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Abstract

This thesis presents a low cost indoor localization system, primarily intended for use by pro-

fessional elder care supervisors for tracking elderly people in their excursions to a crowded

shopping centre. The main requirement is that the system provides an approximate loca-

tions of multiple elderly people during an excursion to a crowded shopping centre. The

residents are to use walking frames for locomotion, thus their motion is relatively slow and

predictable. The resolution of localization is considered adequate if the care supervisor

is able to locate a given person through visual contact relative to the estimated location.

This thesis presents two novel localization methods that make use of these simplifying

constraints and provides an industry strength implementation of one of these strategies.

The first method described is an image based place recognition technique that employs

the Bag of Words model for generating image descriptors and a three layer feedforward

neural network for producing location estimates. Shop fronts and their corresponding

neighbourhood areas are used as classes for training the neural network. The performance

of this approach that was evaluated in a real shopping centre environment is presented.

Although the system developed performs well, it was found to require the user cooperation

in crowded areas and was deemed to have potential privacy concerns.

An alternative solution, a Wi-Fi based indoor localization method is also presented. It

estimates the current location of a subject using the Wi-Fi signal strengths received by a

sensor module mounted on a walking frame. The environment is modelled as a collection

of cells with sizes sufficiently small for locating a person through eye contact. A motion

model, based on the knowledge of the floor plan of the environment is described. A

probabilistic framework using the Bayes rule in combination with a Kernel Density method

for estimating the probability density functions of received signal strengths at the cells is

developed.

The Wi-Fi based indoor localization method was implemented on a unit that measures

strengths of Wi-Fi signals received from the access points present in an environment,



v

computes the location and transmits it using the telephone network to a tablet held by

a carer. An application on the tablet for visualizing the location of multiple walkers

was also developed. The performance of this system was evaluated by conducting multiple

trials, including a shopping centre excursion organized by a professional elder care provider

named IRT.

From the localization accuracies obtained through the test trials, it could be concluded

that the presented Wi-Fi based localization method is adequate to fulfil the requirement

of IRT, which is locating elderly people in a crowded indoor environment. It is also found

that the floor plan based motion model enables the localization algorithm to produce

reliable location estimates, given the relatively slow motion of elderly people.
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