
0/2

σ2 − log
(
σ

√
2π
)

− y2

2σ2

}
,

where μ0 ∈ R is the mean of y. This can be written in the form of (2.1) if we write

θ0 = μ0, b(θ0) = θ2
0/2, φ = σ2 and c(y, φ) = −{log(2πφ) + y2/φ}/2.

To determine the conjugate distribution for θ0, we compute the normalization

factor

g(χ, ν) =
{∫

exp
(

χθ0 − ν
1
2θ2

0

)
dθ0

}−1
=
√

ν

2π
exp

{
−
(

χ2

2ν

)}
,
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where the integrand is the kernel of a Gaussian density function with mean E(θ0) =

λ = χ/ν and variance Var(θ0) = κ2 = 1/ν. This implies

μ0 = θ0 ∼ Gaussian
(
λ, κ2

)
.

Group level covariates can be incorporated via the mean of μ0, by replacing λ

with λi = xT
i β for example. To incorporate unit level covariates, (2.8) requires

b(θ(x)) = 1
2

{
p(x)θ0 + q(x)1

2θ2
0 + r(x)

}2
≡ s(x)θ0 + t(x)1

2θ2
0 + u(x),

which gives the following solution set:

p(x) = ζ1(x), q(x) = 0, r(x) = ζ2(x),

s(x) = ζ1(x)ζ2(x), t(x) = ζ2
1 (x), u(x) = ζ2

2 (x)/2,

where ζ1(x) and ζ2(x) are user-specified functions of x, subject to ζ1(x0) = 1 and

ζ2(x0) = 0. This implies θ(x) = μ(x) = ζ1(x)μ0 + ζ2(x).

As an example, choosing ζ1(x) = 1 and ζ2(x) = xT β gives rise to the random

intercept model μ(x) = μ0 + xT β, where x does not include the constant 1 so that

ζ2(x0) = 0. Random slopes can be incorporated by writting μ(x) = zT μ0 + xT β,

where μ0 is now a vector and z is a known design matrix for the random effects

(usually a subset of x).

2.4.2 Poisson Distribution

The Poisson density function can be written in the form

exp (y log μ0 − μ0 − log y!) ,

where μ0 > 0 is the rate parameter. This can be written in the form of (2.1) if we

write θ0 = log μ0, b(θ0) = eθ0 , φ = 1 and c(y, φ) = − log y!.
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To determine the conjugate distribution for θ0, we compute the normalization

factor

g(χ, ν) =
{∫

exp (χθ0 − ν exp(θ0)) dθ0

}−1
= νχ

Γ(χ) ,

where the integrand is the kernel of a log-gamma density function with shape

A = χ > 0 and scale B = ν−1 > 0, Γ(·) is the gamma function. This implies

μ0 = exp(θ0) ∼ Gamma (A, B) .

Christiansen and Morris (1997) considered a similar model without covariates in

the Bayesian setting. Group level covariates can be incorporated via the mean of μ0,

by letting E(μ0) = AB ≡ exp(xT
i β) for example. As a result, we replace B in the

likelihood equation by Bi = exp(xT
i β)/A. To incorporate unit level covariates, (2.8)

requires

b(θ(x)) = exp(p(x)θ0 + q(x) exp(θ0) + r(x)) ≡ s(x)θ0 + t(x) exp(θ0) + u(x),

which gives the following solution set:

p(x) = 1, q(x) = 0, r(x) = ζ(x),

s(x) = 0, t(x) = eζ(x), u(x) = 0,

where ζ(x) is a user-specified function of x, subject to ζ(x0) = 0. This implies

θ(x) = log(μ(x)) = θ0 + ζ(x), or equivalently, μ(x) = μ0 exp(ζ(x)).

As an example, choosing ζ(x) = xT β leads to μ(x) = μ0 exp(xT β), where x does

not include the constant 1 so that ζ(x0) = 0. This is a sensible choice as μ(x)

is guaranteed to be always positive. Similar multiplicative models with unit level

covariates have been considered by Lee and Nelder (1996) , Lee et al. (2017) and Lee

et al. (2017b) and in various settings.
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2.4.3 Binomial Distribution (with Known Number of Trials)

The binomial density function (with fixed number of trials n ∈ N) can be written

in the form

exp
{

y log
(

μ0

1 − μ0

)
+ n log(1 − μ0) + log

(
n

y

)}
,

where 0 ≤ μ0 ≤ 1 is the probability of success. This can be written in the form

of (2.1) if we write θ0 = log(μ0(1 − μ0)−1), b(θ0) = n log (1 + exp(θ0)), φ = 1 and

c(y, φ) = log
(

n
y

)
.

To determine the conjugate distribution for θ0, we compute the normalization

factor

g(χ, ν) =
[∫

exp{χθ0 − ν log (1 + exp(θ0))}dθ0

]−1
= 1

B(χ, ν − χ) ,

where the integrand is the kernel of the log of a beta prime density function with

shape parameters A = χ > 0 and scale B = ν − χ > 0, B(·) is the beta function.

This implies

μ0 = exp(θ0)/(1 + exp(θ0)) ∼ Beta (A, B) .

Kleinman (1973), Crowder (1978) and He and Sun (1998) considered similar mod-

els without covariates in various settings. Group level covariates can be incorporated

via the mean of μ0. Reparameterizing the beta density function by setting the mean

λ = A/(A + B) and precision φ = A + B, we can allow λi to be some function of

xT
i β, say, λi = {1 + exp(−xT

i β)}−1 (Ferrari and Cribari-Neto, 2004). As a result, we

replace A and B in the likelihood equation by λiφ and φ − λiφ, respectively. To

incorporate unit level covariates, (2.8) requires

b(θ(x)) = log [1 + exp {p(x)θ0 + q(x) log(1 + exp(θ0)) + r(x)}] ≡

s(x)θ0 + t(x) log (1 + exp(θ0)) + u(x),
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which gives the following solution set:

p(x) = 1, q(x) = 0, r(x) = 0,

s(x) = 0, t(x) = 1, u(x) = 0.

Since neither p, q nor r depend on x, it is impossible to simultaneously incorporate

unit level covariates while maintaining closed-form likelihood.

2.4.4 Gamma Distribution (with Known Shape)

For modelling purposes, it is convenient to reparameterize the gamma distribution

with shape A > 0 and scale B0 > 0 in terms of A and mean μ0 = AB0 > 0. The

reparameterized gamma density function (with fixed shape A) can be written in the

form

exp
[−yμ−1

0 − log μ0

A−1 + A log(Ay) − log y − log Γ(A)
]

.

This can be written in the form of (2.1) if we write θ0 = −μ−1
0 , b(θ0) = − log(−θ0),

φ = A−1 and c(y, φ) = A log(Ay) − log y − log Γ(A).

To determine the conjugate distribution for η0, we compute the normalization

factor

g(χ, ν) =
[∫

exp {χθ0 − ν(− log(−θ0))} dθ0

]−1
= χν+1

Γ(ν + 1) ,

where the integrand is the kernel of the negative of a gamma density function with

shape C = ν + 1 and scale D = χ−1, and Γ(·) is the gamma function. This implies

μ0 = −θ−1
0 ∼ Inverse-Gamma (C, D) .

Group level covariates can be incorporated via the mean of μ0, by letting E(μ0) =

Di(C − 1)−1 ≡ exp(xT
i β) for example, provided C > 1. As a result, we replace



22

D in the likelihood equation by Di = (C − 1) exp(xT
i β). To incorporate unit level

covariates, (2.8) requires

b(θ(x)) = − log{p(x)θ0 + q(x) log (−θ0) − r(x)} ≡ s(x)θ0 − t(x) log (−θ0) + u(x),

which gives the following solution set:

p(x) = ζ(x), q(x) = 0, r(x) = 0,

s(x) = 0, t(x) = 1, u(x) = − log ζ(x),

where ζ(x) is a user-specified function of x, subject to ζ(x0) = 1. This implies

θ(x) = −μ−1(x) = ζ(x)θ0, or equivalently, μ(x) = μ0/ζ(x).

As an example, choosing ζ(x) = exp(xT β) leads to μ(x) = μ0/ exp(xT β), where

x does not include the constant 1 so that ζ(x0) = 1. This is a sensible choice as μ(x)

is guaranteed to be always positive.

2.4.5 Summary

Table 2.1 and 2.2 summarize the results discussed in this section, for group level

and unit level models, respectively. We have covered the four distribution families

that are most important in practice. Results for other distributions could be derived

as needed.

2.5 An Illustrative Example: Poisson responses

Consider the well-known epileptic seizure count data previously analyzed by

Thall and Vail (1990), Breslow and Clayton (1993), Lee and Nelder (1996) and Ma

and Jorgensen (2007), where 59 epileptics were randomized to a new drug (Trt =
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Table 2.1 : Summary of group level models. Log-likelihood functions are contributed

by a single observation. The i and j indexes are omitted for ease of notation.

Gaussian (with known variance σ2)

Model y | μ0 ∼ Gaussian(μ0, σ2) μ0 ∼ Gaussian(λ, κ2)

Log-likelihood −1
2

{
log(σ2 + κ2) + y2

σ2 + λ2

κ2 − λ2σ4+2λκ2σ2y+κ4y2

κ2σ2(σ2+κ2)

}
Covariates Replace λ by λi = xT

i β

Poisson

Model y | μ0 ∼ Poisson(μ0) μ0 ∼ Gamma(A, B)

Log-likelihood log Γ (A + y) − (A + y) log(B−1 + 1) − log Γ(A) − A log B

Covariates Replace B by Bi = exT
i β/A

Binomial (with known number of trials n)

Model y | μ0 ∼ Bernoulli(μ0) μ0 ∼ Beta(A, B)

Log-likelihood log B (A + y, B + 1 − y) − log B(A, B)

Covariates Replace A and B by λiφ and φ − λiφ respectively, where λi =
{
1 + e−xT

i β
}−1

Gamma (with known shape A)

Model y | μ0 ∼ Gamma(A, μ0/A) μ0 ∼ Inverse-Gamma(C, D)

Log-likelihood − log B(A, C) + A log(ADy) − log y + (A + C) log(1 + ADy)

Covariates Replace D by Di = (C − 1)exT
i β, provided C > 1
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Table 2.2 : Summary of unit level models. Log-likelihood functions are contributed

by a single observation. The i and j indexes are omitted for ease of notation.

Gaussian (with known variance σ2)

Model y | μ0 ∼ Gaussian (ζ1(x)μ0 + ζ2(x), σ2) μ0 ∼ Gaussian(λ, κ2)

Constraint ζ1(x0) = 1 ζ2(x0) = 0

Log-likelihood −1
2

{
log
(
σ2 + κ2∑

j ζ2
1 (x)

)
+
∑

j
y2

σ2 + λ2

κ2 − 2
∑

j
ζ2(x)y

σ2 +
∑

j
ζ2

2 (x)
σ2 + P

Q

}

where P = −λ2σ4 + 2λκ2σ2
(∑

j ζ1(x)y
)

− κ4
(∑

j ζ1(x)y
)2

+

2κ4
(∑

j ζ1(x)y
) (∑

j ζ1(x)ζ2(x)
)

− κ4
(∑

j ζ1(x)ζ2(x)
)2 −

2λκ2σ2
(∑

j ζ1(x)ζ2(x)
)

Q = κ2σ2
(
σ2 + κ2∑

j ζ2
1 (x)

)
Remark Can incorporate random slopes if μ(x) is linear in terms of μ0

Poisson

Model y | μ0 ∼ Poisson
(
μ0eζ(x)

)
μ0 ∼ Gamma(A, B)

Constraint ζ(x0) = 0

Log-likelihood log Γ
(
A +∑

j y
)

−
(
A +∑

j y
)

log
(
B−1 +∑

j eζ(x)
)

−
log Γ(A) − A log B +∑

j ζ(x)y

Gamma (with known shape A)

Model y | μ0 ∼ Gamma(A, μ(x)/A) μ0 ∼ Inverse-Gamma(C, D)

where μ(x) = μ0/ζ(x)

Constraint ζ(x0) = 1

Log-likelihood log Γ(Ani + C) − ni log Γ(A) − log Γ(C) + Ani log A + (A − 1)∑j log y−
(Ani + C) log

{
1 + AD

(∑
j ζ(x)y

)}
+ Ani log D + A

∑
j log ζ(x)

where ni is the number of units within group i
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progabide) or a placebo (Trt = placebo) at a clinical trial. Baseline data included the

log seizure counts during the 8-week period before the trial (lbase) and the log age

in years (lage), both centered to have zero mean. A multivariate response variable

consisted of the counts seizures during the 2-weeks before each of four clinic visits.

An indicator variable for the fourth visit (V4) was constructed to reflect the fact

that counts are substantially lower during the fourth visit. The dataset are stored in

the epil object within the MASS package in R (R Development Core Team, 2017).

Our reanalysis is primarily oriented toward comparing two different methods

of incorporating random effects, namely, generalized linear mixed models (GLMM)

using additive Gaussian random effects: yij|ui ∼ Poisson(exp(xT
ijβ + ui)), μi ∼

Gaussian(0, σ2); and conjugate generalized linear mixed models (CGLMM) us-

ing multiplicative Gamma random effects: yij|ui ∼ Poisson(ui exp(xT
ijβ)), μi ∼

Gamma(A, 1/A). To allow for a direct comparison between the models, we included

an intercept in the Poisson conjugate generalized linear mixed model, but fixed the

mean of ui to be one to ensure identifiability. Due to the intractable nature of the

marginal likelihood of Poisson generalized linear mixed models, various approxima-

tion methods have been employed to estimate the marginal likelihood. The results

are presented in Table 4.5.

In comparing the estimates and standard errors between the models, we note

that the fixed effects model is likely to produce biased estimates as it did not take

into account of the correlation induced by multiple measurements from the same

individual. The parameter estimates and the standard errors of the random effect

models are quite similar, regardless of the distribution of the random effects. This is

probably due to the fact that the variance of the random effects not being too large,

implying moderate subject-to-subject variability in seizure counts after taking into
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Table 2.3 : Regression estimates for the epileptics data, and the associated standard

errors.

