Locating Senior Walking Frame Users in Crowded Indoor Environments

by

Kuranage Asok Aravinda Perera

A thesis submitted in partial fulfilment for the degree of Master of Engineering (Research)

at the Centre for Autonomous Systems Faculty of Engineering and Information Technology **University of Technology Sydney**

October 2017

Declaration of Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signed:

Date:

Abstract

This thesis presents a low cost indoor localization system, primarily intended for use by professional elder care supervisors for tracking elderly people in their excursions to a crowded shopping centre. The main requirement is that the system provides an approximate locations of multiple elderly people during an excursion to a crowded shopping centre. The residents are to use walking frames for locomotion, thus their motion is relatively slow and predictable. The resolution of localization is considered adequate if the care supervisor is able to locate a given person through visual contact relative to the estimated location. This thesis presents two novel localization methods that make use of these simplifying constraints and provides an industry strength implementation of one of these strategies.

The first method described is an image based place recognition technique that employs the Bag of Words model for generating image descriptors and a three layer feedforward neural network for producing location estimates. Shop fronts and their corresponding neighbourhood areas are used as classes for training the neural network. The performance of this approach that was evaluated in a real shopping centre environment is presented. Although the system developed performs well, it was found to require the user cooperation in crowded areas and was deemed to have potential privacy concerns.

An alternative solution, a Wi-Fi based indoor localization method is also presented. It estimates the current location of a subject using the Wi-Fi signal strengths received by a sensor module mounted on a walking frame. The environment is modelled as a collection of cells with sizes sufficiently small for locating a person through eye contact. A motion model, based on the knowledge of the floor plan of the environment is described. A probabilistic framework using the Bayes rule in combination with a Kernel Density method for estimating the probability density functions of received signal strengths at the cells is developed.

The Wi-Fi based indoor localization method was implemented on a unit that measures strengths of Wi-Fi signals received from the access points present in an environment, computes the location and transmits it using the telephone network to a tablet held by a carer. An application on the tablet for visualizing the location of multiple walkers was also developed. The performance of this system was evaluated by conducting multiple trials, including a shopping centre excursion organized by a professional elder care provider named IRT.

From the localization accuracies obtained through the test trials, it could be concluded that the presented Wi-Fi based localization method is adequate to fulfil the requirement of IRT, which is locating elderly people in a crowded indoor environment. It is also found that the floor plan based motion model enables the localization algorithm to produce reliable location estimates, given the relatively slow motion of elderly people.

A cknowledgements

I would like to express my immense gratitude to the people who have supported me in many ways throughout my research.

Firstly, I thank my principal supervisor, Professor Gamini Dissanayake for his continuous support and supervision provided throughout this work, which eventually led to the completion of a quality thesis. His broad scope of knowledge and experience, as well as the patience and understanding nature helped me immensely to complete my research successfully. I'm also grateful to my co-supervisor, Doctor Ravindra Ranasinghe for the support and guidance provided to me. His experience and enthusiasm was invaluable for the completion of this work.

My thanks also go to the staff and residents in Illawarra Retirement Trust (IRT) care facility based in Sydney, for their collaboration in the designing, developing and evaluating processes of the indoor localization system proposed in this work.

I would also like to extend my gratitude to Doctor Lakshitha Danthanarayane, Doctor Michael Behrens and Janindu Arukgoda for their contributions to this work. Their assistance in various software and hardware related development tasks made this work a reality.

I also thank all my colleagues in Centre for Autonomous Systems (CAS), who made my stay in the lab wonderful and joyful. I was extremely fortunate to be a part of CAS circle.

Last, but not least, I would like to thank my loving family: Heartfelt thanks go to my wife Nilakshika, who stayed with me in all the good times and bad times. Thank you for your patience and understanding. I extend my sincere gratitudes to my parents, who made immense sacrifices to bring me to this state. Without your effort, nothing would have been possible.

Contents

Declar	ation of Authorship iii
Abstra	ct iv
Acknow	vledgements vi
List of	Figures xi
Acrony	rms & Abbreviations xiii
Nomer	xvi
1 Intr 1.1 1.2 1.3 1.4	Motivation 1 Motivation and Background 1 Thesis Outline 3 Contributions 5 Publications 6 1.4.1 Indoor Localization Competition - Track 1, IPIN 2017 Publications 6
2 Ima 2.1 2.2	ge Based Place Recognition in Crowded Indoor Environments 7 Introduction 7 Literature Review 10 2.2.1 Laser Range Finder Based Indoor Localization 10 2.2.2 RGB-D Based Indoor Localization 10 2.2.3 Odometry Based Indoor Localization 11 2.2.4 Computer Vision Based Place Recognition Techniques 12 2.2.4.1 Patch Based Techniques 13 2.2.4.2 Features and Descriptors Based Techniques 13 2.2.4.3 Logos Based Techniques 15 2.2.4.4 Combined Techniques 16 Vision Based Place Recognition in a Crowded Environment 17 2.3.1 Image Preprocessing 17 2.3.2 Bag of Words Model 18

