

University of Technology Sydney FACULTY OF ENGINEERING

DESIGN AND FABRICATION OF NOVEL NANOFIBER MEMBRANES VIA ELECTROSPINNING TECHNIQUE FOR MEMBRANE DISTILLATION

by

YUNCHUL WOO

A Thesis submitted in fulfilment for the degree of **Doctor of Philosophy**

School of Civil and Environmental Engineering Faculty of Engineering and Information Technology University of Technology Sydney (UTS) New South Wales, Australia

June 2017

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date: 30/06/2017

ACKNOWLEDGEMENTS

First of all, I really appreciate my beloved wife, Hyelim Kim, for her sacrifice in support of my PhD study. Also, I would like to thank my parents (Mr. Kwanghee Woo and Mrs. Yookyung Kim) as they were continuously supporting and encouraging me. Without their support, I could not achieve a successful PhD study outcome.

I would like to express my heartfelt gratitude to my supervisor A/Prof. Ho Kyong Shon for giving me the opportunity to work with him at University of Technology Sydney (UTS). I will gratefully remember his unswerving encouragement, great mentorship, and strong support. Without his consistent guidance, this thesis would not have been possible. I would also like to thank my other supervisor, Dr. Leonard D. Tijing for his kind support and help during my study. He is a wonderful supervisor and I thank him for all his support and advices during my PhD. I appreciate their consistent support with inspiring optimism that guided me through this challenging journey. I also thank Dr. Sherub Phuntsho and A/Prof. Wang-Geun Shim for their support and encouragement during my study when I was facing very hard, stressful, and challenging moments. Their advices gave me the light and encouragement to keep up the momentum. I would also like to thank my MS supervisor Prof. Han-Seung Kim for his advices and encouragement in my PhD study.

I am very thankful to the external research collaboration groups that gave me chances to work with them. I would like to thank Dr. June-Seok Choi at Korea Institute of Civil Engineering and Building Technology for his support as well as the invitations to the seminars in his institution. Also, I want to acknowledge Prof. Tao He at Shanghai Advanced Research Institute, A/Prof. Alicia An at City University of Hong Kong, Prof. Seung-Hyun Kim at Kyungnam University, Prof. Long D. Nghiem at University of Wollongong, A/Prof. Sangho Lee at Kookmin University, Prof. Seungkwan Hong at Korea University, and Prof. Enrico Drioli at Institute on Membrane Technology in the University of Calabria for giving me the chances to work with their groups. I also thank Dr. Dong-Han Seo at CSIRO, Dr. Ming Xie at Victoria University, Hung C. Duong at University of Wollongong, Dr. Eui-Jong Lee at Sungkyunkwan University, and Jeong Jun Lee at Myongji University for working with me.

Thanks to my friends and research group members at UTS who made this journey memorable. I want to thank Dr. Youngjin Kim, Dr. Laura Chekli, Dr. Soleyman Sahebi, Dr. Tahir Majeed, Dr. Mohammad Shahid, Dr. Jihye Kim, Minwei Yao, Jiawei Ren, Myoung Jun Park, Jung-Eun Kim, Sungil Lim, Youngkwon Choi, David Inhyuk Kim, Seungho Kook, Fezeh Lotfi, and Aaron Katz. I would like to acknowledge Mohammed Johir for his help in the laboratory. And the administrative support from Van, Trish and Viona are gratefully acknowledged as well.

My sincere thanks are passed to my examiners: Prof. Mikel Duke from Victoria University and Prof. Xiwang Zhang from Monash University for reviewing my PhD thesis and research findings. I also wish to thank the FEIT research administration officers for their help in facilitating my PhD studies.

Last but not least, I would like to thank the University of Technology Sydney (UTS) for offering me an IRS scholarship towards the completion of this thesis. My PhD research was also supported by a grant (17IFIP-B065893-05) from the Industrial Facilities & Infrastructure Research Program funded by the Ministry of Land, Infrastructure and Transport of the Korean government – my grateful thanks to them.

Book chapters and Journal Articles Published or Submitted**

- L. D. Tijing, <u>Y. C. Woo</u>, M. Yao, J. Ren and H. K. Shon, 'Electrospinning for membrane fabrication: Strategies and applications' in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, *Elsevier*, 2017
- *<u>Y. C. Woo</u>, C. Ying, L. D. Tijing, T. He, J. –S. Choi, S. –H. Kim and H. K. Shon, CF₄ Plasma-Modified Omniphobic Electrospun Nanofiber Membrane for Produced Water Brine Treatment by Membrane Distillation, *Journal of Membrane Science*, 529 (2017) 234-242
- E. –J. Lee, B. J. Deka, J. Guo, <u>Y. C. Woo</u>, H. K. Shon and A. K. An, Engineering the re-entrant hierarchy and surface energy of PDMS-PVDF membrane for membrane distillation using a facile and benign microsphere coating, *Environmental Science & Technology*, 51 (2017) 10117-10126
- M. Yao, <u>Y. C. Woo</u>, L. D. Tijing, C. Cesarini and H. K. Shon, Improving Nanofiber Membrane Characteristics and Membrane Distillation Performance of Heat-Pressed Membranes via Annealing Post-Treatment, *Applied Sciences*, 7(1) (2017) 78-88
- Y. Kim, S. Li, L. Chekli, <u>Y. C. Woo</u>, C. –H Wei, S. Phuntsho, N. Ghaffour, T. Leiknes and H. K. Shon, Assessing the removal of organic micro-pollutants from anaerobic membrane bioreactor effluent by fertilizer-drawn forward osmosis, *Journal of Membrane Science*, 533 (2017) 84-95
- E. –J. Lee, A. K. An, P. Hadi, S. Lee, <u>Y. C. Woo</u> and H. K. Shon, Advanced multi-nozzle electrospun functionalized TiO₂/PVDF hybrid membranes for direct contact membrane distillation, *Journal of Membrane Science*, 524 (2017) 712-720

- *<u>Y. C. Woo</u>, L. D. Tijing, M. J. Park, M. Yao, J. -S. Choi, S. Lee, S. -H. Kim,
 K. –J. An, and H. K. Shon, Electrospun dual-layer nonwoven membrane for desalination by air gap membrane distillation, *Desalination*, 403 (2017) 187-198
- J. Ren, <u>Y. C. Woo</u>, M. Yao, L. D. Tijing and H. K. Shon, Enhancement of nanoscale zero-valent iron immobilization onto electrospun polymeric nanofiber mats for groundwater remediation, *Process Safety and Environmental Protection*, (2017) In-press (DOI: http://dx.doi.org/10.1016/j.psep.2017.04.027)
- Y. Kim, <u>Y. C. Woo</u>, S. Phuntsho, L. D. Nghiem, H. K. Shon and S. Hong, Evaluation of fertilizer-drawn forward osmosis for coal seam gas reverse osmosis brine treatment and sustainable agricultural reuse, *Journal of Membrane Science*, 537 (2017) 22-31
- *<u>Y. C. Woo</u>, L. D. Tijing, W. -G. Shim, J. –S. Choi, S. –H. Kim, E. Drioli, T. He and H. K. Shon, Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation, *Journal of Membrane Science*, 520 (2016) 99-110
- 11. <u>Y. C. Woo</u>, Y. Kim, W. -G. Shim, L. D. Tijing, M. Yao, L. D. Nghiem, J. -S. Choi, S. -H. Kim and H. K. Shon, Effects of graphene on the properties and performance of PVDF flat-sheet membrane for treatment of RO brine from CSG produced water by air gap membrane distillation, *Journal of Membrane Science*, 513 (2016) 74-84
- 12. E. –J. Lee, A. K. –J. An, T. He, <u>Y. C. Woo</u> and H. K. Shon, Electrospun nanofibrous membranes incorporated with fluorosilane coated TiO2

nanocomposite for direct contact membrane distillation, *Journal of Membrane Science*, 520 (2016) 145-154