GLMM

Variables GLM Laplace1 AGQ2 PQL3 CGLMM

Intercept 1.898 (0.043) 1.833 (0.105) 1.833 (0.106) 1.870 (0.106) 1.932 (0.105)

lbase 0.949 (0.044) 0.883 (0.131) 0.883 (0.131) 0.882 (0.129) 0.880 (0.126)

trtprogabide -0.346 (0.061) -0.334 (0.147) -0.334 (0.148) -0.310 (0.149) -0.282 (0.146)

lage 0.888 (0.116) 0.481 (0.346) 0.481 (0.347) 0.534 (0.346) 0.505 (0.357)

V4 -0.160 (0.055) -0.160 (0.054) -0.160 (0.055) -0.160 (0.077) -0.160 (0.055)

lbase:trtprogabide 0.562 (0.064) 0.339 (0.202) 0.339 (0.203) 0.342 (0.203) 0.344 (0.193)

σ N/A 0.501 (N/A) 0.502 (N/A) 0.444 (N/A) N/A

A N/A N/A N/A N/A 3.935 (0.863)

1
Laplace approximation: fitted using the glmer() function within the lme4 package in R.

2
Adaptive Gauss-Hermite quadrature: fitted using the glmer() function within the lme4

package in R, using nAGQ=100.
3

Penalized Quasi-Likelihood: fitted using the glmmPQL() function within the MASS

package in R.

account of the covariate effects.

2.6 Remarks

Group level conjugate models have long been used in the context of Bayesian

small area estimation and disease mapping, the most common ones being the gamma-

Poisson (Rao and Molina, 2015, p. 383) and the beta-binomial models (Rao and

Molina, 2015, p. 389). This chapter considers the frequentist setting where the most

general conditions that allow for explicit marginal likelihood in unit level generalized

linear mixed models are derived. The primary advantage of the proposed modelling
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framework is mathematical convenience, but the conjugate random effect distribution

this assumes may not accurately reflect the real variation between groups. Mathe-

matical convenience should not deter the exploration of alternative formulations for

the distribution of random effects in this situation. Other applications of the pro-

posed modelling framework include privacy preservation in large-scale administrative

databases (Lee et al., 2017) and the fitting of discrete choice models (Lee et al., 2017b).

Some of the models derived from our conjugate generalized linear mixed models

framework are similar to those of the conjugate hierarchical generalized linear models

framework proposed by Lee and Nelder (1996). While the word “conjugate” in our

framework reflects the fact that the marginal likelihood can be made explicit, it has

quite a different meaning in the hierarchical likelihood framework (Lee and Nelder,

1996, p. 621), where it refers to the fact that a Bayesian conjugate prior is imposed

on the random effects distribution but does not necessarily result in a closed-form

likelihood.

Molenberghs et al. (2010) considered models that can simultaneously accommo-

date both overdispersion and correlation induced by grouping structures via two

separate sets of random effects. They consider a combined model where the conjugate

and Gaussian random effects induce overdispersion and association, respectively.

Although they use the conjugate distribution for a set of random effects, the resulting

marginal likelihood is generally not explicit.
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Chapter 3

Exploring the Robustness of Normal vs.
Log-Gamma for Random Effects Distributions:

The Case of Count Data

Summary

When analyzing multilevel and longitudinal data, it is common to utilize generalized

linear mixed models (GLMMs) with Gaussian random effects. In this work, we con-

trast Poisson GLMMs with Poisson models combined with log-gamma random effects.

The latter belongs to the conjugate generalized linear mixed models (CGLMMs)

framework presented in Chapter 2 and has advantages in terms of closed-form like-

lihood and privacy preservation in large-scale administrative databases. In this

chapter, we explore the robustness of Poisson GLMMs vs. CGLMMs in terms of

estimation of fixed effects and prediction of random effects, when the random effects

distribution is misspecified. We show that the performance of Poisson GLMMs and

CGLMMs is generally quite comparable under model misspecification, except for a

few extreme cases.

Keywords: Clustered count data; Generalized linear mixed models; Mean squared

error of prediction; Misspecified random effects distributions; Non-normality.
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3.1 Introduction

It is traditionally assumed that the random effects in generalized linear mixed

models (GLMMs) follow a multivariate normal distribution, although this assump-

tion is very difficult to verify in practice. Several authors (McCulloch and Neuhaus,

2011a,b; Neuhaus et al., 2012) have investigated the effects of misspecifying the

random effects distribution and most of them conclude that it has little effect on

analyses. In this chapter, we aim to compare the performance of Poisson GLMMs

vs. CGLMMs that assume a log-gamma random effects distribution. The latter

has advantages in terms of closed-form likelihood (Lee et al., 2017a) and privacy

preservation in large-scale administrative databases Lee et al. (2017). It is also

arguable that the closed-form likelihood property of Poisson CGLMMs provide a

convenient mean to incorporate survey weights using the pseudolikelihod approach,

compared to that of Poisson GLMMs (Rabe-Hesketh and Skrondal, 2006). The main

drawback of Poisson CGLMMs is perhaps the lack of readily available statistical

softwares for fitting such models, although they can be fitted quite easily using stan-

dard optimization procedures available in almost every statistical software packages.

If we can show comparable performance of Poisson GLMMs vs. CGLMMs under

random effects misspecification, we can then make convincing arguments for using

Poisson CGLMMs.

3.2 Models

Let P be a finite population of size N which can be partitioned into I domains,

with Pi denoting population of known size Ni on domain i, i = 1, . . . , I. Let yij

denotes the outcome, i.e. number of events for observation j in domain i; xij denotes

a (p+1)×1 vector of individual and domain level covariates. Given a domain-specific

random effects ui, we assume yij is independently Poisson distributed with mean

λij = Nij exp(xT
ijα + ui), where α is a (p + 1) × 1 vector of unknown regression
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coefficients to be estimated, including the intercept. Different distributional assump-

tions for the random effects ui lead to different models. Here, we consider two such

models: Generalised Linear Mixed Models (GLMMs) and Conjugate Generalised

Linear Mixed Models (CGLMMs).

3.2.1 Poisson Generalized Linear Mixed Models (GLMMs)

This is for the case where (ui)I
i=1 are normally distributed with mean 0 and

variance-covariance matrix Σ, but we only restrict our attention to the case where

(ui)I
i=1 are assumed to be independent with variance σ2. The resulting marginal

likelihood is intractable, but procedures for estimating the marginal likelihood of

Poisson GLMMs are widely implemented in many common statistical software pack-

ages. In this article, we use the glmer() function within the lme4 package in R, which

implements Laplace approximation by default.

3.2.2 Poisson Conjugate Generalized Linear Mixed Models (CGLMMs)

In Poisson CGLMMs, ui are assumed to be independently and identically dis-

tributed according to a log-gamma (LG) distribution, i.e.

ui
ind.∼ LG (A, B)

f(ui) = 1
Γ(A)BA

exp(Aui) exp
(

−eui

B

)
,

LG distribution is inherently negatively skewed, but approaches to symmetry

as the shape parameter A tends to infinity. Refer to Figure 3.1 for a pictorial

representation. The expected value and variance of u are given by E(u) = ψ(A)+ln(B)

and V(u) = ψ1(A), respectively. Here, ψ(·) is the digamma function and ψ1(·) is
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the trigamma function, and ln(·) is the natural logarithmic function. The marginal

likelihood can then be expressed in closed-form, i.e.

L(α, A, B; y) ∝ exp(∑j xT
ijαyij)

Γ(A)BA
Γ
⎛
⎝∑

j

yij + A

⎞
⎠
⎛
⎝∑

j

exT
ijα + 1

B

⎞
⎠

−
(∑

j
yij+A

)
.

(3.1)
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Figure 3.1 : Probability density function of log-gamma distribution with different

parameter combinations. As the shape parameter increases, the distribution becomes

more symmetric.
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Taking log of Equation 3.1, we obtain the log-likelihood as

�(α, A, B; y) = constant +
∑

i

∑
j

xT
ijαyij −∑

i

ln Γ(A) −∑
i

A ln B

+
∑

i

ln Γ
⎛
⎝∑

j

yij + A

⎞
⎠−∑

i

⎡
⎣
⎛
⎝∑

j

yij + A

⎞
⎠ ln

⎛
⎝∑

j

exT
ijα + 1

B

⎞
⎠
⎤
⎦
(3.2)

A constraint on either the random effects ui or the intercept α0 is needed to

ensure identifiability, since

λij = Nij exp
(

(xij,0 + c) +
p∑

k=1
xij,kα + (ui − c)

)
for all c 
= 0.

We choose to impose a constraint on ui such that E(ui) = ψ(A) + log(B) = 1. As a

consequence, B = e−ψ(A).

The additive log-gamma formulation is also equivalent to the multiplicative

gamma formulation λij = bi exp(xT
ijα), where bi = eui and is independently gamma

distributed with shape A and scale B (Lee et al., 2017a). Consequently the expected

value is E(b) = AB and variance is V(b) = AB2. Both formulations are equivalent in

the sense that they give rise to the same marginal likelihood. However, a constraint

on one parameterisation does not translate naturally into the other parameterisation.

For instance, a constraint of E(bi) = E(eui) = 1 is not equivalent to E(ui) = 0. With

the latter random effects formulation, we have

bi
ind.∼ Gamma (A, B)

f(bi) = 1
Γ(A)BA

bA−1
i exp

(
− bi

B

)
.

The random effects bi captures the deviation of individual rate from the average

individuals with the same characteristics, due to remaining unexplained domain
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variations. With the multiplicative formulation, bi > 1 corresponds to a positive

deviation of area j from the mean rate, whereas 0 < bi < 1 corresponds to a negative

deviation. In this chapter, we shall stick with the log-gamma formulation so that it

is directly comparable with Poisson GLMMs, since both are formulated on the same

addtive scale.

3.2.3 Prediction of Random Effects

Here, we present two different methods for predicting the random effects of the

various Poisson mixed models:

Posterior Mode (minimizing the 0-1 error loss function)

(A) GLMMs: default implementation of the glmer() function within the lme4

package in R.

(B) CGLMMs (additive LG):

ûi = ln
⎛
⎝ ∑

j yij + A∑
j exT

ijα + 1
B

⎞
⎠ . (3.3)

(C) CGLMMs (multiplicative Gamma):

b̂i =
∑

j yij + A − 1∑
j exT

ijα + 1
B

iff
∑

j

yij + A ≥ 1. (3.4)

Posterior Mean (minimizing the quadratic error loss function)

This is also known as the best predictor (BP), i.e. the predictor that minimizes the

overall mean squared error of prediction.

(A) GLMMs: no closed-form expression.
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(B) CGLMMs (additive LG):

ũi = ln
⎛
⎝ 1∑

j exT
ijα + 1

B

⎞
⎠+ ψ

⎛
⎝∑

j

yij + A

⎞
⎠ . (3.5)

(C) CGLMMs (multiplicative Gamma):

b̃i =
∑

j yij + A∑
j exT

ijα + 1
B

. (3.6)

These predictors depend on the estimated fixed effects and the parameters of

the random effects distribution, in which we replace by their estimates, leading

to the empirical predictor. In this chapter, we shall focus on the posterior mode

predictor as opposed to the more commonly used posterior mean, as it is readily

implemented in the glmer() function within the lme4 package in R. This allows us

to concentrate on analyzing the results and minimize the risk of computing issues

becoming a distraction.

3.3 Simulation Studies

3.3.1 Data Generation

We perform simulation studies to evaluate the performance of Poisson GLMMs

vs. CGLMMs under various true distributions. We consider the following true

distributions for ui,:

1. Symmetric: Gaussian distribution with mean 0 and varying standard deviation

σ.

2. Negatively Skewed: log-gamma distribution with varying shape A and varying

scale B = e−ψ(A), so that the mean is 0.
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3. Positively skewed: exponential distribution with varying rate λ, shifted to have

mean 0.

The first two distributions are chosen to represent the case where one of the

Poisson GLMMs (symmetric) and CGLMMs (negatively skewed but symmetric in the

limit) is the “correct” model. The last distribution represents an extreme deviation

from both Gaussian and log-gamma. The exponential distribution is heavily skewed,

has high kurtosis, and a limited support.

Data consist of two mutually orthogonal covariates: an individual level and a

domain specific covariate, both generated from the standard normal distribution.

These quantities are kept constant throughout simulations. We simulate 250 areas,

where each area is associated with a random effects ui generated from one the true

distributions specified above. The mean for individual observations is then calculated

via λij = exT
ijα+ui . We fix α0 = 0, α1 = −1 and α2 = 1. In each run of the simulation,

the response counts yij for each i and j are generated from a Poisson distribution with

rate λij. This simulation setup is repeated for different values of the random effects

standard deviation (0.1, 0.2, 0.5, 1) and cluster size (5, 10, 20, 40). With 250 areas, this

implies the corresponding total population is 1250, 2500, 5000 and 10000, respectively.

3.3.2 Bias Results for Fixed Effects

Figure 3.2 to 3.4 present biases in fixed effects estimates from the Poisson GLMMs

and CGLMMs under various true distributions, where bias is defined as median of

the simulation estimate minus true value. Consistent with the results presented in

existing literature, the intercept and domain specific covariates are more sensitive to

shape misspecification compared to individual level covariates. The biases from both

models are nearly indistinguishable when random effects standard deviation is small.
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For large standard deviation, the “true” model performs better in general, but the

differences diminish as cluster size increases.

3.3.3 Coverage Results for Fixed Effects

Figure 3.5 to 3.7 present estimated coverage rates for fixed effects estimates

from the Poisson GLMMs and CGLMMs under various true distributions. For each

regression coefficient within each simulation, we construct a 95% confidence interval

using the Wald method, i.e.

α̂ ± 1.96 × model-based standard error estimate obtained

from the information matrix of the fitted likelihood.

