

Matrix product state decomposition in machine learning and signal processing

Johann Anton Bengua

A thesis submitted for the degree of Doctor of Philosophy at The University of Technology Sydney in 2016 Faculty of Engineering and Information Technology

Certificate of Original Authorship

I, **Johann Bengua**, certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature:

Date:

Author's Publications

The contents of this thesis are based on the following papers that have been published, accepted, or submitted to peer-reviewed journals and conferences.

Journal papers

- [J1] Ho N. Phien, Johann A. Bengua, Hoang D. Tuan, Philippe Corboz, and Román Orús. Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing. *Phys. Rev. B*, 92:035142, July 2015.
- [J2] Johann A. Bengua, Ho N. Phien, Hoang D. Tuan, and Minh N. Do. Efficient tensor completion for color image and video recovery: Low-rank tensor train, *IEEE Transactions on Image Processing*, Accepted, August 2016.
- [J3] Johann A. Bengua, Ho N. Phien, Hoang D. Tuan, and Minh N. Do. Matrix Product State for Higher-Order Tensor Compression and Classification. *IEEE Transactions on Signal Processing*, Resubmitted, June 2016.
- [J4] Johann A. Bengua, Hoang D. Tuan, Trung Q. Duong and H. Vincent Poor. Joint Sensor and Relay Power Control in Tracking Gaussian Mixture Targets by Wireless Sensor Networks, *IEEE Transactions on Signal Processing*, Submitted, July 2016.

Conference papers

[C1] Johann A. Bengua, Ho N. Phien and Hoang D. Tuan. Optimal Feature Extraction and Classification of Tensors via Matrix Product State Decomposition, *Proceedings of the 2015 IEEE International Congress on Big Data*, pp. 669-672, New York, NY, 2015.

- [C2] Johann A. Bengua, Hoang D. Tuan, Ho N. Phien and Ha H. Kha. Twohop Power-Relaying for Linear Wireless Sensor Networks, Proceedings of the 2016 IEEE Sixth International Conference on Communications and Electronics, pp. 1-5, Ha Long, Vietnam, 2016.
- [C3] Johann A. Bengua, Hoang D. Tuan, Ho N. Phien and Minh N. Do. Concatenated image completion via tensor augmentation and completion, 10th International Conference on Signal Processing and Communication Systems, Submitted, July 2016.

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Prof. Tuan Hoang, for his unfaltering guidance and supervision. Thank you for your support and great insight. I also want to thank Dr. Phien Ho, who is now at Westpac, for teaching me many things related to the quantum world, for inspiring me and pushing me to try new algorithms and mathematical tools, which greatly increased my knowledge and abilities.

Furthermore, I would like to thank Prof. Minh N. Do (University of Illinois Urbana-Champaign, USA) and Prof. Vincent Poor (Princeton University, USA) for the immense support, input and collaboration in my work.

Additionally, a sincere appreciation to my colleagues in Prof. Tuan Hoang's research group at the University of Technology Sydney: Elong Che, Bao Truong and Tam Ho. Thank you for all the interesting discussions, and providing a fun and friendly research environment.

Finally, a tremendous gratitude to my mother, father and brother, for always encouraging me to seek knowledge. Most importantly, I would like to thank my beloved wife Dolly Sjafrial for always supporting me, for your patience and faith in me all these years, and for your love.

List of Abbreviations

MPS	Matrix product state
TT	Tensor train
CP	Canonical/Parallel factors
TD	Tucker decomposition
PARAFAC	Parallel factors
SiLRTC	Simple low-rank tensor completion
SiLRTC-TT	Simple low-rank tensor completion via tensor train
TMac	Tensor completion by parallel matrix factorization
TMac-TT	Parallel matrix factorization via tensor train
KA	Ket augmentation
ICTAC	Concatenated image completion via tensor augmentation
	and completion
TTPCA	Principal component analysis via tensor train
HOSVD	Higher-order singular value decomposition
HOOI	Higher-order orthogonal iteration
MPCA	Multilinear principal component analysis
FBCP	Fully Bayesian CP Factorization
STDC	Simultaneous tensor decomposition and completion
LRTC	Low-rank tensor completion
LRMC	Low-rank matrix completion
SVD	Singular value decomposition
ALS	Alternating least squares
PCA	Principal component analysis
LDA	Linear discriminant analysis
KNN	K-nearest neighbours