- *L. D. Tijing, <u>Y. C. Woo</u>, W. -G. Shim, J. -S. Choi, T. He, S. -H. Kim, and H. K. Shon, Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation, *Journal of Membrane Science*, 502 (2016) 158-170
- M. Yao, <u>Y. C. Woo</u>, L. D. Tijing, W. -G. Shim, J. -S. Choi, S. -H. Kim and H. K. Shon, Effect of heat-press conditions on electrospun membranes for desalination by direct contact membrane distillation, *Desalination*, 378 (2016) 80-91
- <u>Y. C. Woo</u>, J. J. Lee, W. -G. Shim, H. K. Shon, L. D. Tijing, M. Yao and H. –S. Kim, Effects of powdered activated carbon on integrated submerged membrane bioreactor nanofiltration process for wastewater reclamation, *Bioresource Technology*, 210 (2016) 18-25
- J. J. Lee, <u>Y. C. Woo</u>, J. -S. Kang, C. Y. Kang and H. -S. Kim, Effect of various pretreatments on the performance of nanofiltration for wastewater reuse, *Desalination and Water Treatment*, 57 (2016) 7522-7530
- S. Sahebi, S. Phuntsho, <u>Y. C. Woo</u>, M. J. Park, L. D. Tijing, S. Hong, H. K. Shon, Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane, *Desalination*, 389 (2016) 129-136
- *L. D. Tijing, <u>Y. C. Woo</u>, J. -S. Choi, S. Lee, S. -H. Kim and H. K. Shon, Fouling and its control in membrane distillation- A review, *Journal of Membrane Science*, 475 (2015) 215-244
- 19. <u>Y. C. Woo</u>, J. J. Lee, L. D. Tijing, H. K. Shon, M. Yao and H. -S. Kim, Characteristics of membrane fouling by consecutive chemical cleaning in

pressurized ultrafiltration as pre-treatment of seawater desalination, *Desalination*, 369 (2015) 51-61

- J. J. Lee, <u>Y. C. Woo</u> and H. -S. Kim, Effect of driving pressure and recovery rate on the performance of nanofiltration and reverse osmosis membranes for the treatment of the effluent from MBR, *Desalination and Water Treatment*, 54 (2015) 3589-3595
- L. D. Tijing, <u>Y. C. Woo</u>, M. A. H. Johir, J. -S. Choi and H. K. Shon, A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation, *Chemical Engineering Journal*, 256 (2014) 155-159

** Publications made during the PhD candidature including articles not entirely related to the Thesis. * Articles related to the Thesis.

Conference papers and presentation

- <u>Y. C. Woo</u>, M. Yao, L. D. Tijing, J. –S. Choi and H. K. Shon, Superhydrophobic co-axial electrospun nanofiber membranes for seawater desalination by direct contact membrane distillation, 2017 International Congress on Membranes and Membrane Processes (ICOM 2017), 29 July ~ 04 August, 2017, San Francisco, USA
- <u>Y. C. Woo</u>, L. D. Tijing, M. Yao, J. –S. Choi and H. K. Shon, Surface-modified omniphobic membranes for treatment of challenging waters by membrane distillation, 2017 International Congress on Membranes and Membrane Processes (ICOM 2017), 29 July ~ 04 August, 2017, San Francisco, USA

- <u>Y. C. Woo</u>, M. Yao, L. D. Tijing, J. –S. Choi and H. K. Shon, Superhydrophobic membranes via co-axial electrospinning for long-term membrane distillation operation, *Engineering With Membranes (EWM2017)*, April 26 ~ 28, 2017, Singapore, Singapore
- <u>Y. C. Woo</u>, M. Yao, L. D. Tijing, J. –S. Choi and H. K. Shon, Co-axial nanofiber membranes for seawater desalination by membrane distillation, 3rd *International Conference on Desalination using Membrane Technology*, April 2 ~ 5, 2017, Gran Canaria, Spain
- <u>Y. C. Woo</u>, Y. Kim, M. Yao, L. D. Tijing, J. –S. Choi, S. –H. Kim and H. K. Shon, Omniphobic membrane to treat reverse osmosis brine from coal seam gas produced water by membrane distillation, *The 9th International Membrane Science and Technology Conference (IMSTEC 2016)*, December 5 ~ 8, 2016, Adelaide, Australia
- <u>Y. C. Woo</u>, M. Yao, L. D. Tijing, J. –S. Choi, S. –H. Kim and H. K. Shon, Omniphobic membrane using layer-by-layer technique to treat RO brine from CSG produced water by AGMD, *The 9th International Desalination Workshop (IDW 2016)*, November 13 ~ 15, 2016, Abu Dhabi, UAE
- <u>Y. C. Woo</u>, L. D. Tijing, M. Yao, J. –S. Choi and H. K. Shon, Treatment of RO brine from CSG-produced water using graphene/PVDF flat-sheet membrane distillation, *IWA World Water Congress & Exhibition (IWA-WWC&E 2016)*, October 09 ~ 13, 2016, Brisbane, Australia
- <u>Y. C. Woo</u>, Omniphobic electrospun nanofiber membrane for the treatment of reverse osmosis brine from coal seam gas produced water via membrane distillation, *The Faculty of Engineering and IT Research Showcase 2016*,

University of Technology Sydney (UTS), September 14, 2016, Sydney, Australia

- <u>Y. C. Woo</u>, L. D. Tijing, M. Yao and H. K. Shon, Graphene/PVDF membrane for the treatment of RO brine from coal seam gas produced water by membrane distillation, *The 5th IWA Regional Conference on Membrane Technology* (*IWA-RMTC 2016*), August 22 ~ 24, 2016, Kunming, China
- <u>Y. C. Woo</u>, M. Yao, L. D. Tijing and H. K. Shon, Fabrication of graphene enhanced membranes for brine treatment from coal seam gas (CSG) produced water by air gap membrane distillation, *The 10th Aseanian Membrane Society* (AMS7), July 26 ~ 29, 2016, Nara, Japan
- <u>Y. C. Woo</u>, L. D. Tijing, M. Yao, E. Drioli and H. K. Shon, Robust omniphobic electrospun nanofiber membrane for air gap membrane distillation, *EDS Desalination for the Environment: Clean Water and Energy*, May 22 ~ 26, 2016, Rome, Italy
- 12. <u>Y. C. Woo</u>, L. D. Tijing, J. –S. Choi, S. –H. Kim and H. K. Shon, Effects of new materials on the properties and performance of electrospun membranes for membrane distillation, *EDS Desalination for the Environment: Clean Water and Energy*, May 22 ~ 26, 2016, Rome, Italy
- L. D. Tijing, <u>Y. C. Woo</u>, M. Yao and H. K. Shon, Evaluation of the potential and performance of superhydrophobic multicomponent nanofiber, 2016 *Membrane distillation and related technologies workshop*, January 15, 2016, Sydney, NSW, Australia.
- Y. C. Woo, Y. Kim, W. –G. Shim, L. D. Tijing, M. Yao, L. D. Nghiem, J. –S. Choi and H. K. Shon, Treatment of reverse osmosis brine produced from coal

seam gas (CSG) using membrane distillation, *2nd International Conference on Desalination and Environment*, January 23 ~ 26, 2016, Doha, Qatar.