The coverage rate is defined as the proportion of the 95% intervals that captured the

true parameter value.

The coverage rates from both models are comparable under true Gaussian and

log-gamma, except for the case of true Gaussian when cluster size = 40 and standard

deviation = 1, where the coverage rate from Poisson CGLMMs is quite low compared

to Poisson CGLMMs. For true exponential, the coverage rates of Poisson CGLMMs

are substantially lower than that of GLMMs when the standard deviation is large,

and the difference does not disappear as cluster size increases.

3.3.4 Mean Square Error of Prediction Results for Random Effects

Figure 3.8 to 3.10 present the empirical mean squared error of prediction (MSEP)

from the Poisson GLMMs and CGLMMs under various true distributions, where

MSEP is defined as E(û − u)2 and û is the posterior mode estimate for the random
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effects, obtained by minimizing the zero-one error function. When the standard

deviation is small, both Poisson GLMMs and CGLMMs give virtually identical

results. For large standard deviation, there is a modest gain in MSEP for using the

“true” distribution as the fitted distribution, and the benefit does not seem to diminish

as cluster size increases. This is in contrast with the message from McCulloch and

Neuhaus (2011b) that “the primary determinant of the MSEP is the cluster size”.

The discrepancy in MSEP is the largest when the true distribution is exponential and

the standard deviation is large, in which Poisson GLMMs outperforms CGLMMs by

quite a large amount. This is not surprising as Gaussian distribution (symmetric)

is “closer” to exponential distribution, as opposed to log-gamma distribution that is

inherently left-skewed.

3.4 Discussion

The simulation results showed that the performance of Poisson GLMMs vs.

CGLMMs is generally quite comparable, except for a few extreme cases when the

true distribution is exponential and the standard deviation is large. In fact, when

the standard deviation of then random effects is small and/or the cluster size is

reasonably large, both Poisson GLMMs and CGLMMs are nearly indistinguishable.

The extreme cases can be avoided in practice if we focus our attention on finding a

“good” set of covariates.



38

0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.0
5

0.
05

● ●
●

●

Standard Deviation

B
ia

s(
b0

)

0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.0
5

0.
05

●
● ● ●

Standard Deviation

B
ia

s(
b1

)

0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.0
5

0.
05

●
● ●

●

Standard Deviation

B
ia

s(
b2

)

Cluster Size =  5

Cluster Size =  10

Cluster Size =  40

True Distribution =  Gaussian

0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.0
5

0.
05

●
● ● ●

Standard Deviation

B
ia

s(
b0

)

0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.0
5

0.
05

● ● ● ●

Standard Deviation

B
ia

s(
b1

)

0.2 0.4 0.6 0.8 1.0
−0

.1
5

−0
.0

5
0.

05

● ●
●

●

Standard Deviation

B
ia

s(
b2

)

Cluster Size =  5

Cluster Size =  10

Cluster Size =  40

True Distribution =  Gaussian

0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.0
5

0.
05

●
● ●

●

Standard Deviation

B
ia

s(
b0

)

0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.0
5

0.
05

● ● ● ●

Standard Deviation

B
ia

s(
b1

)

0.2 0.4 0.6 0.8 1.0

−0
.1

5
−0

.0
5

0.
05

● ● ●

●

Standard Deviation

B
ia

s(
b2

)

Cluster Size =  5

Cluster Size =  10

Cluster Size =  40

True Distribution =  Gaussian

Assumed distributions: Dash/X = Log-Gamma, Solid/Circle = Gaussian

Figure 3.2 : Bias in fixed effects estimates from the Poisson GLMMs and CGLMMs

when the true distribution is Gaussian. Each row is a different value of the cluster

size and each plot shows the bias as median of the simulation estimate minus true

value as a function of random effects standard deviation with separate curves for

different assumed distributions.
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Figure 3.3 : Bias in fixed effects estimates from the Poisson GLMMs and CGLMMs

when the true distribution is log-gamma. Each row is a different value of the cluster

size and each plot shows the bias as median of the simulation estimate minus true

value as a function of random effects standard deviation with separate curves for

different assumed distributions.
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Figure 3.4 : Bias in fixed effects estimates from the Poisson GLMMs and CGLMMs

when the true distribution is exponential. Each row is a different value of the cluster

size and each plot shows the bias as median of the simulation estimate minus true

value as a function of random effects standard deviation with separate curves for

different assumed distributions.
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Figure 3.5 : Coverage rates for model-based 95% confidence intervals from the

Poisson GLMMs and CGLMMs when the true distribution is Gaussian. Each row

is a different value of the cluster size and each plot shows the coverage rate as a

function of random effects standard deviation with separate curves for different

assumed distributions. Horizontal lines at coverage rates = 0.90, 0.95 and 1.00.
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Figure 3.6 : Coverage rates for model-based 95% confidence intervals from the

Poisson GLMMs and CGLMMs when the true distribution is log-gamma. Each

row is a different value of the cluster size and each plot shows the coverage rate as

a function of random effects standard deviation with separate curves for different

assumed distributions. Horizontal lines at coverage rates = 0.90, 0.95 and 1.00.
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Figure 3.7 : Coverage rates for model-based 95% confidence intervals from the

Poisson GLMMs and CGLMMs when the true distribution is exponential. Each

row is a different value of the cluster size and each plot shows the coverage rate as

a function of random effects standard deviation with separate curves for different

assumed distributions. Horizontal lines at coverage rates = 0.90, 0.95 and 1.00.
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Figure 3.8 : Empirical mean squared error of prediction (MSEP) from the Poisson

GLMMs and CGLMMs when the true distribution is Gaussian. Each plot shows

the MSEP as a function of cluster size with separate curves for different assumed

distributions. Each panel is a different value of the random effects standard deviation.
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Figure 3.9 : Empirical mean squared error of prediction (MSEP) from the Poisson

GLMMs and CGLMMs when the true distribution is log-gamma. Each plot shows

the MSEP as a function of cluster size with separate curves for different assumed

distributions. Each panel is a different value of the random effects standard deviation.
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Figure 3.10 : Empirical mean squared error of prediction (MSEP) from the Poisson

GLMMs and CGLMMs when the true distribution is exponential. Each plot shows

the MSEP as a function of cluster size with separate curves for different assumed

distributions. Each panel is a different value of the random effects standard deviation.
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Chapter 4

On the “Poisson Trick” and its Extensions for
Fitting Multinomial Regression Models

Summary

This chapter is concerned with the fitting of multinomial regression models using

the so-called “Poisson Trick”. The work is motivated by Chen and Kuo (2001)

and Malchow-Møller and Svarer (2003) which have been criticized for being com-

putationally inefficient and sometimes producing nonsense results. We first discuss

the case of independent data and offer a parsimonious fitting strategy when all

covariates are categorical. We then propose a new approach for modelling correlated

responses based on an extension of the Gamma-Poisson model, where the likelihood

can be expressed in closed-form. The parameters are estimated via an Expecta-

tion/Conditional Maximization (ECM) algorithm, which can be implemented using

functions for fitting generalized linear models readily available in standard statistical

software packages. Compared to existing methods, our approach avoids the need to

approximate the intractable integrals and thus the inference is exact with respect to

the approximating Gamma-Poisson model. The proposed method is illustrated via a

reanalysis of the yogurt data discussed by Chen and Kuo (2001).

Keywords: Discrete choice model; Longitudinal data; Mixed logit model; Multinomial

mixed model; Nominal polytomous data; Unobserved heterogeneity.
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4.1 Introduction

Data with correlated categorical responses arise frequently in applications. This

may arise from units grouped into clusters (clustered data) or multiple measurements

taken on the same unit (longitudinal data). For instance, we might expect the unem-

ployment outcomes (employed, unemployed, not in labour force) of residents living in

the same region to be correlated, due to similar job opportunities and socioeconomic

levels. Ignoring the correlation structure and assuming that all observations are

independent by fitting an ordinary multinomial regression model may result in biased

estimates and inaccurate predictions. Multinomial mixed models can account for

correlation by using group level random effects (Daniels and Gatsonis, 1997; Hartzel

et al., 2001; Hedeker, 2003).

For multinomial mixed models, it is a common practice to assume a multivariate

normal distribution for the random effects. The multivariate normal distribution

is easy to interpret and is convenient when we want to build more complicated

correlation structures into our model. However, the resulting likelihood involves

multidimensional integrals that cannot be solved analytically. The computational

effort to evaluate the likelihood increases with the number of groups and categories,

making it not suitable for large scale applications. In fact, Lee et al. (2017a) showed

that closed-form likelihoods for multinomial mixed models do not exist regardless of

the random effect distribution, except for the special case when there are no covariates.

Various methods have been proposed to circumvent the computational obstacle for

fitting multinomial mixed models. Among them are quadrature (Hartzel et al., 2001;

Hedeker, 2003), Monte Carlo EM algorithm, pseudo-likelihood approach (Hartzel

et al., 2001) and Markov Chain Monte Carlo methods (Daniels and Gatsonis, 1997).
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Jain et al. (1994) proposed a random effects estimation approach using a discrete

probability distribution approximation. Simulation based methods such as method of

simulated moments (McFadden, 1989) and method of simulated maximum likelihood

(Gong et al., 2004; Hann and Uhlendorff, 2006) are widely used in the economet-

rics literature. Recently, Perry (2017) proposed a fast moment-based estimation

method that scales well for large samples and which arguably can be extended for

fitting multinomial mixed models. Kuss and McLerran (2007) used the fact that

the multinomial model is a multivariate binary model and exploited a procedure

proposed by Wright (1998) for model fitting. Their approach has been criticized

by de Rooij and Worku (2012) as they failed to realize that a multivariate link

function is needed in the context of multinomial models. An alternative strategy

using clustered bootstrap was subsequently proposed by de Rooij and Worku (2012).

Although some authors have considered the Dirichlet-multinomial model that results

in a closed-form likelihood, it does not allow the incorporation of individual level

covariates.

Chen and Kuo (2001) advocate using Poisson log-linear or non-linear mixed

models, both with random effects, as surrogates to multinomial mixed models. Their

method capitalizes on existing mixed models software packages for fitting generalized

linear models with random effects. This allows multinomial mixed models to be fitted

using an approximate likelihood from the Poisson surrogate models. Their results

are based on extensions of the well known “Poisson Trick” (Baker, 1994; McCullagh

and Nelder, 1989; Venables and Ripley, 2002) that relates multinomial models with

Poisson models via a respecification of the model formulae. Although clever, their

methods have been criticized for being computationally inefficient (Malchow-Møller

and Svarer, 2003; Kuss and McLerran, 2007) and sometimes producing nonsense re-

sults (Kuss and McLerran, 2007). This might be due to the intractable likelihoods of
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their models and the various approximation methods being used in different software

packages. The considerable execution time is especially problematic, where it can

take up to months to fit the model to a moderate-sized dataset (Malchow-Møller and

Svarer, 2003)! In this chapter, we propose a new approach based on an extension of

the Gamma-Poisson model (Lee et al., 2017), where the likelihood can be expressed

in closed-form. Using the proposed estimation procedure, the parameters can be

estimated via readily available packages for fitting generalized linear models.

The remaining chapter is organized as follows. Section 4.2 reviews the “Poisson

Trick” for multinomial regression models with independent responses, and suggests a

parsimonious fitting strategy when all covariates are categorical. In Section 4.3 we

propose a new approach for approximating the likelihood of multinomial regression

models with random effects. The empirical performance of the proposed model is

demonstrated via a simulation study and a reanalysis of the yogurt brand choice

dataset as discussed by Chen and Kuo (2001) in Section 5.4. Finally, we conclude

with a discussion and a summary of our findings in Section 5.5.

4.2 “Poisson Trick” for Independent Multinomial Responses

This section describes the relationship between multinomial and Poisson regression

models for independent responses, which we refer to as the “Poisson Trick”. The

results are based on the well known fact that given the sum, Poisson counts are

jointly multinomially distributed (McCullagh and Nelder, 1989).

4.2.1 Derivation

Let Yj = (Yjq)Q
q=1 be the Q × 1 response vector for observation j with the

corresponding probability vector pj = (pjq)Q
q=1, where q indexes the multinomial
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category. A common approach to satisfy the two characteristics of probability (i)

0 ≤ pjq ≤ 1 for all j and q; and (ii) ∑Q
q=1 pjq = 1 is via

pjq = ζjq/ζj+, (4.1)

where ζjq is a positive user-specified function of covariates x and fixed effects γ,

and ζj+ = ∑Q
q=1 ζjq. Depending on the type of variable under consideration, x

and γ can be indexed by various combinations of j and q (Croissant, 2013, pp.

7-8). Conditional on the multinomial sums Yj+ = ∑Q
q=1 Yjq, Yjs are independently

multinomially distributed for each j, i.e.

Yj|Yj+ ∼ M (Yj+, pj) . (4.2)

In multinomial models, Yj+ = yj+ is treated as fixed. Suppose we instead treat

Yj+ as random and assume

Yj+ ∼ P(δjζj+), (4.3)

independently for each j. This results in a multinomial-Poisson mixture with the

following joint probability function for each j:

P(Yj = yj ∩ Yj+ = yj+) = P(Yj+ = yj+)P(Yj = yj|Yj+ = yj+)

= e−δjζj+
(δjζj+)yj+

yj+! × yj+!∏
q yjq!

∏
q

(
ζjq

ζj+

)yjq

=
∏
q

{
e−δjζjq (δjζjq)yjq

yjq!

}
iff Yj+ = yj+. (4.4)

The marginal probability of Yj can then be obtained by summing the joint prob-

ability over all possible values of Yj+:

P(Yj = yj) =
∞∑

Yj+=0

∏
q

{
e−δjζjq(δjζjq)yjq

yjq!

}

=
∏
q

{
e−δjζjq(δjζjq)yjq

yjq!