SPC-QV Smooth PARAFAC tensor completion w					
	quadratic variation				
R-UMLDA	Uncorrelated multilinear discriminant analysis				
	with regularization				
WSN	Wireless sensor network				
LSN	Linear sensor network				
NSN	Nonlinear sensor network				
GMM	Gaussian mixture model				
MSE	Mean square error				
MMSE	Minimum mean square error				

Contents

Li	st of	Figure	es	xi
Li	st of	Tables	3	xvi
1	Intr	oducti	on	1
2	Bac	kgrour	ıd	10
	2.1	Introd	uction to tensors	10
		2.1.1	Notation and preliminaries	10
		2.1.2	Matricization	12
		2.1.3	Tensor multiplication: the n -Mode matrix product	12
		2.1.4	Matrix and tensor norms	13
	2.2	Tucker	decomposition	13
	2.3	Matrix	product state decomposition	14
		2.3.1	MPS formulations	15
		2.3.2	Left-canonical MPS	17

		2.3.3	Right-canonical MPS	17
		2.3.4	Mixed-canonical MPS	20
		2.3.5	Vidal's decomposition	21
	2.4	Measu	res of entropy	23
		2.4.1	Schmidt decomposition	23
		2.4.2	The von Neumann entropy	24
9	Ма		aduat states for tangen based machine learning	97
3	Ma	trix pr	oduct states for tensor-based machine learning	27
	3.1	MPS o	decomposition vs TD decomposition in tensor compression .	30
	3.2	Tailor	ed MPS for tensor compression	34
		3.2.1	Adaptive bond dimension control in MPS	34
		3.2.2	Tensor mode pre-permutation and pre-positioning mode K for MPS \ldots	38
		3.2.3	Complexity analysis	39
		3.2.4	MPS-based tensor object classification	40
	3.3	Exper	imental results	41
		3.3.1	Parameter selection	41
		3.3.2	Tensor object classification	42
		3.3.3	Training time benchmark	51
	3.4	Conclu	usion	53

4	Mat	trix pr	oduct states for tensor completion	54
	4.1	Backg	round of tensor completion	54
	4.2	A new	approach via TT rank	55
	4.3	Matrix	k and tensor completion \ldots	57
		4.3.1	Conventional tensor completion	57
		4.3.2	Tensor completion by TT rank optimization	59
	4.4	Propos	sed Algorithms	60
		4.4.1	SiLRTC-TT	61
		4.4.2	TMac-TT	62
		4.4.3	Computational complexity of algorithms	63
	4.5	Tensor	r augmentation	64
	4.6	Tensor	r completion simulations	66
		4.6.1	Initial parameters	67
		4.6.2	Synthetic data completion	68
		4.6.3	Image completion	76
		4.6.4	Video completion with ket augmentation	78
	4.7	Image	concatenation for colour image completion $\ldots \ldots \ldots$	82
		4.7.1	Modified KA	83
		4.7.2	A concatenated image completion framework	84
		4.7.3	Image recovery experiments	86

	4.8	Conclusion
5	Wir	eless sensor networks 91
	5.1	Background
	5.2	Mathematical preliminaries
	5.3	Fundamental matrix inequalities for GMM
	5.4	Joint GMM relayed equations
		5.4.1 One-hop communication
	5.5	Applications to static target localization
		5.5.1 Linear sensor networks
		5.5.2 Nonlinear sensor networks
	5.6	Dynamic target tracking by WSN
		5.6.1 Linear Sensor Networks
		5.6.2 Nonlinear Sensor Networks
		5.6.3 LSN for nonlinear dynamics
	5.7	Conclusion
6	Sun	mary and outlook 126
	6.1	Thesis summary $\ldots \ldots 126$
	6.2	Future Outlook
Bi	bliog	raphy 129

