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Abstract

There has been a surge of interest in the study of multidimensional arrays, known

as tensors. This is due to the fact that many real-world datasets can be repre-

sented as tensors. For example, colour images are naturally third-order tensors,

which include two indices (or modes) for their spatial index, and one mode for

colour. Also, a colour video is a fourth-order tensor comprised of frames, which

are colour images, and an additional temporal index. Traditional tools for matrix

analysis does not generalise so well in tensor analysis. The main issue is that ten-

sors prescribe a natural structure, which is destroyed when they are vectorised.

Many mathematical techniques such as principal component analysis (PCA) or

linear discriminant analysis (LDA) used extensively in machine learning rely on

vectorised samples of data. Additionally, since tensors may often be large in di-

mensionality and size, vectorising these samples and applying them to PCA or

LDA may not lead to the most efficient results, and the computational time of

the algorithms can increase significantly. This problem is known as the so-called

curse of dimensionality.

Tensor decompositions and their interesting properties are needed to circumvent

this problem. The Tucker (TD) or CANDECOMP/PARAFAC (CP) decomposi-

tions have been predominantly used for tensor-based machine learning and signal

processing. Both utilise common factor matrices and a core tensor, which retains

the dimensionality of the original tensor. A main problem with these type of de-

compositions is that they essentially rely on an unbalanced matricization scheme,

which potentially converts a tensor to a highly unbalanced matrix, where the row

size is attributed to always one mode and the column size is the product of the

remaining modes. This method is not optimal for problems that rely on retaining

as much correlations within the data, which is very important for tensor-based

machine learning and signal processing.

In this thesis, we are interested in utilising the matrix product state (MPS) de-

composition. MPS has the property that it can retain much of the correlations

xvii



within a tensor because it is based on a balanced matricization scheme, which

consists of permutations of matrix sizes that can investigate the different cor-

relations amongst all modes of a tensor. Several new algorithms are proposed

for tensor object classification, which demonstrate an MPS-based approach as an

efficient method against other tensor-based approaches. Additionally, new meth-

ods for colour image and video completion are introduced, which outperform the

current state-of-the-art tensor completion algorithms.

xviii



Chapter 1

Introduction

Statistical procedures such as principal component analysis (PCA) and linear

discriminant analysis (LDA) are of utmost importance for analysing numerical

data, provided that the input data is structured as a vector. Not all input data can

be faithfully represented in this form and vectorising data of higher dimensions

could potentially destroy unique correlations [1]. There has been substantial

progress into generalising these algorithms to allow for higher-dimensional input

data. Tensors are multidimensional arrays that describe the underlying structure

of multidimensional data [2, 3]. Specifically, an Nth-order tensor is a tensor

product of N vector spaces. Tensors can be decomposed (hence the term tensor

decomposition) into several forms and are at the core of many efficient algorithms

that analyse data of high dimensions. These are but not limited to the Tucker

(TD) [4], hierarchical Tucker (HT) [5, 6], canonical decomposition/parallel factors

(CP) [7] and tensor-train (TT) [8] decompositions. The latter is also known as the

matrix product state (MPS) decomposition, and has been used quite frequently

in quantum physics for decades [9, 10, 11].

Prior to elaborating on the concept of tensors decompositions, it will be benefi-

cial to have an insight into the types of data that can be considered multidimen-

sional. At present, multidimensional data is being generated at an incredible rate

[12, 13, 14]. Examples of two-dimensional (2D) data may consist of grayscale im-

ages utilised in pattern recognition and computer vision problems [15, 16, 17, 18],

1



and gene expression data analysis [19, 20]. Sources of three-dimensional data

(3D) may include brain-computer interface (BCI) Electroencephalography (EEG)

measurements in biomedical engineering [21, 22], colour image recognition in com-

puter vision and pattern recognition [23, 24], and hyperspectral imaging in mining

[25] and surveillance [26]. Other examples of multidimensional data can also be

found in data mining [27], predicting personalised tags in tag recommendation

[28], and the study of quantum entanglement via tensor networks [29, 30].

Nearly a century ago the polyadic form of a tensor, i.e. expressing a higher-order

tensor as the the summation of first-order tensors, was introduced and is the first

account of a tensor decomposition [31, 32]. Later, in 1944 Cattell [33, 34] pro-

posed “parallel proportional profiles” to correspond to psychological traits and

the idea of multiple axes for analysis (objects, circumstances and features). These

papers pioneered the CP decomposition, but it wasn’t until 1970 where it was

popularised when Carroll and Chang [35] introduced the canonical decomposition

(CANDECOMP), and Harshman [36] proposed parallel factors (PARAFAC), into

the psychometrics community. An alternative decomposition, the Tucker decom-

position, was introduced by Ledyard Tucker in his seminal work on three-mode

factor analysis [4]. TD was subsequently refined through the PhD thesis of Joseph

Levin [37] and concurrently with Tucker’s later papers [38, 39]. Confusion may

arise in regards to TD because there have been many algorithms proposed that

utilise the underlying structure of TD. These are, but not limited to, the higher-

order singular value decomposition (HOSVD) [40], three-mode principal compo-

nent analysis (3MPCA) [41], N -mode PCA [42] and N -mode SVD [16].

In comparison to MPS, both CP and TD have been applied to various fields

decades earlier. Since the introduction of CP to psychometrics [35] in 1970, it

has since been applied to chemometrics [43], statistics [44], sensor-array pro-

cessing [45], neuroscience [46, 47], data mining [48, 49], image compression and

classification [50], scientific computing [51, 52, 53] and applied mathematics [54].

Similarly, some applications of TD are in chemical analysis [55], Wiener filters

in signal processing [56], facial recognition and human motion with TensorFaces

[57, 58], video processing [59, 60], data mining [61, 62] and machine learning

2



[63, 64, 65].

Historically, the earliest representation that resembled the matrix product state

(MPS) decomposition was in 1941, where the Kramers-Wannier approximation

was used to study the two-dimensional classical Ising model [66]. Subsequent

papers in statistical mechanics and magnetism also had similar forms to MPS

[67, 10, 68], and only in 1992 was the MPS formalism introduced as “finitely

correlated states” [69]. Today the MPS decomposition has been used quite ex-

tensively in physics research [70, 71, 9, 72, 73, 11, 74, 75, 76, 77, 78] yet only in

2011 had it been introduced to the applied mathematics community by Ivan Os-

eledets [8] with the name tensor-train (TT) decomposition. Since this inception

to the society for industrial and applied mathematics (SIAM), there has been

considerable research in this community on utilising MPS/TT for problems in

numerical analysis [79, 80], scientific computing [81, 82, 83] and high-dimensional

approximation [84, 85].

It is surprising that MPS has had minimal application to fields outside of physics

and mathematics. There are unique aspects of MPS that would allow it to be

advantageous for tensor-based machine learning and signal processing problems.

Specifically, MPS has the ability to approximate an Nth-order tensor that de-

pends only linearly with N and exponentially with its entanglement [9] or TT

rank [8]. In comparison, TD/CP decompositions provide a global decomposition

of an Nth-order tensor, which means its complexity grows exponentially with N

as well as its Tucker rank [86]. Since TD/CP has been used in predominately

more applications than MPS, a new approach to many of these TD/CP tensor-

based problems via MPS/TT would be an interesting and important direction,

which consequently could lead to many new results.

Data completion is the task of filling in missing entries of a partially observed

array of data. In computer vision and graphics, the aim of image completion

(or image inpainting) is to impute missing pixels of an image based only on a

known subset of pixels [87, 86]. For two-dimensional (2D) grayscale images, the

low rank matrix constraint could be used to capture the information within an
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image, however, this method does not guarantee a globally optimal solution due

to it being a nonconvex problem [88]. It was shown theoretically [89, 90, 91] that

the trace norm or nuclear norm of a matrix can be used to approximate the matrix

rank. Subsequently, efficient algorithms for low rank matrix completion problems

based on nuclear norm minimisation were proposed by [92, 91]. Particularly, [91]

had also shown that the trace norm is the tightest convex approximation for the

rank of matrices.

Low rank tensor completion problems has been under considerable interest by

researchers in recent years, this is because the rank of a tensor is not easily

understood, and there is no standard method for the generalisation of the matrix

rank to tensors. The determination of the CP rank (also known as tensor rank) is

an NP-hard problem [93, 2]. An alternative is the Tucker rank, which consists of

ranks of matrices that are based on an unbalanced matricization scheme [2]. The

major problem of using an unbalanced matricization scheme is that the upper

bound of the matrix rank is small, and may not be suitable for capturing the

global information of a tensor. Despite these issues, there have been many recent

works in utilising Tucker rank or CP rank for low rank tensor completion problems

[86, 94, 95, 96, 97, 98], and there has been no approach to tensor completion

problems via TT rank.

Tensor objects naturally reside in a high-dimensional vector space, and tradi-

tional machine learning classification methods that operate directly on this space

can suffer from the so-called curse of dimensionality [99, 17]. Classifier perfor-

mance tends to perform quite poorly in a high-dimensional space given a small

amount of training samples, and handling samples of this size is computationally

expensive. Regardless, tensor objects in most real-world applications would be

constrained to a subspace or manifold of low dimension because entries of the

tensor would often be highly correlated with its surrounding entries [100]. Hence,

dimensionality reduction or feature extraction can be used to transform a tensor

of high-dimensions to low-dimensions, which retains most of the relevant infor-

mation of the original tensor space [99, 101].

There have been some recently proposed algorithms for tensor object feature ex-
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traction. Discriminant analysis with tensor representation (DATER) [102] and

multilinear discriminant analysis (MDA) [15] are dimensionality reduction algo-

rithms. They essentially use an iterative scheme similar to an alternating least

squares [103], with the aim of maximising a tensor-based discriminant criterion.

The problems of these algorithms is that they are extremely sensitive to pa-

rameter adjustments and they also do not converge [104]. Multilinear principal

component analysis (MPCA) [17] is a tensor feature extraction algorithm that

generalises PCA to higher dimensions. It focuses on producing multilinear pro-

jections that can be applied onto the original tensor space, which projects it into a

smaller subspace without losing the original order of the tensor. The projections

are created based on unbalanced scatter matrices, which may not be efficient in

terms of capturing the relevant information from the original tensor space. Uncor-

related multilinear discriminant analysis with regularization (R-UMLDA) [105]

is an alternate tensor feature extraction method that projects the original tensor

space to a vector space. The aim of R-UMLDA is to extract uncorrelated discrim-

inative features directly from tensors by maximising a scatter ratio criterion. Not

surprisingly, there are many other tensor-based methods [106, 107, 108, 109, 110]

with the goal of finding a tensor-to-tensor (TTP) or tensor-to-vector (TVP) pro-

jection [1] to reduce the dimensionality of tensors, which can eventually be used

for classification tasks. Interestingly, the solutions presented have used a CP/TD

approach, i.e. the utilisation of CP or Tucker rank and/or decomposition as the

core functionality of their algorithms. To the best of our knowledge, there has

been no work in approaching tensor object dimensionality reduction and classifi-

cation via MPS.

In the first part of this thesis, we introduce MPS as a completely new concept

to tensor dimensionality reduction, tensor object classification and tensor com-

pletion. Firstly, it is shown that MPS can reduces the dimensionality of tensors

much more efficiently than TD-based approaches because of the underlying TT

rank. Using a thresholding operation by keeping only the relevant singular values

from matricizations, MPS is still able to retain better features than TD. Subse-

quently, two algorithms are proposed to demonstrate the efficiency of an MPS

5



approach to tensor object classification. The first is called principal component

analysis via tensor train (TTPCA), which combines MPS with PCA. The second

is simply called MPS, which is a PCA alternative in the higher-dimensional case.

Both algorithms provide high classification accuracies against popular tensor-

based methods on object, face, gait and neuroscience recognition tasks.

For tensor completion, we show through the von Neumann entropy in quantum

information theory [111] that the TT rank is able to capture the global corre-

lations of a tensor much more effectively than the Tucker rank. This is mainly

due to the TT rank consisting of ranks of matrices that are formed by a well bal-

anced matricization scheme. Subsequently, we propose three algorithms: simple

low-rank tensor completion via tensor train (SiLRTC-TT), parallel matrix fac-

torisation via tensor train (TMac-TT), and concatenated image completion via

tensor augmentation and completion (ICTAC). These algorithms demonstrate the

superiority of using TT rank for tensor completion problems, which can be seen

from their benchmark results against current state-of-the-art tensor completion

algorithms in recovering images and videos with missing entries. Additionally, a

tensor augmentation scheme is proposed called ket augmentation (KA) that is

used to increase the dimensionality of a tensor without changing the total num-

ber of its entries. The purpose of KA is to provides a perfect means to obtain

a higher-order tensor representation of visual data by maximally exploring the

potential of TT rank-based optimization for colour image and video completion.

By applying KA as a preprocessing technique prior to using the TMac-TT algo-

rithm, it is shown to provide superb results for colour image and video completion

problems. Furthermore, ICTAC is a specialised framework for image completion

that uniquely concatenates a single image with missing entries to obtain a new

tensor, which contains new structural properties to assist in completing the miss-

ing entries. Combining this with KA and TMac-TT, ICTAC provides the best

results against present algorithms in image recovery problems.

Another contribution of this thesis is on target tracking with wireless sensor net-

works. Wireless sensor networks (WSNs) consist of spatially distributed wireless

sensors, and are important in many engineering applications such as navigational
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and guidance systems, battlefield surveillance, sonar ranging, process monitoring

in industrial plants, and internet of things (IoT) [112, 113, 114, 115, 116, 117, 118].

The sensors in a sensor network send their local observations of a target to a fu-

sion center (FC), which is done usually in an amplify-and-forward mode [119].

The purpose of the FC is to provide a global estimate of the position of the

target. Sensors can be configured to be linear or nonlinear and depends on the

input-output relation, e.g. nonlinear sensors could be ranging and/or bearing

sensors for target localisation and tracking [115]. Targets are often assumed to

be Gaussian, and in this case, Bayesian filtering can be defined via the first and

second order statistical moments of the jointly Gaussian distributed source and

observation [120]. Realistically, sensors are limited by their energy resources,

and this issue has led to many researchers investigating sensor transmitter power

allocation in linear sensor networks (LSNs) [121, 122, 123, 124]. The main aim

of these works is to minimise estimate distortion in the FC, with the assump-

tion that the targets are Gaussian and scalar. In [125], a tractable semidefinite

program (SDP) for sensor power allocation was introduced to allow the FC to

determine the best linear estimate in terms of the mean square error (MSE). This

could be achieved for both linear or nonlinear sensor networks (NSNs), and for

Gaussian targets that were scalar or vector, static or dynamic.

In the above aforementioned works, the wireless channel was assumed to be strong

enough for low sensor transmit power, with path-loss, small-scale fading and

shadowing not being taken into consideration [126]. Wireless relay nodes could

be used to assist the communication between sensors and the FC, which acts as

a wireless bridge. Multi-hop communication/relaying is already a standard in

wireless broadband systems [127], yet there has been no exploration of relaying

techniques in WSNs. Additionally, Gaussian mixture models (GMMs) have been

known to better characterise target priors because they offer more flexibility in

describing a target [128]. Recent works in signal processing [129, 130, 131, 132,

133] have shown GMM to be a indispensable tool. However, Bayesian filters with

Gaussian mixture targets is computationally intractable in linear models because

there is no closed-form solution for the MSE. This problem has been addressed

7



particularly in [131] via stochastic programming.

In the second part of this thesis, we address the problem of joint sensor and relay

power allocation to optimize Bayesian filters. For our case we assume targets,

which can be static or dynamic, have Gaussian mixture prior knowledge and the

sensor networks can be configured as a LSN or NSN. To the best of our knowl-

edge, this problem has not been considered in previous literature and our results

demonstrate a computational tractable scheme based on an iterative algorithm,

which converges to a stationary point after only a few iterations. Results demon-

strate that utilizing a relay to act as a bridge between the sensors and FC leads

to more accurate estimations at the FC compared to the cases with no relay

present and/or no optimized power allocation, i.e. equal power is distributed at

the sensors and relay.

The plan of the thesis is outlined as follows:

• In Chapter 2, a background of tensors is firstly given which introduces the

concept of tensors, as well as other necessary mathematical preliminaries.

An introduction to the Tucker and the matrix product state decomposition

is followed, with an emphasis on MPS. This provides the necessary technical

knowledge, including TT and Tucker rank, to understand our work. Lastly,

a review on the Schmidt decomposition and the von Neumann entropy is

provided.

• In Chapter 3, a more detailed overview of current tensor-based feature ex-

traction algorithms is given. Then, a rigorous theoretical analysis of why

MPS is more efficient than TD-based approaches for dimensionality reduc-

tion and classification is given. The optimised MPS approach is provided

with extensive discussion on practical computation. Besides, two MPS-

based algorithms are proposed, TTPCA and MPS, and a comparison of

computational complexities is given to other tensor-based methods. Ex-

tensive experimental comparison on several datasets is provided that shows

TTPCA and MPS being excellent approaches to tensor object recognition.
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• In Chapter 4, a background is firstly presented on existing tensor completion

techniques. It is then shown via von Neumann entropy that TT rank is

much more efficient than Tucker rank in capturing the relevant correlations

in tensors, which is significant for tensor completion. Subsequently, new

tensor problem formulations are given based on balanced matricizations,

and two new algorithms, SiLRTC-TT and TMac-TT are proposed to solve

them. A dimensionality augmentation technique, KA, is also introduced as

a preprocessing technique, which enables both algorithms to be competitive

against state-of-the-art algorithms. A subsection provides extra work that

enhances the results of image completion by establishing a new framework,

which is known as ICTAC. ICTAC contains a preprocessing technique that

concatenates a single image with missing pixels into a motionless video

tensor. Reshaping and permuting this tensor allows for new patterns to

arise, and this tensor is then applied with KA and TMac-TT. ICTAC is

shown to provide extremely good results for completing images against the

most current state-of-the-art algorithms.

• In Chapter 5, a contribution to power allocation in wireless sensor networks

is presented. First, a background is given on the current methods and

problems, then a new efficient algorithm is proposed. It provides the joint

transmitter and relay power allocations to optimise a Bayesian filter, which

is deployed at an FC for target estimation in a wireless sensor network.

The focus is particularly on Gaussian mixture target priors, which can be

scalar or vector, and the consideration of both linear and nonlinear sensor

networks. The proposed method is the first to consider optimising Bayesian

filters with Gaussian mixture target priors for joint sensor and relay power

allocation. Experimental results demonstrate its computationally efficiency,

and is more accurate in estimating targets compared to WSNs without a

relay and/or equal sensor power allocation.

• Chapter 6 provides the thesis summary and discusses potential applications

of the findings as well as the future outlook.

9



Chapter 2

Background

2.1 Introduction to tensors

For this section we define the mathematical background for tensors.

2.1.1 Notation and preliminaries

A tensor is a multidimensional array and the number of dimensions in the array

is also known as its order, ways or modes. It is important to highlight that the

definition of tensors here is different from the definition of tensors in physics and

engineering [134], which is also known as tensor fields [135].

Scalars are zero-order tensors and are denoted by lowercase letters, e.g. x, y, z.

Naturally, first-order tensors are vectors which we represent as bold font lower

case letters, e.g. x,y, z. Matrices are second-order tensors that are denoted as

uppercase letters, e.g. X, Y, Z. A higher-order tensor, which is a tensor of order

greater than or equal to three, are denoted as calligraphic font uppercase letters,

e.g. X ,Y ,Z.

We also denote xi, xij and xi1···iN as the ith entry x(i), (i, j)th entry X(i, j) and

(i1, · · · , iN)th entry X (i1, · · · , iN) of vector x, matrix X and higher-order tensor

X , respectively. The nth element in a sequence of tensors can be denoted as X(n)

or Xn.
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From the above definitions the general notation for a tensor is

X ∈ R
I1×I2×···×IN , (2.1)

which is the tensor product of N real vector spaces, where in = 1, . . . . , In repre-

sents the index for the nth vector space.

Subarrays can be formed by fixing certain indices in the tensor. For matrices,

the row or column index can be fixed and we use a colon to indicate all elements

of a mode. Consider a matrix X ∈ R
I1×I2 , then the i2th column of X is denoted

by x:i2 , and the i1th row of X is denoted by xi1:.

The mode-n fiber is a generalisation of the matrix row and columns. A fiber is

defined by fixing all the indices of a tensor except one. The subarrays for matrix

column and row defined above are known as mode-1 and mode-2 fibers, respec-

tively. Hence, the mode-n fiber of the Nth order tensor in (2.1) is xi1...in−1:in+1...iN ,

where all indices are fixed except in.

Graphical notation will be used throughout this chapter to support the mathe-

matical concepts of tensors. Fig 2.1 illustrates the simple graphical representation

of tensors that is used extensively in physics.