- 15. Y. Kim, W. –G. Shim, <u>Y. C. Woo</u>, L. Chekli, S. Phuntsho and H. K. Shon, Selection of fertilizers as a draw solute for fertilizer-drawn forward osmosis – anaerobic membrane bioreactor hybrid system, 2nd International Conference on Desalination and Environment, January 23 ~ 26, 2016, Doha, Qatar.
- L. D. Tijing, <u>Y. C. Woo</u>, J. –S. Choi and H. K. Shon, Evaluation of the potential and performance of superhydrophobic multicomponent nanofiber, 2015 *AMTA/AWWA Membrane Technology Conference & Exposition*, March 2 ~ 5, Orlando, FL, United States (US).
- H. K. Shon, L. D. T., <u>Y. C. Woo</u>, M. Yao and K. –J. An, Dual-layer electrospun nanofibrous membrane for direct contact membrane distillation, *12th IWA Leading Edge Conference on Water and Wastewater Technologies*, May 30 ~ June 3, 2015, Hong Kong, China.
- <u>Y. C. Woo</u>, L. D. Tijing, M. Yao and H. K. Shon, Nanofiber membranes for membrane distillation: Potential and performance, *ICMAT 2015 & IUMRS-ICA 2015*, June 28 to July 03, 2015, Singapore, Singapore.
- L. D. Tijing, <u>Y. C. Woo</u>, J. –S. Choi and H. K. Shon, Electrospun nanocomposite membrane for membrane distillation, *2IWMD 2015*, July 01 to 04, 2015, Ravello, Italy
- 20. <u>Y. C. Woo</u>, L. D. Tijing, M. Yao, J. –S. Choi and H. K. Shon, Nanomaterialincorporated nanofiber membranes for membrane distillation: Potential and Performance, 2nd International Conference on Desalination on using Membrane Technology, July 26 to 29, Singapore, Singapore

- 21. P. Hadi, K. -Jin An, E. J. Lee, <u>Y. C. Woo</u> and H. K. Shon, Functionalized CNT nanocomposite electrospun PVDF membrane for desalination by air gap membrane distillation, 2nd International Conference on Desalination on using Membrane Technology, July 26 to 29, Singapore, Singapore
- 22. <u>Y. C. Woo</u>, Y. Kim, W. –G. Shim, L. D. Tijing, M. Yao, J. –S. Choi, L. D. Nghiem, S. –H. Kim and H. K. Shon, Preparation and fabrication of graphene-enabled cast membrane for the treatment of RO brine from CSG produced water by AGMD, *The 8th International Conference on Challenges in Environmental Science & Engineering (The 8th CESE)*, Sep 28 ~ Oct 2, 2015, Sydney, Australia.
- 23. <u>Y. C. Woo</u>, J. J. Lee, L. D. Tijing, W. –G. Shim, H. K. Shon, J. –S. Kang and H. –S. Kim, Effect of powdered activated carbon (PAC) on the performance of submerged membrane bioreactor (SMBR) nanofiltration (NF) integrated process for wastewater reclamation, *The 8th International Conference on Challenges in Environmental Science & Engineering (The 8th CESE)*, Sep 28 ~ Oct 2, 2015, Sydney, Australia.
- 24. <u>Y. C. Woo</u>, L. D. Tijing, M. Yao, J. –S. Choi, and H. K. Shon, Nanofiber membranes for air gap membrane distillation desalination: Two-layer design and incorporation of graphene, *The 8th International Conference on Challenges in Environmental Science & Engineering (The 8th CESE)*, Sep 28 ~ Oct 2, 2015, Sydney, Australia.
- 25. M. Yao, <u>Y. C. Woo</u>, L. D. Tijing, W. –G. Shim, J. –S. Choi, and H. K. Shon, Effect of heat-press conditions on electrospun membranes for desalination by air gap membrane distillation, *The 8th International Conference on*

Challenges in Environmental Science & Engineering (The 8th CESE), Sep 28 ~ Oct 2, 2015, Sydney, Australia.

- 26. <u>Y. C. Woo</u>, M. Yao, Y. Kim, L. D. Tijing, W. –G. Shim J. –S. Choi, S. –H. Kim, L. D. Nghiem and H. K. Shon, RO brine treatment from coal seam gas (CSG) produced water by membrane distillation, *International Desalination Workshop 2015 (IDW2015)*, Nov 18 to 21, 2015, Jeju island, Republic of Korea
- 27. L. D. Tijing, <u>Y. C. Woo</u>, J. –S. Choi and H. K. Shon, High-flux membrane distillation using two-layer microporous nanofiber membranes via an electrospinning fabrication, *The 10th International Congress on Membranes and Membrane processes (ICOM 2014)*, July 20 ~ 25, 2014, Suzhou, China.
- 28. L. D. Tijing, <u>Y. C. Woo</u>, J. –S. Choi and H. K. Shon, Electrospun nanofibers with superhydrophobic properties for high flux and high rejection membrane distillation process, *The 7th International Conference on Challenges in Environmental Science & Engineering (The 7th CESE)*, October 12 ~ 16, 2014, Johor Bahru, Malaysia.
- L. D. Tijing, <u>Y. C. Woo</u>, M. Yao, J. –S. Choi and H. K. Shon, Electrospun superhydrophobic nanofiber membranes for membrane distillation desalination, *The 7th International Desalination Workshop (7th IDW 2014)*, November 5 ~ 8, 2014, Jeju, Republic of Korea.
- 30. M. Yao, <u>Y. C. Woo</u>, L. D. Tijing, J. –S. Choi and H. K. Shon, Heat-press effect to electrospun nanofibrous membrane for seawater desalination by membrane distillation, *The 7th International Desalination Workshop (7th IDW 2014)*, November 5 ~ 8, 2014, Jeju, Republic of Korea.

- 31. J. J. Lee, <u>Y. C. Woo</u>, R. C. Eusebio, C. –Y. Kang, Y. –S. Kim and H. –S. Kim, Effect of various pretreatments on the performace of nanofiltration for wastewater reuse, *The 7th International Desalination Workshop (7th IDW* 2014), November 5 ~ 8, 2014, Jeju, Republic of Korea.
- L. D. Tijing, <u>Y. C. Woo</u>, J. –S. Choi and H. K. Shon, Potential of electrospun composite nanofibers as superhydrophobic membranes for enhanced membrane distillation performance, *4th MSA ECR Membrane Symposium*, November 29 ~ 21, 2014, Melbourne, Australia.
- 33. L. D. Tijing, <u>Y. C. Woo</u>, J. –S. Choi and H. K. Shon, Superhydrophobic PVDFco-HFP nanofibrous membrane containing MWNTs for desalination by direct contact membrane distillation, *4th IWA Regional Conference on Membrane Technology 2014*, December 3 ~ 6, Ho Chi Minh City, Vietnam.
- 34. <u>Y. C. Woo</u>, L. D. Tijing, J. –S. Choi and H. K. Shon, Hydrophobic/hydrophilic dual-layer electrospun nanofibrous membranes for air gap membrane distillation, *4th IWA Regional Conference on Membrane Technology 2014*, December 3 ~ 6, Ho Chi Minh City, Vietnam.

Presentation made during the PhD candidature including proceedings, oral and poster presentations.