}
. (4.5)
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Thus, allowing the multinomial sums to be random according to a Poisson

distribution results in

Yjq ∼ P(δjζjq), (4.6)

independently for each j and q. Summing over all observations, the log-likelihood is

∑
j

�P(δjζj+; Yj+) +
∑

j

�M (ζj; Yj|Yj+) =
∑

j

∑
q

�P(δjζjq; Yjq), (4.7)

where �P and �M denote the Poisson and multinomial log-likelihood functions re-

spectively, and ζj = (ζjq)Q
q=1. The second term on the left hand side is the model we

would like to fit, and the term on the right hand side is the model we actually fit.

To show that the Poisson surrogate model is an exact fit to the multinomial

model, first note the log-likelihood corresponding to the multinomial model is

∑
j

log(yj+!) −∑
j

∑
q

log(yjq!) +
∑

j

∑
q

yjq log ζjq −∑
j

yj+ log ζj+, (4.8)

and the log-likelihood of the Poisson surrogate model is

−∑
j

δjζj+ +
∑

j

yj+ log δj +
∑

j

∑
q

yjq log ζjq −∑
j

log(yj+!). (4.9)

Differentiating Equation 4.9 with respect to δj and setting it to 0, we obtain

δ̂j = yj+/ζj+. Plugging in the maximizing value of δj into Equation 4.9, we have

−∑
j

yj+ +
∑

j

yj+ log yj+ −∑
j

yj+ log ζj+ +
∑

j

∑
q

yjq log ζjq. (4.10)

Equation 4.10 is identical to Equation 4.8, up to an additive constant. It follows

that the maximum likelihood estimates, their asymptotic variances and tests for the

fixed effects can be exactly recovered under the Poisson surrogate model (Richards,

1961). That is, likelihood inference for ζjq is the same whether we regard Yj+ as
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fixed (multinomial) or randomly sampled from independent Poissons. This result

applies to the fixed effects model, with any parameterization of ζjq, including:

• Exponential transformations of linear combinations of categorical variables and

regression coefficients (McCullagh and Nelder, 1989; Agresti, 2013),

• Exponential transformations of linear combinations of continuous variables and

regression coefficients,

• Any monotonic transformations of linear combinations of covariates and regres-

sion coefficients,

• Nonlinear functions of covariates and regression coefficients,

• Nonparametric formulations.

The Poisson surrogate model eliminates ζj+ from the denominator of the multino-

mial probabilities. This makes sense intuitively, as we do not expect the multinomial

sums to provide any useful information in estimating the fixed effects. Given

that δ̂j can also be obtained by setting the fitted values of the multinomial sums

Ŷj+ = E(Yj+) equal to the observed counts yj+ in the Poisson surrogate model, δj has

the effect of recovering the multinomial sums. The key idea is to include a separate

constant δj for each unique combination of covariates in the Poisson surrogate models.

4.2.2 Specifying Model Formulae for Poisson Surrogate Models

For purposes of exposition, the model formulae in this section are written in

terms of the R language (R Development Core Team, 2017), although this chapter is

not concerned with software packages per se. Multinomial models are fitted using the
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multinom() function within the nnet package (Ripley and Venables, 2016); Poisson

models are fitted using the glm() function within the stats package.

For concreteness, consider the non-parallel baseline category logit models. The

“baseline category logit” assumption refers to the following: treating category 1 as the

baseline category with ζj1 = 1 ∀j without loss of generality, we model log(pjq/pj1)

= log(ζjq) as a linear function of covariates x and regression coefficients γ. This

assumption is not necessary, but chosen so that the model formulae can be illustrated

using functions within the stats package. The “non-parallel” assumption refers to

covariate effects that vary across categories (Fullerton and Xu, 2016), i.e. all elements

of the γ vector are indexed by q. That is, if the set of logits are plotted against the

covariate on the same graph, a set of straight lines with slopes that are in general

different will be obtained. Later we shall discuss cases where we relax this assumption.

Consider a hypothetical dataset with two predictors X1 and X2 (these can be

categorical or continuous) and a multinomial outcome vector Y with Q = 3 categories.

In short format, each row of data represents an observation with a 3-dimensional

outcome vector (Y1, Y2, Y3). Poisson models treat the outcomes of each observation as

independent and glm() requires data to be presented in long format. This requires an

additional factor C that denotes the category memberships. Each row now comprises

a scalar outcome, resulting in 3 rows of data per observation. The first few rows of

data in both short and long format are shown in Table 4.1.
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Table 4.1 : Multinomial data.

(a) Short format.

Obs X1 X2 Y1 Y2 Y3

1 0 0 3 5 2

2 0 1 5 5 0

3 1 0 7 2 1

4 1 1 1 3 6

– – – – – –

(b) Long format.

I X1 X2 C Y

1 0 0 1 3

1 0 0 2 5

1 0 0 3 2

2 0 1 1 5

2 0 1 2 5

2 0 1 3 0

– – – – –

Table 4.2 shows the equivalant relationship between non-parallel multinomial

models and the corresponding Poisson models, where the parameters satisfy the

usual constraints for identifiability. The Poisson surrogate models possess several

important features:

1. The model includes an indicator variable I (that corresponds to log δj in Section

4.2.1) for each observation, although this can be simplified when all covariates

are categorical. This is to ensure the exact recovery of the multinomial sums,

as the fixed sums are treated as random in the Poisson models. As a result, we

do not interpret the coefficients of I since they are just nuisance parameters.

2. The category membership indicator C enters as a covariate in the Poisson

models, where the coefficients correspond to the intercepts in the multinomial

modelsv so that the counts are allowed to vary by category.

3. The model includes interaction terms between X and C (denoted by ∗ in
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the model formula), where the coefficients correspond to the slopes in the

multinomial models. This is due to the non-parallel assumption where each

category has a separate slope, and also the fact that multinomial models treat

the response counts jointly for each observation, whereas Poisson models treat

each response count as a separate observation. It is important that these

interaction terms are included even if they are not significant. For multinomial

models where some (partial models) or all (parallel models) of the covariate

effects do not vary across categories, the equivalent Poisson models can be

obtained by modifying the interaction structure between X and C accordingly.

For instance, in parallel models where all categories share the same covariate

effects, there is no need to include the interation terms between X and C, since

the slopes do not vary across categories.

Table 4.2 : Equivalent relationship between non-parallel multinomial models and the

corresponding Poisson models.

Multinomial1 Poisson2

Y ∼ 1 Y ∼ I + C

Y ∼ X1 Y ∼ I + C + C ∗ X1

Y ∼ X1 + X2 Y ∼ I + C + C ∗ X1 + C ∗ X2

Y ∼ X1 + X2 + X1 ∗ X2 Y ∼ I + C + C ∗ X1 + C ∗ X2 + C ∗ X1 ∗ X2

1
Syntax for using multinom() in R, where data are presented in short format and Y

is a vector of response counts.
2

Syntax for using glm() in R, where data are presented in long format and Y is a

scalar response count.

When writing the model formula, it is important to specify I and C as factors
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due to their categorical nature. This can be achieved via the factor() function in R.

Special Case: Categorical Covariates

When all covariates are categorical, the model formulae in Table 4.3 offer a more

parsimonious option for fitting the Poisson models without having to estimate a

separate parameter for each observation.

Table 4.3 : Equivalent relationship between non-parallel multinomial models and the

corresponding Poisson models, when all the covariates are categorical.

Multinomial1 Poisson2

Y ∼ 1 Y ∼ C

Y ∼ X1 Y ∼ X1 + X1 ∗ C

Y ∼ X1 + X2 Y ∼ X1 ∗ X2 + X1 ∗ C + X2 ∗ C

Y ∼ X1 + X2 + X1 ∗ X2 Y ∼ X1 ∗ X2 ∗ C

1
Syntax for using multinom() in R, where data are presented in short

format and Y is a vector of response counts.
2

Syntax for using glm() in R, where data are presented in long format

and Y is a scalar response count.

As stated above, the key to achieving the 1-1 correspondence between multinomial

and Poisson models (with the same link function) is to include a separate constant

for each unique combination of covariates. For categorical covariates, this can be

achieved by including the full interaction among the predictors in the Poisson model.

When all the covariates are categorical, the interaction term has the precise effect

of pooling groups of observations with identical covariates. Fitting such models is

equivalent to fitting the observation index as a factor (Table 4.2), but the pooling
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results in a smaller effective data frame, and therefore smaller storage requirements

and faster fitting speed, with no loss of information. Of course, if there are many

factors, there may not be much saving, because it will be comparatively rare for

different observations to have all the same factor level combinations.

4.3 Extending the “Poisson Trick” for Correlated Multino-

mial Responses

4.3.1 Derivation

Consider a set of observations which fall into a collection of I groups and let

λi = (λiq)Q
q=1 be a vector-valued random effect for group i. Each observation

belongs to only a single group. Extending the notation in Section 4.2, the Q × 1

response vector for observation j in group i is Yij = (Yijq)Q
q=1, with the corresponding

probability vector pij = (pijq)Q
q=1, where pijq = λiqζijq/

∑Q
q=1 λiqζijq. Conditional on

the multinomial sums Yij+ = ∑Q
q=1 Yijq and the random effects λi, the counts are

multinomially distributed:

Yij|Yij+, λi ∼ M (Yij+, pij) . (4.11)

In analogy to the results in Section 4.2, given the random effects, we treat Yij+

as random and assume

Yij+|λi ∼ P
⎛
⎝δij

Q∑
q=1

λiqζijq

⎞
⎠ , (4.12)

independently for each i and j. This gives

Yijq|λiq ∼ P(δijλiqζijq), (4.13)

independently for each j and q. The probability argument in Equation 4.7 still holds,
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now conditional on the random effects:

∑
i

∑
j

�P
⎛
⎝δij

Q∑
q=1

λiqζijq; Yij+|λi

⎞
⎠+

∑
i

∑
j

�M (ζij; Yij|Yij+, λi)

=
∑

i

∑
j

∑
q

�P (δijλiqζijq; Yijq|λiq) , (4.14)

where ζij = (ζijq)Q
q=1. If the random effects are observed, the conditional probability

statement above imply a 1-1 exact correspondence between the multinomial and the

Poisson surrogate models. However, due to the unobserved nature of the random

effects, interest lies in the marginal distribution, obtained by integrating out the

random effects. This results in an approximate relationship between the two models.

It turns out that the marginal likelihood of the approximating Poisson surrogate

model (right hand side of Equation 4.14) can be expressed in closed-form if we

assume an independent gamma model for the random effects, with E(λiq) = αq/βq

and Var(λiq) = αq/β2
q , i.e. λiq ∼ G(αq, βq) (Lee et al., 2017a).

With this assumption for the distribution of the random effects, the marginal

likelihood of the multinomial model that we would like to fit (second term on the

left hand side of Equation 4.14) is given by

LM =
∏

i

∫
· · ·
∫ ∏

j

⎧⎨
⎩ yij+!∏

q yijq!
∏
q

⎛
⎝ λiqζijq∑Q

q=1 λiqζijq

⎞
⎠

yijq
⎫⎬
⎭×∏

q

βαq
q λ

αq−1
iq e−βqλiq

Γ(αq)
dλi1 . . . dλiQ.

(4.15)

This does not generally exhibit a closed-form solution regardless of the random effect

distribution, unless in the special cases of no covariate or with only group specific

covariates (Lee et al., 2017a). Numerical or simulation methods can be used to

approximate the likelihood, with computational efforts increasing with increasing

number of groups and categories. On the other hand, the marginal likelihood of the
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Poisson surrogate model can be expressed in closed-form:

LP =
∏

i

⎧⎨
⎩
∫

· · ·
∫ ∏

j

∏
q

e−δijλiqζijq(δijλiqζijq)yijq

yijq!
∏
q

βαq
q λ

αq−1
iq e−βqλiq

Γ(αq)
dλi1 . . . dλiQ

⎫⎬
⎭

=
∏

i

⎧⎨
⎩
∏
q

Γ(αq + yi+q)βαq
q

Γ(αq)(βq +∑
j δijζijq)αq+yi+q

×∏
j

∏
q

(δijζijq)yijq

yijq!

⎫⎬
⎭ . (4.16)

The Poisson surrogate model is an extension of the gamma-Poisson model as proposed

by Lee et al. (2017) and Lee et al. (2017a) to allow the modelling of counts for

multiple categories.

As a consequence of Equation 4.16, we have

E(Yijq) = αq

βq

δijζijq. (4.17)

Refer to the appendix for details. This is the population-averaged expected value

and is not suitable for prediction in general, as it does not take into account the

cluster effect. However, it can be useful for out of sample prediction, when there are

no samples present in a particular group.

Special Case: Var(λiq) approaches 0

When Var(λiq) approaches 0 for all q, the model reduces to the special case of no

random effects as outlined in Section 4.2, and the exact correspondence between the

multinomial and the Poisson models can be regained.

4.3.2 Identifiability

There is some lack of identifiability with the model formulation given by Equation

4.16, characterized by non-uniqueness of the maximum likelihood estimates. There

is an identifiability issue between λiq and δij, and also between λiq and the category

intercepts. To fix this, we impose the constraint of αq = 1/βq so that E(λiq) = 1. As
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a consequence, λiq ∼ G(1/βq, βq) and Var(λiq) = βq. Also, we only require a random

effect for each logit, and thus a constraint for the random effects associated with

the baseline category q = 1 is needed. Denote uiq = log λiq. Several authors such as

Agresti (2013) (pp.514) and Hartzel et al. (2001) considered a multivariate normal

distribution for the random effects, i.e. (uiq)Q
q=2 ∼ N (0, Σ), where Σ is a Q − 1 by

Q − 1 variance-covariance matrix. This is equivalent to saying that ui1 = 0 for all i,

or σ11 = 0. The equivalent statement in our proposed model is to fix λi1 = 1 for all i.

This is tantamount to saying Var(λi1) = β1 approaches 0, and thus α1 approaches

∞.