Figure 2.1 – Tensor graphical representation: (a) A vector with a single line pro-

truding to represent its index. (b) A matrix with two protruding lines to represent

row and column indices. (c) A third-order tensor.
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2.1.2 Matricization

Mode-nmatricization (also known as mode-n unfolding or flattening) of the tensor

X in (2.1) is the process of unfolding or reshaping the tensor to a matrix

X(n) ∈ R
In×(I1···In−1In+1···IN ). (2.2)

This transformation is performed by rearranging the mode-n fibers as the columns

of the matrix X(n). Tensor element (i1, . . . , in−1, in, in+1, . . . , iN) maps to matrix

element (in, j) such that

j = 1 +
N∑

k=1,k �=n

(ik − 1)Jk with Jk =
k−1∏

m=1,m �=n

Im. (2.3)

For the remainder of this thesis we refer to mode-n matricization as an unbalanced

matricization scheme because it is comprised of a single mode and the product

of the remaining modes for the row and column of the matrix, respectively. Ad-

ditionally, the matrix rank of X(n) is denoted as rank(X(n)), which is bounded by

min(In,
∏N

l=1 Il).

Mode-(1, 2, . . . , n) matricization of a tensor X is the unfolding of the tensor to a

matrix

X[n] ∈ R
r×c (r =

n∏
l=1

Il, c =
N∏

l=n+1

Il). (2.4)

We refer to mode-(1, 2, . . . , n) matricization as a balanced matricization scheme

because for n = IN/2 in (2.4), the matrix is approximately balanced in terms of

the dimensions of r and c. The rank ofX[n] is bounded by min(
∏n

l=1 Il,
∏N

l=n+1 Il).

2.1.3 Tensor multiplication: the n-Mode matrix product

Tensors can be multiplied at each mode n by a matrix. The n-Mode matrix

product of a tensor X ∈ R
I1×I2×···×IN with a matrix A ∈ R

J×In results in a new

tensor of size I1 × · · · × In−1 × J × In+1 × · · · × IN , which is denoted as X ×n A.

Elementwise, it is described by

(X ×n A)i1···in−1jin+1···iN =
N∑

in=1

xi1···in···iNajin . (2.5)
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The graphical representation of the n-Mode matrix product is shown in Fig. 2.2.

Figure 2.2 – The n-Mode matrix product of a tensor.

2.1.4 Matrix and tensor norms

The Frobenius norm of a tensor X ∈ R
I1×I2×···×IN is defined as

||X ||F =

√∑
i1

∑
i2

· · ·
∑
iN

x2
i1i2···iN . (2.6)

Schatten p-norms arise when applying the p-norm to the vector of singular values

of a matrix. Assuming the singular values of a matrix A are denoted as λi, then

the Schatten p-norm is defined as

||A||p =
(

I∑
i=1

|λi|p
)1/p

, 1 ≤ p < ∞. (2.7)

For this thesis we are interested in the case where p = 1, which results in the

trace norm or nuclear norm of A. This is denoted as

||A||∗ =
I∑

i=1

λi. (2.8)

2.2 Tucker decomposition

The Tucker decomposition (TD) decomposes a tensor X ∈ R
I1×I2×···×IN into two

types of tensors: The first is an Nth-order core tensor Y ∈ R
P1×P2×···×PN with

Pn ≤ In ∀n. The second is a set of common factor matrices {A(n)} (n = 1, . . . , N)

with A(n) ∈ R
In×Pn , which can be thought of as the principal component at mode
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n. For the case Pn = In ∀n, then TD is an exact decomposition of X , which is

denoted as

X = Y ×1 A
(1) ×2 A

(2) · · · ×N A(N). (2.9)

Elementwise, (2.9) is denoted as

xi1i2···iN =
N∑

i1=1

N∑
i2=1

· · ·
N∑

iN=1

yi1i2···iNa
(1)
i1p1

a
(2)
i2p2

· · · a(N)
iNpN

. (2.10)

Therefore, it is straightforward to see that an approximation of X is given for

Pn < In. The graphical representation of TD is depicted in Fig. 2.3.

Figure 2.3 – The Tucker decomposition.

Consider a vector p = (rank(X(1)), rank(X(2)), . . . , rank(X(N))), then this vector

is known as the Tucker rank of the tensor X , which consists of unbalanced ma-

trices for each mode in the TD.

Generally, TD is not unique and imposing different constraints will lead to alter-

nate decompositions. By assuming the core tensor Y in (2.9) contains non-zero

elements only on its super diagonal, then we obtain the CP/PARAFAC decompo-

sition. The higher-order singular value decomposition (HOSVD) or higher-order

orthogonal iteration (HOOI) algorithms are based on TD with the constraint that

the common factor matrices are orthogonal.

2.3 Matrix product state decomposition

The matrix product state decomposition (MPS) is a tensor decomposition that

has been used predominantly in physics and mathematics. [9, 72] utilised MPS
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for restricting the amount of quantum entanglement in a multipartite quantum

mechanical system so that it could be efficiently simulated on a classical computer,

which paved the way for many experimental and theoretical works in physics. In

this section we define MPS and analyse in detail some useful properties that will

be important for the proposed algorithms in this thesis.

2.3.1 MPS formulations

Given a tensor X ∈ R
I1×I2×···×IN , its general MPS representation in terms of its

elements is given as

xi1i2···iN = A(i1)A(i2) · · ·A(iN ), (2.11)

where for each in = 1, . . . , In, there is a corresponding matrix A(in) ∈ R
Rn−1×Rn

(R0 = RN+1 = 1). The index in is often referred as a physical index, and the index

rn is known as the bond index in physics [136], or compression rank according

to [8]. If an assumption is made such that (s.t.) I1 = I2 = · · · = IN = I and

R1 = R2 = · · ·RN = R, then the MPS contains approximately (N − 2)R2I +

2RI parameters, which demonstrates that MPS is represented by a number of

parameters that increases only polynomially with N . The TT rank of an MPS

is a vector r = (rank(X[1]), rank(X[2]), . . . , rank(X[N−1])), which consists of the

balanced matricizations of X . A graphical representation of MPS is demonstrated

in Fig. 2.4.

Figure 2.4 – The matrix product state decomposition.

Assuming I is an identity matrix, the MPS in (2.11) can be defined in terms

of a canonical form if the component matrices A(n) satisfy a left-orthonormal
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constraint

N∑
n=1

(A(in))†A(in) = I, (2.12)

in which (2.11) is known as a left-canonical MPS, or a right-orthonormal con-

straint

N∑
n=1

A(in)(A(in))† = I, (2.13)

which is called right-canonical MPS. Furthermore, a mixed-canonical MPS is

defined as (2.11) containing both left- and right- orthonormal constraints.

Prior to demonstrating the calculation of MPS forms, it would be beneficial to

have a brief review of the singular value decomposition (SVD) because MPS is

essentially an iterative SVD algorithm.

Given an arbitrary rectangular matrix with real entries A ∈ R
I1×I2 , then it can

have the following form via SVD

A = USV †, (2.14)

where ‘†′ represents complex conjugation and

• U ∈ R
I1×min(I1,I2) has orthonormal columns s.t. U †U = I. If I1 ≤ I2, then

U is unitary, which implies UU † = I.

• S ∈ R
min(I1,I2)×min(I1,I2) is a diagonal matrix with nonnegative entries which

are known as singular values. The number of non-zero singular values r is

the rank of A. For the remainder of this thesis we assume the entries are

in descending order s.t. s11 is the largest singular value.

• V † ∈ R
min(I1,I2)×I2 has orthonormal rows s.t. V †V = I. If I1 ≥ I2, then V †

is unitary, which implies V V † = I.

The remaining subsections will focus on the calculation of the canonical MPS

forms and the useful notation of [9]. To make this thesis more self contained,

we explain the concepts in a straightforward manner without relating to physics

nomenclature.

16



2.3.2 Left-canonical MPS

The general MPS form in (2.11) can be converted into the left-canonical MPS

using SVD’s. Consider the Nth-order tensor X , then let M = X[1] ∈ R
I1×(I2···IN ).

Applying the SVD on the matrix M gives

mi1(i2···iN ) =

R1∑
r1=1

Ui1r1Sr1r1(V
†)r1(i2···iN ). (2.15)

From the above equation, it is trivial to see that U ∈ R
I1×R1 fulfils the left-

orthonormal constraint in (2.12) that we need for the left-canonical form, there-

fore we let A(i1) = Ui1r1 . To form the next component A(i2), we obtain the

matrix C = SV † from (2.15), and reshape to size (R1I2) × (I3 · · · IN). Now let

M = C ∈ R
(R1I2)×(I3×···IN ), and we apply the SVD s.t.

m(r1i2)(i3···iN ) =

R2∑
r2=1

U(r1i2)r2Sr2r2(V
†)r2(i3···iN ), (2.16)

with R2 ≤ R1I2. Reshaping the left-orthogonal matrix U in (2.16) to a third

order tensor, then the second component of our MPS is given

A(i2) = U (i2) ∈ R
R1×R2 . (2.17)

Iterating this procedure, we obtain all component tensors of the MPS. After the

full sweep (from left-to-right) of the indices of X , the general state of the MPS

in terms of its bond dimensions can be written (element-wise) as

xi1i2···iN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑

rN−1=1

a(i1)r1
a(i2)r1r2

· · · a(iN )
rN−1

, (2.18)

or in a matrix product representation equivalent to (2.11). Fig. 2.5 shows the

graphical representation of the above left-canonical MPS procedure for an arbi-

trary Nth-order X .

2.3.3 Right-canonical MPS

The right-canonical MPS is obtained similar to the left-canonical MPS, except

that we now perform the SVD sweep from right to left of the indices of X . The
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Figure 2.5 – A sequence of SVD’s from the first to last index constructs the left-

canonical MPS.

goal is to obtain

xi1i2···iN = B(i1)B(i2) · · ·B(iN ) (2.19)

or

xi1i2···iN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑

rN−1=1

b(i1)r1
b(i2)r1r2

· · · b(iN )
rN−1

, (2.20)

where the components of the MPSB(n) satisfy right-orthonormal constraints. The

MPS of X is obtained in the following way. Let M = X[IN−1] ∈ R
(I1···IN−1)×IN ,
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then subsequently the MPS representation is as follows:

xi1i2···iN = m(i1···iN−1)iN (2.21)

=

RN−1∑
rN−1=1

U(i1···iN−1)rN−1
SrN−1rN−1

(V †)rN−1iN (2.22)

=

RN−1∑
rN−1=1

M(i1···iN−2)(iN−1rN−1)b
(iN )
rN−1

(2.23)

=

RN−1∑
rN−1=1

RN−2∑
rN−2=1

U(i1···iN−2)rN−2
SrN−2rN−2

(V †)rN−2(iN−1rN−1)b
(iN )
rN−1

(2.24)

=

RN−1∑
rN−1=1

RN−2∑
rN−2=1

M(i1···iN−3)(iN−2rN−2)b
(iN−1)
rN−2rN−1

b(iN )
rN−1

(2.25)

and we can see that by iteratively performing this SVD sweep we will obtain the

form of (2.20). The graphical representation is illustrated in Fig. 2.6 for X .

Figure 2.6 – A sequence of SVD’s from the last to the first index constructs the

right-canonical MPS.
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2.3.4 Mixed-canonical MPS

Mixing both left- and right-canonical forms we can obtain the mixed-canonical

MPS, which is denoted as

xi1i2···iN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑

rN−1=1

a(i1)r1
· · · a(ik)rk−1rk

Srkrkb
(ik+1)
rkrk+1

· · · b(iN )
rN−1

(2.26)

or

xi1i2···iN = A(i1) · · ·A(ik)SB(ik+1) · · ·B(iN ), (2.27)

where the set of tensors {A(in)}kn=1 fulfil the left-orthonormal constraint in (2.12)

, and the set {B(in)}Nn=k+1 fulfil the right-orthonormal constraint in (2.13). The

matrix S is diagonal and contains singular values.

The mixed-canonical form is computed in the following manner: Assume the

left-canonical sweep has been completed up to k s.t.

xi1i2···iN =

R1∑
r1=1

· · ·
Rk∑

rk=1

(a(i1)r1
· · · a(ik)rk−1rk

)Srkrk(V
†)rk(ik+1···iN ). (2.28)

Then, reshape V † to a matrix M ∈ R
(RkIk+1···IN−1)×IN and carry out the right-to-

left sweep of successive SVD’s until we obtain the final SVD

m(rk+1ik+1)(ik+2rk+2) =

Rk+1∑
rk+1=1

U(rkik+1)rk+1
Srk+1rk+1

(V †)rk+1(ik+2rk+2), (2.29)

where reshaping (V †) in (2.29) to a third-order tensor obtainsB(ik+2) ∈ R
Rk+1×Rk+2 .

Finally US in (2.29) is reshaped to a third-order tensor to get B(ik+1) ∈ R
Rk×Rk+1 .

Then from (2.28),

(V †)rk(ik+1···iN ) =

Rk+1∑
rk+1=1

· · ·
RN−1∑

rN−1=1

b(ik+1)
rkrk+1

· · · b(iN )
rN−1

(2.30)

= B(ik+1) · · ·B(iN ). (2.31)

It is trivial to see that the component tensors {B(in)} from n = k+2, . . . , N follow

the right-orthonormal constraint due to the successive SVD’s in the right-to-left

sweep, however, it is not so straightforward to see this for B(k+1). Following from
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the right-orthonormal constraint that V †V = I, then

I = V †V (2.32)

= (B(ik+1) · · ·B(iN ))(B†(iN ) · · ·B†(ik+1)) (2.33)

= B(ik+1) · · ·B(iN )B†(iN ) · · ·B†(ik+1) (2.34)

= B(ik+1)B†(ik+1), (2.35)

where the right-orthonormal constraint of {B(in)} from n = k+ 2, . . . , N is used.

2.3.5 Vidal’s decomposition

A popular decomposition introduced in [9] allows for the easy transition between

left-, right- and mixed-canonical MPS forms. We follow the notation of Vidal’s

original work to separate between the other forms.

The essential idea of this decomposition is to let an Nth-order tensor X be rep-

resented in the below form:

xi1i2···iN = Γ
(1)
i1
λ(1)Γ

(2)
i2
λ(2) · · ·λ(N−1)Γ

(N)
iN

, (2.36)

which is graphically depicted in Fig. 2.7. Similarly, each in is a matrix Γ
(n)
in

∈
R

In−1×In , and λ(n) corresponds to a Rn ×Rn diagonal matrix of singular values.

Vidal’s notation in (2.36) can be obtained in the following way. Similar to left-

Figure 2.7 – The MPS based on Vidal’s decomposition.

canonical MPS, reshape X to a matrix M ∈ R
I1×(I2···IN ). Then using iterative
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SVD’s from a left to right sweep we have

xi1i2···iN = mi1(i2···iN ) (2.37)

=

R1∑
r1=1

a
(1)
i1r1

λ(1)
r1r1

(V †)r1(i2···iN ) (2.38)

=

R1∑
r1=1

Γ
(1)
i1r1

m(r1i2)(i3···iN ) (2.39)

=

R1∑
r1=1

R2∑
r2=1

Γ
(1)
i1r1

a
(2)
r1i2r2

λ(2)
r2r2

(V †)r2(i3···iN ) (2.40)

=

R1∑
r1=1

R2∑
r2=1

Γ
(1)
i1r1

λ(1)
r1r1

Γ
(2)
r1i2r2

m(r2i3)(i4···iN ) (2.41)

=

R1∑
r1=1

· · ·
R3∑

r3=1

Γ
(1)
i1r1

λ(1)
r1r1

Γ
(2)
r1i2r2

a
(3)
r2i3r3

Γ(3)
r3r3

(V †)r3(i4···iN ) (2.42)

=

R1∑
r1=1

· · ·
R3∑

r3=1

Γ
(1)
i1r1

λ(1)
r1r1

Γ
(2)
r1i2r2

λ(2)
r2r2

Γ
(3)
r2i3r3

m(r3i4)(i5···iN ) (2.43)

... (2.44)

=

R1∑
r1=1

· · ·
RN−1∑

rN−1=1

Γ
(1)
i1r1

λ(1)
r1r1

Γ
(2)
r1i2r2

· · ·λ(N−1)
rN−1rN−1

Γ
(N)
rN−1iN

. (2.45)

The main difference between this decomposition and left-canonical MPS is that

the component tensors {A(in)} are decomposed with the knowledge of λ(n−1) from

the previous SVD. Specifically

A(in)
rn−1rn

= λ(n−1)
rn−1rn−1

Γ
(n)
rn−1inrn

, (2.46)

which implies divisions by the diagonal elements of λ(n−1). An alternative way

to obtain Vidal’s decomposition in (2.45) is to perform the left-canonical MPS,

store all the singular value matrices {λ(l)}N−1
l=1 , then insert afterwards λ(l)(λ(l))−1

between neighbouring A matrices A(il) and A(il+1).

Similarly, the decomposition can be obtained via right-orthonormal constraints

on the set of B matrices s.t.

B(in)
rn−1rn

= Γ
(n)
rn−1inrn

λ(n)
rnrn , (2.47)

where for both (2.46) and (2.47), for notational simplification, λ(0) and λ(N) are

both scalars equal to 1. For convenience, a graphical representation of the Vidal
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notation and how the left- and right-canonical notation is represented in this form

is illustrated in Fig. 2.8.

Figure 2.8 – Graphical representation of Vidal’s decomposition and the right- and

left-canonical conversions. Adjacent Γ and λ can be converted to A or B notation,

that have either left- or right-orthonormal constraints.

The sets of A and B tensors can be expressed into the left- and right-orthonormal

conditions in terms of the Γλ notation. Therefore, the left-orthonormal condition

is

I =
N∑

n=1

(A(in))†A(in) =
N∑

n=1

Γ†(n)λ†(n−1)λ(n−1)Γ(n), (2.48)

and the right-orthonormal condition in terms of the B matrices is

I =
N∑

n=1

B(in)(B(in))† =
N∑

n=1

Γ(n)λ(n)λ†(n)Γ†(n). (2.49)

2.4 Measures of entropy

The von Neumann entropy is a useful tool in quantum information theory for

describing the uncertainty associated with quantum states. It will be shown that

it is also useful for applications outside of quantum physics, which reduces to

the well-known Shannon entropy. Prior to introducing von Neumann entropy, we

review the Schmidt decomposition.

2.4.1 Schmidt decomposition

Suppose that xAB is a normalised vector of a composite system of real vector

spaces s.t. RAB = RA⊗RB, and the dimension of the vector space is IAB = IAIB.
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Then there exists orthonormal bases u
(k)
A ∈ R

IA
A and u

(k)
B ∈ R

IB
B s.t.

xAB =
K∑
k=1

sku
(k)
A ⊗ u

(k)
B , (2.50)

where ‘⊗′ denotes the tensor product,K = min(dim(RA), dim(RB)) is the Schmidt

rank, {sk}Kk=1 are Schmidt coefficients with the property of being non-negative

real numbers satisfying
∑K

k=1 sk = 1, and u
(k)
A and u

(k)
B are the Schmidt bases for

subsystem A and B, respectively.

The proof of the decomposition is quite simple. Let eiA and eiB be any fixed

orthonormal bases for systems A and B, respectively. Then xAB can be written

xAB =

IA∑
iA=1

IB∑
iB=1

aiAiBeiA ⊗ eiB , (2.51)

where aiAiB is matrix of real numbers. Using the SVD s.t. A = USV †, then

xAB =

IA∑
iA=1

IB∑
iB=1

R∑
k=1

uiAkskkv
∗
kiB

eiA ⊗ eiB . (2.52)

Let u
(k)
A =

∑K
k=1 uiAkeiA and u

(k)
B =

∑K
k=1 vkiBeiB , which are orthonormal because

of the orthonormality properties of U and V †. Furthermore, sk = skk because skk

is a diagonal matrix, then (2.52) becomes

xAB =
K∑
k=1

sku
(k)
A ⊗ u

(k)
B , (2.53)

which ends the proof.

2.4.2 The von Neumann entropy

The von Neumann entropy is a key concept utilised in quantum information the-

ory. It measures the uncertainty of a quantum state in terms of a density matrix.

In classical information theory, the concept of Shannon entropy is important for

measuring communication capacity.