LIST OF ABBREVIATIONS

2D	Two-dimensional
AD	Adsorption desalination
AED	Adsorption energy distribution
AFM	Atomic force microscopy
AGMD	Air gap membrane distillation
APS	Accelerated precipitation softening
ATR-FTIR	Attenuated total reflectance – Fourier transform infrared spectroscopy
BaSO ₄	Barium sulfate
BET	The Brunauer-Emmett-Teller
BJH	The Barrett-Joyner-Halenda
BNNPs	Boron nitride nanoparticles
BTEAC	Benzyltriethylammonium chloride
CA	Contact angle
Ca(OH) ₂	Calcium hydroxide
CaCO ₃	Calcium carbonate
CaSO ₄	Calcium sulfate
CBD	Coal bed methane
CDI	Capacitive deionization
CFP	Capillary flow porometry
CNTs	Carbon nanotubes
COD	Chemical oxygen demand
C-PVDF	Commercial PVDF membrane
CSG	Coal seam gas

CuO	Copper oxide
DC	Direct current
DCMD	Direct contact membrane distillation
DI	De-ionized
DMF	N, N-dimethylformamide
DS	Draw solution
EDX	Energy dispersive x-ray spectroscopy
ENM	Electrospun nanofiber membrane
ERD	Energy recovery device
FeCl ₃	Ferric chloride
FO	Forward osmosis
FOHC	The FO-RO hybrid Desalination Research Center
FS	Feed solution
GMVP	The Global MVP project
G/PH	Graphene/Polyvinylidene fluoride-co-hexafluoropropylene
GO	Graphene oxide
GOR	Gain output ratio
HA	Humic acid
HC1	Hydrochloric acid
h-BN	The hexagonal boron nitride
iCVD	Initiated chemical vapor deposition
IP	Interfacial polymerization
IPA	Isopropanol
KORAE	The Korean Optimized RO desalination for Advanced Energy saving
LEP	Liquid entry pressure

LiCl	Lithium chloride
MBR	Membrane bioreactor
MCDI	Membrane capacitive deionization
MCr	Membrane crystallization
MDBR	Membrane distillation-membrane bioreactor
MED	Multi-effect distillation
MEMD	Multi-effect membrane distillation
MD	Membrane distillation
MF	Microfiltration
MGMD	Material gap membrane distillation
MSF	Multi-stage flash
MWNTs	Multi-walled nanotubes
N6	Nylon-6
NaCl	Sodium chloride
NaOH	Sodium hydroxide
NCC	Nanocrystalline cellulose
NIPS	Non-solvent induced phase separation
NOMs	Natural organic matters
NTIPS	Non-solvent with thermally induced phase separation
OCM	Orthogonal collocation method
ODEs	Ordinary differential equations
OMW	Olive mill wastewater
PA	Polyamide
PAC1	Polyaluminum chloride
PAM	Polypropylene acid ammonium
	XVI

- PAN Polyacrylonitrile
- PDEs Partial differential equations
- PDMS Polydimethylsiloxane
- PEI Polyetherimide
- PES Polyethersulfone
- PET Polyethylene terephthalate
- PGMD Permeate gap membrane distillation
- PH Polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP)
- PP Polypropylene
- PRO Pressure retarded osmosis
- PS Polystyrene
- PSD Pore size distribution
- PSf Polysulfone
- PTFE Polytetrafluoroethylene
- PVA Polyvinyl alcohol
- PVAc Polyvinyl acetate
- PVC Polyvinyl chloride
- PVDF Polyvinylidene fluoride
- PVDF-CTFE Poly(vinylidene fluoride-co-chlorotrifluoroethylene)
- RCW Recirculating cooling water
- RED Reverse electrodialysis
- RF Radio frequency
- RO Reverse osmosis
- SA Sliding angle
- SAED Selected area electron diffraction

SCCM	Standard cubic centimetre per minute
SDS	Sodium dodecyl sulfate
SEC	Specific energy consumption
SEM	Scanning electron microscopy
SFE	Surface free energy
SGMD	Sweeping gas membrane distillation
SiO ₂	Silicon dioxide
SMM	Surface modifying macromolecules
SrSO ₄	Strontium sulfate
SUS	Stainless steel
SWRO	Seawater reverse osmosis
ТВ	Tri-bore
TCD	Tip-to-collector distance
TCM	Traditional Chinese medicine
TEM	Transmission electron microscopy
TIPS	Thermally induced phase separation
TiO ₂	Titanium oxide
TFC	Thin film composite
TGA	Thermogravimetric analysis
TOC	Total organic carbon
TPC	Temperature polarization coefficient
TSS	Turbidity and fine particulates
UF	Ultrafiltration
UTM	Universal testing machine
VIPS	Vapor induced phase separation

xviii

- VMD Vacuum membrane distillation
- VMEMD Vacuum multi effect membrane distillation
- VODE Variable coefficient ordinary differential equation
- XPS X-ray photoelectron spectroscopy
- XRD X-ray diffraction

LIST OF SYMBOLS

Α	Effective area of the membrane
С	Cold fluid
C _{AGMD}	Mass transfer coefficient
C _{AGMD-G}	Mass transfer coefficient related with the graphene effect
C _p	Permeate concentration
C_f	Feed concentration
C _m	Membrane mass transfer coefficient
C _p	Specific heat capacity
D_{AB}	Water vapor diffusion coefficient
d_h	Equivalent hydraulic diameter
$Flux_E$	Flux of each point
Flux _I	Flux of the initial point
g	Gravity
h	Heat transfer coefficient
Н	Hot fluid
I_D	D band
I_G	G band
J	Water vapour flux
J _{AGMD}	Water vapour flux by AGMD
J _{AGMD-G}	Water vapour flux by AGMD with graphene effect
J/J _o	Normalized flux
k _x	Transversal thermal conductivity
kz	Axial thermal conductivity

L	Channel length
LMH	L/m ² h
M_w	Molecular mass of water
Pavgm	Log mean air pressure based from both sides of the membrane
Pavgma	Log mean air pressure within the air gap
P _C	Water vapor pressure on the air gap layer
\mathbf{P}_{H}	Water vapor pressure on the membrane surface
Pr	Prandtl number
P_T	Total pressure of water vapor and air
$P_{\rm w}$	Vapor pressure of pure water
r	Membrane pore radius
R	Universal gas constant
R _a	Mean roughness
R _{AGMD}	Total mass transfer resistance in the AGMD
γ_m	Surface tension of the membrane in contact with air
γ_{ml}	Surface tension of the membrane in contact with liquid
γι	Surface tension of liquid in contact with air
γ_m^T	Total surface free energy
γ_m^{LW}	Lifshitz van der Walls interaction of the membrane
γ_m^{AB}	Lewis acid-base interaction of the membrane
γ_m^+	Electron acceptor parameter
γm	Electron donor parameter
Re	Reynolds number
R _G	Molecular diffusion resistance related with the graphene effect

R _K	Knudsen diffusion resistance
R _M	Molecular diffusion resistance
R _{M-air}	Molecular diffusion resistance in the air gap
RT	Room temperature
SR	Salt rejection ratio
T _{avg,a}	Average temperature based from both sides of the membrane
$T_{avg,m}$	Average temperature at the air gap
u	Flow velocity
W_1	Weight of the saturated membrane
W_2	Weight of the dry membrane
X _{NaCl}	Mole fraction of NaCl
X _w	Mole fraction of water
t	Operating duration
γ_{w}	Activity coefficient of water
δ	Thickness
δ_m	Membrane thickness
δ_a	Air gap thickness
Δg	Mass of permeate
ε	Membrane porosity
k	Thermal conductivity
λ	Latent heat of water
μ	Viscosity
ρ	Liquid density
$ ho_e$	Density of ethanol

- ρ_d Density of PVDF material
- τ_m Membrane pore tortuosity
- Γ Total flow rate of condensate at the bottom of the condensing surface
- air Air
- *cf* Condensate film
- *cp* Cooling plate
- f Feed
- fl Fluid
- *gap* Air gap
- *m* Porous membrane
- si Solid membrane