4.3.3 Prediction of Random Effects and Fitted Values

We focus on the best predictor (BP) for random effects prediction, i.e. the

predictor that minimises the overall mean squared error of prediction. McCulloch

et al. (2008) shows that the BP is given by the posterior expectation of the random

effect. Under the proposed Poisson surrogate model, the BP is given by

BP(λiq) = λ̂iq ≡ argmin
λ�

E(λiq − λ)2 := E(λiq|y), (4.18)

which can be calculated via

λ̂iq =

∫ ∞

−∞
λiqf(λiq)f(y|λiq) dλiq∫ ∞

−∞
f(λiq)f(y|λiq) dλiq

. (4.19)

Solving for the integral, the BP is

λ̂iq = Yi+q + 1/βq∑
j δijζijq + βq

, (4.20)

where Yi+q = ∑
j Yijq. λ̂iq depends on the parameters δij, γ and βq, in which we

replace by their estimators, leading to the empirical best predictor (EBP). The fitted
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values can then be defined as

Ŷijq = δijλ̂iqζijq, (4.21)

where we replace δij and ζijq by their respective estimators δ̂ij and ζ̂ijq.

4.3.4 Parameter Estimation

Consider the parameterization ζijq = exp(ηijq) which is widely adopted in practice,

where ηijq = xT
ijqγ, where xijq and γ are both vectors. The chosen index structure for

x and γ encompasses a variety of possible scenarios: (i) category-specific predictors

with generic coefficients xT
ijqγ, (ii) category-specific predictors with category-specific

coefficients xT
ijqγq, and (iii) observation-specific predictors with category-specific

coefficients xijγq. This can be achieved by creating the appropriate interaction terms

between the predictor and the category indicator variable, thus modifying the model

matrix. Note that observation-specific predictors must be paired with choice-specific

coefficients. Otherwise they will disappear in the differentiation when we consider

the log-odds.

Denote θ = (γ, (βq)Q
q=2), where γ includes the incidental parameters log(δij) for

all i and j. Algorithm 1 presents an Expectation/Conditional Maximization (ECM)

algorithm (Meng and Rubin, 1993) for parameter estimation of the Poisson surrogate

model. Refer to the appendix for a detailed derivation.

4.4 Yogurt Brand Choice Dataset

We consider the yogurt brand choice dataset previously analyzed by Jain et al.

(1994) and Chen and Kuo (2001). Jain et al. (1994) approximated the likelihood of a



63

Initialize θ.

Cycle:

while relative differences in the parameter estimates are not negligible do
E-Step: Calculate for each i and q:

λ̂
(t+1)
iq = E

(
λiq

∣∣∣(yijq)j, θ(t)
)

=
yi+q + 1/β(t)

q∑
j exijqγ(t) + 1/β

(t)
q

χ̂
(t+1)
iq = E

(
log(λiq)

∣∣∣(yijq)j, θ(t)
)

= ψ
(
yi+q + 1/β(t)

q

)
− log

⎛
⎝∑

j

exijqγ(t) + 1/β(t)
q

⎞
⎠ ,

where ψ(·) is the digamma function.

CM-Step:

• Obtain γ(t+1) by fitting a Poisson log-linear model with yijq as the response

and Xijq as the design matrix, with λ̂
(t+1)
iq as offset. Xijq includes indicator

variables for each unique combination of covariates.

• Obtain β(t+1)
q for each βq for q = 2 to Q by maximizing

∑
i

{
(1/βq − 1)χ̂(t+1)

iq − λ̂
(t+1)
iq /βq − log(βq)/βq − log Γ(1/βq)

}
,

where Γ(·) is the gamma function.

end

Algorithm 1: Expectation/Conditional Maximization (ECM) algorithm for fitting

the Poisson surrogate model.

multinomial logit model with Gaussian random effects using a discrete distribution.

Chen and Kuo (2001) approximated the multinomial logit model using the Pois-

son log-linear model and Poisson nonlinear model, both with Gaussian random effects.

The dataset consists of purchases of yogurt by a panel of 100 households in
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Springfield, Missouri, and were originally provided by A. C. Nielsen. The data

were collected by optical scanners for about two years and correspond to 2, 412

purchases. Variables collected include brand, price and presence of newspaper feature

advertisements for each purchase made by households in the panel. Price and feature

advertisements are choice-specific variables. We assume a parallel baseline logit model

by assigning generic coefficients γ to these variables, as we do not expect the effect of

price and feature advertisements on the probability of purchase to vary according to

brands. The four brands of yogurt: Yoplait, Dannon, Weight Watchers, and Hiland

account for market shares of 34%, 40%, 23%, and 3% respectively. Following Chen

and Kuo (2001), we put Hiland as the reference brand. Table 4.4 presents the yogurt

data in both long and short format. The letters ‘f’ and ‘p’ represent the feature

and price variables respectively, with the letter that follows denoting the brand. For

instance, ‘fy’ stands for ‘feature of Yoplait’ and ‘pd’ stands for ‘price of Dannon’.

We fit the models proposed in Sections 4.2 and 4.3, and compare our results to

that of Chen and Kuo (2001), fitted using the SAS macro GLIMMIX and the SAS

procedure NLMIXED. The results are presented in Table 4.5. The preference ordering

of the brands are the same for all models, i.e. Yoplait is the most preferred brand,

followed by Dannon, Weight Watchers and Hiland. The slope parameters estimates

have the expected signs for all models. An increase in price is associated with a

decrease in the probability of purchase. Feature advertisement tends to increase

the chance of purchase. The household-to-household variation in the probability of

purchase for Weight Watchers is much larger than the other brands, although none

are significant (p > 0.05).

In comparing the estimates between models, we note that the fixed effects model

is likely to produce biased estimates as it did not take into account of the correlation
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Table 4.4 : Yogurt data.

(a) Short format.

id obs yoplait dannon weight hiland fy fd fw fh py pd pw ph

1 1 0 1 0 0 0 0 0 0 0.108 0.081 0.079 0.061

1 2 0 1 0 0 0 0 0 0 0.108 0.098 0.075 0.064

1 3 0 1 0 0 0 0 0 0 0.108 0.098 0.086 0.061

– – – – – – – – – – – – – –

2 9 1 0 0 0 0 0 0 0 0.108 0.098 0.079 0.050

– – – – – – – – – – – – – –

100 2412 0 0 1 0 0 0 0 0 0.108 0.086 0.079 0.043

(b) Long format.

id obs feature price count brand

1 1 0 0.108 0 yoplait

1 1 0 0.081 0 dannon

1 1 0 0.079 1 weight

1 1 0 0.061 0 hiland

1 2 0 0.108 0 yoplait

1 2 0 0.098 1 dannon

– – – – – –

100 2412 0 0.043 1 hiland
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induced by multiple purchases from the same household. The parameter estimates

of NLMIXED and Gamma-Poisson are uniformly larger than that of GLIMMIX,

except for the intercept associated with Weight Watchers (for NLMIXED) and for

the slope associated with price (for Gamma-Poisson). The estimates of the standard

errors from NLMIXED and Gamma-Poisson are also uniformly larger than that

of GLIMMIX. These differences can be attributed to the different distributional

assumptions of the random effects, and also the different approximations used in

GLIMMIX and NLMIXED to estimate the intractable likelihood. In this regard, our

model exhibit a closed-form likelihood that allows exact inference to be performed

with respect to the approximating model.

We tried to fit a simplified version of GLIMMIX using the glmer() function within

the lme4 package in R, with just a random effect per household (ignoring the choice

effect). However, the model failed to converge within a few months, even though

Chen and Kuo (2001) claimed that the GLIMMIX model coverged in SAS.

4.5 Concluding Remarks

In this chapter, we presented methods for fitting various multinomial regression

models via the so-called “Poisson Trick” and its extensions. The “Poisson Trick”

for fitting fixed effects multinomial regression models is handy when the direct

fitting of multinomial models is not supported, for instance the INLA package (Rue

et al., 2009) in R. Murray (2017) used a related trick to derive efficient Markov

Chain Monte Carlo sampler in the context of Bayesian additive regression trees

for multinomial responses. For multinomial regression models with random effects,

there exist a variety of experience for using the existing extensions proposed by

Chen and Kuo (2001), from taking months to fit a moderate sized dataset (Malchow-
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Table 4.5 : Regression estimates for the yogurt data, and the associated standard

errors.

Random Effects

Variables Fixed Effects1 GLIMMIX2 NLMIXED3 Gamma-Poisson4

Dannon 3.716 (0.145) 3.838 (0.231) 4.130 (0.648) 4.616 (0.309)

Weight 3.074 (0.145) 2.242 (0.241) 1.046 (0.671) 3.677 (0.392)

Yoplait 4.450 (0.187) 4.626 (0.261) 4.805 (0.699) 5.275 (0.342)

Feature 0.491 (0.120) 0.730 (0.121) 0.956 (0.185) 0.785 (0.178)

Price -36.658 (2.437) -40.012 (2.562) -36.686 (3.725) -40.881 (3.778)

βDannon N/A N/A N/A 2.203 (0.134)

βW eight N/A N/A N/A 6.067 (0.374)

βY oplait N/A N/A N/A 1.918 (0.135)

1
Fitted using the glm() function in R, using the “Poisson Trick” as outlined in Section 4.2.

2
Poisson log-linear model with Gaussian random effects, fitted by Chen and Kuo (2001)

using the SAS macro GLIMMIX.
3

Poisson nonlinear model with Gaussian random effects, fitted by Chen and Kuo (2001)

using the SAS procedure NLMIXED.
4

Poisson log-linear model with Gamma (multiplicative) random effects fitted using the

ECM algorithm, as outlined in Section 4.3.

Møller and Svarer, 2003), producing nonsense results (Kuss and McLerran, 2007) to

non-convergence in our experience of fitting the yogurt brand choice dataset. We

proposed an extension of the “Poisson Trick” using Gamma (multiplicative) random

effects. In contrast to the models by Chen and Kuo (2001), our model exhibits

a closed-form likelihood and can be maximized using existing functions for fitting

generalized linear models that are stable and heavily optimized, without having to

approximate the integrals.
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Appendix

Derivation of the Population-Averaged Expected Values in Equation 4.17

Equation 4.16 is also equivalent to

∏
i

{∏
q

[
Γ(αq + yi+q)
Γ(αq)yi+q!

( ∑
j δijζijq

βq +∑
j δijζijq

)yi+q
(

βq

βq +∑
j δijζijq

)αq
]
×

∏
q

[
yi+q!∏
j yijq!

∏
j(δijζijq)yijq

(∑j δijζijq)yi+q

]}
. (4.22)

This results in two different interpretations for the extended Gamma-Poisson

surrogate model:

1. For each i and q, Yijq is independent negative multinomial N M
(

αq,
δijζijq

βq+
∑

j
δijζijq

)

(Equation 4.16).

2. For each i and q, the category sums Yi+q are independent Negative Binomial

N B
(

αq,

∑
j

δijζijq

βq+
∑

j
δijζijq

)
, and conditional on the Yi+q, Yijq is independent multi-

nomial M
(

Yi+q,
δijζijq∑
j

δijζijq

)
(Equation 4.22).

Taking expectation of both Equations 4.16 and 4.22 with respect to Yijq gives rise

to the population-averaged expected value given in Equation 4.17. The definitions of

negative multinomial and negative binomial distributions are given in the following

subsections.

Negative Multinomial Distribution

This is the distribution on the n+1 > 2 non-negative integers outcomes {X0, . . . , Xn},

with corresponding probability of occurence p = {p0, . . . , pn} and probability mass
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function

Γ
(

n∑
i=0

xi

)
px0

0
Γ(x0)

n∏
i=1

pxi
i

xi!
,

for parameters x0 > 0 and p = (pi)n
i=1, where pi ∈ (0, 1) for all i, ∑n

i=0 pi = 1 and

Γ(·) is the Gamma function. We write Y ∼ N M(x0, p). For positive integer x0,

the negative multinomial distribution can be recognized as the joint distribution of

the n-tuple {X1, . . . , Xn} when performing sampling until X0 reaches the predeter-

mined value x0. The mean vector of negative multinomial distribution is given by x0
p0

p.

Negative Binomial Distribution

This is the distribution on the non-negative integers outcome X, with corresponding

probability of occurence p and probability mass function

Γ(r + x)
x!Γ(r) (1 − p)rpx,

for parameters r > 0 and p ∈ (0, 1). We write X ∼ NB(r, p). For positive integer

r, the negative binomial distribution can be recognized as the distribution for the

number of heads before the rth tail in biased coin-tossing, but it is a valid distribution

for all r > 0. In engineering, it is sometimes called the Pólya distribution in the case

where r is not integer.

Derivation of the Expectation/Conditional Maximixation (ECM) Algo-

rithm in Section 4.3.4

Treating λ = λiq for all i and q = 2 to Q as missing data and y = yijq for all i,

j and q as observed data, the complete data is (yijq, λ). Denote θ = (γ, (βq)Q
q=2),

where γ includes the incidental parameters log(δij) for all i and j. The complete
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data log-likeliood �(θ|y, λ) is

−∑
i

∑
q �=1

λiq

⎛
⎝∑

j

exT
ijqγ

⎞
⎠+

∑
i

∑
q �=1

yi+q log λiq +
∑

i

∑
j

∑
q

xT
ijqγyijq +

∑
i

∑
j

∑
q

log(yijq!)+

∑
i

∑
q �=1

(1/βq − 1) log λiq −∑
i

∑
q �=1

λiq/βq −∑
i

∑
q �=1

log βq/βq −∑
i

∑
q �=1

log Γ(1/βq).

(4.23)

The (t + 1)th E-step involves finding the conditional expectation of the complete

data log-likelihood with respect to to the conditional distribution of λ given y and

the current estimated parameter θ(t). Straightforward algebra establishes that

λiq|yijq, θ(t) ∼ G
⎛
⎜⎝yi+q + 1/β(t)

q ,

⎛
⎝∑

j

exijqγ(t) + 1/β(t)
q

⎞
⎠

−1
⎞
⎟⎠ , (4.24)

independently for each i and q, where the gamma distribution is parameterized in

terms of scale parameter. It follows that

λ̂
(t+1)
iq = E

(
λiq

∣∣∣(yijq)j, θ(t)
)

=
yi+q + 1/β(t)

q∑
j exijqγ(t) + 1/β

(t)
q

(4.25)

χ̂
(t+1)
iq = E

(
log(λiq)

∣∣∣(yijq)j, θ(t)
)

= ψ
(
yi+q + 1/β(t)

q

)
− log

⎛
⎝∑

j

exijqγ(t) + 1/β(t)
q

⎞
⎠ .