Formally, the von Neumann entropy is defined in the following way. Consider

the matrix XAB being the composite of two subsystems A and B of a real vector
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space. Its Schmidt decomposition is denoted as

xAB =
K∑
k=1

sku
(k)
A ⊗ u

(k)
B , (2.54)

then the correlations between both subsystems can be studied via the von Neu-

mann entropy as

S(ZA) = −Trace(ZA log2 ZA), (2.55)

where ZA is the reduced density matrix of the composite system and computed

by taking the partial trace of the matrix ZAB with respect to B. Specifically,

ZAB = XAB ⊗ (XAB)
T (2.56)

= (
K∑
k=1

sku
(k)
A ⊗ u

(k)
B )⊗ (

K∑
k=1

sku
(k)
A ⊗ u

(k)
B )T . (2.57)

Then ZA is computed as

ZA = TraceB(ZAB) (2.58)

=
K∑
k=1

s2ku
(k)
A ⊗ (u

(k)
A )T . (2.59)

Substituting (2.59) to (2.55), we obtain

S(ZA) = −
K∑
k=1

s2k log2 s
2
k. (2.60)

Similarly,

S(ZB) = −Trace(ZB log2 ZB) (2.61)

= −
K∑
k=1

s2k log2 s
2
k, (2.62)

therefore S(ZA) = S(ZB) = S. This entropy S reflects the amount of correlations

or degree of entanglement between the contiguous subsystems, and is bounded

by

0 ≤ S ≤ log2 K. (2.63)

Therefore, the von Neumann entropy uses the singular values sk of XAB. There

are no correlations when S = 0, which is the case when s1 = 1 and the remaining
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singular values are zero. There exists maximum correlations when S = log2 K,

which is the case when s1 = s2 · · · = sK = 1/
√
sk. Interestingly, in the case that

the singular values decay significantly, S ′ can be the von Neumann entropy based

on keeping only a few of the largest singular values. Comparing this to the case

where all singular values are kept, in which the von Neumann entropy is S, then

|S − S ′|2 will be minimal.
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Chapter 3

Matrix product states for tensor-based

machine learning

There is an increasing need to handle large multidimensional datasets that cannot

efficiently be analyzed or processed using modern day computers. Due to the curse

of dimensionality it is urgent to develop mathematical tools which can evaluate

information beyond the properties of large matrices [1]. The essential goal is to

reduce the dimensionality of multidimensional data, represented by tensors, with

a minimal information loss by compressing the original tensor space to a lower-

dimensional tensor space, also called the feature space [1]. Tensor decomposition

is the most natural tool to enable such compressions [2].

Until recently, tensor compression is merely based on Tucker decomposition (TD)

[39], also known as higher-order singular value decomposition (HOSVD) when or-

thogonality constraints on factor matrices are imposed [40]. TD is also an impor-

tant tool for solving problems related to feature extraction, feature selection and

classification of large-scale multidimensional datasets in various research fields.

Its well-known application in computer vision was introduced in [16] to analyze

some ensembles of facial images represented by fifth-order tensors. In data min-

ing, the HOSVD was also applied to identify handwritten digits [61]. In addition,

the HOSVD has been applied in neuroscience, pattern analysis, image classifica-

tion and signal processing [63, 137, 138]. The higher-order orthogonal iteration
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(HOOI) [103] is an alternating least squares (ALS) for finding the TD approxi-

mation of a tensor. Its application to independent component analysis (ICA) and

simultaneous matrix diagonalization was investigated in [139]. Another TD-based

method is multilinear principal component analysis (MPCA) [17], an extension of

classical principal component analysis (PCA), which is closely related to HOOI.

Meanwhile, TD suffers the following conceptual bottlenecks in tensor compres-

sion:

• Computation. TD compresses anNth-order tensor in tensor space RI1×I2×···IN

of large dimension I =
∏N

j=1 Ij to its Nth-order core tensor in a tensor space

R
Δ1×Δ2×···ΔN of smaller dimension Nf =

∏N
j=1 Δj by using N factor matri-

ces of size Ij×Δj. Computation of these N factor matrices is computation-

ally intractable. Instead, each factor matrix is alternatingly optimised with

all other N − 1 factor matrices held fixed, which is still computationally

expensive. Practical application of the TD-based compression is normally

limited to small-order tensors.

• Compression quality. TD is an effective representation of a tensor only when

the dimension of its core tensor is fairly large [2]. Restricting dimension

Nf =
∏N

j=1 Δj to a moderate size for tensor classification results in signif-

icant lossy compression, making TD-based compression a highly heuristic

procedure for classification. It is also almost impossible to tune Δj ≤ Ij

among
∏N

j=1 Δj ≤ N̄f for a prescribed N̄f to have a better compression.

In this chapter, the matrix product state (MPS) decomposition [140, 9, 72, 11] is

introduced as a new method to compress tensors, which fundamentally circumvent

all the above bottlenecks of TD-based compression. Namely,

• Computation. The MPS decomposition is fundamentally different from the

TD in terms of its geometric structure as it is made up of local component

tensors with maximum order three. Consequently, using the MPS decompo-

sition for large higher-order tensors can potentially avoid the computational
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bottleneck of the TD and related algorithms. Computation for orthogonal

common factors in MPS is based on successive SVDs without any recursive

local optimisation procedure and is very efficient with low-cost.

• Compression quality. MPS compresses Nth-order tensors to their core ma-

trices of size R
N1×N2 . The dimension Nf = N1N2 can be easily tuned to a

moderate size with minimum information loss by pre-positioning the core

matrix in the MPS decomposition.

MPS has been proposed and applied to study quantum many-body systems with

great success, prior to its introduction to the mathematics community under the

name tensor-train (TT) decomposition [8]. However, to the best of our knowledge

its application to machine learning and pattern analysis has not been proposed.

The main contributions are summarised as follows:

• Propose MPS decomposition as a new and systematic method for compress-

ing tensors of arbitrary order to matrices of moderate dimension, which

circumvents all existing bottlenecks in tensor compression;

• Develop a right form of MPS decomposition to optimise the dimensionality

of the core matrices. Implementation issues of paramount importance for

practical computation are discussed in detail. These include tensor mode

permutation, tensor bond dimension control, and positioning the core ma-

trix in MPS;

• Extensive experiments are performed along with comparisons to existing

state-of-the-art tensor classification methods to show its advantage.

The chapter is structured as follows. Section 3.1 provides a rigorous mathemat-

ical analysis comparing MPS and TD in the context of tensor compression for

classification. Section 3.2 is a complete and comprehensive outline of the MPS ap-

proach to tensor feature extraction and classification, which includes discussions
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of important practical computation as well a computational complexity analy-

sis comparing MPS to HOOI, MPCA and uncorrelated multilinear discriminant

analysis with regularization (R-UMLDA) [105]. In Section 3.3, experimental re-

sults are shown to benchmark all algorithms in classification performance and

training time. Lastly, Section 3.4 concludes the chapter.

3.1 MPS decomposition vs TD decomposition

in tensor compression

The problem of tensor compression for supervised learning is the following:

Based on K training Nth-order tensors X (k) ∈ R
I1×I2×···×IN (k = 1, 2, . . . , K),

find common factors to compress both training tensor X (k) and test tensors Y (�)

(� = 1, · · · , L) to a feature space of moderate dimension to enable classification.

Until now, only TD has been proposed to address this problem [63]. More specif-

ically, the K training sample tensors are firstly concatenated along the mode

(N + 1) to form an (N + 1)th-order tensor X as

X = [X (1)X (2) · · · X (K)] ∈ R
I1×I2×···×IN×K . (3.1)

TD-based compression such as HOOI [103] is then applied to have the approxi-

mation

X ≈ R×1 U
(1) ×2 U

(2) · · · ×N U(N), (3.2)

where each matrix U(j) ∈ R
Ij×Δj (j = 1, 2, . . . , N) is orthogonal, i.e. U(j)TU(j) =

I (I ∈ R
Δj×Δj denotes the identity matrix). It is called a common factor ma-

trix and can be thought of as the principal components in each mode j. The

parameters Δj satisfying

Δj ≤ rank(X(j)) (3.3)

are referred to as the compression ranks of the TD.

The (N + 1)th-order core tensor R and common factor matrices U(j) ∈ R
Ij×Δj
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are supposed to be found from the following nonlinear least squares

min
R∈RΔ1×···×ΔN×K ,U(j)∈RIj×Δj ,j=1,...,N

||X − R×1 U
(1) ×2 U

(2) · · · ×N U(N)||2F

subject to (U(j))TU(j) = I, j = 1, ..., N.

(3.4)

The optimisation problem (3.4) is computationally intractable, which could be

addressed only by alternating least squares (ALS) in each U(j) (with other U(�),

� 
= j held fixed) [103]:

min
R(j)∈RΔ1×···×ΔN×K ,U(j)∈RIj×Δj

||X − R(j) ×1 U
(1) ×2 U

(2) · · · ×N U(N)||2F

subject to (U(j))TU(j) = I.

(3.5)

The computation complexity per one iteration consisting of N ALS (3.5) is [141,

p. 127]

O(KΔIN +NKIΔ2(N−1) +NKΔ3(N−1)) (3.6)

for

Ij ≡ I and Δj ≡ Δ, j = 1, 2, ..., N. (3.7)

The optimal (N + 1)th-order core tensor R ∈ R
Δ1×···×ΔN×K in (3.4) is seen

as the concatenation of compressed X̃ (k) ∈ R
Δ1×···×ΔN of the sample tensors

X (k) ∈ R
I1×···×IN , k = 1, · · · , K:

R = [X̃ (1)X̃ (2) · · · X̃ (N)] = X ×1 (U
(1))T · · · ×N (U(N))T . (3.8)

Accordingly, the test tensors Y(�) are compressed to

Ỹ (�) = Y (�) ×1 (U
(1))T · · · ×N (U(N))T ∈ R

Δ1×···×ΔN . (3.9)

The number

Nf =
N∏
j=1

Δj (3.10)

thus represents the dimension of the feature space R
Δ1×···×ΔN .

Putting aside the computational intractability of the optimal factor matrices U(j)

in (3.4), the TD-based tensor compression by (3.8) and (3.9) is a systematic

procedure only when the right hand side of (3.2) provides a good approximation
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of X , which is impossible for small Δj satisfying (3.3) [2]. In other words, the

compression of large dimensional tensors to small dimensional tensors results in

substantial lossy compression under the TD framework. Furthermore, one can

see the value of (3.5) is lower bounded by

rj−Δj−1∑
i=1

si, (3.11)

where rj := rank(X(j)) and {srj , · · · , s1} is the set of non-zero eigenvalues of

the positive definite matrix X(j)(X(j))
T in decreasing order. Since the matrix

X(j) ∈ R
Ij×(K

∏
� �=j I�) is highly unbalanced as a result of tensor matricization along

one mode versus the rest, it is almost full-row (low) rank (rj ≈ Ij) and its squared

X(j)(X(j))
T of size Ij × Ij is well-conditioned in the sense that its eigenvalues do

not decay quickly. As a consequence, (3.11) cannot be small for small Δj so the

ALS (3.5) cannot result in a good approximation. The information loss with the

least square (3.5) is thus more than

−
rj−Δj−1∑

i=1

si∑rj
i=1 si

log2
si∑rj
i=1 si

, (3.12)

which is really essential in the von Neumann entropy of X(j):

−
rj∑
i=1

si∑rj
i=1 si

log2
si∑rj
i=1 si

. (3.13)

Note that each entropy (3.13) is the mean for only local correlation between mode

j and the rest [142]. The MPCA [17] aims at (3.4) with

X = [(X (1) − X̄ ) · · · (X (K) − X̄ )]

with X̄ = 1
K+L

(
∑K

k=1 X (k)+
∑L

�=1 Y�)). With such definition of X , (N+1)th-order

core tensor X is the concatenation of principal components of X (k), while principal

components of Y(�) is defined by (Y(�) − X̄ ) ×1 (U
(1))T · · · ×N (U(N))T . Thus,

MPCA suffers the similar conceptual drawbacks inherent by TD. Particularly,

restricting Nf =
∏N

j=1 Δj to a moderate size leads to ignoring many important

principle components.
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We now present a novel approach to extract tensor features, which is based on

MPS. Firstly, permute mode K of the tensor X such that

X ∈ R
I1×···In−1×K×In···×IN . (3.14)

The elements of X can be presented in the following mixed-canonical form [136] of

the matrix product state (MPS) or tensor train (TT) decomposition [11, 9, 72, 8]:

xi1···k···iN = x
(k)
i1···in···iN ≈ B

(1)
i1

· · ·B(n−1)
in−1

G
(n)
k C

(n+1)
in

· · ·C(N+1)
iN

, (3.15)

where matrices B
(j)
ij

and C
(j)
i(j−1)

(the upper index “(j)” denotes the position j of

the matrix in the chain) of size Δj−1 × Δj (Δ0 = ΔN+1 = 1), are called “left”

and “right” common factors which satisfy the following orthogonality conditions:

Ij∑
ij=1

(B
(j)
ij
)TB

(j)
ij

= I, (j = 1, . . . , n− 1) (3.16)

and

Ij−1∑
ij−1=1

C
(j)
ij−1

(C
(j)
ij−1

)T = I, (j = n+ 1, . . . , N + 1) (3.17)

respectively, where I denotes the identity matrix. Each matrix G
(n)
k of dimension

Δn−1×Δn is the compression of the training tensor X (k). The parameters Δj are

called the bond dimensions or compression ranks of the MPS. Using the common

factors B
(j)
ij

and C
(j)
i(j−1)

, we can extract the core matrices for the test tensors Y (�)

as follows. We permute all Y(�), � = 1, · · · , L in such a way that the index �

is at the same position as k in the training tensors to ensure the compatibility

between the training and test tensors. The compressed matrix Q
(n)
� ∈ R

Δn−1×Δn

of the test tensor Y(�) is then given by

Q
(n)
� =

∑
i1,...,iN

(B
(1)
i1
)T · · · (B(n−1)

in−1
)Ty

(�)
i1······iN (C

(n+1)
in

)T · · · (C(N+1)
iN

)T . (3.18)

The dimension

Nf = Δn−1Δn (3.19)

is the number of reduced features.
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3.2 Tailored MPS for tensor compression

The advantage of MPS for tensor compression is that the order N of a tensor

does not affect directly the feature number Nf in (3.19), which is only determined

strictly by the product of the aforementioned bond dimensions Δn−1 and Δn. In

order to keep Δn−1 and Δn to a moderate size, it is important to control the

bond dimensions Δj, and also to optimise the positions of tensor modes as we

address in this section. In what follows, for a matrix X we denote X(i, :) (X(:, j),

resp.) as its ith row (jth column, resp.), while for a third-order tensor X we

denote X (:, �, :) as a matrix such that its (i1, i3)th entry is X (i1, �, i3). For a

Nth-order tensor X ∈ R
I1×···×IN we denote X[j] ∈ R

(I1I2···Ij)×(Ij+1···K···IN ) as its

mode-(1, 2, . . . , j) matricization. It is obvious that X[1] = X(1).

3.2.1 Adaptive bond dimension control in MPS

To decompose the training tensor X into the MPS according to (3.15), we apply

two successive sequences of SVDs to the tensor which include left-to-right sweep

for computing the left common factors B
(1)
i1
, . . . ,B

(n−1)
in−1

, and right-to-left sweep

for computing the right common factors C
(n+1)
in

, . . . ,C
(N+1)
iN

and the core matrix

G
(n)
k in (3.15) as follows:

• Left-to-right sweep for left factor computation:

The left-to-right sweep involves acquiring matrices B
(j)
ij

(ij = 1, . . . , Ij; j =

1, . . . , n − 1) fulfilling orthogonality condition in (3.16). Start by performing

the mode-1 matricization of X to obtain

W(1) := X[1] = X(1) ∈ R
I1×(I2···K···IN ).

For

Δ1 ≤ rank(X[1]), (3.20)

apply SVD to W(1) to have the QR-approximation

W(1) ≈ U(1)V(1) ∈ R
I1×(I2···K···IN ),U(1) ∈ R

I1×Δ1 ,V(1) ∈ R
Δ1×(I2···K···IN ), (3.21)
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with U(1) orthogonal:

(U(1))TU(1) = I. (3.22)

Define the the most left common factors by

B
(1)
i1

= U(1)(i1, :) ∈ R
1×Δ1 , i1 = 1, · · · , I1 (3.23)

which satisfy the left-canonical constraint in (3.16) due to (3.22).

Next, reshape the matrix V(1) ∈ R
Δ1×(I2···K···IN ) to W(2) ∈ R

(Δ1I2)×(I3···K···IN ). For

Δ2 ≤ rank(W(2)) ≤ rank(X[2]), (3.24)

apply SVD to W(2) for the QR-approximation

W(2) ≈ U(2)V(2) ∈ R
(Δ1I2)×(I3···K···IN ),U(2) ∈ R

(Δ1I2)×Δ2 ,V(2) ∈ R
Δ2×(I3···K···IN )

(3.25)

with U(2) orthogonal

(U(2))TU(2) = I. (3.26)

Reshape the matrix U(2) ∈ R
(Δ1I2)×Δ2 into a third-order tensor U ∈ R

Δ1×I2×Δ2

to define the next common factors

B
(2)
i2

= U(:, i2, :) ∈ R
Δ1×Δ2 , i2 = 1, · · · , I2, (3.27)

which satisfy the left-canonical constraint due to (3.26).

Applying the same procedure for determining B
(3)
i3

by reshaping the matrixV(2) ∈
R

Δ2×(I3···K···IN ) to

W(3) ∈ R
(Δ2I3)×(I4···K···IN ),

performing the SVD, and so on. This procedure is iterated till obtaining the last

QR-approximation

W(n−1) ≈ U(n−1)V(n−1) ∈ R
(Δn−2In−1)×(KIn···IN ),

U(n−1) ∈ R
(Δn−2In−1)×Δn−1 ,V(n−1) ∈ R

Δn−1×(KIn···IN ),
(3.28)

with U(n−1) orthogonal:

U(n−1)(U(n−1))T = I (3.29)
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and reshapingU(n−1) ∈ R
(Δn−2In−1)×Δn−1 into a third-order tensor U ∈ R

Δn−2×In−1×Δn−1

to define the last left common factors

B
(n−1)
in−1

= U(:, in−1, :) ∈ R
Δn−2×Δn−1 , in−1 = 1, · · · , In−1, (3.30)

which satisfy the left-canonical constraint due to (3.29).

In a nutshell, after completing the left-to-right sweep, the elements of tensor X
are approximated by

x
(k)
i1···in−1in···iN+1

≈ B
(1)
i1

· · ·B(n−1)
in−1

V(n−1)(:, kin · · · iN). (3.31)

The matrix V(n−1) ∈ R
Δn−1×(KIn···IN ) is reshaped to W(N) ∈ R

(Δn−1K···IN−1)×IN

for the next right-to-left sweeping process.

• Right-to-left sweep for right factor computation:

Similar to left-to-right sweep, we perform a sequence of SVDs starting from the

right to the left of the MPS to get the matrices C
(j)
ij−1

(ij−1 = 1, . . . , Ij−1; j =

N + 1, . . . , n + 1) fulfilling the right-canonical condition in (3.17). To start, we

apply the SVD to the matrix W(N) ∈ R
(Δn−1K···IN−1)×IN obtained previously in

the left-to-right sweep to have the RQ-approximation

W(N) ≈ U(N)V(N),U(N) ∈ R
(Δn−1K···IN−1)×ΔN ,V(N) ∈ R

ΔN×IN , (3.32)

with V(N) orthogonal:

V(N)(V(N))T = I (3.33)

for

ΔN ≤ rank(W(N)) ≤ rank(X[N−1]). (3.34)

Define the most right common factors

C
(N+1)
iN

= V(N)(:, iN) ∈ R
ΔN×1, iN = 1, · · · , IN ,

which satisfy the right-canonical constraint (3.17) due to (3.33).

Next, reshape U(N) ∈ R
(Δn−1K···IN−1)×ΔN into W(N−1) ∈ R

(Δn−1K···IN−2)×(IN−1ΔN )

and apply the SVD to have the RQ-approximation

W(N−1) ≈ U(N−1)V(N−1),U(N−1) ∈ R
(Δn−1K···IN−2)×ΔN−1 ,V(N−1) ∈ R

ΔN−1×(IN−1ΔN )

(3.35)
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with V(N−1) orthogonal:

V(N−1)(V(N−1))T = I (3.36)

for

ΔN−1 ≤ rank(W(N−1))≤ rank(X[N−2]). (3.37)

Reshape the matrix V(N−1) ∈ R
ΔN−1×(IN−1ΔN ) into a third-order tensor V ∈

R
ΔN−1×IN−1×ΔN to define the next common factor

C
(N)
iN−1

= V(:, iN−1, :) ∈ R
ΔN−1×ΔN (3.38)

which satisfy (3.17) due to (3.36).

This procedure is iterated till obtaining the last RQ-approximation

W(n) ≈ U(n)V(n) ∈ R
(Δn−1K)×(InΔn+1),

U(n) ∈ R
(Δn−1K)×Δn ,V(n) ∈ R

Δn×(InΔn+1),
(3.39)

with V(n) orthogonal:

V(n)(V(n))T = I (3.40)

for

Δn ≤ rank(W(n))≤ rank(X[n−1]). (3.41)

Reshape V(n) ∈ R
(Δn)×(InΔn+1) into a third-order tensor V ∈ R

Δn×In×Δn+1 to

define the last right common factors

C
(n+1)
in

= V(:, in, :) ∈ R
Δn−1×Δn , in = 1, · · · , In, (3.42)

which satisfy (3.17) due to (3.40).

By reshaping U(n) ∈ R
(Δn−1K)×Δn into a third-order tensor G ∈ R

Δn−1×K×Δn to

define G
(n)
k = G(:, k, :), k = 1, · · · .K, we arrive at (3.15).