ABSTRACT

In recent decades, many regions of the world suffer from water scarcity, which is one of the most critical issues in the world. The main challenge is to supply fresh water to water shortage regions. In addition, waterborne illness has been caused through the consumption of the contaminated drinking water in these regions. Seawater desalination is one of the alternative ways to produce freshwater. However, current desalination technologies like reverse osmosis (RO), multi-stage flash (MSF), and multi-effect distillation (MED) have several issues such as high energy consumption, a low recovery rate of total water, and large footprint. Among the several techniques to replace conventional desalination techniques, membrane distillation (MD) is one of the promising technologies. Currently, microfiltration (MF) membranes are implemented for MD application due to their suitable pore size distribution. However, some properties of MD are still needed to be enhanced, especially the high hydrophobicity to avoid membrane pore wetting and high porosity to increase permeate flux. With the development of nanotechnology, electrospinning is becoming a promising technology to fabricate hydrophobic and highly porous membranes. Thus, the objectives of this dissertation are to fabricate a suitable membrane for MD technology by electrospinning technique.

Novel nanofiber membranes fabricated by electrospinning technique are herein proposed for MD application to treat seawater and RO brine from coal seam gas (CSG) produced water. The electrospun membrane could be tailored to have superhydrophobicity, high porosity, adequate pore sizes and narrow pore size distribution, and thin thickness, so it could be used in applications of high-performance MD process. To further improve the MD performance of the electrospun membranes, three different methods were considered: (i) Janus-type hydrophobic/hydrophilic nonwoven membrane to reduce mass transfer resistance, (ii) nano-materials embedded membrane to improve liquid entry pressure (LEP), and (iii) surface modification of electrospun membranes to treat challenging wastewater sources.

Janus-type hydrophobic/hydrophilic dual-layer nanofiber nonwoven membranes were initially fabricated by a facile electrospinning technique and applied for desalination by air gap MD (AGMD). As-spun neat single and dual-layer nanofiber membranes composed of a hydrophobic polyvinylidene fluoride-co-hexafluoropropylene (PH) top layer with different supporting hydrophilic layer made of either polyvinyl alcohol (PVA), nylon-6 (N6), or polyacrylonitrile (PAN) nanofibers were fabricated with and without heat-press post-treatment. Surface characterization showed that the active layer (i.e., PH) of all electrospun nanofiber membranes (ENMs) exhibited a rough, highly porous (>80% porosity), and hydrophobic surface (CA > 140°), while the other side was hydrophilic (CA<90°) with varying porosity. Heat-pressing the membrane resulted to thinner thickness (from >129 μ m to <100 μ m) and smaller pore sizes (<0.27 μ m). The AGMD experiments in a cross-flow set up were carried out with constant inlet temperatures at the feed and permeate streams of 60 ± 1.5 and 20 ± 1.5 °C, respectively. The AGMD module had a membrane area of 21 cm^2 and the thickness of the air gap was 3 mm. The neat single and dual-layer ENMs showed a water permeate flux of about $10.9 \sim 15.5 \text{ L/m}^2 \text{ h}$ (LMH) using 3.5 wt % NaCl solution as feed, which was much higher than that of a commercial PVDF membrane (~ 6 LMH). The provision of a hydrophilic layer at the bottom layer enhanced the AGMD performance depending on the wettability and characteristics of the support layer. The PH/N6 dual-layer nanofiber

membrane prepared under the optimum condition showed flux and salt rejection of 15.5 LMH and 99.2 %, respectively, which has good potential for AGMD application.

Three different nanomaterials were incorporated in polymeric solutions for the improvement of liquid entry pressure (LEP), which were carbon nanotubes (CNTs), graphene, and hexagonal boron nitride (h-BN). Firstly, superhydrophobic, robust, mixed PH nanofiber membranes were fabricated incorporating CNTs as nanofillers to impart additional mechanical and hydrophobic properties. The electrospun membrane has been designed to have two cohesive layers, a thin CNT/PH top layer and a thick neat PH bottom layer. Through different characterization techniques, CNTs were found to be widely distributed on/in the nanofibers, where more beads-on-string were formed at higher CNT content. However, the beads-on-string did not significantly affect the membrane porosity and pore size, as well as did not degrade the MD performance. Highly-porous structure was observed for all membranes and the nanofiber membrane showed comparable pore sizes with a commercial flat-sheet PVDF membrane but at a higher higher porosity (>85%). The contact angle increased to much superhydrophobicity at 158.5° upon the incorporation of 5 wt% CNTs in the nanofiber due to increased roughness and added effect of hydrophobic CNTs. The liquid entry pressure also increased when 5 wt% CNT was added compared to the neat PH nanofiber membrane. The resulting flux of the 5 wt% CNT-incorporated nanofiber membrane (24-29.5 L/m²h) was consistently higher than the commercial PVDF membrane (18-18.5 $L/m^{2}h$), with an average increase of 33-59% depending on the feed water type (35 or 70) g/L NaCl solution) without compromising the salt rejection (>99.99%). The present nanofiber membranes containing CNTs with one-step electrospinning fabrication show high potential for direct contact MD (DCMD) desalination application.

The following study demonstrated the development of a graphene-loaded electrospun nanofiber membrane and evaluation of their desalination performance in AGMD. Different concentrations of graphene (0-10 wt%) were incorporated in/on electrospun PH membrane to obtain a robust, and superhydrophobic nanocomposite membrane. The results showed that graphene incorporation has significantly enhanced the membrane structure and properties with an optimal concentration of 5 wt% (i.e., G5PH). Characterization of G5PH revealed membrane porosity of >88%, contact angle of $>162^{\circ}$ (superhydrophobic), and high LEP of >186 kPa. These favorable properties led to a high and stable AGMD flux of 22.9 L/m²h or LMH (compared with ~4.8 LMH for the commercial PVDF flat-sheet membrane) and excellent salt rejection (99.99%) for 60 h of operation using 3.5 wt% NaCl solution as feed (feed and coolant inlet temperatures of 60 and 20°C, respectively). A two-dimensional dynamic model to investigate the flux profile of the graphene/PH membrane is also introduced. The present study suggests that exploiting the interesting properties of nanofibers and graphene nanofillers through a facile electrospinning technique provides high potential towards the fabrication of a robust and high-performance MD membrane.

Another study focused on h-BN embedded nanofiber membrane to maintain flux stability in a long-term AGMD process. The hexagonal lattices of the BN nanoparticles (BNNPs) were modified by hydroxide-assisted ball milling without damage occurred during the exfoliation processes, and they were encapsulated in PH electrospun nanofiber membrane. Characteristics of the BN-PH membrane indicated almost similar regarding membrane thickness, fiber size, porosity and pore size. However, contact angle (153.2°) and LEP (214 kPa) of the BN-PH membrane were higher than that of the neat PH membrane, which showed that the BN-PH membrane could have less wetting

issues compared with the neat PH membrane. Besides, thermal conductivity of the neat PH and BN-PH was 0.025 W/mK and 0.009 W/mK, respectively, as expected that the BN-PH membranes could lead to a high MD water vapor flux performance due to reduced mass transfer resistance and also reduction in conductive heat loss via the membrane. The initial water vapor flux of the neat PH membrane was 11.42 LMH, however, it suffered wetting problem in less than 4 h operation. On the other hand, the BN-PH membrane showed a stable water vapor flux (18 LMH) and salt rejection (99.99%) performances even after 280 h of MD operation. This membrane has a good potential for long-term application of MD for seawater. Future interest in this study may be to find a mechanism for the improved water vapor flux performance of the BNNPs enabled electrospun nanofiber MD membrane.