List of Figures

2.1	Tensor graphical representation	11
2.2	The <i>n</i> -Mode matrix product	13
2.3	The Tucker decomposition	14
2.4	The matrix product state decomposition	15
2.5	The left-canonical matrix product state.	18
2.6	The right-canonical matrix product state	19
2.7	MPS based on Vidal's decomposition	21
2.8	Vidal decomposition with right- and left-canonical forms $\ . \ . \ .$	23
3.1	Modification of ten objects in the training set of COIL-100 are shown after applying MPS and HOOI corresponding to $\epsilon = 0.9$ and 0.65 to compress tensor objects.	43
3.2	Error bar plots of CSR versus thresholding rate ϵ for different H/O ratios.	44
3.3	The gait silhouette sequence for a third-order tensor. \ldots . \ldots .	49
3.4	COIL-100 training time comparison.	52

3.5	EYFB training time comparison	52
3.6	BCI Subject 1 training time comparison	52
3.7	GAIT Probe A training time comparison	53
4.1	A structured block addressing procedure to cast an image into a higher-order tensor. (a) Example for an image of size $2 \times 2 \times 3$ represented by (4.22). (b) Illustration for an image of size $2^2 \times 2^2 \times 3$ represented by (4.23).	66
4.2	The RSE comparison when applying different LRTC algorithms to synthetic random tensors of low TT rank. Simulation results are shown for different tensor dimensions, 4D, 5D, 6D and 7D	70
4.3	Phase diagrams for low TT rank tensor completion when applying different algorithms to a 5D tensor.	71
4.4	Recover the Peppers image with 90% of missing entries using differ- ent algorithms. Top row from left to right: the original image and its copy with 90% of missing entries. Second and third rows rep- resent the recovery results of third-order (no order augmentation) and ninth-order tensors (KA augmentation), using different algo- rithms: STDC (only on second row), FBCP, ALS, SiLRTC-TT, SiLRTC, TMac, TMac-TT, SiLRTC-Square and TMac-Square from the left to the right, respectively. The Tucker-based SiLRTC and TMac perform considerably worse when using KA because they are based on an unbalanced matricization scheme, which is unable to take the full advantage of KA.	72
4.5	Phase diagrams for low Tucker rank tensor completion when ap-	
	plying different algorithms to a 5D tensor	73

73

76

- 4.7 Recover the House image with missing entries described by the white letters using different algorithms. Top row from left to right: the original image and its copy with white letters. Second and third rows represent the recovery results of third-order (no order augmentation) and ninth-order tensors (KA augmentation), using different algorithms: STDC (only on second row), FBCP, ALS, SiLRTC-TT, SiLRTC, TMac, TMac-TT, SiLRTC-Square and TMac-Square from the left to the right, respectively. 74

4.13	Performance comparison between different tensor completion al- gorithms based on the RSE vs the missing rate when applied to the Lena image. (a) Original tensor (no order augmentation). (b) Augmented tensor using KA scheme	78
4.14	The 7th, 21st, 33rd and 70th frames (from left to right column) in the NYC video, with each row (from top to bottom) represent- ing the original frames, original frames with 95% missing entries, TMac, TMac-TT, TMac-Square, ALS and FBCP	79
4.15	The 7th, 21st, 33rd and 70th frames (from left to right column) in the bus video, with each row (from top to bottom) representing the original frames, original frames with 95% missing entries, TMac, TMac-TT, TMac-Square, ALS and FBCP	80
4.16	Completed Lena image using KA+TMac-TT that previously had 90% missing entries.	83
4.17	An example of a third-order concatenated tensor \mathcal{X}_{vst} of the Lena image.	85
4.18	Recovery of the Lena image for 90% missing entries and 80% miss- ing entries. Top row from left to right: the original image, the original image with 90% missing entries, and the subsequent re- covery results for ICTAC, KA+TMac-TT and SPC-QV. Similarly for the bottom row from left to right: the original image with 80% missing entries, then recovery results for ICTAC, KA+TMac-TT	