Note that the MPS decomposition described by (3.15) can be performed exactly

or approximately depending on the bond dimensions Δj (j = 1, . . . , N). The

bond dimension truncation is of crucial importance to control the final feature

number Nf = Δn−1Δn. To this end, we rely on thresholding the singular values
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of W(j). With a threshold ε being defined in advance, we control Δj such that

Δj largest singular values s1 ≥ s2 ≥ ... ≥ sΔj
satisfy∑Δj

i=1 si∑rj
i=1 sj

≥ ε, (3.43)

for rj = rank(W(j)). The information loss from the von Neumann entropy (3.13)

of W(j) by this truncation is given by (3.12). The entropy of each W(j) provides

the correlation degree between two sets of modes 1, · · · , j and j+1, · · · , N [142].

Therefore, the N entropies W(j), j = 1, · · · , N provide the mean of the tensor’s

global correlation. Furthermore, rank rj of each W(j) is upper bounded by

min {I1 · · · Ij, Ij+1 · · · IN} (3.44)

making the truncation (3.43) highly favorable in term of compression loss to

matrices of higher rank due to balanced row and column numbers.

A detailed outline of our MPS approach to tensor feature extraction is presented

in Algorithm 1.

3.2.2 Tensor mode pre-permutation and pre-positioning

mode K for MPS

One can see from (3.44) that the efficiency of controlling the bond dimension Δj is

dependent on its upper bound (3.44). Particularly, the efficiency of controlling the

bond dimensions Δn−1 and Δn that define the feature number (3.19) is dependent

on

min {I1 · · · In−1, In · · · IN} (3.45)

Therefore, it is important to pre-permute the tensors modes such that the ratio∏n−1
i=1 Ii∏N
i=n Ii

(3.46)

is near to 1 as possible, while {I1, · · · , In−1} is in decreasing order

I1 ≥ · · · ≥ In−1 (3.47)

and {In, · · · , IN} in increasing order

In ≤ · · · ≤ IN (3.48)
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Algorithm I: MPS for tensor feature extraction

Input: X ∈ R
I1×···×In−1×K···×IN ,

ε: SVD threshold

Output: G
(n)
k ∈ R

Δn−1×Δn , k = 1, · · · ,K
B

(j)
ij

(ij = 1, . . . , Ij , j = 1, . . . , n− 1)

C
(j)
i(j−1)

(i(j−1) = 1, . . . , I(j−1), j = n+ 1, . . . , N + 1)

1: Set W(1) = X(1) % Mode-1 matricization of X
2: for j = 1 to n− 1 % Left-to-right sweep

3: W(j) = USV % SVD of W(j)

4: Wj ≈ U(j)W(j+1) % Thresholding S for QR-approximation

5: Reshape U(j) to U
6: B

(j)
ij

= U(:, ij , :) % Set common factors

7: end

8: Reshape V(n−1) to WN ∈ R
(Δn−1K···IN )×IN

9: for j = N down to n % right-to-left sweep

10: W(j) = USV % SVD of W(j)

11: W(j) ≈ W(j−1)V(j) % Thresholding S for RQ-approximation

13: Reshape V(j) to V
14: C

(j+1)
ij−1

= V(:, ij−1, :) % Set common factors

15: end

16: Reshape U(n) into G ∈ R
Δn−1×K×Δn

17: Set G
(n)
k = G(:, k, :) % Training core matrix

Texts after symbol “%” are comments.

to improve the ratios ∏j
i=1 Ij∏N

i=j+1 Ii
(3.49)

for balancing W(j).

The mode K is then pre-positioned in n-th mode as in (3.14).

3.2.3 Complexity analysis

In the following complexity analysis it is assumed In = I ∀n for simplicity. The

dominant computational complexity of MPS is O(KI(N+1)) due to the first SVD

of the matrix obtained from the mode-1 matricization of X . On the other hand,
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the computational complexity of HOOI requires several iterations of an ALS

method to obtain convergence. In addition, it usually employs the HOSVD to

initialize the tensors which involves the cost of order O(NKIN+1), and thus very

expensive with large N compared to MPS.

MPCA is computationally upper bounded byO(NKIN+1), however, unlike HOOI,

MPCA doesn’t require the formation of the (N + 1)th order core tensor at every

iteration and convergence can usually happen in one iteration [17].1

The computational complexity of R-UMLDA is approximately O(K
∑N

n=2 I
n +

(C+K)I2+(p−1)[IK+2I2+(p−1)2+(2I(p−1)]+4I3), where C is the number

of classes, p is the number of projections, which determines the core vector size

[105]. Therefore, R-UMLDA would perform poorly for many samples and classes.

3.2.4 MPS-based tensor object classification

This subsection presents two methods for tensor objection classification based on

Algorithm 1. For each method, an explanation of how to reduce the dimensional-

ity of tensors to core matrices, and subsequently to feature vectors for application

to linear classifiers is given.

3.2.4.1 Principal component analysis via tensor-train (TTPCA)

The TTPCA algorithm is an approach where Algorithm 1 is applied directly on

the training set, with no preprocessing such as data centering. Specifically, given

a set of Nth-order tensor samples X (k) ∈ R
I1×I2×···×IN , then the core matrices are

obtained as

G
(n)
k ∈ R

Δn−1×Δn . (3.50)

Vectorizing each k sample results in

g
(n)
k ∈ R

Δn−1Δn . (3.51)

1This does not mean that MPCA is computationally efficient but in contrast this means that
alternating iterations of MPCA prematurely terminate, yielding a solution that is far from the
optimal one.
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Using (3.43), Δn−1Δn features of k is significantly less in comparison to Nf =∏N
n=1 In of X (k), which allows for PCA to be easily applied.

3.2.4.2 MPS

The second algorithm is simply called MPS, where in this case we first perform

data centering on the set of training samples {X (k)}, then apply Algorithm 1 to

obtain the core matrices

G
(n)
k ∈ R

Δn−1×Δn . (3.52)

Vectorizing the K samples results in (3.51), and subsequent linear classifiers such

as LDA or nearest neighbors can be utilised. In this method, MPS can be consid-

ered a multidimensional analogue to PCA because the tensor samples have been

data centered and are projected to a new orthogonal space through Algorithm 1,

resulting in the core matrices.

3.3 Experimental results

In this section, we conduct experiments on the proposed TTPCA and MPS al-

gorithms for tensor object classification. An extensive comparison is conducted

based on CSR and training time with tensor-based methods MPCA, HOOI, and

R-UMLDA.

Four datasets are utilised for the experiment. The Columbia Object Image Li-

braries (COIL-100) [143, 144], Extended Yale Face Database B (EYFB) [145],

BCI Jiaotong dataset (BCI) [146], and the University of South Florida HumanID

“gait challenge” dataset (GAIT) version 1.7 [147] . All simulations are conducted

in a Matlab environment.

3.3.1 Parameter selection

TTPCA, MPA and HOOI rely on the threshold ε defined in (3.43) to reduce the

dimensionality of a tensor, while keeping its most relevant features. To demon-
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strate how the classification success rate (CSR) varies, we utilise different ε for

each dataset. It is trivial to see that a larger ε would result in a longer train-

ing time due to its computational complexity, which was discussed in subsection

3.2.3. Furthermore, TTPCA utilises PCA, and a range of principal components

p is used for the experiments. HOOI is implemented with a maximum of 10

ALS iterations. MPCA relies on fixing an initial quality factor Q, which is de-

termined through numerical simulations, and a specified number of elementary

multilinear projections (EMP), we denote asmp, must be initialized prior to using

the R-UMLDA algorithm. A range of EMP’s is determined through numerical

simulations and the regularization parameter is fixed to γ = 10−6 .

3.3.2 Tensor object classification

3.3.2.1 COIL-100

For this dataset we strictly compare MPS and the HOSVD-based algorithm HOOI

to analyse how adjusting ε affects the approximation of the original tensors, as

well as the reliability of the extracted features for classification. The COIL-100

dataset has 7200 color images of 100 objects (72 images per object) with different

reflectance and complex geometric characteristics. Each image is initially a 3rd-

order tensor of dimension 128 × 128 × 3 and then is downsampled to the one of

dimension 32×32×3. The dataset is divided into training and test sets randomly

consisting of K and L images, respectively according to a certain holdout (H/O)

ratio r, i.e. r = L
K
. Hence, the training and test sets are represented by four-

order tensors of dimensions 32× 32× 3×K and 32× 32× 3×L, respectively. In

Fig. 3.1 we show how a few objects of the training set (r = 0.5 is chosen) change

after compression by MPS and HOOI with two different values of threshold, ε =

0.9, 0.65. We can see that with ε = 0.9, the images are not modified significantly

due to the fact that many features are preserved. However, in the case that ε =

0.65, the images are blurred. That is because fewer features are kept. However, we

can observe that the shapes of objects are still preserved. Especially, in most cases

MPS seems to preserve the color of the images better than HOOI. This is because
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the bond dimension corresponding to the color mode I3 = 3 has a small value,

e.g. Δ3 = 1 for ε = 0.65 in HOOI. This problem arises due to the the unbalanced

matricization of the tensor corresponding to the color mode. Specifically, if we

take a mode-3 matricization of tensor X ∈ R
32×32×3×K , the resulting matrix of

size 3 × (1024K) is extremely unbalanced. Therefore, when taking SVD with

some small threshold ε, the information corresponding to this color mode may

be lost due to dimension reduction. On the contrary, we can efficiently avoid

this problem in MPS by permuting the tensor such that X ∈ R
32×K×3×32 before

applying the tensor decomposition.

Table 3.1 – COIL-100 classification results. The best CSR corresponding to different

H/O ratios obtained by MPS and HOOI.

Algorithm CSR Nf ε CSR Nf ε

r = 50% r = 80%

HOOI 98.87± 0.19 198 0.80 94.13± 0.42 112 0.75

MPS 99.19± 0.19 120 0.80 95.37± 0.31 18 0.65

r = 90% r = 95%

HOOI 87.22± 0.56 112 0.75 77.76± 0.90 112 0.75

MPS 89.38± 0.40 59± 5 0.75 83.17± 1.07 18 0.65

(a) Original samples (size 32× 32× 3)

(b) Samples with MPS, ε = 0.9 (core size 18× 24)

(c) Samples with HOOI, ε = 0.9 (core size 18× 16× 2)

(d) Samples with MPS, ε = 0.65 (core size 6× 3)

(e) Samples with HOOI, ε = 0.65 (core size 5× 4× 1)

Figure 3.1 – Modification of ten objects in the training set of COIL-100 are shown

after applying MPS and HOOI corresponding to ε = 0.9 and 0.65 to compress tensor

objects.
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Figure 3.2 – Error bar plots of CSR versus thresholding rate ε for different H/O

ratios.

K nearest neighbors with K=1 (KNN-1) is used for classification. For each H/O

ratio, the CSR is averaged over 10 iterations of randomly splitting the dataset

into training and test sets. Comparison of performance between MPS and HOOI

is shown in Fig. 3.2 for four different H/O ratios, i.e. r = (50%, 80%, 90%, 95%).

In each plot, we show the CSR with respect to threshold ε. We can see that

MPS performs quite well when compared to HOOI. Especially, with small ε,

MPS performs much better than HOOI. Besides, we also show the best CSR

corresponding to each H/O ratio obtained by different methods in Table. 3.1. It

can be seen that MPS always gives better results than HOOI even in the case of

small value of ε and number of features Nf defined by (3.10) and (3.19) for HOOI

and MPS, respectively.

3.3.2.2 Extended Yale Face Database B

The EYFB dataset contains 16128 grayscale images with 28 human subjects,

under 9 poses, where for each pose there is 64 illumination conditions. Similar

to [148], to improve computational time each image was cropped to keep only

the centre area containing the face, then resized to 73 x 55. The training and

test datasets are not selected randomly but partitioned according to poses. More
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precisely, the training and test datasets are selected to contain poses 0, 2, 4, 6

and 8 and 1, 3, 5, and 7, respectively. For a single subject the training tensor has

size 5 × 73 × 55 × 64 and 4 × 73 × 55 × 64 is the size of the test tensor. Hence

for all 28 subjects we have fourth-order tensors of sizes 140 × 73 × 55 × 64 and

112× 73× 55× 64 for the training and test datasets, respectively.

Table 3.2 – EYFB classification results

Algorithm CSR (ε = 0.9) CSR (ε = 0.85) CSR (ε = 0.80) CSR (ε = 0.75)

KNN-1

HOOI 90.71± 1.49 90.89± 1.60 91.61± 1.26 88.57± 0.80

MPS 94.29± 0.49 94.29± 0.49 94.29± 0.49 94.29± 0.49

TTPCA 86.05± 0.44 86.01± 0.86 87.33± 0.46 86.99± 0.53

MPCA 90.89± 1.32

R-UMLDA 71.34± 2.86

LDA

HOOI 96.07± 0.80 95.89± 0.49 96.07± 0.49 96.07± 0.49

MPS 97.32± 0.89 97.32± 0.89 97.32± 0.89 97.32± 0.89

TTPCA 95.15± 0.45 95.15± 0.45 95.15± 0.45 94.86± 0.74

MPCA 90.00± 2.92

R-UMLDA 73.38± 1.78

In this experiment, the core tensors remains very large even with a small threshold

used, e.g., for ε = 0.75, the core size of each sample obtained by TTPCA/MPS

and HOOI are 18 × 201 = 3618 and 14 × 15 × 13 = 2730, respectively, because

of slowly decaying singular values, which make them too large for classification.

Therefore, we need to further reduce the sizes of core tensors before feeding them

to classifiers for a better performance. In our experiment, we simply apply a

further truncation to each core tensor by keeping the first few dimensions of each

mode of the tensor. Intuitively, this can be done as we have already known that

the space of each mode is orthogonal and ordered in such a way that the first

dimension corresponds to the largest singular value, the second one corresponds to

the second largest singular value and so on. Subsequently, we can independently

truncate the dimension of each mode to a reasonably small value (which can be

determined empirically) without changing significantly the meaning of the core

tensors. It then gives rise to core tensors of smaller size that can be used directly

for classification. More specifically, suppose that the core tensors obtained by
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MPS and HOOI have sizes Q × Δ1 × Δ2 and Q × Δ1 × Δ2 × Δ3, where Q is

the number K (L) of training (test) samples, respectively. The core tensors are

then truncated to be Q× Δ̃1 × Δ̃2 and Q× Δ̃1 × Δ̃2 × Δ̃3, respectively such that

Δ̃l < Δl (l = 1, 2, 3). Note that each Δ̃l is chosen to be the same for both training

and test core tensors. In regards to TTPCA, each core matrix is vectorized to

have Δ1Δ2 features, then PCA is applied.

Classification results for different threshold values ε is shown in Table. 3.2 for

TTPCA, MPS and HOOI using two different classifiers, i.e. KNN-1 and LDA.

Results from MPCA and R-UMLDA is also included. The core tensors obtained

by MPS and HOOI are reduced to have sizes of Q×Δ̃1×Δ̃2 and Q×Δ̃1×Δ̃2×Δ̃3,

respectively such that Δ̃1 = Δ̃2 = Δ ∈ (10, 11, 12, 13, 14) and Δ̃3 = 1. Therefore,

the reduced core tensors obtained by both methods have the same size for clas-

sification. With MPS and HOOI, each value of CSR in Table. 3.2 is computed

by taking the average of the ones obtained from classifying different reduced core

tensors due to different Δ. In regards to TTPCA, for each ε, a range of prin-

cipal components p = {50, . . . , 70} is used. We utilise Q = {70, 75, 80, 85, 90}
for MPCA, and the range mp = {10, . . . , 20} for R-UMLDA. The average CSR’s

are computed with TTPCA, MCPA and R-UMLDA according to their respective

range of parameters in Table. 3.2. We can see that the MPS gives rise to better

results for all threshold values using different classifiers. More importantly, MPS

with the smallest ε can produce the highest CSR. The LDA classifier gives rise

to the best result, i.e. 97.32± 0.89.

3.3.2.3 BCI Jiaotong

The BCIJ dataset consists of single trial recognition for BCI electroencephalogram

(EEG) data involving left/right motor imagery (MI) movements. The dataset

includes five subjects and the paradigm required subjects to control a cursor by

imagining the movements of their right or left hand for 2 seconds with a 4 second

break between trials. Subjects were required to sit and relax on a chair, looking

at a computer monitor approximately 1m from the subject at eye level. For each
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Table 3.3 – BCI Jiaotong classification results

Algorithm CSR (ε = 0.9) CSR (ε = 0.85) CSR (ε = 0.80) CSR (ε = 0.75)

Subject 1

HOOI 84.39± 1.12 83.37± 0.99 82.04± 1.05 84.80± 2.21

MPS 87.24± 1.20 87.55± 1.48 87.24± 1.39 87.65± 1.58

TTPCA 78.57± 3.95 78.43± 3.73 79.43± 4.12 79.14± 2.78

MPCA 82.14± 3.50

R-UMLDA 63.18± 0.37

CSP 80.14± 3.73

Subject 2

HOOI 83.16± 1.74 82.35± 1.92 82.55± 1.93 79.39± 1.62

MPS 90.10± 1.12 90.10± 1.12 90.00± 1.09 91.02± 0.70

TTPCA 80.57± 0.93 81.14± 1.86 81.29± 1.78 80± 2.20

MPCA 81.29± 0.78

R-UMLDA 70.06± 0.39

CSP 81.71± 8.96

Subject 3

HOOI 60.92± 1.83 61.84± 1.97 61.12± 1.84 60.51± 1.47

MPS 61.12± 1.36 61.22± 1.53 61.12± 1.54 60.71± 1.54

TTPCA 67.43± 2.56 68.29± 2.56 67.71± 2.28 66.43± 2.02

MPCA 56.14± 2.40

R-UMLDA 57.86± 0.00

CSP 77.14± 2.26

Subject 4

HOOI 48.27± 1.54 47.55± 1.36 49.98± 1.29 47.96± 1.27

MPS 52.35± 2.82 52.55± 3.40 52.55± 3.69 51.84± 3.11

TTPCA 50.29± 2.97 49.71± 3.77 49.14± 3.48 52.00± 3.48

MPCA 51.00± 3.96

R-UMLDA 46.36± 0.93

CSP 59.86± 1.98

Subject 5

HOOI 60.31± 1.08 60.82± 0.96 59.90± 2.20 60.41± 1.36

MPS 59.39± 2.08 59.18± 2.20 58.57± 1.60 59.29± 1.17

TTPCA 53.43± 2.79 54.29± 3.19 53.86± 3.83 54.86± 2.49

MPCA 50.43± 1.48

R-UMLDA 55.00± 0.55

CSP 59.14± 2.11

subject, data was collected over two sessions with a 15 minute break in between.

The first session contained 60 trials (30 trials for left, 30 trials for right) and were

used for training. The second session consisted of 140 trials (70 trials for left, 70

trials for right). The EEG signals were sampled at 500Hz and preprocessed with

a filter at 8-30Hz, hence for each subject the data consisted of a multidimensional
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tensor channel× time×Q. The common spatial patterns (CSP) algorithm [149]

is a popular method for BCI classification that works directly on this tensor,

and provides a baseline for the proposed and existing tensor-based methods. For

the tensor-based methods, we preprocess the data by transforming the tensor

into the time-frequency domain using complex Mortlet wavelets with bandwidth

parameter fb = 6Hz (CMOR6-1) to make classification easier [150, 151]. The

wavelet center frequency fc = 1Hz is chosen. Hence, the size of the concatenated

tensors are 62 channels× 23 frequency bins× 50 time frames×Q.

We perform the experiment for all subjects. After applying the feature extraction

methods MPS and HOOI, the core tensors still have high dimension, so we need

to further reduce their sizes before using them for classification. For instance,

the reduced core sizes of MPS and HOOI are chosen to be Q × 12 × Δ and

Q× 12×Δ× 1, where Δ ∈ (8, . . . , 14), respectively. With TTPCA, the principal

components p = {10, 50, 100, 150, 200}, Q = {70, 75, 80, 85, 90} for MPCA and

mp = {10, . . . , 20} for R-UMLDA. With CSP, we average CSR for a range of

spatial components sc = {2, 4, 6, 8, 10}.

The LDA classifier is utilised and the results are shown in Table. 3.3 for different

threshold values of TTPCA, MPS and HOOI. The results of MPCA, R-UMLDA

and CSP are also included. MPS outperforms the other methods for Subjects 1

and 2, and is comparable to HOOI in the results for Subject 5. CSP has the high-

est CSR for Subjects 3 and 4, followed by MPS or TTPCA, which demonstrates

the proposed methods being effective at reducing tensors to relevant features,

more precisely than current tensor-based methods.

Table 3.4 – Seven experiments in the USF GAIT dataset

Probe set A(GAL) B(GBR) C(GBL) D(CAR) E(CBR) F(CAL) G(CBL)

Size 71 41 41 70 44 70 44

Differences View Shoe Shoe, view Surface Surface, shoe Surface, view Surface, view, shoe
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Figure 3.3 – The gait silhouette sequence for a third-order tensor.