MD process is also considered to treat wastewater or other challenging wastewater such as the one from textile, dye, and oil industries. However, MD membranes should be improved for preventing membrane wetting issues commonly caused by low surface tension liquids such as surfactants, benzene, methanol, and hexane. Thus, this study described the development and performance of an omniphobic poly(vinylidene fluoride) (PVDF) membrane fabricated by electrospinning and surface-modified by CF₄ plasma, for AGMD. The effect of different duration of plasma treatment on the nanofiber membrane characteristics was investigated. The AGMD performance of the membranes was evaluated using real RO brine produced from CSG produced water that was added with low surface tension liquid (surfactant) as feed solution. Results indicated the formation of new CF₂-CF₂ and CF₃ bonds after plasma treatment, which lowered the surface energy of the membrane, providing omniphobic property, as indicated by its wetting resistance to different low surface tension liquids such as methanol, mineral oil and ethylene glycol. Though no appreciative changes in morphology of the membrane were observed after plasma treatment, optimal treatment condition of 15 min (i.e., P/CF-15 membrane) exhibited lotus effect membrane surface with increased LEP of 187 kPa compared to 142 kPa for neat membrane. AGMD performance showed stable normalized flux (initial flux of 15.3 L/m²h) and rejection ratio (99.99%) for P/CF-15 even with the addition of up to 0.7 mM sodium dodecyl sulfate surfactant to the RO brine from CSG produced water feed, while commercial PVDF membrane suffered membrane wetting after 0.3 mM of surfactant addition. Based on the results, the present omniphobic membrane has good potential for producing clean water from challenging waters containing high salinity and organic contaminants.

The aim of this study is the development of suitable electrospun nanofiber membranes for MD. This study mainly focuses on the newly-developed one-dimensional and twodimensional nano-materials embedded nanofiber membranes, which suffer less wetting issue and have improved water vapor flux performance in MD. It also investigates a simple surface modification technique to generate anti-wetting property on the membrane surface. Overall, this author successfully fabricated several electrospun nanofiber membranes with enhanced water vapor flux and stable salt rejection performances for the treatment of seawater, seawater RO brine and CSG RO brine by MD applications. The fabricated electrospun nanofiber membranes exhibited better performances than the commercial PVDF membranes due to their suitable morphologies and characteristics for MD application. Thus, proper membranes were fabricated which led to enhanced membrane properties such as superhydrophobicity and anti-wetting property. And their MD performances have been compared with the ones in the previous reports. This study may therefore contribute to future MD researches regarding using electrospinning for the developments of a commercial electrospun nanofiber MD membrane.

TABLE OF CONTENTS

ACKNOWLEDGEMENTSii
LIST OF ABBREVIATIONS xiv
LIST OF SYMBOLS xx
ABSTRACT xxiv
TABLE OF CONTENTSxxxi
LIST OF FIGURES xxxix
LIST OF TABLESxlviii
CHAPTER 1 1
INTRODUCTION1
1.1 Introduction2
1.2 Objectives and scope of the research7
1.3Structure of the study
CHAPTER 2
LITERATURE REVIEW10
2.1 Introduction11
2.2 Global water scenario11
2.3 History of seawater desalination technologies13
2.4 Improvements of desalination technologies16
2.4.1 RO technologies16
2.4.1.1 Development of energy recovery device (ERD)
2.4.1.2 Evolution of reverse osmosis membrane
2.4.2 Hybrid thermal desalination processes19

2.5	A	Alternative membrane based-technologies for desalination	20
2	.5.1	Forward osmosis	20
2	.5.2	Pressure retarded osmosis	22
2	.5.3	Membrane distillation (MD)	22
2	.5.4	Capacitive deionization	24
2	.5.5	Reverse electrodialysis	25
2.6	N	Aembrane Distillation (MD)	26
2	.6.1	Overview of MD	26
2	.6.2	Theoretical background	28
	2.6.2	2.1 Mass transfer	
	2.6.2	2.2 Heat transfer	31
	2.6.2	2.3 Temperature polarization coefficient (TPC)	
2	.6.3	MD membrane characteristics	34
	2.6.3	3.1 Liquid entry pressure (LEP)	
	2.6.3	3.2 Pore size distribution (PSD)	
	2.6.3	3.3 Porosity	
	2.6.3	3.4 Thickness	
	2.6.	3.5 Hydrophobicity of the MD membrane	
2	.6.4	Membrane fabrication and modification for MD	
	2.6.4	4.1 Phase separation techniques	
	2.6.4	4.2 Electrospinning technique	45
	2	.6.4.2.1 Electrospinning parameters	47
	2	.6.4.2.2 Electrospinning for membrane separation technology	
	2	.6.4.2.3 Electrospinning for MD membrane	
	2.6.4	4.3 Surface modification	54
2	.6.5	MD fouling	57

2.6.6	MD fouling control and cleaning	64
2.6.7	Pre-treatment for MD	64
2.6.8	Membrane flushing	70
2.6.9	Gas bubbling	72
2.6.10	Chemical cleaning	75
2.6.11	Management of seawater brine by hybrid MD process	76
2.6.	11.1 Membrane crystallization (MCr)	
2.6.	11.2 MD/PRO hybrid process	77
2.7	Concluding remarks	78
CHAPT	ER 3	79
MATER	IALS AND METHODS	79
3.1 I	ntroduction	80
	Experimental materials	
3.3 I	Fabrication and modification techniques	80
3.3.1	Electrospinning device	80
3.3.2	CF ₄ plasma modification	82
3.4 1	Laboratory MD process	82
3.4.1	DCMD experiments	82
3.4.2	AGMD experiments	84
3.5 N	Membrane characterization and measurements	85
3.5.1 spectr	Scanning Electron Microscope (SEM) and energy dispersive X-ray oscopy (EDX)	85
3.5.2	Transmission electron microscopy (TEM)	86
3.5.3	Liquid entry pressure (LEP)	86
3.5.4	Contact angle (CA)	87
3.5.5	Sliding angle (SA)	87

3.5.6	Surface free energy (SFE)	3
3.5.7	Surface roughness by atomic force microscopy (AFM)8	3
3.5.8	Tensile properties	9
3.5.9	Pore size and pore size distribution (PSD)	9
3.5.10	Porosity	9
3.5.11	X-ray diffraction (XRD))
3.5.12	X-ray photoelectron spectroscopy (XPS)9)
3.5.13 (ATR-)	Attenuated total reflectance – Fourier transform infrared spectroscopy FTIR)	С
3.5.14	Raman spectra9	1
3.5.15	The Brunauer-Emmett-Teller (BET)9	1
СНАРТЕ	CR 4	2

Hydrophobic/hydrophilic dual-layer electrospun nanofiber membrane for seawater desalination by membrane distillation application92

4.1	Introduction	
4.2	Experimental	97
4.2.1	1 Materials	97
4.2.2	2 Dope preparation	97
4.2.3	3 Electrospinning	
4.2.4	4 AGMD test	
4.3	Results and discussion	
4.3.1	1 Morphology	
4.3.2	2 Pore size and pore size distribution (PSD)	104
4.3.3	3 Contact angle (CA)	
4.3.4	4 Liquid entry pressure (LEP)	
4.3.5	5 Mechanical properties	