(4.26)

Thus, in the (t + 1)th E-step, we replace λiq and χiq = log(λiq) in Equation 4.23

with λ̂
(t+1)
iq and χ̂

(t+1)
iq , giving Q(θ|θ(t)). The (t + 1)th CM-step then finds θ(t+1) to

maximize Q(θ|θ(t)) via a sequence of conditional maximization steps, each of which

maximizes the Q function over a subset of θ, with the rest fixed at its previous value.

In our application, it is natural to partition θ into γ and βq for each q = 2 to Q.

Differentiating Equation 4.23 with respect to γ, we obtain

−∑
i

∑
j

∑
q

λiqxijqe
xT

ijqγ +
∑

i

∑
j

∑
q

xijqyijq, (4.27)

which is the score equation of the Poisson log-linear model (McCullagh and Nelder,

1989) with an additional offset λiq. This allows us to leverage existing functions for
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fitting generalized linear models available in most statistical software packages for

maximizing γ in the CM step. This is an important feature as γ often contains a

huge amount of parameters in our applications, due to the inclusion the incidental

parameter log(δij) for every unique combination of covariates. Existing functions

for fitting generalized linear models are typically stable and heavily optimized, even

for a large number of parameters. Maximizing βq in the CM step for each q is

straightforward, as it only involves univariate optimization.



72

Chapter 5

Sufficiency Revisited: Rethinking Statistical
Algorithms in the Big Data Era

Summary

The big data era demands new statistical analysis paradigms, since traditional

methods often break down when datasets are too large to fit on a single desktop

computer. Divide and Recombine (D&R) is becoming a popular approach for big

data analysis, where results are combined over subanalyses performed in separate

data subsets. In this chapter, we consider situations where unit record data cannot

be made available by data custodians due to privacy concerns, and explore the

concept of statistical sufficiency and summary statistics for model fitting. The

resulting approach represents a type of D&R strategy, which we refer to as summary

statistics D&R; as opposed to the standard approach, which we refer to as horizontal

D&R. We demonstrate the concept via an extended Gamma-Poisson model, where

summary statistics are extracted from different databases and incorporated directly

into the fitting algorithm without having to combine unit record data. By exploiting

the natural hierarchy of data, our approach has major benefits in terms of privacy

protection. Incorporating the proposed modeling framework into data extraction

tools such as TableBuilder by the Australian Bureau of Statistics allows for potential

analysis at a finer geographical level, which we illustrate with a multilevel analysis

of the Australian unemployment data.

Keywords: Big Data; Distributed Database; Divide and Recombine; Generalized

Linear Mixed Model; Multilevel Model; Privacy.
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5.1 Introduction

The advent of big data has created a new research paradigm, with increasing

reliance on large-scale administrative data from both public and private sectors

(Einav and Levin, 2014). These changes have had concomitant impact on statistical

analysis. The traditional practice of performing statistical analysis using a single

combined dataset is often infeasible due to memory and storage limitations of stan-

dard computers. Adding to these issues are privacy concerns, which often render

data custodians reluctant to release unit record data. These issues combine to limit

the ability of analysts to fully unlock the actionable information in big data.

As a solution to the memory and storage limitations problem, Divide and Re-

combine (D&R) has been proposed as an effective, generic approach to statistical

analysis of big data (Guha et al., 2012). D&R involves (i) dividing data into man-

ageable subsets, (ii) performing statistical analysis independently on each subsets,

and then (iii) combining the results, typically via some form of averaging (Figure

5.1). Data are typically divided via either replicate division or conditioning variable

division (Bühlmann et al., 2016, chap. 3). Replicate division divides the data based

on random sampling without replacement, whereas conditioning variable division

stratifies the data according to one or more variables in the data. An example of

conditioning variable division is to partition disease incidence data by postal areas.

The recombination method is chosen in a way that results in the least discrepancy

compared to the all data estimate, that is, estimate obtained by using the entire

dataset. Except in very simple cases, D&R results are approximate.

DeltaRho (formerly Tessera) (Bühlmann et al., 2016, chap. 3) is an open source

implementation of D&R that combines the R statistical programming environment (R
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Figure 5.1 : The Divide and Recombine (D&R) framework.

Development Core Team, 2017) at the front end with various back end options such

as Hadoop (White, 2009) and Spark (Zaharia et al., 2010, 2012). This allows users to

scalably leverage all of the statistical methods readily available in R while abstracting

the technical programming details, making D&R more accessible to the general

statistical community. The emergence of these systems has sparked research interest

in the D&R algorithm. A selection of recent examples include Boyd et al. (2011); Chu

et al. (2013); Lubell-Doughtie and Sondag (2013); Scott et al. (2016); Chen and Xie

(2014); Kleiner et al. (2014); Minsker et al. (2014); Neiswanger et al. (2014); Xu et al.

(2014); Perry (2017); and Miroshnikov et al. (2015). In typical D&R applications,

we have unit record data where analysis on a single machine is not feasible, because

the data are either too large to store, or of moderate size but the statistical method

being used is very computationally intensive. The dataset is divided into subsets

of similar structure and the intended analysis is performed on each of the subsets.

We refer to this kind of division as horizontal D&R, where unit level data are par-

titioned in such a way that each subset holds the same variables but for different cases.
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In this chapter, we consider situations where unit record data cannot be made

available due to privacy reasons, even after personal identifiers such as name, address,

date of birth, and ID number have been removed. This situation arises often in

practice because the presence of rich information, when combined with the use of

sophisticated data mining tools, renders privacy breaching a major threat (Fienberg,

2006). This is true even after statistical disclosure control methods (Hundepool et al.,

2012) have been applied to safeguard the confidentiality of data (Sweeney, 2002;

Coull et al., 2007; Homer et al., 2008; Narayanan and Shmatikov, 2008).

As a solution, we explore the concept of statistical sufficiency and summary

statistics for model fitting. Sufficiency is a concept taught in every introductory

mathematical statistics course, but it has not been actively utilized for practical

model fitting because the need has not been there. The aim is to compress the

raw data in each subset into low dimensional summary statistics for model fitting.

We refer to this as summary statistics D&R, emphasizing the fact that unit record

data cannot be made available, as opposed to horizontal D&R. We illustrate the

concept via a multilevel model (Gelman and Hill, 2007; Goldstein, 2011) based on an

extension of the Gamma-Poisson model by Christiansen and Morris (1997). In this

context, the use of summary statistics exploits the natural grouping structure in the

data and allows the direct modeling of data from multiple sources using summary

information, without the need to combine them into a single file, thus is privacy

preserving. We apply the model to publicly available unemployment data from the

Australian Bureau of Statistics and explain the benefit of our framework in terms of

allowing analysis at a finer geographical level.
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The chapter is organized as follows. In Section 5.2, we motivate the distinction

between summary statistics D&R and horizontal D&R using simple linear regression

as an example. We then describe the proposed extended Gamma-Poisson model in

Section 5.3. In Section 5.4, the model is applied to the Australian unemployment

data. We close with some concluding remarks in Section 5.5.

5.2 Illustrative Example

A multiple linear regression takes the general form

Y = Xα + ε, ε ∼ N (0, Σ) ,

where Y is a n×1 vector of response variables, X is a n×p design matrix, α is a p×1

vector of regression parameter, ε is a n × 1 vector of independent errors, and Σ is a

n × n diagonal matrix, with common diagonal elements σ2. Standard least squares

and maximum likelihood estimates give the all data estimate α̂ =
(
XT X

)−1
XT Y .

When data are too large to fit into a single machine, we can resort to two different

approaches: (i) summary statistics D&R and (ii) horizontal D&R.

Summary statistics D&R (Figure 5.2a) includes the following steps: (i) divide the

data into S subsets of similar structure, with Y s denoting the vector of responses

in subset s and Xs the corresponding design matrix, (ii) calculate two sets of sum-

mary data for each of the subsets, i.e. XT
s Xs and XT

s Y s, then (iii) combine via(∑
s XT

s Xs

)−1∑
s XT

s Y s. Chen et al. (2006) refer to this as the regression cube

technique. The resulting aggregated estimate is exactly equivalent to the all data

estimate due to the matrix properties XT X = ∑
s XT

s Xs and XT y = ∑
s XT

s ys.

Horizontal D&R (Figure 5.2b) includes the following steps: (i) divide the data
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into S subsets of similar structure, (ii) perform independent least squares regression

on each subset to obtain α̂s = (XT
s Xs)−1XT

s Y s and then (iii) weight the results to

obtain the aggregated estimate ∑s W sα̂s/
∑

s W s. The optimal weight is obtained

using W s = XT
s Xs, which is proportional to the inverse variance-covariance matrix

of the regression parameter. This results in an aggregated estimate that is exactly

equivalent to the one obtained via the summary statistics approach. Intuitively,

using the inverse variance-covariance matrix as weight makes sense as we are giving

larger credibility to subsets with lower variability.

Summary statistics D&R differs from horizontal D&R. For summary statistics

D&R, we extract the relevant summary statistics that best summarizes data in each

subset, so that the resulting aggregated estimate is as “close” as possible to the

all data estimate. Only summary data are extracted and made available to the

analyst, rendering unit record data unnecessary. For horizontal D&R, we perform

the intended statistical analysis (linear regression in this case) independently on each

subset and choose an aggregate estimate to minimize the error. Unit record data are

typically required so that the intended analysis can be done on each subset.

For the simple case of linear regression, horizontal D&R is not materially any

different from summary statistics D&R assuming optimal weights have been used,

as both aggregated estimates are exactly equivalent to the all data estimate due

to the linearity of the estimating equation in α. However, this is generally not

true for more complicated models such as logistic regression (Xi et al., 2009) and

nonlinear estimating equations (Lin and Xi, 2011), where we can only hope to find

aggregated estimators that are consistent. We shall see in the next section that

summary statistics D&R allows the exact reproduction of regression estimates for

the extended Gamma-Poisson model, as opposed to horizontal D&R.



78

Full 
Dataset 

Subset 1 

Subset 2 

--- 

Subset S 

--- 

Divide Recombine 

Compression 
1 1

TX X 1 1

TX Y

2 2

TX Y2 2

TX X

T
S SX YT

S SX X

1

1 1

S S
T T
s s s s

s s
X X X Y

Compression 

Compression 

Compression 

Compression 

(a) Summary Statistics D&R.

Full 
Dataset 

Subset 1 

Subset 2 

--- 

Subset S 

--- 

Divide Recombine 

SLR 
1ˆ

2ˆ

ˆS

1

1

ˆ
S

s s
s
S

s
s

W

W

SLR 

SLR 

SLR 

SLR 

(b) Horizontal D&R.

Figure 5.2 : Linear Regression via Divide and Recombine (D&R).
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5.3 Extended Gamma-Poisson Model

In this section, we propose a model for correlated data that characterizes indi-

vidual level event rates as a function of both individual and area level covariates,

and show that it can be fitted using sufficient and summary statistics. Our approach

extends the Gamma-Poisson model of Christiansen and Morris (1997) to include

both individual and area level predictors. The Poisson component characterizes

the effect of individual level variables on the event rate. The Gamma component

incorporates the effects of area level covariates as well as a random component that

reflects area to area variation that is not captured by area level covariates.

5.3.1 Model Formulation

Let Yij denotes whether or not the ith individual in the jth area experienced the

event of interest and xij be the p × 1 vector of covariates measured on this individual,

with xij,1 = 1 to allow for the intercept. Given an area specific random effect bj, we

assume that Yij is independently Poisson distributed with mean λij = bj exp(xT
ijα),

where α is a p × 1 vector of unknown regression coefficients to be estimated. The

random effect bj is assumed to follow a Gamma distribution with parameters such

that the mean μj is exp(uT
j γ) and the variance is κμj, where uj is a vector of area

level covariates, γ is the corresponding vector of unknown regression parameters to

be estimated and κ is a dispersion parameter to be estimated. That is,

bj
ind.∼ Gamma

(
μj

κ
, κ
)

ind.∼ Gamma [μj, κμj] .

The random effect bj captures the deviation of the area specific rates from the

mean outcome, taking into account area level variables as well as any remaining

unexplained variation. In our formulation, bj > 1 corresponds to a positive devia-
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tion of area j from the mean rate, whereas 0 < bj < 1 corresponds to a negative

deviation. Note that we parameterize the Gamma distribution in terms of an area

specific mean parameter μj > 0 and a constant scale parameter κ > 0. The round

parentheses indicate the standard shape and scale parameterization of the Gamma

distribution, whereas the square brackets indicate the mean and variance formulation.

We choose to model the binary response variable with a Poisson model, as the

Poisson distribution is a good approximation to the Binomial distribution when

dealing with relatively rare events (events where the chance of a success on any

particular trial is small) such as unemployment and heart disease. The Poisson

model is often preferred because the covariate effects can be directly interpreted as

risk ratios due to the log canonical link. Although we focus on the case where Yij is

a binary 0 or 1 variable, extension to the more general case where Yij can be any

integer counts is straightforward.

5.3.2 Model Fitting using Summary Data

With some straightforward algebra, the log-likelihood function �(α, γ, κ; y) can

be written as

�(α, γ, κ; y) =
∑

j

⎛
⎝ ∑

i:Yij=1
xT

ijα

⎞
⎠+

∑
j

{
−μj

κ
log(κ) − log Γ

(
μj

κ

)
+ log Γ

(
ωj + μj

κ

)
−
(

ωj + μj

κ

)
log
[ nj∑

i=1
exT

ijα + 1
κ

]}
.