3.3.2.4 USF GAIT challenge

The USFG database consists of 452 sequences from 74 subjects who walk in

elliptical paths in front of a camera. There are three conditions for each subject:

shoe type (two types), viewpoint (left or right), and the surface type (grass or

concrete). A gallery set (training set) contains 71 subjects and there are seven

types of experiments known as probe sets (test sets) that are designed for human

identification. The capturing conditions for the probe sets is summarized in Table

3.4, where G, C, A, B, L and R stand for grass surface, cement surface, shoe type

A, shoe type B, left view and right view, respectively. The conditions in which

the gallery set was captured is grass surface, shoe type A and right view (GAR).

The subjects in the probe and gallery sets are unique and there are no common

sequences between the gallery and probe sets. Each sequence is of size 128× 88

and the time mode is 20, hence each gait sample is a third-order tensor of size

128 × 88 × 20, as shown in Fig. 3.3. The gallery set contains 731 samples,

therefore the training tensor is of size 128 × 88 × 20 × 731. The test set is of

size 128 × 88 × 20 × Ps, where Ps is the sample size for the probe set that is

used for a benchmark, refer to Table 3.4. The difficulty of the classification task

increases with the amount and and type of variables, e.g. Probe A only has the

viewpoint, whereas Probe F has surface and viewpoint, which is more difficult.

For the experiment we perform tensor object classification with Probes A, C, D

and F (test sets).
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The classification results based on using the LDA classifier is shown in Table 3.5.

The threshold ε still retains many features in the core tensors of MPS and HOOI.

Therefore, further reduction of the core tensors is chosen to be Q × 20 ×Δ and

Q×20×Δ×1, where Δ ∈ (8, . . . , 14), respectively. The principal components for

TTPCA is the range p = {150, 200, 250, 300}, Q = {70, 75, 80, 85} for MPCA and

mp = {10, . . . , 20} for R-UMLDA. The proposed algorithms achieve the highest

performance for Probes A, C, and D. MPS and HOOI are similar for the most

difficult test set Probe F.

Table 3.5 – GAIT classification results

Algorithm CSR (ε = 0.9) CSR (ε = 0.85) CSR (ε = 0.80) CSR (ε = 0.75)

Probe A

HOOI 63.71± 3.36 63.90± 3.40 64.16± 3.39 64.33± 3.20

MPS 70.03± 0.42 70.03± 0.38 70.01± 0.36 69.99± 0.38

TTPCA 75.31± 0.29 76.03± 0.38 76.38± 0.78 77.75± 0.92

MPCA 55.77± 1.08

R-UMLDA 46.62± 2.13

Probe C

HOOI 36.67± 2.84 36.73± 2.79 36.70± 3.07 36.87± 3.68

MPS 41.46± 0.64 41.36± 0.64 41.29± 0.63 41.46± 0.59

TTPCA 39.17± 0.90 40.83± 0.41 41.61± 1.02 44.40± 1.54

MPCA 29.35± 2.29

R-UMLDA 20.87± 0.76

Probe D

HOOI 19.73± 0.91 19.96± 1.15 20.32± 0.93 20.29± 1.11

MPS 23.82± 0.42 23.84± 0.43 23.84± 0.45 23.84± 0.40

TTPCA 21.92± 0.54 22.14± 0.20 22.84± 0.42 21.92± 0.59

MPCA 21.11± 3.43

R-UMLDA 7.88± 1.00

Probe F

HOOI 20.77± 0.92 20.71± 0.72 20.15± 0.65 19.96± 0.67

MPS 20.50± 0.40 20.52± 0.34 20.50± 0.29 20.56± 0.46

TTPCA 14.78± 0.60 14.74± 0.77 15.29± 0.75 15.40± 0.55

MPCA 17.12± 2.79

R-UMLDA 9.67± 0.58
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3.3.3 Training time benchmark

An additional experiment on training time for MPS2, HOOI, MPCA and R-

UMLDA is provided to understand the computational complexity of the algo-

rithms. For the COIL-100 dataset, we measure the elapsed training time for

the training tensor of size 32 × 32 × 3 × K (K = 720, 3600, 6480) for H/O=

{0.9, 0.5, 0.1}, according to 10 random partitions of train/test data (iterations).

MPCA, HOOI and R-UMLDA reduces the tensor to 32 features, and MPS to 36

(due to a fixed dimension Δ2). In Fig. 3.4, we can see that as the number of

training images increases, the MPS algorithms computational time only slightly

increases, while MCPA and HOOI increases gradually, with UMLDA having the

slowest performance overall.

The EYFB benchmark reduces the training tensor features to 36 (for MPS), 32

(MPCA and HOOI), and 16 (UMLDA, since the elapsed time for 32 features

is too long). For this case, Fig. 3.5 demonstrates that MPCA provides the

fastest computation time due to its advantage with small sample sizes (SSS).

MPS performs the next best, followed by HOOI, then UMLDA with the slowest

performance.

The BCI experiment involves reducing the training tensor to 36 (MPS) or 32

(MPS, HOOI and UMLDA) features and the elapsed time is shown for Subject

1 in Fig. 3.6. For this case MPS performs the quickest compared to the other

algorithms, with UMLDA again performing the slowest.

Lastly, the USFG benchmark tests Probe A by reducing the MPS training tensor

to 36 features, MPCA and HOOI to 32 features, and UMLDA to 16 features.

Fig. 3.7 shows that MPCA provides the quickest time to extract the features,

followed by MPS, HOOI and lastly UMLDA.

2TTPCA would be equivalent in this experiment.
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Figure 3.4 – COIL-100 training time comparison.
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Figure 3.5 – EYFB training time comparison.
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Figure 3.6 – BCI Subject 1 training time comparison.
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Figure 3.7 – GAIT Probe A training time comparison.

3.4 Conclusion

A a rigorous analysis of MPS and Tucker decomposition proves the efficiency of

MPS in terms of retaining relevant correlations and features, which can be used di-

rectly for tensor object classification. Subsequently, two new approaches to tensor

dimensionality reduction based on compressing tensors to matrices are proposed.

One method reduces a tensor to a matrix, which then utilises PCA. And the

other is a new multidimensional analogue to PCA known as MPS. Furthermore,

a comprehensive discussion on the practical implementation of the MPS-based

approach is provided, which emphasizes tensor mode permutation, tensor bond

dimension control, and core matrix positioning. Numerical simulations demon-

strates the efficiency of the MPS-based algorithms against other popular tensor

algorithms for dimensionality reduction and tensor object classification.
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Chapter 4

Matrix product states for tensor

completion

4.1 Background of tensor completion

Tensors provide a natural way to represent multidimensional data whose entries

are indexed by several continuous or discrete variables. For instance, a colour

image is a third-order tensor defined by two indices for spatial variables and one

index for colour mode. A video comprised of colour images is a fourth-order

tensor with an additional index for a temporal variable. Residing in extremely

high-dimensional data spaces, the tensors in practical applications are neverthe-

less often of low-rank [2]. Consequently, they can be effectively projected to

much smaller subspaces through underlying decompositions such as the CAN-

DECOMP/PARAFAC (CP), Tucker and matrix product state (MPS).

Motivated by the success of low rank matrix completion (LRMC) [92, 152], re-

cent effort has been made to extend its concept to low rank tensor completion

(LRTC). In fact, LRTC has found applications in computer vision and graphics,

signal processing and machine learning [86, 153, 154, 94, 155, 156, 95]. Addi-

tionally, it has been shown in [86] that tensor-based completion algorithms are

more efficient in completing tensors than matrix-based completion algorithms.

The common target in LRTC is to recover missing entries of a tensor from its
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partially observed entities [157, 158, 159]. LRTC remains a grand challenge due

to the fact that computation for the tensor rank, defined as CP rank, is already

an NP-hard problem [2]. There have been attempts in approaching LRTC via

Tucker rank [86, 94, 95]. A conceptual drawback of Tucker rank is that its com-

ponents are ranks of matrices constructed based on an unbalanced matricization

scheme (one mode versus the rest). The upper bound of each individual rank is

often small and may not be suitable for describing global information of the ten-

sor. In addition, the matrix rank minimizations is only efficient when the matrix

is more balanced. As the rank of a matrix is not more than min{n,m}, where m
and n are the number of rows and columns of the matrix, respectively, the high

ratio max{m,n}/min{m,n} would effectively rule out the need of matrix rank

minimization. It is not surprising for present state-of-the-art LRMC methods

[160, 90, 92, 152] to implicitly assume that the considered matrices are balanced.

4.2 A new approach via TT rank

Recall from Section 2.3 that the TT rank consists of a vector containing the ranks

of balanced matricizations of a tensor. Its connection to MPS is based on the

number of non-singular values kept (rank) at each SVD iteration (from a balanced

matricization) during the calculation of the left-, right- or mixed-canonical forms

of MPS. Table 4.1 provides a summary of the advantages and disadvantages of

an MPS-based approach.

Low rank tensor analysis via TT rank can be seen in earlier work in physics,

specifically in simulations of quantum dynamics [9, 72]. Realizing the compu-

tational efficiency of low TT rank tensors, there has been numerous works in

applying it to numerical linear algebra [161, 162, 79]. Low TT rank tensors were

used for the SVD of large-scale matrices in [163]. The alternating least squares

(ALS) algorithms for tensor approximation [84, 82] are also used for solutions

of linear equations and eigenvector/eigenvalue approximation. In [164, 165], low

TT rank tensors were also used in implementing the steepest descent iteration for

large scale least squares problems. The common assumption in all these works is
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Table 4.1 – MPS advantages and disadvantages.

Advantages

Easy to compute

Represents each tensor mode locally

Consists of component tensors of at most third-order

Grows polynomially with tensor order

Disadvantages

Depends on SVD, which can be computationally expensive

May be computationally expensive if all singular values are retained

that all the used tensors during the computation processes are of low TT rank for

computational practicability. How low TT rank tensors are relevant to real-world

problems was not really their concern. Applications of the TT decomposition

to fields outside of mathematics and physics has rarely been seen, with only our

recent application of TT to machine learning proposed in the previous chapter.

As mentioned above, colour image and video are perfect examples of tensors, so

their completion can be formulated as tensor completion problems. However, it

is still not known if TT rank-based completion is useful for practical solutions.

The main purpose of this chapter is to show that TT rank is the right approach

for LRTC, which can be addressed by TT rank-based optimization.

In this chapter we propose the following contributions:

1. Using the von Neumann entropy to show that the Tucker rank does not

capture the global correlation of tensor entries, and thus is hardly ideal

for LRTC. Since TT rank constitutes of ranks of matrices formed by a

well-balanced matricization scheme, it is capable of capturing the global

correlation of the tensor entries and is thus a promising tool for LRTC.

2. We show that unlike Tucker rank, which is often low and not appropriate for

optimization, TT rank optimization is a tractable formulation for LRTC.

Two new algorithms are introduced to address the TT rank optimization
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based LRTC problems. The first algorithm called simple low-rank tensor

completion via tensor train (SiLRTC-TT) solves an optimization problem

based on the TT nuclear norm. The second algorithm called tensor com-

pletion by parallel matrix factorization via tensor train (TMac-TT) uses

a mutilinear matrix factorization model to approximate the TT rank of a

tensor, bypassing the computationally expensive SVD. Avoiding the direct

TT decomposition enables the proposed algorithms to outperform other

start-of-the-art tensor completion algorithms.

3. We also introduce a novel technique called ket augmentation (KA) to repre-

sent a low-order tensor by a higher-order tensor without changing the total

number of entries. The KA scheme provides a perfect means to obtain a

higher-order tensor representation of visual data by maximally exploring

the potential of TT rank-based optimization for colour image and video

completion. TMac-TT especially performs well in recovering videos with

95% missing entries.

4.3 Matrix and tensor completion

This section firstly revisits the conventional formulation of LRTC based on the

Tucker rank. Then, we propose a new approach to LRTC via TT rank optimiza-

tion, which leads to two new optimization formulations, one based on nuclear

norm minimization, and the other on multilinear matrix factorization.

4.3.1 Conventional tensor completion

As tensor completion is fundamentally based on matrix completion, we give an

overview of the latter prior its introduction. Recovering missing entries of a

matrix T ∈ R
m×n from its partially known entries given by a subset Ω can be

studied via the well-known matrix-rank optimization problem [166, 167]:

min
X

rank(X) s.t. XΩ = TΩ. (4.1)
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The missing entries of X are completed such that the rank of X is as small as

possible, i.e the vector (λ1, ...., λmin{m,n}) of the singular values λk ofX is as sparse

as possible. The sparsity of (λ1, ...., λmin{m,n}) leads to the effective representation

of X for accurate completion. Due to the combinatorial nature of the function

rank(·), the problem (4.1), however, is NP-hard. For the nuclear norm ||X||∗ =∑min{m,n}
k=1 λk, the following convex �1 optimization problem in (λ1, ...., λmin{m,n})

has been proved the most effective surrogate for (4.1) [160, 92, 152]:

min
X

||X||∗ s.t. XΩ = TΩ. (4.2)

It should be emphasized that the formulation (4.1) is efficient only when X is

balanced (square), i.e. m ≈ n. It is likely that rank(X) ≈ m for unbalanced X

with m � n, i.e. there is not much difference between the optimal value of (4.1)

and its upper bound m, under which rank optimization problem (4.1) is not inter-

esting. More importantly, one needs at least Cn6/5rank(X) log n ≈ Cn6/5m log n

sampled entries [90] with a positive constant C to successfully complete X, which

is almost the total nm entries of X.

Completing an Nth-order tensor T ∈ R
I1×I2···×IN from its known entries given by

an index set Ω is formulated by the following Tucker rank optimization problem

[86, 94, 95]:

min
X(k)

N∑
k=1

αkrank(X(k)) s.t. XΩ = TΩ. (4.3)

where {αk}Nk=1 are defined as weights fulfilling the condition
∑N

k=1 αk = 1, which

is then addressed by the following �1 optimization problem [86]:

min
X(k)

N∑
k=1

αk||X(k)||∗ s.t. XΩ = TΩ. (4.4)

Each matrix X(k) in (4.3) is obtained by matricizing the tensor along one single

mode and thus is highly unbalanced. For instance, when all the modes have the

same dimension (I1 = · · · = IN ≡ I), its dimension is I×IN−1. As a consequence,

its rank is low, which makes the matrix rank optimization formulation (4.3) less

efficient for completing T . Moreover, as analyzed above, it also makes the �1 opti-
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mization problem (4.4) not efficient in addressing the rank optimization problem

(4.3).

Additionally, rank(X(k)) is not an appropriate means for capturing the global

correlation of a tensor as it provides only the mean of the correlation between a

single mode (rather than a few modes) and the rest of the tensor.

Recall from Chapter 2 that the rank rk of X(k) is only capable of capturing the

correlation between one mode k and the others. Hence, the problem (4.3) does

not take into account the correlation between a few modes and the rest of the

tensor, and thus may not be sufficient for completing high order tensors (N > 3).

To overcome this weakness, in the next section, we will approach LRTC problems

optimising TT rank, which is defined by more balanced matrices and is able to

capture the hidden correlation between the modes of the tensor more effectively.

4.3.2 Tensor completion by TT rank optimization

A new approach to the LRTC problem in (4.3) is to address it by the following

TT rank optimization

min
X[k]

N−1∑
k=1

αkrank(X[k]) s.t. XΩ = TΩ, (4.5)

where αk denotes the weight that the TT rank of the matrix X[k] contributes

to, with the condition
∑N−1

k=1 αk = 1. Recall that X[k] is obtained by matricizing

along k modes and thus its rank captures the correlation between k modes and the

other N − k modes. Therefore, (rank(X[1]), rank(X[2]), ..., rank(X[N ])) provides a

much better means to capture the global information of the tensor.

As the problem (4.5) is still difficult to handle as rank(·) is presumably hard.

Therefore, from (4.5), we propose the following two problems.

The first one based on the so-called TT nuclear norm, defined as

||X ||∗ =
N−1∑
k=1

αk||X[k]||∗, (4.6)
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is given by

min
X

N−1∑
k=1

αk||X[k]||∗ s.t. XΩ = TΩ, (4.7)

The concerned matrices in (4.7) are much more balanced than their counterparts

in (4.4). As a result, the �1 optimization problem (4.7) provides an effective

means for the matrix rank optimization problem (4.5).

A particular case of (4.7) is the square model [168]

min
X

||X[round(N/2)]||∗ s.t. XΩ = TΩ. (4.8)

by choosing the weights such that αk = 1 if k = round(N/2), otherwise αk = 0.

Although the single matrix X[round(N/2)] is balanced and thus (4.8) is an effec-

tive means for minimizing rank(X[round(N/2)]), it should be realized that it only

captures the local correlation between round(N/2) modes and other round(N/2)

modes.

The second problem is based on the factorization model X[k] = UV for a matrix

X[k] ∈ R
m×n of rank rk, where U ∈ R

m×rk and V ∈ R
rk×n. Instead of optimizing

the nuclear norm of the unfolding matrices X[k] as in (4.7), the Frobenius norm

is minimized:

min
Uk,Vk,X

N−1∑
k=1

αk

2
||UkVk −X[k]||2F

s.t. XΩ = TΩ,

(4.9)

where Uk ∈ R

∏k
j=1 Ij×rk and Vk ∈ R

rk×
∏N

j=k+1 Ij . This model is similar to the one

proposed in [156, 95] (which is an extension of the matrix completion model [169])

where the Tucker rank is employed.

4.4 Proposed Algorithms

This section is devoted to the algorithmic development for solutions of two opti-

mization problems (4.7) and (4.9).
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4.4.1 SiLRTC-TT

To address the problem (4.7) we further convert it to the following problem:

min
X ,Mk

N−1∑
k=1

αk||Mk||∗ +
βk

2
||X[k] −Mk||2F

s.t. XΩ = TΩ,

(4.10)

where βk are positive numbers. The central concept is based on the BCD method

to alternatively optimize a group of variables while the other groups remain fixed.

More specifically, the variables are divided into two main groups. The first one

contains the unfolding matrices M1,M2, . . . ,MN−1 and the other is tensor X .

Computing each matrix Mk is related to solving the following optimization prob-

lem:

min
Mk

αk||Mk||∗ +
βk

2
||X[k] −Mk||2F , (4.11)

with fixed X[k]. The optimal solution for this problem has the closed form [152]

which is determined by

Mk = Dγk(X[k]), (4.12)

where γk = αk

βk
and Dγk(X[k]) denotes the thresholding SVD of X[k] [92]. Specifi-

cally, if the SVD of X[k] = UλV T , its thresholding SVD is defined as:

Dγk(X[k]) = UλγkV
T , (4.13)

where λγk = diag(max(λl − γk, 0)). After updating all the Mk matrices, we turn

into another block to compute the tensor X which elements are given by

xi1···iN =

⎧⎨⎩
(∑N

k=1 βkfold(Mk)
∑N

k=1 βk

)
i1···iN

(i1 · · · iN) /∈ Ω

ti1···iN (i1 · · · iN) ∈ Ω
(4.14)

The pseudocode of this algorithm is given in Algorithm 4.2. We call it simple low-

rank tensor completion via tensor train (SiLRTC-TT) as it is an enhancement

of SiLRTC [86]. The convergence condition is reached when the relative error

between two successive tensors X is smaller than a threshold. The algorithm is
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guaranteed to be converged and gives rise to a global solution since the objective

in (4.10) is a convex and the nonsmooth term is separable. We can also apply

this algorithm for the square model [168] by simply choosing the weights such

that αk = 1 if k = round(N/2) otherwise αk = 0. For this particular case, the

algorithm is defined as SiLRTC-Square.

Algorithm 4.2 – SiLRTC-TT

Input: The observed data T ∈ R
I1×I2···×IN , index set Ω.

Parameters: αk, βk, k = 1, . . . , N − 1.

1: Initialization: X 0, with X 0
Ω = TΩ, l = 0.