	4.3.6	AGN	AD performances	109
	4.3.0	6.1	Effect of different support layer	
	4.3.0	6.2	Effect of feed temperature	
	4.3.0	6.3	Comparison with other AGMD flat-sheet membrane	
4.	4 (Conclu	ıding remarks	
СН	APTI	ER 5	••••••	
CA	RBO	N NA	ROPHOBIC NANOFIBER MEMBRANE CON NOTUBES FOR HIGH-PERFORMANCE DISTILLATION	
5.	1 I	ntrod	uction	
5.	2 H	Experi	mental methods	
	5.2.1	Mat	erials	122
	5.2.2	Dop	e preparation	122
	5.2.3	Elec	trospinning parameters	123
5.	3 F	Result	s and discussion	
	5.3.1	Mor	phology	124
	5.3.2	Liqu	id entry pressure (LEP)	131
	5.3.3	Men	ıbrane hydrophobicity	132
	5.3.4	Men	nbrane topography and roughness	134
	5.3.5	Mec	hanical properties	136
	5.3.6	Stru	ctural and chemical analysis	138
	5.3.7	DCN	1D performance	140
	5.3.2	7.1	Effect of CNT concentration	
	5.3.2	7.2	Effect of salt concentration	
	5.3.2	7.3	Role of CNTs in the DCMD performance	
	5.3.2	7.4	Comparison with other studies	

5.4	Concluding remarks	149
CHAP	ГЕ R 6	151
ELECT	R DESALINATION USING GRAPHENE-ENHANCED FROSPUN NANOFIBER VIA MEMBRANE DISTLLATI	
6.1	Introduction	152
6.2	Model development	154
6.2.1	1 Two-dimensional dynamic model for AGMD module	154
6.2.2	2 Heat transfer in the hot and coolant channels	155
6.2.3	3 Mass transfer	156
6.3	Materials & methods	157
6.3.1	1 Materials	157
6.3.2	2 Dope preparation	158
6.3.	3 Electrospinning	158
6.4	Results and discussion	159
6.4.1	1 Membrane characteristics and morphology	159
6.4.2	2 Structural and chemical characterization	166
6.4.	3 Thermal and mechanical properties of the G/PH nanofiber	168
6.4.4	4 BET of the G/PH membrane	170
6.4.5	5 AGMD performance of the G/PH membrane	172
6.4.0	6 AGMD performance of the G/PH membrane	176
6.5	Concluding remarks	178
CHAP	ΓER 7	180
ELECT	N NITRIDE EMBEDDED MEMBRANE BY FROSPINNING FOR SEAWATER DESALINATIO BY BRANE DISTILLATION	180

7.1 I	ntroduction	181
7.2 N	Aaterials and methods	182
7.2.1	Materials	182
7.2.2	Fabrication of OH-BNNPs by hydroxide-assisted ball milling	183
7.2.3	Dope preparation	183
7.2.4	Electrospinning of superhydrophobic BN-PH nanofiber	183
7.2.5	Evaluation of the BN-PH nanofiber membrane by AGMD	184
7.2.6	Characterization and measurements	184
7.3 I	Results and discussion	186
7.3.1	Morphology of the BN nanoparticles and BN-PH nanofiber	186
7.3.2	Chemical analysis	191
7.3.3	Mechanical properties	193
7.3.4	Long-term AGMD performances	194
7.4 (Concluding remarks	197
	Concluding remarks	
CHAPTI CF4 PLA NANOF	ER 8 SMA-MODIFIED OMNIPHOBIC ELECTROSPUN IBER MEMBRANE FOR TREATMENT OF RO BRINE	
CHAPT CF4 PLA NANOF FROM (ER 8 SMA-MODIFIED OMNIPHOBIC ELECTROSPUN IBER MEMBRANE FOR TREATMENT OF RO BRINE	. 199 . 199
CHAPTI CF4 PLA NANOFI FROM (8.1 I	ER 8 SMA-MODIFIED OMNIPHOBIC ELECTROSPUN IBER MEMBRANE FOR TREATMENT OF RO BRINE COAL SEAM GAS PRODUCED WATER	. 199 . 199 200
CHAPTI CF4 PLA NANOFI FROM (8.1 I	ER 8 SMA-MODIFIED OMNIPHOBIC ELECTROSPUN IBER MEMBRANE FOR TREATMENT OF RO BRINE COAL SEAM GAS PRODUCED WATER ntroduction	. 199 . 199 200 203
CHAPTI CF4 PLA NANOF FROM C 8.1 I 8.2 N	ER 8 SMA-MODIFIED OMNIPHOBIC ELECTROSPUN IBER MEMBRANE FOR TREATMENT OF RO BRINE COAL SEAM GAS PRODUCED WATER	. 199 . 199 200 203 203
CHAPTI CF4 PLA NANOF FROM (8.1 I 8.2 N 8.2.1	ER 8 SMA-MODIFIED OMNIPHOBIC ELECTROSPUN IBER MEMBRANE FOR TREATMENT OF RO BRINE COAL SEAM GAS PRODUCED WATER ntroduction Materials and methods Dope preparation and electrospinning conditions	. 199 . 199 200 203 203 203
CHAPTI CF4 PLA NANOF FROM C 8.1 I 8.2 N 8.2.1 8.2.2	ER 8 SMA-MODIFIED OMNIPHOBIC ELECTROSPUN IBER MEMBRANE FOR TREATMENT OF RO BRINE COAL SEAM GAS PRODUCED WATER	. 199 . 199 200 203 203 203 204
CHAPTI CF4 PLA NANOF FROM C 8.1 I 8.2 N 8.2.1 8.2.2 8.2.3 8.2.3 8.2.4	ER 8 SMA-MODIFIED OMNIPHOBIC ELECTROSPUN IBER MEMBRANE FOR TREATMENT OF RO BRINE COAL SEAM GAS PRODUCED WATER Introduction Materials and methods Dope preparation and electrospinning conditions CF ₄ plasma modification Air gap membrane distillation performance test	. 199 . 199 200 203 203 203 204 205

8.3.2	Plasma polymerization and deposition	
8.3.3	Plasma polymerization and deposition	211
8.3.4	AGMD performance of omniphobic membrane	217
8.4	Concluding remarks	224
CHAPTI	ER 9	
CONCL	USIONS AND RECOMMENDATIONS	226
9.1 (Conclusions	227
9.1.1	Janus-type electrospun nanofiber membrane	227
9.1.2	Nanomaterials-incorporated electrospun nanofiber membranes	229
9.1.3	CF ₄ plasma modified electrospun nanofiber membrane	232
9.2 F	Recommendations	234
REFERI	ENCES	

LIST OF FIGURES

Figure 1.1. Desalination capacities installed in the	e World and percentages of feed water
type (Shahzad et al. 2017)	2

Figure 2.1. Timeline of the development of desalination technologies15

Figure 2.2. (a) Total specific energy consumption (SEC) of each process for seawater desalination. (b, c) Comparison of the operating cost components for MSF and RO technologies (adapted from (Ghaffour, Missimer & Amy 2013; Shahzad et al. 2017)). 17

Figure 2.4. Different forms of wettability of a membrane: (A) non-wetted, (B) surfacewetted, (C) partial-wetted, and (D) fully-wetted (adapted from (Gryta 2007))......35

Figure 2.7. Schematic illustration of (a) electrospinning device and the Taylor cone formation (adapted from (Ahmed, Lalia & Hashaikeh 2015; Baji et al. 2010))......47

Figure 2.9. (a, b) Surface SEM images of (a) 20 wt% PVDF-co-HFP and (b) 10 wt% PVDF-co-HFP with 10 wt% TiO₂ electrospun membranes and (c, d) cross-sectional SEM images of (c) PVDF-co-HFP single-layer and (d) PVDF-co-HFP/PAN dual-layer electrospun membranes (adapted from (Lee, An, et al. 2016; Tijing, Woo, et al. 2014)).