The log-likelihood is a function of a few sufficient and summary statistics from

various databases. Figure 5.3 presents a summary diagram of the data requirement

to obtain the maximum likelihood estimates via the Newton-Raphson algorithm. For

individuals who experienced the event, the summary data required are:
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1. For categorical variables, the number of people who had the event within every

level of individual level variables of interest; for continuous variables, the sum

of individual level variables of interest across all individuals who experienced

the event. For the gender (categorical) and age (continuous) variables, this

translates into the number of events among either males or females and the

sum of ages for all individuals who experienced the event. Technically we write

this as XT
event1, where Xevent is a M × p matrix where each row comprises

a row vector of covariates for one of the M individuals who experienced the

event of interest. Hence XT
event1 is simply the column totals of Xevent.

2. The number of subjects who had the event in each area, defined as ωj for area

j.

The summary data above only need to be computed once, since they do not

depend on any unknown model parameters being estimated. Technically these are

sufficient statistics (Casella and Berger, 2002). For the dataset on the population at

risk, three sets of summary statistics are required from each area j. These involve

summations over all individuals living in the common area, rendering individual level

data unnecessary. These are not sufficient statistics since they involve the unknown

parameter α. A similar process applies for the area dataset. At each iteration of

the algorithm, likelihood contributions are computed as functions of these summary

statistics, leading to an improved value of the unknown parameters. The process

repeats until convergence.

As an illustration, the framework can be applied to hospital variation studies

whose goal is to quantify variation in hospital admission rates as a function of a

variety of individual level factors such as age, gender, medical history, as well as

hospital level factors such as proportion of interns, ratio of residents to beds, hospital



82

Population at 
Risk 

Individuals 
with Event 

Group 
Characteristics 

 
α γ 

 Analysis 

α  

α  

α  

γ  

 

DATASETS 

T
eventX 1

Figure 5.3 : Data requirement to obtain the maximum likelihood estimates of the

extended Gamma-Poisson model via the Newton-Raphson algorithm. Only a few

sufficient and summary statistics are required without needing to access the unit

record data.

resources and area level socio-economic advantage. Patients’ data are confidential

and hospitals are obliged to protect them. De-identifying individual level data is not

sufficient to prevent disclosure, and analysts who wish to obtain the data have to

go through an ethics application, which can be time consuming if not impossible.

However, hospitals may be quite willing to provide the sufficient and summary

statistics required by the proposed framework. These summaries are then passed to

an analysis computer via a network, which returns an improved value of the unknown
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parameters and passed back to the hospitals to compute a new set of summary

statistics. The process iterates until convergence.

5.3.3 Parameter Initialization

A good starting value is essential to ensure proper convergence. Here, we propose

an initialization process for the regression coefficients using summary data. Assuming

an independence structure, the parameters of standard log-linear Poisson models can

be estimated via the Newton-Raphson algorithm

α ← α + (XT W X)−1XT A(Y − μ),

where A = diag
(
Var(Yij) dηij

dμij

)
and W = A

( dηij

dμij

)−1
, with η being the link function.

For log-linear models where the outcome is either a success or a failure, A =

diag(1) and Y = 0, 1. Thus, the equation above can be rewritten as:

α ← α + (XT
popW Xpop)−1(XT

event1 − XT
popμ),

where Xevent and Xpop are the design matrices for individuals with event and

the entire population at risk respectively, μ = exp(Xpopα) and W = diag(μ).

Thus, we only require a set of sufficient statistics for all individuals with event(
XT

event1
)

and two sets of summary statistics for the population at risk for each area(
XT

j W jXj ∀j and XT
j μj ∀j

)
, due to the matrix properties XT W X = ∑

j XT
j W jXj

and XT μ = ∑
j XT

j μj.

These sufficient and summary statistics coincide with those in Figure 5.3. In other

words, the same set of sufficient and summary statistics can be used for parameter

initialization and model fitting.
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5.4 Application: Australian Unemployment Data

The dependence of the extended Gamma-Poisson model on only a few sufficient

and summary statistics allows the fitting of detailed statistical models without

actually having access to unit record data. This has important applications in

terms of privacy protection in distributed databases, which we illustrated using the

hypothetical hospital variation studies example in Section 5.3.2. This section aims to

demonstrate the benefit of incorporating the proposed modeling framework into data

extraction tools such as TableBuilder by the Australian Bureau of Statistics (ABS).

We obtain the Australian unemployment data from TableBuilder, an online

tool by the ABS whereby users can build cross-classifications of census variables

for geographical areas as defined in the Australian Statistical Geography Standard

(ASGS) (Australian Bureau of Statistics, 2012). We wish to explore whether individ-

uals living in areas in 2011 that had higher socio-economic advantage prior to the

Global Financial Crisis (2007-8) have more resilience to unemployment, adjusting

for individual level variables such as sex, age, high school completion and identifying

as an indigenous Australian. The individual level variables sex, age, high school

completion and indigenous status in 2011 are cross-classified according to Statistical

Area Level 4 (SA4). SA4 is chosen in this context as it was originally designed for

the outputs of the Australian Labour Force Survey. For a measure of socio-economic

advantage, we use the Index of Relative Advantage and Disadvantage (IRSAD) (Aus-

tralian Bureau of Statistics, 2008) that can be obtained from the ABS in a separate

database. High values of IRSAD indicate high social advantage, and vice versa.

We use IRSAD values from the 2006 Census, the most recent Census preceeding 2011.

We now have data on individuals with events and population at risk from Table-
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Builder, and data on area level covariates from a separate ABS database. Available

packages for fitting multilevel models in standard statistical softwares such as lme4

(Bates et al., 2015) in R (R Development Core Team, 2017) require data to be

combined (Figure 5.4a). This results in unnecessary repetition of area level covari-

ates over multiple rows (see the shaded cells in Figure 5.4a). With the extended

Gamma-Poisson model, we can avoid the step of combining these data into a single

large design matrix by computing just a few summary statistics directly from each

dataset (Figure 5.4b).

Moreover, privacy legislation precludes anyone apart from ABS employees from

having access to individual level census data. Only confidentialized tabular data

can be made available to researchers, whereby the counts are randomly adjusted to

reduce the risk of disclosure (O’Keefe, 2008; Leaver, 2009). This means that we need

to be cautious when using data from tables with small cell counts, since they are

likely to be unreliable. This is especially true for the event counts (denoted by r in

Figure 5.4a), even more when the event under consideration is rare or when there

are many cross-classifications. In our application, it would be ideal to model at the

finer SA3 level as it provides a more detailed analysis compared to the Australian

Labor Force Survey. However, small cell counts prevents us from doing so. In this

regard, extending tools such as TableBuilder to only output the sufficient statistics

of individuals with event required by the Gamma-Poisson model would be useful

(Figure 5.4b).

We fit the extended Gamma-Poisson model to the unemployment data, and

compare the results with the Normal-Poisson model fitted on the combined data using

the lme4 package (Bates et al., 2015) in R (R Development Core Team, 2017). The

estimates and standard errors produced by both models are very similar. The results,
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Data on Population at Risk 

Area Level Data 

Area Sex Age HS Indigenous N 

A-CH 1 20-24 1 0 5952 

A-CH 1 20-24 1 1 24 

A-CH 1 20-24 0 0 1206 

A-CH 1 20-24 0 1 78 

A-CH 1 20-24 1 0 6171 

A-CH 1 20-24 1 1 18 

--- --- --- --- --- --- 

A-N 1 20-24 1 0 6321 

A-N 1 20-24 1 1 76 

Summary Statistics of Individuals with Event 

Area IRSAD 

A-CH 1053 

A-N 929 

--- --- 

Number of events in Area A-CH 5348 

Number of events in Area A-N 9228 

etc. etc. 

Sex 229317 

Age 25-29 66456 

Age 30-34 52631 

Age 35-39 51354 

Age 40-44 50102 

Age 45-49 45479 

Age 50-54 39301 

Age 55-59 31890 

High School Completion (HS) 244479 

Indigenous 21900 

ANALYSIS 

Hypothetical Individual Level Data Area Level Data 

Area IRSAD 

A-CH 1053 

A-N 929 

A-S 994 

A-W 950 

ACT 1094 

Ballarat 950 

B-Y-MN 918 

Bendigo 949 

--- --- 

Combined Data 

Area Sex Age HS Indigenous IRSAD r N 

A-CH 1 20-24 1 0 1053 649 5952 

A-CH 1 20-24 1 1 1053 3 24 

A-CH 1 20-24 0 0 1053 158 1206 

A-CH 1 20-24 0 1 1053 0 78 

A-CH 1 25-29 1 0 1053 336 6171 

A-CH 1 25-29 1 1 1053 0 18 

--- --- --- --- --- --- --- --- 

A-N 1 20-24 1 0 929 586 6321 

A-N 1 20-24 1 1 929 30 76 

Area Sex Age HS Indigenous 

A-CH 1 20-24 1 0 

A-CH 1 20-24 1 0 

A-CH 1 20-24 1 0 

A-CH 1 20-24 1 1 

A-CH 1 20-24 0 0 

A-CH 1 20-24 0 0 

--- --- --- --- --- 

A-N 1 20-24 1 0 

A-N 1 20-24 1 1 

ANALYSIS 

A B 

Figure 5.4 : Data requirement. (A) Existing software packages for fitting multilevel

models require the individual and area level data to be combined into a single file

before performing analysis. This results in the unnecessary repetition of area level

variables as indicated by the shaded cells. (B) By using the extended Gamma-Poisson

model, datasets are analyzed directly without the need to combine them. In addition,

for individuals who experienced the event, the model only requires sufficient statistics

instead of the full dataset.

summarized in Table 5.1, reveal some interesting patterns. Unemployment rates

are lower for males (p < 0.001) and tend to decrease with age. The unemployment
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rate of a person who completed high school is 36.87% lower than for a person who

did not complete high school (p < 0.001). The unemployment rate of indigenous

Australians is 115.98% higher than non-indigenous Australians, even after controlling

for education (p < 0.001), demonstrating the continued need to reduce economic

disadvantage for this community. After adjusting for individual level characteristics,

area level measures of social advantage have only a modest impact (p = 0.138) on

unemployment rates. However, there remains significant area-to-area variation in

unemployment rates.

5.5 Concluding Remarks

The chapter argues that statistical sufficiency and summary statistics offer an

attractive framework in the big data era, especially in the setting of large-scale ad-

ministrative databases where privacy concerns prevent general access to unit record

data. The concept is illustrated via an extended Gamma-Poisson multilevel model.

The model works by gathering relevant pieces of summary information required for

construction of the log-likelihood directly from the separate data sources. This is a

natural solution since the relevant data are often drawn from different sources anyway.

For example, epidemiologists often augment their study populations with information

about the communities in which their study participants live. Such community-level

variables might be obtained from a national census or from other surveys. As another

example, information about the study population may come from different hospital

administrative databases, held locally at the respective hospitals. Sharing these

databases among hospitals might not be possible due to privacy reasons. Aside

from offering benefits in terms of privacy protection, incorporating the model into

data extraction tools such as TableBuilder allows for potential analysis at a finer

geographical level.
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Normal-Poisson Gamma-Poisson

Parameter Est SE Est SE

αo (Intercept) -2.06* 0.028 -2.03* 0.027

α1 (Female) Reference Group

α1 (Male) -0.06* 0.003 -0.06* 0.003

α2 (age 20 to 24) Reference Group

α2 (age 25 to 29) -0.51* 0.005 -0.51* 0.005

α3 (age 30 to 34) -0.70* 0.005 -0.70* 0.005

α4 (age 35 to 39) -0.80* 0.005 -0.80* 0.005

α5 (age 40 to 44) -0.92* 0.006 -0.92* 0.006

α6 (age 45 to 49) -1.03* 0.006 -1.03* 0.006

α7 (age 50 to 54) -1.11* 0.006 -1.11* 0.006

α8 (age 55 to 59) -1.10* 0.007 -1.10* 0.007

α9 (Not completed High School) Reference Group

α9 (Completed High School) -0.46* 0.003 -0.46* 0.003

α10 (Not Indigenous) Reference Group

α10 (Indigenous) 0.77* 0.007 0.77* 0.007

γ (IRSAD) -0.04 0.027 -0.04 0.027

σ2 0.07 N/A N/A N/A

κ N/A N/A 0.06* 0.010

*Significant at p < 0.001.

Table 5.1 : Estimates and standard errors based on the Australian unemployment

data, fitted using the Normal-Poisson model and the extended Gamma-Poisson

model. “Est” and “SE” correspond to the estimates and standard errors, respectively.
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The ideas discussed in this chapter bear some connection to symbolic data anal-

ysis (Billard and Diday, 2006), where data are compressed into distributions such

as hyperrectangles or histograms, rather than a single summary. The main dif-

ference is that in symbolic data analysis, exact statistical analysis is performed

using approximate data (e.g., loss of information when summarizing individual data

points into histograms); whereas in our Gamma-Poisson model, exact analysis is

performed using exact data (using summary statistics does not result in any loss

of information under the Gamma-Poisson model, compared to using unit record data).

The proposed model has the potential to become a valuable addition to the

statistician’s toolbox in the quest to make better use of the ever increasing volumes

of data being generated in the big data era (Einav and Levin, 2014). More generally,

the model and analysis we developed and implemented in this chapter are examples

of rethinking classic statistical ideas for model fitting in the big data era. There is

great potential for developing new algorithms that can be used in the analysis of

large administrative databases. For example, in the case of vertical D&R, where

data are partitioned in such a way that each partition hold a subset of the variables

for the common individuals, there is still considerable methodological work to be

done. It would be good to see more of these developments happening in the statistics

literature.
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Supplementary Materials

Derivation of the fitting algorithm for the extended Gamma-Poisson model

In this section, we derive the fitting algorithm for the extended Gamma-Poisson

model proposed in Section 5.3. The likelihood function �(α, γ, κ; y) is obtained by

integrating out the random effects. Under our proposed model, the likelihood can be

solved explicitly. Straightforward algebra establishes that the likelihood equation is

a function of a few sufficient and summary statistics.