		2.3.3	Feedforward Neural Network	9
			2.3.3.1 Training Phase $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 2$	2
			2.3.3.2 Testing Phase	4
	2.4	Experin	ments and Results	4
		2.4.1	Setup	4
		2.4.2	Characteristics of The Neural Network	5
		2.4.3	Results	7
			2.4.3.1 Contrast and Brightness Variation Effect	9
	2.5	Conclus	sion $\ldots \ldots 3$	1
3	Wi-	Fi Base	ed Localization: Theoretical Framework 3	5
	3.1	Introdu	action	5
	3.2	Literat	ure Beview	7
	0.1	3.2.1	Bluetooth Based Indoor Localization	7
		322	Zighee Based Indoor Localization	8
		323	BFID Based Indoor Localization 3	8
		3.2.0	Illtrasonic Based Indoor Localization 3	q
		3.2.4	Illtra-Wide Band (IIWB) Based Indoor Localization	q
		326	Wi-Fi Signal Based Indoor Localization	0
		5.2.0	3.2.6.1 Propagation Model Based Localization Mathods	0
			3.2.6.2 Angle of Arrival Based Localization Methods 4	Δ
			3.2.6.3 Time of Flight Based Localization Methods	7
			3.2.6.4 Fingerprinting Based Localization Methods 4	8
	22	Locatio	n estimation using the Bayes Bule	0 ว
	3.5 3.4	Motion	Model 5	2 6
	0.4	3 / 1	Flat Transition Matrix 5	0 8
		3.4.1	Area Baged Transition Matrix	0
	25	0.4.2 Conclu	Area Daseu Transition Matrix	9 1
	5.0	Concius	sions	T
4	Wi-	Fi Base	ed Localization: Practical Implementation 6	3
	4.1	Introdu	$\begin{array}{c} \text{iction} \\ \vdots \\ $	3
	4.2	Initial	Discussions and Co-Design Workshops	4
	4.3	Instrun	nented Walker Platform	6
	4.4	Data C	ollection	9
	4.5	Softwar	e Architecture of System Implementation	1
		4.5.1	Self-Localization System Implementation	1
		4.5.2	Tablet Application for Visualization 7	6
	4.6	Experin	nents and Results	8
	4.7	Discuss	ion and Conclusions	0
5	Con	clusion	.5 8	3
	5.1	Contrib	outions	4
		5.1.1	Image Based Place Recognition Technique for a Crowded Indoor Environment	4
		5.1.1	Image Based Place Recognition Technique for a Crowded Indoor Environment	8

	5.1.2	Wi-Fi based Indoor Localization Method for a Crowded Indoor En-	
		$vironment \dots \dots$	85
	5.1.3	Wi-Fi Based Comprehensive Indoor Localization System for Track-	
		ing Elderly People in a Shopping Centre	85
5.2	Limita	ations and Future Works	86

Bibliography

89

List of Figures

2.1	Sample images subjected to various factors which affect the place recogni-	
	tion task	8
2.2	Top view of the third floor in Broadway shopping centre	9
2.3	Bottom portion of images are cropped for removing crowd	18
2.4	Bag of Words Extraction	20
2.5	Neural Network Architecture	21
2.6	Accuracy vs epoch count	26
2.7	Accuracy vs batch size	26
2.8	Sample image sequences near different shop fronts	28
2.9	Images with a moderate motion blur	28
2.10	Images with an extensive motion blur	28
2.11	Test images with different illumination levels. Top row shows randomly	
	selected three original test images, while second, third and fourth rows show some images modified with $(a, 0.5, 0.5, 50)$ $(a, 1.5, 0.5, 50)$ and	
	show same images modified with ($\alpha = 0.5, \beta = -50$), ($\alpha = 1.5, \beta = 50$) and ($\alpha = 2.0, \beta = 100$) parameter values respectively.	30
	$(\alpha = 2.0, \beta = 100)$ parameter values respectively.	30
3.1	Angle of Arrival	44
3.2	KDE based probability density functions of received signal strengths from	
	four access points for a given cell	55
3.3	Process related to continuous update of floor weight vector	58
3.4	A single row in transition matrix representing the cell transition probabilities	59
3.5	Transition areas related to a given cell. Similar area based information	
	related to all the cells is used to develop the transition matrix	60
3.6	The two green areas represent transition boundary areas of Cell A to other	
	cells (Cell A and Cell C are connected through a door, while other bound-	
	aries of Cell A do not have physical obstacles) and blue area represents the	01
	area corresponds to self transition	61
4.1	High level architecture of the localization system	65
4.2	Instrumented wheeled walker	67
4.3	Experimental self-localization system placed inside walker container bag	68
4.4	Wi-Fi Adapter	69
4.5	Altimeter	69
4.6	3G Dongle	69
4.7	Wheel Encoders	69
4.8	Laser Range Finder	69

