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Pd Density of PVDF material

Tm Membrane pore tortuosity

r Total flow rate of condensate at the bottom of the condensing surface
air Air

cf Condensate film

cp Cooling plate

f Feed

fl Fluid

gap Air gap

m Porous membrane

Si Solid membrane
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ABSTRACT

In recent decades, many regions of the world suffer from water scarcity, which is one of
the most critical issues in the world. The main challenge is to supply fresh water to
water shortage regions. In addition, waterborne illness has been caused through the
consumption of the contaminated drinking water in these regions. Seawater desalination
is one of the alternative ways to produce freshwater. However, current desalination
technologies like reverse osmosis (RO), multi-stage flash (MSF), and multi-effect
distillation (MED) have several issues such as high energy consumption, a low recovery
rate of total water, and large footprint. Among the several techniques to replace
conventional desalination techniques, membrane distillation (MD) is one of the
promising technologies. Currently, microfiltration (MF) membranes are implemented
for MD application due to their suitable pore size distribution. However, some
properties of MD are still needed to be enhanced, especially the high hydrophobicity to
avoid membrane pore wetting and high porosity to increase permeate flux. With the
development of nanotechnology, electrospinning is becoming a promising technology to
fabricate hydrophobic and highly porous membranes. Thus, the objectives of this
dissertation are to fabricate a suitable membrane for MD technology by electrospinning

technique.

Novel nanofiber membranes fabricated by electrospinning technique are herein
proposed for MD application to treat seawater and RO brine from coal seam gas (CSG)
produced water. The electrospun membrane could be tailored to have
superhydrophobicity, high porosity, adequate pore sizes and narrow pore size
distribution, and thin thickness, so it could be used in applications of high-performance

MD process. To further improve the MD performance of the electrospun membranes,
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three different methods were considered: (i) Janus-type hydrophobic/hydrophilic
nonwoven membrane to reduce mass transfer resistance, (ii) nano-materials embedded
membrane to improve liquid entry pressure (LEP), and (iii) surface modification of

electrospun membranes to treat challenging wastewater sources.

Janus-type hydrophobic/hydrophilic dual-layer nanofiber nonwoven membranes were
initially fabricated by a facile electrospinning technique and applied for desalination by
air gap MD (AGMD). As-spun neat single and dual-layer nanofiber membranes
composed of a hydrophobic polyvinylidene fluoride-co-hexafluoropropylene (PH) top
layer with different supporting hydrophilic layer made of either polyvinyl alcohol
(PVA), nylon-6 (N6), or polyacrylonitrile (PAN) nanofibers were fabricated with and
without heat-press post-treatment. Surface characterization showed that the active layer
(i.e., PH) of all electrospun nanofiber membranes (ENMs) exhibited a rough, highly
porous (>80% porosity), and hydrophobic surface (CA > 140°), while the other side was
hydrophilic (CA<90°) with varying porosity. Heat-pressing the membrane resulted to
thinner thickness (from >129 um to <100 pm) and smaller pore sizes (<0.27 um). The
AGMD experiments in a cross-flow set up were carried out with constant inlet
temperatures at the feed and permeate streams of 60 + 1.5 and 20 + 1.5 °C, respectively.
The AGMD module had a membrane area of 21 ¢cm’® and the thickness of the air gap
was 3 mm. The neat single and dual-layer ENMs showed a water permeate flux of about
10.9 ~ 15.5 L/m* h (LMH) using 3.5 wt % NaCl solution as feed, which was much
higher than that of a commercial PVDF membrane (~ 6 LMH). The provision of a
hydrophilic layer at the bottom layer enhanced the AGMD performance depending on

the wettability and characteristics of the support layer. The PH/N6 dual-layer nanofiber
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membrane prepared under the optimum condition showed flux and salt rejection of 15.5

LMH and 99.2 %, respectively, which has good potential for AGMD application.

Three different nanomaterials were incorporated in polymeric solutions for the
improvement of liquid entry pressure (LEP), which were carbon nanotubes (CNTs),
graphene, and hexagonal boron nitride (h-BN). Firstly, superhydrophobic, robust, mixed
PH nanofiber membranes were fabricated incorporating CNTs as nanofillers to impart
additional mechanical and hydrophobic properties. The electrospun membrane has been
designed to have two cohesive layers, a thin CNT/PH top layer and a thick neat PH
bottom layer. Through different characterization techniques, CNTs were found to be
widely distributed on/in the nanofibers, where more beads-on-string were formed at
higher CNT content. However, the beads-on-string did not significantly affect the
membrane porosity and pore size, as well as did not degrade the MD performance.
Highly-porous structure was observed for all membranes and the nanofiber membrane
showed comparable pore sizes with a commercial flat-sheet PVDF membrane but at a
much higher porosity (>85%). The contact angle increased to higher
superhydrophobicity at 158.5° upon the incorporation of 5 wt% CNTs in the nanofiber
due to increased roughness and added effect of hydrophobic CNTs. The liquid entry
pressure also increased when 5 wt% CNT was added compared to the neat PH nanofiber
membrane. The resulting flux of the 5 wt% CNT-incorporated nanofiber membrane (24-
29.5 L/m’h) was consistently higher than the commercial PVDF membrane (18-18.5
L/m’h), with an average increase of 33-59% depending on the feed water type (35 or 70
g/L NaCl solution) without compromising the salt rejection (>99.99%). The present
nanofiber membranes containing CNTs with one-step electrospinning fabrication show

high potential for direct contact MD (DCMD) desalination application.