2: While not converged do:

3: for k = 1 to N − 1 do

4: Unfold the tensor X l to get X l
[k]

5: M l+1
k = Dαk

βk

(X l
[k])

6: end for

7: Update X l+1 from M l+1
k by (4.14)

8: End while

Output: The recovered tensor X as an approximation of T

4.4.2 TMac-TT

To solve the problem given by (4.9), following TMac and TC-MLFM in [95] and

[156], we apply the BCD method to alternatively optimize different groups of

variables. Specifically, we focus on the following problem:

min
Uk,Vk,X[k]

||UkVk −X[k]||2F , (4.15)

for k = 1, 2, . . . , N−1. This problem is convex when each variable Uk, Vk and X[k]

is modified while keeping the other two fixed. To update each variable, perform
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the following steps:

U l+1
k = X l

[k](V
l
k)

T (V l
k(V

l
k)

T )†, (4.16)

V l+1
k = ((U l+1

k )TU l+1
k )†(U l+1

k )T )X l
[k] (4.17)

X l+1
[k] = U l+1

k V l+1
k , (4.18)

where “†”denotes the Moore-Penrose pseudoinverse. It was shown in [95] that we

can replace (4.16) by the following:

U l+1
k = X l

[k](V
l
k)

T , (4.19)

to avoid computing the Moore-Penrose pseudoinverse (V l
k(V

l
k)

T )†. The rationale

behind this is that we only need the product U l+1
k V l+1

k to compute X l+1
[k] in (4.18),

which is the same when either (4.16) or (4.19) is used. After updating U l+1
k , V l+1

k

and X l+1
[k] for all k = 1, 2, . . . , N − 1, we compute elements of the tensor X l+1 as

follows:

xl+1
i1··· =

⎧⎪⎨⎪⎩
(N−1∑

k=1

αkfold(X
l+1
[k] )

)
i1···

(i1 · · ·) /∈ Ω

ti1··· (i1 · · ·) ∈ Ω

(4.20)

This algorithm is defined as tensor completion by parallel matrix factorization

in the concept of tensor train (TMac-TT), and its pseudocode is summarized in

Algorithm 4.3. The essential advantage of this algorithm is that it avoids a lot

of SVDs, and hence it can substantially save computational time.

The algorithm can also be applied for the square model [168] by choosing the

weights such that αk = 1 if k = round(N/2), otherwise αk = 0. For this case, we

define the algorithm TMac-Square.

4.4.3 Computational complexity of algorithms

The computational complexity of the algorithms are given in Table 4.4 to com-

plete a tensor X ∈ R
I1×I2×···×IN , where we assume that I1 = I2 = · · · = IN = I.

The Tucker rank and TT rank are assumed to be equal, i.e. r1 = r2 = · · · = rN =

r.
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Algorithm 4.3 – TMac-TT

Input: The observed data T ∈ R
I1×I2···×IN , index set Ω.

Parameters: αi, ri, i = 1, . . . , N − 1.

1: Initialization: U0, V 0,X 0, with X 0
Ω = TΩ, l = 0.

While not converged do:

2: for k = 1 to N − 1 do

3: Unfold the tensor X l to get X l
[k]

4: U l+1
i = X l

[k](V
l
k)

T

5: V l+1
k = ((U l+1

k )TU l+1
k )†(U l+1

k )TX l
[k]

6: X l+1
[k] = U l+1

k V l+1
k

7: end

8: Update the tensor X l+1 using (4.20)

End while

Output: The recovered tensor X as an approximation of T

Table 4.4 – Computational complexity of algorithms for one iteration.

Algorithm Computational complexity

SiLRTC O(NIN+1)

SiLRTC-TT O(I3N/2 + I3N/2−1)

TMac O(3NINr)

TMac-TT O(3(N − 1)INr)

4.5 Tensor augmentation

In this section, we introduce ket augmentation (KA) to represent a low-order

tensor by a higher-order one, i.e. to cast an Nth-order tensor T ∈ R
I1×I2×···×IN
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into a Kth-order tensor T̃ ∈ R
J1×J2×···×JK , where K ≥ N and

∏N
l=1 Il =

∏K
l=1 Jl.

A higher-order representation of the tensor offers some important advantages.

For instance, the TT decomposition is more efficient for the augmented tensor

because the local structure of the data can be exploited effectively in terms of

computational resources. Actually, if the tensor is slightly correlated, its aug-

mented tensor can be represented by a low-rank TT [8, 170].

The concept of KA was originally introduced in [170] for casting a grayscale image

into real ket state of a Hilbert space, which is simply a higher-order tensor, using

an appropriate block structured addressing.

We define KA as a generalization of the original scheme to third-order tensors

T ∈ R
I1×I2×I3 that represent colour images, where I1 × I2 = 2n × 2n (n ≥ 1 ∈ Z)

is the number of pixels in the image and I3 = 3 is the number of colors (red,

green and blue). Let us start with an initial block, labeled as i1, of 2 × 2 pixels

corresponding to a single colour j (assume that the colour is indexed by j where

j = 1, 2, 3 corresponding to red, green and blue colors, respectively). This block

can be represented as

T[21×21×1] =
4∑

i1=1

ci1jei1 , (4.21)

where ci1j is the pixel value corresponding to colour j and ei1 is the orthonormal

base which is defined as e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and

e4 = (0, 0, 0, 1). The value i1 = 1, 2, 3 and 4 can be considered as labeling the up-

left, up-right, down-left and down-right pixels, respectively. For all three colors,

we have three blocks which are represented by

T[21×21×3] =
4∑

i1=1

3∑
j=1

ci1jei1 ⊗ uj, (4.22)

where uj is also an orthonormal base which is defined as u1 = (1, 0, 0), u2 =

(0, 1, 0), u3 = (0, 0, 1). We now consider a larger block labeled as i2 make up of

four inner sub-blocks for each colour j as shown in Fig. 4.1. In total, the new

block is represented by

T[22×22×3] =
4∑

i2=1

4∑
i1=1

3∑
j=1

ci2i1jei2 ⊗ ei1 ⊗ uj. (4.23)
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Figure 4.1 – A structured block addressing procedure to cast an image into a higher-

order tensor. (a) Example for an image of size 2× 2× 3 represented by (4.22). (b)

Illustration for an image of size 22 × 22 × 3 represented by (4.23).

Generally, this block structure can be extended to a size of 2n × 2n × 3 after

several steps until it can present all the values of pixels in the image. Finally, the

image can be cast into an (n + 1)th-order tensor C ∈ R
4×4×···×4×3 containing all

the pixel values as follows,

T[2n×2n×3] =
4∑

in,...,i1=1

3∑
j=1

cin···i1jein ⊗ · · · ⊗ ei1 ⊗ uj. (4.24)

This presentation is suitable for image processing as it not only preserves the

pixels values, but also rearranges them in a higher-order tensor such that the

richness of textures in the image can be studied via the correlation between

modes of the tensor [170]. Therefore, due to the flexibility of the TT-rank, our

proposed algorithms would ideally take advantage of KA.

4.6 Tensor completion simulations

Extensive experiments are conducted with synthetic data, colour images and

videos. The proposed algorithms are benchmarked against TMac, TMac-Square,

SiLRTC, SiLRTC-Square and state-of-the-art tensor completion methods FBCP

[97] and STDC [171]1. Additionally, we also benchmark the TT-rank based opti-

mization algorithm, ALS [84, 82].

1Applicable only for tensors of order N = 3.
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The simulations for the algorithms are tested with respect to different missing

ratios (mr) of the test data, with mr defined as

mr =
p∏N

k=1 Ik
, (4.25)

where p is the number of missing entries, which is chosen randomly from a tensor

T based on a uniform distribution.

To measure performance of a LRTC algorithm, the relative square error (RSE)

between the approximately recovered tensor X and the original one T is used,

which is defined as,

RSE = ||X − T ||F/||T ||F . (4.26)

The convergence criterion of our proposed algorithms is defined by computing

the relative error of the tensor X between two successive iterations as follows:

ε =
||X l+1 −X l||F

||T ||F
≤ tol, (4.27)

where tol = 10−4 and the maximum number of iterations maxiter = 1000. These

simulations are implemented under a Matlab environment.

4.6.1 Initial parameters

In the experiments there are three parameters that must be initialized: the

weighting parameters α and β, and the initial TT ranks (ri, i = 1, . . . , N − 1)

for TMac, TMac-TT and TMac-Square. Firstly, the weights αk are defined as

follows:

αk =
δk∑N−1

k=1 δk
with δk = min(

k∏
l=1

Il,

N∏
l=k+1

Il), (4.28)

where k = 1, . . . , N − 1. In this way, we assign the large weights to the more

balanced matrices. The positive parameters are chosen by βk = fαk, where f

is empirically chosen from one of the following values in [0.01, 0.05, 0.1, 0.5, 1] in

such a way that the algorithm performs the best. Similarly, for SiLRTC and
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TMac, the weights are chosen as follows:

αk =
Ik∑N
k=1 Ik

, (4.29)

where k = 1, . . . , N . The positive parameters are chosen such that βk = fαk,

where f is empirically chosen from one of the following values in [0.01, 0.05, 0.1, 0.5, 1]

which gives the best performance.

To obtain the initial TT ranks for TMac, TMac-TT and TMac-Square, each

rank ri is bounded by keeping only the singular values that satisfy the following

inequality:

λ
[i]
j

λ
[i]
1

> th, (4.30)

with j = 1, . . . , ri, threshold th, and {λ[i]
j } is assumed to be in descending order.

This condition is chosen such that the matricizations with low-rank (small corre-

lation) will have more singular values truncated. We also choose th empirically

based on the algorithms performance.

It is important to highlight that these initial parameters can affect the perfor-

mance of the proposed algorithms. Consequently, the proposed algorithms perfor-

mance may not necessarily be optimal and future work will need to be considered

in determining the optimal TT rank and weights via automatic [97] and/or adap-

tive methods [95].

4.6.2 Synthetic data completion

We firstly perform the simulation on two different types of low-rank tensors which

are generated synthetically in such a way that the Tucker and TT rank are known

in advance.

4.6.2.1 Completion of low TT rank tensor

TheNth-order tensors T ∈ R
I1×I2···×IN of TT rank (r1, r2, . . . , rN−1) are generated

such that its elements is represented by a TT format [8]. Specifically, its elements
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is ti1i2...iN = A
[1]
i1
A

[2]
i2
· · ·A[N ]

iN
, where A[1] ∈ R

I1×r1 , A[N ] ∈ R
rN×IN and A[k] ∈

R
rk−1×Ik×rk with k = 2, . . . , N − 1 are generated randomly with respect to the

standard Gaussian distribution N (0, 1). For simplicity, we set all components of

the TT rank the same, as well as the dimension of each mode, i.e. r1 = r2 =

· · · = rN−1 = r and I1 = I2 = · · · = IN = I.

The plots of RSE with respect to mr are shown in the Figure. 4.2 for ten-

sors of different sizes, 40 × 40 × 40 × 40 (4D), 20 × 20 × 20 × 20 × 20 (5D),

10×10×10×10×10×10 (6D) and 10×10×10×10×10×10×10 (7D) and the

corresponding TT rank tuples are (10, 10, 10) (4D), (5, 5, 5, 5) (5D), (4, 4, 4, 4, 4)

(6D) and (4, 4, 4, 4, 4, 4) (7D). From the plots we can see that TMac-TT shows

best performance in most cases. Particularly, TMac-TT can recover the tensor

successfully despite the high missing ratios, where in most cases with high miss-

ing ratios, e.g. mr = 0.9, it can recover the tensor with RSE ≈ 10−4. More

importantly, the proposed algorithms SiLRTC-TT and TMac-TT often performs

better than their corresponding counterparts, i.e. SiLRTC and TMac in most

cases. FBCP and ALS have the worst results with random synthetic data, so

for the remaining synthetic data experiments, only SiLRTC, SiLRTC-Square,

SiLRTC-TT, TMac, TMac-Square and TMac-TT are compared.

For a better comparison on the performance of different LRTC algorithms, we

present the phase diagrams using the grayscale colour to estimate how success-

fully a tensor can be recovered for a range of different TT rank and missing ratios.

If RSE ≤ ε where ε is a small threshold, we say that the tensor is recovered suc-

cessfully and is represented by a white block in the phase diagram. Otherwise,

if RSE > ε, the tensor is recovered partially with a relative error and the block

colour is gray. Especially the recovery is completely failed if RSE = 1. Con-

cretely, we show in Fig. 4.3 the phase diagrams for different algorithms applied

to complete a 5D tensor of size 20× 20× 20× 20× 20 where the TT rank r varies

from 2 to 16 and ε = 10−2. We can see that our LRTC algorithms outperform

the others. Especially, TMac-TT always recovers successfully the tensor with any

TT rank and missing ratio.
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Figure 4.2 – The RSE comparison when applying different LRTC algorithms to

synthetic random tensors of low TT rank. Simulation results are shown for different

tensor dimensions, 4D, 5D, 6D and 7D.
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Figure 4.3 – Phase diagrams for low TT rank tensor completion when applying

different algorithms to a 5D tensor.

4.6.2.2 Completion of low Tucker rank tensor

Let us now apply our proposed algorithms to synthetic random tensors of low

Tucker rank. TheNth-order tensor T ∈ R
I1×I2···×IN of Tucker rank (r1, r2, . . . , rN)

is constructed by T = G ×1 A(1) ×2 A(2) · · · ×N A(N), where the core tensor

G ∈ R
r1×r2···×rN and the factor matrices A(k) ∈ R

rk×Ik , k = 1, . . . , N are generated

randomly by using the standard Gaussian distribution N (0, 1). Here, we choose

r1 = r2 = · · · = rN = r and I1 = I2 = · · · = IN = I for simplicity. To compare the

performance between the algorithms, we show in the Fig. 4.5 the phase diagrams

for different algorithms applied to complete a 5D tensor of size 20×20×20×20×20

where the Tucker rank r varies from 2 to 16 and ε = 10−2. We can see that both

TMac and TMac-TT perform much better than the others. Besides, SiLRTC-

TT shows better performance when compared to SiLRTC and SiLRTC-Square.
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Figure 4.4 – Recover the Peppers image with 90% of missing entries using different

algorithms. Top row from left to right: the original image and its copy with 90% of

missing entries. Second and third rows represent the recovery results of third-order

(no order augmentation) and ninth-order tensors (KA augmentation), using different

algorithms: STDC (only on second row), FBCP, ALS, SiLRTC-TT, SiLRTC, TMac,

TMac-TT, SiLRTC-Square and TMac-Square from the left to the right, respectively.

The Tucker-based SiLRTC and TMac perform considerably worse when using KA

because they are based on an unbalanced matricization scheme, which is unable to

take the full advantage of KA.

Similarly, TMac-TT is better than its particular case TMac-Square.

In summary, we can see that although the tensors are generated synthetically to

have low Tucker ranks, the proposed algorithms are still capable of producing

results which are as good as those obtained by the Tucker-based algorithms.

The synthetic data experiments were performed to initially test the proposed

algorithms. In order to have a better comparison between the algorithms we

benchmark the methods against real world data such as colour images and videos,

where the ranks of the tensors are not known in advance. These will be seen in

the subsequent subsections.
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Figure 4.5 – Phase diagrams for low Tucker rank tensor completion when applying

different algorithms to a 5D tensor.

Original image mr =0.9
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Figure 4.6 – Recover the Lena image with 90% of missing entries using different

algorithms. Top row from left to right: the original image and its copy with 90% of

missing entries. Second and third rows represent the recovery results of third-order

(no order augmentation) and ninth-order tensors (KA augmentation), using different

algorithms: STDC (only on second row), FBCP, ALS, SiLRTC-TT, SiLRTC, TMac,

TMac-TT, SiLRTC-Square and TMac-Square from the left to the right, respectively.
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Figure 4.7 – Recover the House image with missing entries described by the white

letters using different algorithms. Top row from left to right: the original image and

its copy with white letters. Second and third rows represent the recovery results

of third-order (no order augmentation) and ninth-order tensors (KA augmentation),

using different algorithms: STDC (only on second row), FBCP, ALS, SiLRTC-TT,

SiLRTC, TMac, TMac-TT, SiLRTC-Square and TMac-Square from the left to the

right, respectively.

Figure 4.8 – The first frame of the bus video.
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Figure 4.9 – The first frame of the city video.

Figure 4.10 – Bus video sequence tensor for the combined rows 20000:20700.

Figure 4.11 – City video sequence tensor for the combined rows 20000:20700.
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4.6.3 Image completion

The colour images known as Peppers, Lena and House are employed to test the

algorithms. All the images are initially represented by third-order tensors which

have same sizes of 256× 256× 3.
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Figure 4.12 – Performance comparison between different tensor completion algo-

rithms based on the RSE vs the missing rate when applied to the Peppers image. (a)

Original tensor (no order augmentation). (b) Augmented tensor using KA scheme.

Note that when completing the third-order tensors, we do not expect the proposed

methods to prevail against the conventional ones due to the fact that the TT

rank of the tensor is a special case of the Tucker rank. Thus, performance of

the algorithms should be mutually comparable. However, for the purpose of

comparing the performance between different algorithms for real data (images)

represented in terms of higher-order tensors, we apply the tensor augmentation

scheme KA mentioned above to reshape third-order tensors to higher-order ones

without changing the number of entries in the tensor. Specifically, we start our

simulation by casting a third-order tensor T ∈ R
256×256×3 into a ninth-order

T̃ ∈ R
4×4×4×4×4×4×4×4×3 and then apply the tensor completion algorithms to

impute its missing entries. We perform the simulation for the Peppers and Lena
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images where missing entries of each image are chosen randomly according to a

uniform distribution, the missing ratio mr varies from 0.5 to 0.9.

In Fig. 4.12, performance of the algorithms on completing the Peppers image is

shown. When the image is represented by a third-order tensor, the STDC algo-

rithm performs very well against all methods, with the ALS algorithm perform-

ing poorly, and the remaining algorithms having similar performance. However,

for the case of the ninth-order tensors, the performance of the algorithms are

rigorously distinguished. Specifically, our proposed algorithms (especially TMac-

TT) prevails against all other methods, and this is demonstrated in Fig. 4.4

for mr = 0.9. Furthermore, using the KA scheme to increase the tensor order,

SiLRTC-TT and TMac-TT are at least comparable to STDC, with TMac-TT

having the lowest RSE for mr = 0.9. More precisely, TMac-TT gives the best

result of RSE ≈ 0.156 when using the KA scheme. The great results can be

attributed to the capability of TT rank-based optimization algorithms in taking

full advantage of the correlations between modes of the tensor, which represent

the richness of textures in the image.

The results for the experiment performed on the Lena image for mr = 0.9 and

recovery results are shown in Fig. 4.6 and Fig. 4.13, respectively. These figures

show that again TMac-TT gives the lowest RSE for each mr thanks to its ability

to utilise KA effectively.

For the House image, the missing entries are now chosen as white text, and hence

the missing rate is fixed. The result is shown in Fig. 4.7. STDC provides the best

performance without augmentation, while all other algorithms are comparable.

However, the outlines of text can still be clearly seen on the STDC image. Using

tensor augmentation, TMac-TT and TMac-Square provides the best performance,

where the text is almost completely removed using TMac-TT.
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Figure 4.13 – Performance comparison between different tensor completion algo-

rithms based on the RSE vs the missing rate when applied to the Lena image. (a)

Original tensor (no order augmentation). (b) Augmented tensor using KA scheme.

4.6.4 Video completion with ket augmentation

In colour video completion we benchmark FBCP, ALS, TMac, TMac-TT and

TMac-Square against two videos, New York City (NYC) and bus2. The other

methods are computationally intractable or not applicable for N ≥ 4 in this

experiment. For each video, the following preprocessing is performed: Resize the

video to a tensor of size 81×729×1024×3 (frame×image row×image column×
RGB). The first frame of each video can be seen in Figs. 4.9 and 4.8. The

frame mode is merged with the image row mode to form a third-order tensor,

which we define here as a video sequence tensor (VST), of size 59, 049× 1024× 3

(combined row × image column × RGB). Examples of the VST can be seen in

the range 20000:20700 for combined row in Figs. 4.11 and 4.10. Hence, rather

than performing an image completion on each frame, we perform our tensor

completion benchmark on the entire video. It is important to highlight that

we only benchmark with a ket augmented (not the third-order) VST due to

2Videos available at https://engineering.purdue.edu/˜reibman/ece634/
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computational intractability for high-dimensional low-order tensors.

Figure 4.14 – The 7th, 21st, 33rd and 70th frames (from left to right column) in

the NYC video, with each row (from top to bottom) representing the original frames,

original frames with 95% missing entries, TMac, TMac-TT, TMac-Square, ALS and

FBCP.

Using KA, reshape the VST to a low-dimensional high-order tensor of size 6 ×
6× 6× 6× 6× 6× 6× 6× 6× 6× 3. The eleventh-order VST is directly used for

the tensor completion algorithms.
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Figure 4.15 – The 7th, 21st, 33rd and 70th frames (from left to right column) in

the bus video, with each row (from top to bottom) representing the original frames,

original frames with 95% missing entries, TMac, TMac-TT, TMac-Square, ALS and

FBCP.
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Table 4.5 – RSE and SSIM tensor completion results for 95%, 90% and 70% missing

entries from the NYC video.

mr = 0.95 mr = 0.9 mr = 0.7

Algorithm RSE SSIM RSE SSIM RSE SSIM

FBCP 0.210 0.395 0.210 0395 0.210 0.396

ALS 0.193 0.397 0.189 0.398 0.168 0.429

TMac 0.185 0.605 0.143 0.750 0.055 0.967

TMac-TT 0.072 0.876 0.066 0.902 0.053 0.949

TMac-Square 0.111 0.722 0.076 0.901 0.056 0.946

For the case of 95% missing entries, results of the benchmark can be seen in

Figs. 4.14 and 4.15. The NYC results in Fig. 4.14 shows that FBCP and ALS

are completely incomprehensible, whereas only the TMac-based algorithms can

successfully complete the video. Moreover, in this case, TMac-TT outperforms

all algorithms, which can be seen with the RSE and mean structural similarity

index (SSIM) [172] (over all 81 frames) in Table 4.5 for mr = 0.95. For the bus

results in Fig. 4.15, TMac-TT outperforms all algorithms. The other TT rank-

based algorithm ALS can only manage a simple structure of the bus, and FBCP

cannot produce any resemblence to the original video. Table 4.6 summarizes

the RSE and mean SSIM results. With 90% missing entries, the results are

similar to those of 95% missing entries, however, TMac-TT and TMac-Square

are now comparable in performance for the NYC video. For the NYC video with

mr = 0.7, Table 4.5 shows that all TMac-based algorithms are comparable, with

FBCP and ALS unable to reproduce a sufficient approximation. In the bus video,

TMac-TT and TMac-Square provide comparable RSE and SSIM.