4.9	IMU	39
4.10	Self-localization system packed inside a container box	70
4.11	Laser based map for floor 1	72
4.12	Laser based map for floor 2	73
4.13	Laser based map for floor 3	74
4.14	Software architecture for Localization framework	76
4.15	Registering/Modifying walker information	77
4.16	Selecting the localization criteria	77
4.17	Localization screen of Android application which shows the positions of the	
	wheeled walker users in first floor of the building. The three different colour	
	circles represent different wheel walkers	78

Acronyms & Abbreviations

- 2D Two-Dimensional
- **3D** Three-Dimensional
- **CAS** Centre for Autonomous Systems
- **UTS** University of Technology, Sydney
- IRT Illawarra Retirement Trust
- **GPU** Graphics Processing Units
- **RGB** Red Green Blue
- **RGB-D** Red Green Blue Depth
- **KDE** Kernel Density Estimation
- **LRF** Laser Range Finder
- **BoW** Bag of Words
- **RFID** Radio Frequency Identification
- **AMCL** Adaptive Monte-Carlo Localization
- **SLAM** Simultaneous Localization and Mapping
- **EKF** Extended Kalman Filter

MCL	Monte Carlo Localization
IMU	Inertial Measurement Unit
CNN	Convolutional Neural Network
\mathbf{SVM}	Support Vector Machine
SURF	Speeded Up Robust Features
KLT	Kanade-Lucas-Tomasi
RANSAC	Random Sample Consensus
HOUP	Histogram of Oriented Uniform Patterns
UWB	Ultra-Wide Band
BLE	Bluetooth Low Energy
RSSI	Received Signal Strength Indication
ToF	Time of Flight
\mathbf{LoS}	Line of Sight
FAF	Floor Attenuation Factor
WAF	Wall Attenuation Factor
AoA	Angle of Arrival
TDoA	Time Difference of Arrival
KNN	K-Nearest Neighbour
IAP	Important Access Points
MLP	Multi-Layer Perceptron
RBF	Radial Basis Function
GRNN	Generalized Regression Neural Network

cRBF	Clustered Radial Basis Function
DAQ	Data Acquisition
MAC	Media Access Control
ROS	Robot Operation System

Nomenclature

General Notations

e^{\Box}	Exponential
α	Gain parameter in contrast/brightness function
β	Bias parameter in contrast/brightness function
$W_{\Box,\Box}$	Weight parameter in neural network
B_{\Box}	Bias parameter in neural network
f	Frequency
X_g	Normal random variable which reflects the attenuation due to flat
	fading
γ	Path loss exponent
d	Distance
d_0	Reference distance
\bar{d}	estimated distance
FAF	Floor attenuation factor
WAF	Wall attenuation factor
n_w	Number of walls
C_w	Maximum number of walls up to which the attenuation factor makes
	an effect
$t_{\Box,\Box}$	Transition from one cells to another
N	Number of cells
М	Number of access points
(x,y)	Geometric x and y coordinates in a 2D plane

Nomenclature

$S \square$	Signal strength value of an access point
θ_{\Box}	Direct path angle of arrival of an access point
ρ	Case base parameter in $exponential \ {\rm signal} \ {\rm strength} \ {\rm representation}$
ϕ	Case base parameter in $powed$ signal strength representation
au	Signal strength threshold
F_{\Box}	A given value in floor weight vector
g	Decay constant for floor weight vector

Functions

O(.,.)	RGB pixel values at a given spatial coordinate of an output image
I(.,.)	RGB pixel values at a given spatial coordinate of an input image

- H(.,.) Cross entropy function of two distributions
- K(.) Kernel smoothing function
- p(.) Probability of a given variable
- P(.) Signal power at a given transmitter receiver distance

Operations

- \sum (.) Summation
- $\prod(.)$ Product