Figure 2.10. (a) The effect of fouling on the temperature distribution of DCMD membrane, and; microscopic images of membranes fouled by (b) CaCO₃ and (c) protein, and (c) a virgin (un-fouled) membrane (Figures b-d are adapted from (Gryta 2008))...60

Figure 2.11. Factors affecting membrane fouling: (a) foulant characteristics (concentration, molecular size, solubility, diffusivity, hydrophobicity, charge, etc.); (b) membrane properties (hydrophobicity, surface roughness, pore size and PSD, surface charge, surface functional groups); (c) operational conditions (flux, solution temperature, flow velocity), and; (d) feed water characteristics (solution chemistry, pH, ionic strength, presence of organic/inorganic matters).

Figure 2.13. Schematic representation of the different fouling mechanisms according to fouling material found in MD. In the real world processes, fouling usually occurs as mixed fouling, i.e., the combination of different of fouling mechanisms happening

Figure 2.14. Permeate flux and feed concentration of CaSO₄ versus time during five repetitive DCMD tests with membrane flushing after each test. A fresh 2000 mg/L CaSO₄ was used after each test (adapted from (Nghiem & Cath 2011))......72

Figure 2.15. Schematic of the (a) air inlet position in the feed side of the MD module and the (b) photographic image of the air nozzle (adapted from (Chen et al. 2013)).....74

Figure 4.1. High and low magnification surface (a, c) and cross-sectional (b, d) SEM images of (a, b) neat PH (M1) and (c, d) heat-pressed PH (M2) membranes......101

Figure 4.2. SEM images of the active layer made of PH (a1-c1), cross-section (a2-c2)
and hydrophilic support layer (a3-c3) of the dual-layer membranes: (a) M4 (PH/PAN),
(b) M6 (PH/N6), and M8 (PH/PVA)103
Figure 4.3. Pore size distribution of the membranes: (a) M1, M2 and C-PVDF, (b) M3
and M4, (c) M5 and M6, and (d) M7 and M8105
Figure 4.4. Schematic illustrations of water drops on the active-layer of the electrospun
nanofiber membranes: (a) without heat-press process, and (b) with heat-press process.
Figure 4.5. Stress-strain curves of the electrospun nanofiber membranes and commercial
membrane
Figure 4.6. (a) Flux and (b) salt rejection performance of the commercial PVDF
membrane and the heat-pressed electrospun nanofiber membranes112
Figure 4.7. (a) Flux and (b) salt rejection performance of the different temperature using
the PVDF-HFP/Nylon-6 membrane
Figure 4.8. Surface SEM images of the membrane after 20 h of test at feed site
temperature of: (a) feed – 70 °C and (b) feed – 80 °C 115
Figure 5.1. Morphological images and corresponding fiber size distributions of (a, d)
PH and (b, e) 5CNT nanofiber, and (c) commercial PVDF membranes. Also shown is
the (f) pore size distribution of PH and C-PVDF as measured by porometry126
Figure 5.2. Cross-sectional SEM image of the 5CNT nanofiber composed of a thin top

5wt% CNT/PH electrospun layer and a thicker bottom neat PH electrospun layer.....129

Figure 5.3. (a) Liquid entry pressure and contact angle measurements, and	(b) schematic
representation of the structure of the neat and CNT-incorporated nanofiber	structures, (c)
SEM images showing the beads and CNTs on the fiber, and (d) SEM	image of the
pristine CNTs used in this study	

Figure 5.8. Effect of feed type on the DCMD performance of different membranes tested in the present study: (a) deionised water, (b) 35 g/L NaCl and (c) 70 g/L NaCl 145

Figure 6.1. Schematic diagram of the AGMD module structure154

Figure 6.2. Surface SEM images of the G/PH and neat PH electrospun nanofiber membranes: (a) neat PH, (b) G1PH, (c) G3PH, (d) G5PH, (e) G7PH and (f) G10PH.160

Figure	6.3.	TEM	images	of the	G/PH	electrospun	nanofiber	membranes:	(a)	G5PH,	(b)
G7PH	and	(c) G1	0PH							1	62

Figure 6.5. AFM images of (a) the PH18 and (b) the G5PH membranes. The mean roughness (Ra) of the PH18 and G5PH membranes was $0.623 \pm 0.01 \mu m$ and $0.719 \pm 0.03 \mu m$, respectively.

Figure 6.11. Flux and salt rejection performances of the G/PH and neat PH membranes for 20h operation (Inlet temp at feed = 60° C; Inlet temperature at coolant = 20° C)....173

Figure 6.13. Schematic of the effect of graphene on the membrane for AGMD process

Figure 7.4. Atomic force microscopy (AFM) images of (a) the neat PH and (b) the BN-PH electrospun nanofiber membranes. The mean roughness (R_a) of the neat PH and BN-PH membranes was 353.0 ± 14 nm and 515 ± 21 nm, respectively. The maximum

Figure 8.6. LEP of the neat and CF₄ modified electrospun nanofiber membranes......217

LIST OF TABLES

Table 2.1. Classification and overview of desalination technologies 16
Table 2.2. Reports in literature on flat-sheet and hollow fiber membranes using phase
separation techniques for MD application (Inlet temperatures: feed = 60°C, permeate =
20°C and feed water: 3.5 wt% NaCl)42
Table 2.3. Reports in literature on electrospun membrane for various membrane-based
water filtration treatment applications
Table 2.4. Reports in literature on electrospun nanofiber membrane for MD application
(Inlet temperatures: feed = 60° C, permeate = 20° C)
Table 2.5. Reports in literature on modified membranes using various modification
techniques for MD application (Inlet temperatures: feed = 60° C, permeate = 20° C) 56
Table 2.6. Some pretreatment strategies for MD application reported in literature70
Table 4.1. Reports in literature on hydrophobic/hydrophilic dual-layer membrane for
MD application (Inlet temperatures: feed = 60° C, permeate = 20° C)95
Table 4.2. Electrospinning conditions used in the present study
Table 4.3. Characteristics of the membranes used in this study
Table 4.4. Comparison of results using different membranes in AGMD application 116
Table 5.1. Dope compositions used for electrospinning in the present study
Table 5.2. Properties of the commercial and fabricated nanofiber membranes

Table 5.3. Mechanical properties of the neat and 5 wt% CNT/PH nanofiber membranes,
and the commercial PVDF membrane
Table 5.4. MD performance of the present study in comparison with other reports in
literature at the following DCMD conditions: Feed/permeate inlet temperatures:
60/20°C; 35 g/L NaCl feed solutions
Table 6.1. Electrospinning conditions of the G/PH and neat PH nanofiber membranes
Table 6.2. Characteristics of the neat and G/PH electrospun membranes and commercial
membrane161
Table 7.1. Characteristics of the neat PH and BN-PH electrospun nanofiber membranes used in the present study
Table 8.1. Characteristics of RO brine from CSG produced water
Table 8.2. Membrane codes and characteristics of the neat and CF ₄ modified
electrospun nanofiber membrane
Table 8.3. Surface compositions of the neat and CF_4 treated electrospun nanofiber
membranes (at. %)
Table 8.4. Contact angle of diiodomethane and surface free energy (SFE) of the CF ₄
modified and neat electrospun nanofiber membranes

Table 8.5. Contact	angle and LEP of	the electrospun	nanofiber mem	branes before and
after operations by	AGMD using RO	brine from CSG	produced wate	er containing SDS
as feed				