XXVi



The following study demonstrated the development of a graphene-loaded electrospun
nanofiber membrane and evaluation of their desalination performance in AGMD.
Different concentrations of graphene (0-10 wt%) were incorporated in/on electrospun
PH membrane to obtain a robust, and superhydrophobic nanocomposite membrane. The
results showed that graphene incorporation has significantly enhanced the membrane
structure and properties with an optimal concentration of 5 wt% (i.e., G5PH).
Characterization of G5PH revealed membrane porosity of >88%, contact angle of >162°
(superhydrophobic), and high LEP of >186 kPa. These favorable properties led to a high
and stable AGMD flux of 22.9 L/m’*h or LMH (compared with ~4.8 LMH for the
commercial PVDF flat-sheet membrane) and excellent salt rejection (99.99%) for 60 h
of operation using 3.5 wt% NaCl solution as feed (feed and coolant inlet temperatures
of 60 and 20°C, respectively). A two-dimensional dynamic model to investigate the flux
profile of the graphene/PH membrane is also introduced. The present study suggests
that exploiting the interesting properties of nanofibers and graphene nanofillers through
a facile electrospinning technique provides high potential towards the fabrication of a

robust and high-performance MD membrane.

Another study focused on h-BN embedded nanofiber membrane to maintain flux
stability in a long-term AGMD process. The hexagonal lattices of the BN nanoparticles
(BNNPs) were modified by hydroxide-assisted ball milling without damage occurred
during the exfoliation processes, and they were encapsulated in PH electrospun
nanofiber membrane. Characteristics of the BN-PH membrane indicated almost similar
regarding membrane thickness, fiber size, porosity and pore size. However, contact
angle (153.2°) and LEP (214 kPa) of the BN-PH membrane were higher than that of the

neat PH membrane, which showed that the BN-PH membrane could have less wetting
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issues compared with the neat PH membrane. Besides, thermal conductivity of the neat
PH and BN-PH was 0.025 W/mK and 0.009 W/mK, respectively, as expected that the
BN-PH membranes could lead to a high MD water vapor flux performance due to
reduced mass transfer resistance and also reduction in conductive heat loss via the
membrane. The initial water vapor flux of the neat PH membrane was 11.42 LMH,
however, it suffered wetting problem in less than 4 h operation. On the other hand, the
BN-PH membrane showed a stable water vapor flux (18 LMH) and salt rejection
(99.99%) performances even after 280 h of MD operation. This membrane has a good
potential for long-term application of MD for seawater. Future interest in this study may
be to find a mechanism for the improved water vapor flux performance of the BNNPs

enabled electrospun nanofiber MD membrane.

MD process is also considered to treat wastewater or other challenging wastewater such
as the one from textile, dye, and oil industries. However, MD membranes should be
improved for preventing membrane wetting issues commonly caused by low surface
tension liquids such as surfactants, benzene, methanol, and hexane. Thus, this study
described the development and performance of an omniphobic poly(vinylidene fluoride)
(PVDF) membrane fabricated by electrospinning and surface-modified by CF4 plasma,
for AGMD. The effect of different duration of plasma treatment on the nanofiber
membrane characteristics was investigated. The AGMD performance of the membranes
was evaluated using real RO brine produced from CSG produced water that was added
with low surface tension liquid (surfactant) as feed solution. Results indicated the
formation of new CF,-CF, and CF; bonds after plasma treatment, which lowered the
surface energy of the membrane, providing omniphobic property, as indicated by its

wetting resistance to different low surface tension liquids such as methanol, mineral oil
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and ethylene glycol. Though no appreciative changes in morphology of the membrane
were observed after plasma treatment, optimal treatment condition of 15 min (i.e., P/CF-
15 membrane) exhibited lotus effect membrane surface with increased LEP of 187 kPa
compared to 142 kPa for neat membrane. AGMD performance showed stable
normalized flux (initial flux of 15.3 L/m’h) and rejection ratio (99.99%) for P/CF-15
even with the addition of up to 0.7 mM sodium dodecyl sulfate surfactant to the RO
brine from CSG produced water feed, while commercial PVDF membrane suffered
membrane wetting after 0.3 mM of surfactant addition. Based on the results, the present
omniphobic membrane has good potential for producing clean water from challenging

waters containing high salinity and organic contaminants.

The aim of this study is the development of suitable electrospun nanofiber membranes
for MD. This study mainly focuses on the newly-developed one-dimensional and two-
dimensional nano-materials embedded nanofiber membranes, which suffer less wetting
issue and have improved water vapor flux performance in MD. It also investigates a
simple surface modification technique to generate anti-wetting property on the
membrane surface. Overall, this author successfully fabricated several electrospun
nanofiber membranes with enhanced water vapor flux and stable salt rejection
performances for the treatment of seawater, seawater RO brine and CSG RO brine by
MD applications. The fabricated electrospun nanofiber membranes exhibited better
performances than the commercial PVDF membranes due to their suitable morphologies
and characteristics for MD application. Thus, proper membranes were fabricated which
led to enhanced membrane properties such as superhydrophobicity and anti-wetting
property. And their MD performances have been compared with the ones in the

previous reports. This study may therefore contribute to future MD researches regarding
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using electrospinning for the developments of a commercial electrospun nanofiber MD

membrane.
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