
Matrix product state decomposition in

machine learning and signal processing

Johann Anton Bengua

A thesis submitted for the degree of Doctor of Philosophy at

The University of Technology Sydney in 2016

Faculty of Engineering and Information Technology



Certificate of Original Authorship

I, Johann Bengua, certify that the work in this thesis has not previously been

submitted for a degree nor has it been submitted as part of the requirements for

a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have

received in my research work and the preparation of the thesis itself has been

acknowledged. In addition, I certify that all information sources and literature

used are indicated in the thesis.

Signature:

Date:

i



Author’s Publications

The contents of this thesis are based on the following papers that have been

published, accepted, or submitted to peer-reviewed journals and conferences.

Journal papers

[J1] Ho N. Phien, Johann A. Bengua, Hoang D. Tuan, Philippe Corboz, and
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Abstract

There has been a surge of interest in the study of multidimensional arrays, known

as tensors. This is due to the fact that many real-world datasets can be repre-

sented as tensors. For example, colour images are naturally third-order tensors,

which include two indices (or modes) for their spatial index, and one mode for

colour. Also, a colour video is a fourth-order tensor comprised of frames, which

are colour images, and an additional temporal index. Traditional tools for matrix

analysis does not generalise so well in tensor analysis. The main issue is that ten-

sors prescribe a natural structure, which is destroyed when they are vectorised.

Many mathematical techniques such as principal component analysis (PCA) or

linear discriminant analysis (LDA) used extensively in machine learning rely on

vectorised samples of data. Additionally, since tensors may often be large in di-

mensionality and size, vectorising these samples and applying them to PCA or

LDA may not lead to the most efficient results, and the computational time of

the algorithms can increase significantly. This problem is known as the so-called

curse of dimensionality.

Tensor decompositions and their interesting properties are needed to circumvent

this problem. The Tucker (TD) or CANDECOMP/PARAFAC (CP) decomposi-

tions have been predominantly used for tensor-based machine learning and signal

processing. Both utilise common factor matrices and a core tensor, which retains

the dimensionality of the original tensor. A main problem with these type of de-

compositions is that they essentially rely on an unbalanced matricization scheme,

which potentially converts a tensor to a highly unbalanced matrix, where the row

size is attributed to always one mode and the column size is the product of the

remaining modes. This method is not optimal for problems that rely on retaining

as much correlations within the data, which is very important for tensor-based

machine learning and signal processing.

In this thesis, we are interested in utilising the matrix product state (MPS) de-

composition. MPS has the property that it can retain much of the correlations

xvii



within a tensor because it is based on a balanced matricization scheme, which

consists of permutations of matrix sizes that can investigate the different cor-

relations amongst all modes of a tensor. Several new algorithms are proposed

for tensor object classification, which demonstrate an MPS-based approach as an

efficient method against other tensor-based approaches. Additionally, new meth-

ods for colour image and video completion are introduced, which outperform the

current state-of-the-art tensor completion algorithms.
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