∏
j

{∫ [( nj∏
i=1

f(yij|bj)
)

f(bj)
]

dbj

}

=
∏
j

{∫ [( nj∏
i=1

e−λij λ
yij

ij

yij!

)
f(bj)

]
dbj

}

=
∏
j

{∫ [( nj∏
i=1

e−λij λ
yij

ij

)
f(bj)

]
dbj

}

=
∏
j

{∫ [( nj∏
i=1

e−bj exp(xT
ijα)b

yij

j e(xT
ijα)yij

)
f(bj)

]
dbj

}

=
∏
j

{ nj∏
i=1

e(xT
ijα)yij

∫ [( nj∏
i=1

e−bj exp(xT
ijα)b

yij

j

)
f(bj)

]
dbj

}

=
∏
j

⎧⎪⎨
⎪⎩
∏

i:Yij=1
exT

ijα
∫ ⎡⎢⎣

⎛
⎜⎝e

−bj

nj∑
i=1

exp(xT
ijα)

b
ωj

j

⎞
⎟⎠ f(bj)

⎤
⎥⎦ dbj

⎫⎪⎬
⎪⎭ ,

where the second equality follows from the fact that Yij is either 0 or 1. i : Yij = 1

and ωj represents individuals who had the event of interest in area j and the total

number of subjects who had events (Yij = 1) in area j. Since f(bj) is Gamma

distributed, the integral term in the likelihood function can be expressed as
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∫ ⎡⎢⎣e
−bj

nj∑
i=1

exp(xT
ijα)

b
ωj

j

1
κ

μj
κ Γ(μj

κ
)
b

μj
κ

−1
j e− bj

κ

⎤
⎥⎦ dbj

= 1
κ

μj
κ Γ(μj

κ
)

∫ ⎡⎢⎣b
(ωj+

μj
κ

)−1
j e

−
[ nj∑

i=1
exp(xT

ijα)+ 1
κ

]
bj

⎤
⎥⎦ dbj

= 1
κ

μj
κ Γ(μj

κ
)
Γ
(

ωj + μj

κ

) [ nj∑
i=1

exT
ijα + 1

κ

]−(ωj+
μj
κ )

,

where Γ(·) is the Gamma function given by Γ(x) =
∫∞

0 ux−1e−udu. The integral in the

second line equals to one when scaled appropriately, as the integrand represents the

kernel of a Gamma distribution with shape parameter (ωj + μj

κ
) and scale parameter[ nj∑

i=1
exT

ijα + 1
κ

]−1
.

It follows that the likelihood L(α, γ, κ; y) is

∏
j

⎧⎪⎨
⎪⎩
⎛
⎝ ∏

i:Yij=1
exT

ijα

⎞
⎠ 1

κ
μj
κ Γ(μj

κ
)
Γ
(

ωj + μj

κ

) [ nj∑
i=1

exT
ijα + 1

κ

]−(ωj+
μj
κ )
⎫⎪⎬
⎪⎭

and the log-likelihood �(α, γ, κ; y) is

�(α, γ, κ; y) =
∑

j

⎛
⎝ ∑

i:Yij=1
xT

ijα

⎞
⎠

+
∑

j

{
−μj

κ
log(κ) − log Γ

(
μj

κ

)
+ log Γ

(
ωj + μj

κ

)
−
(

ωj + μj

κ

)
log
[ nj∑

i=1
exT

ijα + 1
κ

]}
.

Maximum likelihood estimates (MLE) of α, γ and κ can be obtained by differen-

tiating the log-likelihood with respect to each of α, γ and κ and set the derivatives

simultaneously to zero. First we define some symbols that will ease our calculation.
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We already defined μj(γ) = exp(uT
j γ). Now denote

cj(γ, κ) = ωj + μj

κ

bj(α, κ) =
nj∑

i=1
exp(xT

ijα) + 1
κ

hj(α) =
nj∑

i=1
exp(xT

ijα)xij hT
j (α) =

nj∑
i=1

exp(xT
ijα)xT

ij

Gj(α) =
nj∑

i=1
exp(xT

ijα)xijx
T
ij.

Using the definitions above, the log-likelihood �(α, γ, κ; y) can be re-written as

�(α, γ, κ; y) ∝ 1T Xeventα +
∑

j

{
−μj

κ
log(κ) − log Γ

(
μj

κ

)
+ log Γ (cj) − cj log(bj)

}
,

where the arguments of the newly defined functions are left out on purpose for

simplicity. The score vector S(α, γ, κ) (vector of the first partial derivatives of the

log-likelihood function) is ⎛
⎜⎜⎜⎜⎜⎜⎝

Sα(α, γ, κ)

Sγ(α, γ, κ)

Sκ(α, γ, κ)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the Hessian matrix H(α, γ, κ) (matrix of the second partial derivatives of the

log-likelihood function) is
⎛
⎜⎜⎜⎜⎜⎜⎝

Hαα(α, γ, κ) Hαγ(α, γ, κ) Hακ(α, γ, κ)

Hγα(α, γ, κ) Hγγ(α, γ, κ) Hγκ(α, γ, κ)

Hκα(α, γ, κ) Hκγ(α, γ, κ) Hκκ(α, γ, κ)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The components of the score vector and the Hessian matrix are derived in the

following.
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Score and Hessian Contribution from α

Relevant terms of the log-likelihood are

1T Xeventα −
q∑

j=1
cj log(bj).

It follows that the score equation, Sα(α, γ, κ) is

XT
event1 −

q∑
j=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩cj

nj∑
i=1

(exT
ijαxij)

bj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= XT
event1 −

q∑
j=1

cjhj

bj

.

The α component of Hessian matrix, Hαα(α, γ, κ) is

−
q∑

j=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩cj ×

bj

nj∑
i=1

(exT
ijαxijx

T
ij) − hj

[ nj∑
i=1

(exT
ijαxT

ij)
]

b2
j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
q∑

j=1

{
cj × hjh

T
j − bjGj

b2
j

}
.

Score and Hessian Contribution from γ

Relevant terms of the log-likelihood are

q∑
j=1

{
−μj

κ
log(κ) − log Γ

(
μj

κ

)
+ log Γ(cj) − μj

κ
log(bj)

}
.

Denote the Digamma and Trigamma functions by ψ(x) = d
dx

log Γ(x) = Γ′(x)
Γ(x) and

ψ′(x) = d
dx

ψ(x) = d2

dx2 log Γ(x) respectively. It follows that the score equation,
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Sγ(α, γ, κ) is
q∑

j=1

{
−μj

κ
log(κ)uj − μj

κ
ujψ

(
μj

κ

)
+ μj

κ
ujψ(cj) − μj

κ
uj log(bj)

}

=
q∑

j=1

{
μj

κ
uj

[
− log(κ) − ψ

(
μj

κ

)
+ ψ(cj) − log(bj)

]}
.

The γ component of Hessian matrix, Hγγ(α, γ, κ) is
q∑

j=1

{
μj

κ
uj

[
− μj

κ
uT

j ψ′
(

μj

κ

)
+ μj

κ
uT

j ψ′(cj)
]

+ μj

κ
uju

T
j

[
− log(κ) − ψ

(
μj

κ

)
+

ψ(cj) − log(bj)
]}

=
q∑

j=1

{
μj

κ
uju

T
j

[
μj

κ

(
−ψ′

(
μj

κ

)
+ ψ′(cj)

)
− log(κ) − ψ

(
μj

κ

)
+ ψ(cj) − log(bj)

]}
.

Score and Hessian Contribution from κ

Relevant terms of the log-likelihood are
q∑

j=1

{
−μj

κ
log(κ) − log Γ

(
μj

κ

)
+ log Γ(cj) − cj log(bj)

}
.

It follows that the score equation, Sκ(α, γ, κ) is
q∑

j=1

{
− μj

[
1
κ2 − 1

κ2 log(κ)
]

−
(

−μj

κ2

)
ψ
(

μj

κ

)
+
(

−μj

κ2

)
ψ(cj) −

[
cj

bj

(
− 1

κ2

)
−

μj

κ2 log(bj)
]}

=
q∑

j=1

{
μj

κ2

[
−1 + log(κ) + ψ

(
μj

κ

)
− ψ(cj) + log(bj)

]
+ cj

bjκ2

}
.

The κ component of Hessian matrix, Hκκ(α, γ, κ) is
q∑

j=1

{
μj

κ2

[
1
κ

− μj

κ2 ψ′
(

μj

κ

)
+ μj

κ2 ψ′(cj) − 1
κ2bj

]
−

2μj

κ3

[
−1 + log(κ) + ψ

(
μj

κ

)
− ψ(cj) + log(bj)

]
− bjμj + cj(2bjκ − 1)

b2
jκ4

}
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=
q∑

j=1

{
μj

κ3

[
3 − μj

κ
ψ′
(

μj

κ

)
+ μj

κ
ψ′(cj) − 1

κbj

+ 2
(

− log(κ) − ψ
(

μj

κ

)
+ ψ(cj)−

log(bj)
)]

bjμj + cj(2bjκ − 1)
b2

jκ4

}}
.

Hessian Contribution from Off Diagonal Elements

Hαγ(α, γ, κ) is given by

−
q∑

j=1

{
hj

bj

μju
T
j

κ

}
.

Hακ(α, γ, κ) is given by

−
q∑

j=1

{
hj

bj(−μj

κ2 ) − cj(−1
κ2 )

b2
j

}

= −
q∑

j=1

{
hj(bjμj − cj)

κ2b2
j

}
.

Hγκ(α, γ, κ) is given by

−
q∑

j=1

{
μjuj

κ

[
−1

κ
+ μj

κ2 ψ′
(

μj

κ

)
− μj

κ2 ψ′(cj) +
1

κ2

bj

]
− μjuj

κ2

[
− log(κ) − ψ

(
μj

κ

)
+

ψ(cj) − log(bj)
]}

= −
q∑

j=1

{
μjuj

κ2

[
− 1 + μj

κ
ψ′
(

μj

κ

)
− μj

κ
ψ′(cj) + 1

κbj

+ log(κ) + ψ
(

μj

κ

)
− ψ(cj)+

log(bj)
]}

.

Note that all components of the score vector and Hessian matrix are functions of

all parameters α, γ and κ. Although explicit solutions cannot be found when we
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set the score vector to zero, we have derived analytic expression for the first and

second derivatives. Thus, the equations can be solved numerically. Newton-Raphson

method is chosen as it is a popular root-finding algorithm.

Denote θ to be ⎛
⎜⎜⎜⎜⎜⎜⎝

α

γ

κ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The iterative scheme for finding the maximum likelihood estimate of θ is given

in Algorithm 2. Standard error of the MLE of θ can then be obtained by taking the

square root of the corresponding diagonal elements of the inverse Hessian matrix H−1.

We also incorporate the step-halving procedure (in the second while statement) in

Algorithm 2 to facilitate convergence. If a Newton-Raphson step leads to a decrease

in the log-likelihood, the change in parameter estimates is repeatedly halved until

the updated estimates result in an increase in the log-likelihood. Step-halving is

widely implemented in many statistical routines to alleviate convergence issues, such

as within the glm function in the stats package and within the glm2 function in the

glm2 package (Marschner, 2014) in R.
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Initialize θ.

Input: 2 sets of sufficient statistics for individuals with event
(
XT

event1; ωj ∀j
)
.

Cycle:

while relative differences in �(θ) is not negligible do
Input: 3 sets of summary statistics for population at risk for each area:
∑n

i=1 exp(xT
ijα) ∀j; exp(xT

ijα)xij ∀j; exp(xT
ijα)xijx

T
ij ∀j;

1 summary statistics for each area: exp(uT
j γ) ∀j;

θm = θm−1 − {H(θm−1)}−1{S(θm−1)};

if κ < 0 then

set κ = very small value (we use 0.001);

end

while �(θm) − �(θm−1) < 0 do

set θm = (θm−1 + θm)/2;

end

end

Algorithm 2: Iterative scheme for obtaining the maximum likelihood estimates

for the extended Gamma-Poisson Model.
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Chapter 6

Outlook

In this thesis we have proposed a class of modelling framework for generalized linear

mixed models (GLMMs) that is able to incorporate unit-level covariates while main-

taining a closed-form representation of the marginal likelihood. We focus primarily

on two-level data where the random effects are mapped uniquely onto the grouping

structure and are independent between groups. We refer to the proposed framework

as conjugate generalized linear mixed models (CGLMMs). For multinomial mixed

models that do not belong to the CGLMMs framework, we developed an approxi-

mating approach based on Poisson CGLMMs and derived an estimation procedure

that exploit existing functions for fitting generalized linear models. The proposed

CGLMMs framework is applied to discrete choice models and privacy preservation in

large-scale administrative databases. We also compared the performance of GLMMs

(with normal random effects) vs. CGLMMs (with log-gamma random effects) in terms

of estimation of fixed effects and prediction of random effects. Under a Poisson dis-

tribution, the performance of GLMMs vs. CGLMMs is shown to be quite comparable.

Here we provide a high level summary of the opportunities for further research in

this field:

• Bayesian approach: This thesis restricted attention to the frequentist paradigm,

but it is arguable that the methodologies developed can also be applied to the

Bayesian setting.

• Multinomial mixed models vs. supervised classification methods: Compare the
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classification performance of multinomial mixed models vs. supervised learning

methods such as linear discriminant analysis, support vector machines, tree

classifiers, random forests and nearest neighbour classifiers, for the case of

correlated responses.

• Privacy: Derive methodologies for fitting GLMMs via sufficient and sum-

mary statistics, where the marginal likelihood is approximated via Laplace

approximation or Penalized Quasi-Likelihood.

• Small area estimation: Extend the results of Chapter 5 for complex surveys

using a pseudolikelihood approach to accommodate inverse probability weights.

Overall, this thesis has made significant advances in inferential tools for correlated

data. The proposed CGLMMs framework adds to the existing models for correlated

data, and can be a good alternative when dealing with a large amount of data and/or

privacy is of a concern.
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