4.19	Recovery of the Peppers image for 90% missing entries and 80%	
	missing entries. Top row from left to right: the original image, the	
	original image with 90% missing entries, and the subsequent re-	
	covery results for ICTAC, KA+TMac-TT and SPC-QV. Similarly	
	for the bottom row from left to right: the original image with 80%	
	missing entries, then recovery results for ICTAC, KA+TMac-TT	
	and SPC-QV	89
5.1	System model	100
5.2	Normalized MSE of LSN by different power schemes	110
5.3	The function $\varphi(\alpha^{(\kappa)}, \beta^{(\kappa)})$ for power allocation at each iteration κ .	111
5.4	The MSE calculated for each estimated target $\tilde{\mathbf{X}}^{(\kappa)}$ at iteration κ .	111
	Ŭ	
5.5	Normalized MSE Performance of NSN by different power schemes.	113
5.6	Path of a constant velocity target and the estimated tracks	118
5.7	Comparison of MSE performance for the x-coordinate	118
5.8	Comparison of MSE performance for the y-coordinate	119
5.9	Path of a maneuvering target and the estimated tracks	121
5.10	Comparison of MSE performance for the x-coordinate	121
5.11	Comparison of MSE performance for the y-coordinate	122
5.12	The true and estimated trajectory of the state \mathbf{x}_k	124
5.13	Comparison of MSE at each time step	125

List of Tables

3.1	COIL-100 classification results. The best CSR corresponding to	
	different H/O ratios obtained by MPS and HOOI	43
3.2	EYFB classification results	45
3.3	BCI Jiaotong classification results	47
3.4	Seven experiments in the USF GAIT dataset	48
3.5	GAIT classification results	50
4.1	MPS advantages and disadvantages	56
4.2	SiLRTC-TT	62
4.3	TMac-TT	64
4.4	Computational complexity of algorithms for one iteration. $\ . \ . \ .$	64
4.5	RSE and SSIM tensor completion results for 95%, 90% and 70% missing entries from the NYC video.	81
4.6	RSE and SSIM tensor completion results for 95%, 90% and 70% missing entries from the bus video.	82
5.1	Average iterations of two algorithms for LSN	110

5.2	Average	iterations	of two	algorithms	in	NSN.					 113

Abstract

There has been a surge of interest in the study of multidimensional arrays, known as tensors. This is due to the fact that many real-world datasets can be represented as tensors. For example, colour images are naturally third-order tensors, which include two indices (or modes) for their spatial index, and one mode for colour. Also, a colour video is a fourth-order tensor comprised of frames, which are colour images, and an additional temporal index. Traditional tools for matrix analysis does not generalise so well in tensor analysis. The main issue is that tensors prescribe a natural structure, which is destroyed when they are vectorised. Many mathematical techniques such as principal component analysis (PCA) or linear discriminant analysis (LDA) used extensively in machine learning rely on vectorised samples of data. Additionally, since tensors may often be large in dimensionality and size, vectorising these samples and applying them to PCA or LDA may not lead to the most efficient results, and the computational time of the algorithms can increase significantly. This problem is known as the so-called curse of dimensionality.

Tensor decompositions and their interesting properties are needed to circumvent this problem. The Tucker (TD) or CANDECOMP/PARAFAC (CP) decompositions have been predominantly used for tensor-based machine learning and signal processing. Both utilise common factor matrices and a core tensor, which retains the dimensionality of the original tensor. A main problem with these type of decompositions is that they essentially rely on an unbalanced matricization scheme, which potentially converts a tensor to a highly unbalanced matrix, where the row size is attributed to always one mode and the column size is the product of the remaining modes. This method is not optimal for problems that rely on retaining as much correlations within the data, which is very important for tensor-based machine learning and signal processing.

In this thesis, we are interested in utilising the matrix product state (MPS) decomposition. MPS has the property that it can retain much of the correlations within a tensor because it is based on a balanced matricization scheme, which consists of permutations of matrix sizes that can investigate the different correlations amongst all modes of a tensor. Several new algorithms are proposed for tensor object classification, which demonstrate an MPS-based approach as an efficient method against other tensor-based approaches. Additionally, new methods for colour image and video completion are introduced, which outperform the current state-of-the-art tensor completion algorithms.