In summary, the bus video includes more vibrant colours and textures compared

to the NYC video, which can be clearly seen from the overall SSIM performance

in Tables 4.5 and 4.6. It is important to highlight that TMac-TT still provides

a high quality (SSIM = 0.807) approximation for the high missing ratio (mr =

0.95) test, where the next best result of TMac-Square had only SSIM = 0.582.
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Table 4.6 – RSE and SSIM tensor completion results for 95%, 90% and 70% missing

entries from the bus video.

mr = 0.95 mr = 0.9 mr = 0.7

Algorithm RSE SSIM RSE SSIM RSE SSIM

FBCP 0.527 0.269 0.527 0.269 0.504 0.271

ALS 0.447 0.323 0.342 0.387 0.271 0.513

TMac 0.518 0.316 0.496 0.374 0.402 0.598

TMac-TT 0.154 0.807 0.092 0.932 0.062 0.974

TMac-Square 0.267 0.582 0.196 0.781 0.077 0.968

This demonstrates the superiority of using TMac-TT over the other algorithms

for high missing ratio video completion problems.

4.7 Image concatenation for colour image com-

pletion

The proposed TT rank-based algorithm TMac-TT outperformed SiLRTC and

many state-of-the-art tensor completion algorithms such as FBCP and STDC in

both colour image and video recovery problems. The advantage of TMac-TT is at-

tributed to the utilization of the novel preprocessing tensor augmentation scheme

known as ket augmentation (KA) that creates a structured block addressing of

a tensor, which is advantageous only for TT rank-based methods. However, the

disadvantage of using KA directly on an image is that block-artifacts [173] are

created due to the TT rank optimization from TMac-TT. These artifacts can

be seen in the result for completion of the Lena image with 90% missing entries

using TMac-TT with KA (KA+TMac-TT) in Fig. 4.16. This effect is minimised

for the results on colour video completion because the initial fourth-order tensor

to complete is reshaped to a third-order tensor by combining the row and tem-

poral indices. This provides different structural properties than completing each

frame of the video individually, and gives potential for new patterns to assist in
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Figure 4.16 – Completed Lena image using KA+TMac-TT that previously had 90%

missing entries.

completing the missing entries.

In this section, we address the problem of block-artifacts caused by the tensor

augmentation of a colour image. A novel framework for image completion is in-

troduced that firstly concatenates copies of an image containing missing elements

into a third-order tensor, which is inspired by the previous result in colour video

completion. Then, KA is applied on the tensor, followed by the TMac-TT algo-

rithm for tensor completion, and lastly the recovered image is extracted from the

tensor. For the remainder of the section, we refer to this framework as concate-

nated Image Completion via Tensor Augmentation and Completion (ICTAC).

4.7.1 Modified KA

For this section we modify the KA algorithm such that

T̃[3n×2n×3] =
6∑

in,...,i1=1

3∑
j=1

cin···i1jein ⊗ · · · ⊗ ei1 ⊗ uj, (4.31)

where each mode is in = 1, . . . , 6, rather than in = 1, . . . , 4 in Section 4.5. This

modification is used for image concatenation, which produces a tensor with one

mode significantly larger than the others, e.g. I1  I2 for T , hence the modified

KA in (4.31) caters for rectangular matrices in the subspace I1 × I2.
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4.7.2 A concatenated image completion framework

The concatenated image completion via tensor augmentation and completion

(ICTAC) framework is outlined in this section. The framework is divided into

three main steps:

1. Image concatenation: The concatenation of a single image with missing

entries into a third-order tensor to prepare it for KA, as discussed in Sub-

section 4.7.2.1.

2. KA+TMac-TT : The application of KA then TMac-TT on the concatenated

third-order tensor to recover missing entries, as discussed in Subsection

4.7.2.2.

3. Image extraction: Extracting a single recovered image from the recovered

concatenated tensor, which is discussed in Subsection 4.7.2.3.

4.7.2.1 Concatenating images for tensor augmentation

Consider an Nth-order colour image tensor X ∈ R
I1×I2×3 that consists of partially

known entries given by a subset Ω. Applying directly the KA scheme to X , then

subsequently the TMac-TT algorithm for completion, will result in blocking-

artifacts as demonstrated in Fig. 4.16. To circumvent this problem, an initial

preprocessing step prior to KA is added that concatenates identical copies of X to

form a fourth-order tensor Xci ∈ R
I1×I2×3×C , where C > 1 is the number of copies

of the tensor X . In fact, subsection 4.6.4 had naturally formed a tensor similar to

Xci for colour video recovery, however, rather than have C for the fourth mode,

the label T is used to represent the time frames of a colour video. Therefore Xci

can be considered a motionless colour video with C frames.

The next step is to permute and reshape Xci to a third-order tensor Xvst ∈
R

Ĩ1×I2×3, where Ĩ1 = CI1 is the combined row mode. Displaying Xvst would

result in a distorted continuous stream of the original image, hence, its structural
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properties have completely changed. The motivation to form this type of tensor is

that the repetition of the image allows for more potential correlations, symmetry

and/or continuity than a single image would exhibit. Additionally, applying KA

on Xvst would result with obvious block-artifacts only on Xvst, however, when

the recovered image is extracted in the final step of ICTAC, these artifacts are

minimised substantially. Fig. 4.17 demonstrates Xvst for the original Lena image

with no missing entries.

Figure 4.17 – An example of a third-order concatenated tensor Xvst of the Lena

image.

We can see that there are considerably more patterns in the image compared

to the original image itself. Therefore by converting an image to essentially

a motionless video allows for new insights and potential for image completion

tasks.

4.7.2.2 KA and TMac-TT

For the next step we apply the modified KA scheme in (4.31) to augment the

third-order tensor Xvst of size Ĩ1×I2×3 to a higher-order tensor X̃ ∈ R
I1×I2×···×IK ,

with K ≥ N . The modified KA scheme is needed due to subspace Ĩ1 × I2 of Xvst

being a large non-square matrix, and the original KA scheme only catered for
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tensors of the form I1×I2×3, with I1 = I2, hence the subspace I1×I2 is a square

matrix.

After a block structured addressing via KA has been applied on Xvst, then it

is ready to be transferred to a tensor completion algorithm. The TMac-TT

algorithm can now be utilised to recover the missing entries of X̃ .

4.7.2.3 Recovered image extraction

After X̃ has been recovered via KA+TMac-TT, to recover a single image, an

inverse KA scheme is utilised to obtain a third-order recovered concatenated

tensor X̃vst ∈ R
Ĩ1×I2×3. X̃vst is subsequently reshaped and permuted back to a

fourth-order tensor X̃ci ∈ R
I1×I2×3×C , and from this tensor we can extract a single

recovered image, e.g. the image at X̃ci(:, :, :, 1).

4.7.3 Image recovery experiments

The experiments are conducted for image completion tasks of various missing

ratios for the Lena and Peppers colour images. The proposed ICTAC frame-

work is benchmarked against current state-of-the-art tensor completion algo-

rithms KA+TMac-TT and SPC-QV [174].

The missing ratio (mr) as a percentage of a test image is defined as

mr =
p∏N
l=1 Il

× 100%, (4.32)

with p being the number of missing entries, which is chosen randomly based on

a uniform distribution.

Performance measures include the relative square error (RSE) between an ap-

proximately recovered tensor and the original one, which is defined as,

RSE = ||X − T ||F/||T ||F , (4.33)

and the structural similarity index (SSIM) [172].
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Figure 4.18 – Recovery of the Lena image for 90% missing entries and 80% missing

entries. Top row from left to right: the original image, the original image with 90%

missing entries, and the subsequent recovery results for ICTAC, KA+TMac-TT and

SPC-QV. Similarly for the bottom row from left to right: the original image with

80% missing entries, then recovery results for ICTAC, KA+TMac-TT and SPC-QV.

The algorithms ICTAC and SPC-QV recover colour images represented by third-

order tensors of size 243×512×3 to cater for the modified KA scheme of ICTAC

as discussed in the previous sections, whereas KA+TMac-TT uses images of size

256 × 256 × 3 because the traditional KA scheme works only on the condition

I1 = I2. To compare the algorithms in a fair manner, the RSE and SSIM is

calculated based on the same image sizes for the initial tensor with missing entries

and the final recovered tensor, and there is no image distortion which can change

the mr throughout the runtime of the completion algorithms. The only distortion

that may happen is after the algorithms have completed their calculations, where

the final recovered tensors of size 243 × 512 × 3 from ICTAC and SPC-QV is

reshaped to 256× 256× 3 so that a visual comparison can be made to the results

of KA+TMacTT. The number of copied images C = 81 for all benchmarks, and

simulations are conducted using a Matlab environment.

The ICTAC framework contains several tensor size transformations. For clarity,
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an outline of these changes is given for an initial tensor X ∈ R
243×512×3 to the

higher-order tensor X̃ in Subsection 4.7.2.2:

1. Image concatenation: X ∈ R
243×512×3 → Xci ∈ R

243×512×3×81.

2. Obtaining a VST : Xci ∈ R
243×512×3×81 → Xvst ∈ R

19683×512×3.

3. Applying the modified KA: Xvst ∈ R
19683×512×3 → X̃ ∈ R

6×6×6×6×6×6×6×6×6×3,

i.e. n = 9 in (4.31).

Fig. 4.18 presents the results for the Lena completed images using ICTAC,

KA+TMac-TT and SPC-QV. In the case of 90% missing entries, the KA+TMac-

TT algorithm performs the worst in terms of RSE and SSIM compared to the

other two algorithms. This is a significant result because it was shown pre-

viously that KA+TMac-TT outperformed state-of-the-art algorithms in colour

image recovery. Comparing ICTAC and SPC-QV, it is interesting to see that

although both algorithms had similar performance in RSE and SSIM , with IC-

TAC slightly better in both, there are quite striking visual differences in their

image recovery results. Specifically, SPC-QV tends to have a smoother uniform

textures of the Lena image, especially around edges, however, a slight blur and

fading can be seen that affects detail such as the hair strands when comparing it

to the original image. The recovered ICTAC image demonstrates an attempt to

detail the finer textures of the original image, which can be clearly seen on the

hair strands, however, some block-artifacts and errors from the image recovery

can be seen. For 80% missing entries, ICTAC provides a recovered image almost

completely similar to the original image with an SSIM of 0.983 and RSE of 0.048.

SPC-QV has a slight image blur and still does not provide detail on more com-

plicated parts of the image such as the hair and lips. The KA+TMac-TT results

still has the worst performance with an RSE of 0.08, and block-artifacts can still

be easily observed.

Results for the Peppers image completion task is presented in Fig. 4.19. Similar

to the Lena image results for 80% and 90% missing entries, KA+TMac-TT has
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the lowest RSE and SSIM for both cases, with obvious block-artifacts and less

detail than ICTAC and SPC-QV. The results of SPC-QV is shown to still have

blurring and fading effects, which decreases the detail of the image regardless of

the RSE or SSIM . ICTAC is shown to have slightly better RSE and SSIM

against SPC-QV for both cases and attempts to recover fine details of the original

image, but with some minimal block-artifacts that can still be observed.

Original Missing entries ICTAC

SSIM=0.943
RSE=0.108

KA+TMac-TT

SSIM=0.899
RSE=0.156

SPC-QV

SSIM=0.941
RSE=0.108

SSIM=0.976
RSE=0.067

SSIM=0.943
RSE=0.114

SSIM=0.960
RSE=0.087

Figure 4.19 – Recovery of the Peppers image for 90% missing entries and 80%

missing entries. Top row from left to right: the original image, the original image with

90% missing entries, and the subsequent recovery results for ICTAC, KA+TMac-TT

and SPC-QV. Similarly for the bottom row from left to right: the original image with

80% missing entries, then recovery results for ICTAC, KA+TMac-TT and SPC-QV.
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4.8 Conclusion

A novel approach to the LRTC problem based on TT rank was introduced along

with corresponding algorithms for its solution. The SiLRTC-TT algorithm was

defined to minimize the TT rank of a tensor by TT nuclear norm optimization.

Meanwhile, TMac-TT was proposed, which is based on the multilinear matrix

factorization model to minimize the TT-rank. The latter is more computation-

ally efficient due to the fact that it does not need the SVD. The proposed algo-

rithms are employed to simulate both synthetic and real world data represented

by higher-order tensors. For synthetic data, our algorithms prevails against the

others when the tensors have low TT rank. Their performance is comparable in

the case of low Tucker rank tensors. The TT-based algorithms are quite promising

and reliable when applied to real world data. To validate this, image and video

completion problems were studied. Benchmark results show that when applied

to original tensors without tensor augmentation, our algorithms are comparable

to STDC in image completion. However, in the case of augmented tensors, the

proposed algorithms not only outperform the others, but also provide better re-

covery results when compared to the case without tensor order augmentation in

both image and video completion experiments.

Additionally, a novel framework known as concatenated image completion via

tensor augmentation and completion (ICTAC) is proposed. The framework for-

mulates a tensor from a concatenation of identical copies of a single colour image

with missing entires, which provides additional patterns to support image com-

pletion algorithms. It then utilises tensor augmentation based on modified KA,

a TT rank-based tensor completion algorithm TMac-TT to impute the missing

entries, and finally, an image extraction method to recover the completed image.

Our method was shown to outperform recently proposed state-of-the-art tensor

completion algorithms KA+TMac-TT and SPC-QV for colour image completion

tasks.
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Chapter 5

Wireless sensor networks

5.1 Background

Wireless sensor networks (WSNs), which consist of spatially distributed wire-

less sensors, play a key role in many applications such as process monitoring in

industrial plants, navigational and guidance systems, radar tracking, sonar rang-

ing, environment monitoring, battlefield surveillance, health care and Internet of

Things (IoT) [112, 175, 114, 115, 116, 176, 177, 117, 118, 178, 179, 180]. Each

sensor in the network often operates in an amplify-and-forward mode [181, 182]

in delivering its local observation on a target to a central system, known as the

fusion center (FC). The FC filters these local observations for a global estimate

of the target. The sensors may be linear or nonlinear depending upon their

input-output relations. For instance, the ranging and/or bearing sensors [115]

for target localisation and tracking are nonlinear. The target is often assumed

to be prior Gaussian, in which case the Bayesian filter is defined via the first

and second order statistical moments of the jointly Gaussian distributed source

and observation [120, p. 155]. As the sensors are limited by energy resources,

sensor transmitter power allocation in linear sensor networks (LSNs) via minimiz-

ing estimate distortion at the FC for scalar Gaussian targets has been a subject

of considerable interest [121, 183, 184, 123, 124, 185]. Provided that the target

is prior characterised by a Gaussian random variable, our previous work [125]
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derived a tractable semi-definite program (SDP) for sensor power allocation in

both LSNs and nonlinear sensor networks (NSNs). The SDP allows the FC to

determine the best linear estimate in terms of the mean squared error (MSE)

irrespective of targets that are scalar or vector, static or dynamic. The wireless

communication channels between the sensors and FC have been assumed strong

enough in all aforementioned works to compensate the sensor’s low transmitter

power. As all wireless channels suffer the common impairments such as path-

loss, shadowing and small-scale fading, this assumption implicitly implies that

the sensors must be in a good position relative to the FC, which is not always

possible. It is known that wireless relay nodes can be deployed to act as wireless

bridges to effectively assist the communication between the sensors and the FC.

Multi-hop communication/relaying has been accepted as a standard to provide

high capacity coverage area in next generation wireless broadband systems [186].

However, the relaying techniques for wireless transmission have not been explored

in wireless sensor networks.

Meanwhile, Gaussian mixture models (GMMs) have been widely acknowledged as

a better means for characterizing the target priors since they offer the flexibility

of target description [128]. Indeed, GMMs have been shown to provide power-

ful tools in signal processing (see e.g. [187, 130, 131] and references therein).

However, Bayesian filters for Gaussian mixture targets already causes computa-

tional intractability in linear models, simply because there is no closed-form of

the MSE function. A particular problem has been addressed in [131] by stochastic

programming.

In this chapter we will address the joint sensor and relay power allocation to

optimise Bayesian filters in estimating static or dynamic targets with Gaussian

mixture prior knowledge by LSNs or nonlinear sensor networks (NSNs), which

non-trivially changes the nature of the power allocation and requires a different

approach to the solution. To the authors’s best knowledge, this problem has not

been considered in literature. Our contribution is to show that this computation-

ally intractable problem can be addressed by an iterative scalable procedure of
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very low computational complexity, which converges to a stationary point after

only a few iterations.

5.2 Mathematical preliminaries

Bold lower-case and upper-case symbols are used to represent vectors and ma-

trices, respectively. By A � B it means A − B � 0, i.e. A − B is a positive

definite matrix. x > 0 for a vector x is component-wise understood. diag[ai]
N
1 or

diag[ai]i=1,...,N is a diagonal matrix with ordered diagonal entries a1, a2, . . . , aN ,

which may be scalars or matrices. The trace of a square matrix A is expressed

by tr(A). E[.] is the expectation operator. X ∼ pX(.) is referred to a random

variable (RV) X with probability density function (PDF) pX(.). mX is its expec-

tation E[X], while CX is its auto-covariance matrix E[(X−mX)(X−mX)
T ] and

CXY is its cross-covariance matrix E[(X−mX)(Y−mY)
T ] with another RV Y.

Similarly RX is its auto-correlation matrix E[XXT ] = CX+mX(mX)
T and RXY

is its cross-correlation matrix E[XYT ] = CXY +mX(mY)
T with another RV Y.

X|Y is a random variableX restricted by a realization of the conditioning random

variable Y and accordingly X|Y = y is a random variable restricted by the value

Y = y of Y. N (x;mX,CX) :=
1√

2π det(CX)
exp

(
−1

2
(x−mX)

TC−1
X (x−mX)

)
is

a Gaussian distribution so X ∼ N (.;mX,CX) means that X is Gaussian random

varibale (RV) with expectation mX and covariance CX.

5.3 Fundamental matrix inequalities for GMM

A Gaussian mixture random variable is characterized by a PDF in the form,

pX(x) =
L∑
i=1

λiN (x;mX
(i),CX

(i)),
L∑
i=1

λi = 1, λi > 0. (5.1)

This PDF is a weighted sum of L component Gaussian PDFs

pX(i)(x) = N (x;mX
(i),CX

(i)).
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Here m
(i)
X is the statistical mean and CX

(i) is the covariance matrix defined by

C
(i)
X = E[(X−m

(i)
X )(X−m

(i)
X )T ]. By straightforward calculation, the mean vector

and auto-covariance matrix of such a random variable is

mX =
L∑
i=1

λimX
(i) (5.2)

CX =
L∑
i=1

λi

[
C

(i)
X +mX

(i)(mX
(i))T

]
−mX(mX)

T (5.3)

=
L∑
i=1

λiR
(i)
X −mX(mX)

T . (5.4)

The last equality implies

RX =
L∑
i=1

λiR
(i)
X . (5.5)

It is worth noticing the following convex matrix equality

L∑
i=1

λimX
(i)(mX

(i))T −mX(mX)
T =

L∑
i=1

λi(1− λi)m
(i)
X (m

(i)
X )T −

∑
i �=j

λiλjm
(i)
X (m

(j)
X )T

=
∑
i �=j

λiλj(m
(i)
X −m

(j)
X )(m

(i)
X −m

(j)
X )T (5.6)

� 0, (5.7)

which together with (5.3) gives the following bound

CX �
L∑
i=1

λiC
(i)
X . (5.8)

One of the most important features of a Gaussian PDF is its factorized represen-

tation (see e.g. [[188, Th. 2.1]])

N ((x,y);mX,Y,C) = N (x;mX|Y,CX|Y)N (y;mY,CY)

for mX,Y :=

⎛⎝ mX

mY

⎞⎠, C =

⎛⎝ CX CXY

CYX CY

⎞⎠, mX|Y = mX +CXY(CY)
−1(y−

mY), CX|Y = CX −CXY(CY)
−1CT

XY. This also means

fX|Y(x,y) = N (x,mX|Y,CX|Y),
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i.e. the conditional X|Y of two jointly Gaussian RVs X and Y is still jointly

Gaussian. Using this we can state the following result (see e.g. [[187]]):

Theorem 1: Suppose (X,Y) is a jointly Gaussian mixture RV characterized by

(5.28). Then

fX,Y(x,y) = fY(y)
L∑
i=1

λi(y)N (x,mX(i)|Y(i) ,CX(i)|Y(i)) (5.9)

for

mX(i)|Y(i) := mX
(i) +C

(i)
XY(C

(i)
Y )−1(y −mY

(i)),

CX(i)|Y(i) := CX
(i) −C

(i)
XY(C

(i)
Y )−1C

(i)T
XY ,

fY(y) :=
L∑
i=1

λiN (y;m
(i)
Y ,C

(i)
Y ),

and

λi(y) := λiN (y;m
(i)
Y ,C

(i)
Y )/fY(y).

It follows from the above Theorem that

fX|Y(x,y) =
L∑
i=1

λi(y)N (x,mX(i)|Y(i) ,CX(i)|Y(i)),

which is Gaussian mixture in x. The MMSE estimate for X based on the mea-

surement Y = y is

x̂mmse = E[X|Y = y] :=

∫
xfX|Y=y(x)dx (5.10)

=
L∑
i=1

λi(y)mX(i)|Y(i) . (5.11)

The covariance matrixCmmse(y) of the estimation error is equal to the conditional

covariance matrix of CX|Y=y of RV X|Y = y:

Cmmse(y) = CX|Y=y

:=

∫
(x− x̂mmse)(x− x̂mmse)

TfX|Y=y(x)dx

(5.12)

=
L∑
i=1

λi(y)(CX(i)|Y(i) +mX(i)|Y(i)(mX(i)|Y(i))T )

−x̂mmse(x̂mmse)
T . (5.13)
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MMSE of Bayesian estimate E[||X − X|Y = y||2] for X based on observation

Y = y is thus

ε2mmse(y) = tr(Cmmse(y))

=
L∑
i=1

λi(y)
[
tr(CX(i)|Y(i))

+||mX(i)|Y(i) ||2]− ||x̂mmse||2
]
. (5.14)

On the other hand, by [[189, Theorem 1]], the LMMSE estimate for X based on

observation Y = y is

x̂lmse = mX +CT
YXC

−1
Y (y −mY) (5.15)

with MSE covariance

Clmse =

∫
(x− x̂lmse)(x− x̂lmse)

TfX|Y=y(x)dx

(5.16)

= CX −CXYC
−1
Y CYX, (5.17)

and MSE ε2lmse = tr(Clmse) for all y. Here, according to (5.2), (5.3) and (5.7)

mX,Y :=

⎛⎝ mX

mY

⎞⎠ =
L∑
i=1

λim
(i)
X,Y

for m
(i)
X,Y :=

⎛⎝ m
(i)
X

m
(i)
Y

⎞⎠ , (5.18)

⎛⎝ CX CXY

CYX CY

⎞⎠ =
L∑
i=1

λi(C
(i) +m

(i)
X,Y(m

(i)
X,Y)

T )

−mX,Y(mX,Y)
T (5.19)

� C(λ), (5.20)

for

C(λ) :=

⎛⎝ CX(λ) CXY(λ)

CYX(λ) CY(λ)

⎞⎠ =
L∑
i=1

λiC
(i).

The following lemma is a direct consequence of [[190, Appendix]].
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Lemma 1: (Shur’s convex and monotonic inequalities) For all matrices C(i) � 0

and
L∑
i=1

λi = 1, λi ≥ 0 the following convex matrix inequality and monotonic

matrix inequality hold true

CXY(λ)(CY(λ))
−1CYX(λ) �

L∑
i=1

λiC
(i)
XY)(C

(i)
Y )−1C

(i)
YX), (5.21)

L∑
i=1

(C
(i)
X −C

(i)
XY(C

(i)
Y )−1C

(i)
YX) �

L∑
i=1

C
(i)
X − (

L∑
i=1

C
(i)
XY)(

L∑
i=1

C
(i)
Y )−1(

L∑
i=1

C
(i)
YX). (5.22)

Particularly,

CX −CXY(CY)
−1CYX � C′

X −C′
XY(C

′
Y)

−1C′
YX (5.23)

for all

0 �

⎛⎝ CX CXY

CYX CY

⎞⎠ := C � C′ :=

⎛⎝ C′
X C′

XY

C′
YX C′

Y

⎞⎠ .

Important matrix inequalities for covariances are summarized in the following

theorem.

Theorem 2: For a jointly GM characterized by equation (5.28), the following

matrix inequalities hold true

Cmmse(y) � Clmse ∀ y, (5.24)
L∑
i=1

λiCX(i)|Y(i) � Ey(Cmmse(y)) � Clmse, (5.25)

L∑
i=1

λiCX(i)|Y(i) � CX|Y(λ) � Clmse, (5.26)

where CX|Y(λ) = CX(λ)−CXY(λ)C
−1
Y (λ)CYX(λ).
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Proof. (5.24) follows directly from the definitions (5.10), (5.12) and (5.16):

Clmse(y)−Cmmse =

∫
xxTfX|Y=y(x)dx

−x̂lmse

∫
xTfX|Y=y(x)dx

−
∫

xfX|Y=y(x)dx

+xlmsex
T
lmse −Cmmse

= Cmmse + xmmsex
T
mmse − x̂lmsex̂

T
mmse

−x̂mmsex̂
T
lmse + xlmsex

T
lmse −Cmmse

= (x̂lmse − x̂mmse)(x̂lmse − x̂mmse)
T

� 0 (5.27)

Also, by (5.7)
∑L

i=1 λi(y)mX(i)|Y(i)(mX(i)|Y(i))T � x̂mmse(x̂mmse)
T , so (5.25) is

shown as follows:

Ey(Cmmse(y)) �
∫ L∑

i=1

λi(y)CX(i)|Y(i)fY(y)dy

=

∫ L∑
i=1

λiN (y;m
(i)
Y ,C

(i)
Y )CX(i)|Y(i)dy

=
L∑
i=1

λiCX(i)|Y(i) .

Finally, (5.26) is a direct consequence of Lemma 1.

To our best knowledge, the matrix inequalities (5.24)-(5.26) have not been known

in literature. Particularly, (5.25) implies the main result of [[191]]:

L∑
i=1

λitr(CX(i)|Y(i)) ≤ Ey(ε
2
mmse(y)) ≤ ε2lmse,

which was proved by many involved calculations.

5.4 Joint GMM relayed equations

In statistical signal processing, detection and estimation for an object is based on

the knowledge of its statistics along with noisy observations [120]. We start the
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section by introducing the following joint GMM for the N -dimensional target X

and M -sensor noisy observation Y

(X,Y) ∼
L∑
i=1

λiN
(
(., .);m

(i)
X,Y,C

(i)
)

(5.28)

with λi > 0,
∑L

i=1 λi = 1 and m
(i)
X,Y =

⎛⎝ mX
(i)

m
(i)
Y

⎞⎠, C(i) =

⎛⎝ C
(i)
X C

(i)
XY

C
(i)
YX C

(i)
Y

⎞⎠.

It is well known (see e.g. [120, Chapter III], [189], [125]) that almost all results

for Gaussian target estimation are based on the derivation of the joint Gaussian

distribution of the target and its observation. We will see later that the joint GM

distribution (5.28) facilitates unified framework for Bayesian and Kalman filters

in both linear and nonlinear models.

In accordance to GMM (5.28),X is a Gaussian mixture (GM)
∑L

i=1 λiN (x;m
(i)
X ,C

(i)
X )

and Y = (Y1, ...,YM)T is a GM
∑L

i=1 λiN (y;m
(i)
Y ,C

(i)
Y ). The sensor observations

are instantaneously sampled value y = (y1, y2, ..., yM)T of Y. One can define

||yj||2 = CY(j, j) +m2
Y(j), (5.29)

where CY is the covariance matrix of Y and mY = E[Y]. As illustrated by

Figure 5.1, the sensors send these observations yj to the relay over wireless time-

orthogonal communication channels [121]. The analog signals received at the

relay can thus be written as

zjR =
√

hjRαjyj + wjR, j = 1, 2, ...,M, (5.30)

where
√
hjR is the channel gain between sensor j and the relay, wjR is a corrupt

noise, which can be assumed white with power σjR and independent from zjR

and
√
αj controls the transmitter power Pj = αj||yj||2 = (CY(j, j) + m2

Y(j))αj

of sensor j, which is subject to a fixed sum power budget PT > 0, defined as

M∑
j=1

Pj =
M∑
j=1

||yj||2αj ≤ PT . (5.31)

According to Figure 5.1, the relay will then amplify these received signals zjR to

power level βj before forwarding them to the FC over wireless time-orthogonal
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Figure 5.1 – System model

communication channels so the analog signals received at the FC are

zj =
√
hjD

√
βj/||zjR||2zjR + wjD

=
√
hjDhjRβjαj/(hjR||yj||2αj + σjR)yj + wj, (5.32)

where
√

hjD is the channel gain between the relay and the FC, wjD is the back-

ground noise at the FC, which can be assumed to be noise with power σjD and

independent from zj. Accordingly,

wj =
√

hjDβj/(hjR||yj||2αj + σjR)wjR + wjD

is white noise with power σjRhjDβj/(hjR||yj||2αj + σjR) + σjD. The power levels

βj are constrained by the relay power budget PR, defined as

M∑
i=1

βj ≤ PR. (5.33)

Thus, the signals received at the FC can be written in a vector form by

Z = Hα,βY +Wα,β, (5.34)

where Hα,β ∈ R
M×M is defined by

Hα,βββ = diag

[√
hjDhjRβjαj/(hjR||yj||2αj + σjR)

]M
1

and the total noise Wα,β ∼ N (.; 0,Cα,β) with diagonal matrix

Cα,β = diag[σjRhjDβj/(hjR||yj||2αj + σjR) + σjD]
M
1 .

Based on the joint GM (5.28) for the target X and sensor noisy observation Y

and the output equation (5.34) for relayed observation Z, one can write the joint
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distribution of the target X and its relayed observations Z at FC as

(X,Z) ∼
L∑
i=1

λiN

⎛⎝(., .);

⎛⎝ mX
(i)

Hααα,βββm
(i)
Y

⎞⎠ ,

⎛⎝ C
(i)
X C

(i)
XYHααα,βββ

Hααα,βββC
(i)
YX Hααα,βββC

(i)
Y Hααα,βββ +Cααα,βββ

⎞⎠⎞⎠
(5.35)

Accordingly,

{X|Z = z} ∼
L∑
i=1

λi(z,ααα,βββ)N (.,mX(i)|Z(i) ,CX(i)|Z(i)), (5.36)

where

mX(i)|Z(i) = m
(i)
X +C

(i)T
YXHααα,βββ(Hααα,βββC

(i)
Y Hααα,βββ +Cααα,βββ)

−1

×(z−Hααα,βββm
(i)
Y ), (5.37)

λi(z,ααα,βββ) =
λiN (z;Hααα,βββm

(i)
Y ,Hααα,βββC

(i)
Y Hααα,βββ +Cααα,βββ)

L∑
i=1

λiN (z;Hααα,βββm
(i)
Y ,Hααα,βββC

(i)
Y Hααα,βββ +Cααα,βββ)

, (5.38)

CX(i)|Z(i) = C
(i)
X −C

(i)T
YXHααα,βββ(Hααα,βββC

(i)
Y Hααα,βββ +Cααα,βββ)

−1

×Hααα,βββC
(i)
YX. (5.39)

The Bayesian estimate x̂(z) based on FC output Z = z is

x̂(z) � E[X|Z = z] =
L∑
i=1

λi(z,ααα,βββ)mX(i)|Z(i) (5.40)

with the mean squared error

E(||x̂(z)− x||2) = tr(Cz(ααα,βββ)), (5.41)

where

Cz(ααα,βββ) =
L∑
i=1

λi(z,ααα,βββ)[CX(i)|Z(i)

+mX(i)|Z(i)(m
X(i)|Z(i)

ααα,βββ

)T ]−

(
L∑
i=1

λi(z,ααα,βββ)mX(i)|Z(i))

×(
L∑
i=1

λi(z,ααα,βββ)mX(i)|Z(i))T (5.42)
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(see (5.13)-(5.14) in the Appendix A). By defining

g(α, β) = Ez(E(||x̂(z)− x||2)) = Ez(tr(Cz(ααα,βββ))),

where Ez is the expectation with respect to random variable z, the joint sensor and

relay power allocation to minimise the mean squared error of Bayesian filtering

is formulated by

min
α,β

g(ααα,βββ) s.t. (5.31), (5.33). (5.43)

Unfortunately, there is no closed-form for function g(ααα,βββ), making the optimisa-

tion (5.43) computationally intractable.

We now use a surrogate function for g(ααα,βββ) such that the optimisation for the

former leads to the optimisation for the latter. It follows from Theorem 2 in the

Appendix A that

Cz(ααα,βββ) � Clmse(ααα,βββ) ∀ z, (5.44)

where

Clmse(ααα,βββ) = CX −CT
YXHααα,βββ(Hααα,βββCYHααα,βββ +Cααα,βββ)

−1

×Hααα,βββCYX

= CX −CYX(CY)
−1CYX

+CT
YX(CY)

−1((CY)
−1

+diag[ϕj(αj, βj)]
M
1 )−1(CY)

−1CYX (5.45)

with

⎛⎝ CX CXY

CYX CY

⎞⎠ =
L∑
i=1

λi(C
(i)+m

(i)
X,Y(m

(i)
X,Y)

T )−mX,Y(mX,Y)
T , which is

the covariance matrix of (X,Y), and ϕj(αj, βj) = pjαjβj/(qjαj + rjβj +σj), pj =

hjRhjD, qj = hjRσjD||yj||2, rj = σjRhjD, σj = σjDσjR. In fact, tr(Clmse(ααα,βββ)) is

the minimum MSE (MMSE) by linear estimator for X [189].

Therefore, it is true that g(ααα,βββ) ≤ tr(Clmse(ααα,βββ)) ∀ ααα,βββ and we seek a subop-

timal solution of the computationally intractable optimisation problem (5.43) by

solving its following majorant minimisation

min
ααα>0,βββ>0

tr(Clmse(ααα,βββ)) s.t. (5.31), (5.33), (5.46)
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which by (5.45) is equivalent to the following program

min
ααα>0,βββ>0

ϕ(ααα,βββ) := tr(ΨH(Φ+ diag[ϕj(αj, βj)]
M
1 )−1Ψ)

subject to (5.31), (5.33), (5.47)

where Ψ = C−1
Y CYX, Φ = C−1

Y . Being closed-form, the objective function

tr(Clmse(ααα,βββ)) is easily computed for every (ααα,βββ). However, its optimisation

is still difficult and now we develop its computational solution.

Given (α(κ), β(κ)) feasible to (5.31), (5.33) we process the following successive

approximations. Define

ϕ
(κ)
j = ϕj(α

(κ)
j , β

(κ)
j ),

ΘΘΘ(κ) = diag[ϕ
(κ)
j ]M1 (Φ+ diag[ϕ

(κ)
j ]M1 )−1ΨΨH

×(Φ+ diag[ϕ
(κ)
j ]M1 )−1diag[ϕ

(κ)
j ]M1 � 0,

ρ
(κ)
j = ΘΘΘ(κ)(j, j) > 0,

(5.48)

where ΘΘΘ(κ)(j, j) is the j-th diagonal entry of Θ(κ).

Theorem 3: The following inequalities hold true for all ααα > 0 and βββ > 0,

ϕ(ααα,βββ) ≤ ϕ(α(κ), β(κ)) +
M∑
j=1

ρ
(κ)
j

(
rj

pjαj

+
qj
pjβj

+
σj

pjαjβj

− 1

ϕ
(κ)
j

)
(5.49)

≤ ϕ(κ)(ααα,βββ) := ϕ(α(κ), β(κ)) +

+
M∑
j=1

ρ
(κ)
j

[
rj

pjαj

+
qj
pjβj

+

σj

2pj
(
α
(κ)
j

β
(κ)
j α2

j

+
β
(κ)
j

α
(κ)
j β2

j

)− 1

ϕ
(κ)
j

]
(5.50)

Proof. Define a function χ(φ) = tr(ΨH(Φ+diag[1/φj]
M
1 )−1Ψ), which by the Ma-

trix Inverse Lemma [192] is seen as tr(ΨHdiag[φj]
M
1 )Ψ)−tr(ΨH(diag[φj]

M
1 (diag[φj]

M
1 +

Φ)−1diag[φj]
M
1 )Ψ). The function χ(φ) is thus concave in φ = (φ1, .., φM)T > 0

because the first term is obviously linear while the second term is convex [190,
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Appendix C]. Therefore, for all φ > 0 and φ(κ) > 0, it is true that [193]

χ(φ) ≤ χ(φ(κ)) + 〈∇χ(φ(κ)), φ− φ(κ)〉

= χ(φ(κ)) + 〈diag[1/φ(κ)
j ]M1 (Φ+ diag[1/φ

(κ)
j ]M1 )−1

×ΨΨH(Φ+ diag[1/φ
(κ)
j ]M1 )−1diag[1/φ

(κ)
j ]M1 ,

diag[φj]
M
1 − diag[φ

(κ)
j ]M1 〉. (5.51)

The inequality (5.49) is obtained by replacing φj = 1/ϕj(αj, βj) = rj/pjαj +

qj/pjβj + σj/pjαjβj and φ
(κ)
j = 1/ϕj(α

(κ)
j , β

(κ)
j ) into the above inequality (5.51).

The inequality (5.50) follows from the inequality
1

αjβj

≤ 1

2
(
α
(κ)
j

β
(κ)
j

1

α2
j

+
β
(κ)
j

α
(κ)
j

1

β2
j

).

Thus function ϕ(κ) is a convex majorant of the highly nonconvex function ϕ.

Accordingly, we consider the following majorant minimisation

min
ααα,βββ

ϕ(κ)(ααα,βββ) subject to (5.31), (5.33). (5.52)

Proposition 1: Whenever (α(κ), β(κ)) is feasible to (5.31), (5.33), the optimal

solution (α(κ+1), β(κ+1)) of the convex program (5.52) is a feasible point of non-

convex program (5.47), which is better than (α(κ), β(κ)), i.e.

ϕ(α(κ+1), β(κ+1)) < ϕ(α(κ), β(κ)) (5.53)

as far as (α(κ+1), β(κ+1)) 
= (α(κ), β(κ)).

Proof. Note that the convex function ϕ(κ) agrees with the nonconvex function ϕ

at (α(κ), β(κ)), which is also feasible to (5.31), (5.33). Therefore

ϕ(α(κ+1), β(κ+1)) ≤ ϕ(κ)(α(κ+1), β(κ+1))

< ϕ(κ)(α(κ), β(κ))

= ϕ(α(κ), β(κ)),

showing (5.53).

We now show that the convex program (5.52) admits the optimal solution in

closed-form. Indeed, (5.52) boils down to

min
ααα,βββ

M∑
j=1

(
a
(κ)
j

αj

+
b
(κ)
j

βj

+
c
(κ)
j

2α2
j

+
d
(κ)
j

2β2
j

) subject to (5.31), (5.33) (5.54)
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with

a
(κ)
j = ρ

(κ)
j rj/pj, b

(κ)
j = ρ

(κ)
j qj/pj,

c
(κ)
j = ρ

(κ)
j σjα

(κ)
j /(pjβ

(κ)
j ), d

(κ)
j = ρ

(κ)
j σjβ

(κ)
j /(pjα

(κ)
j )

(5.55)

By using the Lagrangian multiplier method, it can be shown that the optimal αj

and βj are the unique positive roots of the following compressed cubic equations

a
(κ)
j αj + c

(κ)
j = λT ||yj||2α3

j , j = 1, 2, ...,M, (5.56)

b
(κ)
j βj + d

(κ)
j = λRβ

3
j , j = 1, 2, ...,M, (5.57)

where λT > 0 and λR > 0 such that αj and βj satisfy the power constraints (5.31)

and (5.33) at equality sign. Accordingly,1

α
(κ+1)
j =

⎧⎨⎩ c
(κ)
j

2λT ||yj||2
+

[
(

c
(κ)
j

2λT ||yj||2
)2 + (

a
(κ)
j

3λT ||yj||2
)2

]1/2
⎫⎬⎭

1/3

+

⎧⎨⎩ c
(κ)
j

2λT ||yj||2
−
[
(

c
(κ)
j

2λT ||yj||2
)2 + (

a
(κ)
j

3λT ||yj||2
)2

]1/2
⎫⎬⎭

1/3

, (5.58)

β
(κ+1)
j =

⎧⎨⎩ d
(κ)
j

2λR

+

[
(
d
(κ)
j

2λR

)2 + (
b
(κ)
j

3λR

)2

]1/2
⎫⎬⎭

1/3

+

⎧⎨⎩ d
(κ)
j

2λR

−
[
(
d
(κ)
j

2λR

)2 + (
b
(κ)
j

3λR

)2

]1/2
⎫⎬⎭

1/3

(5.59)

where λT > 0 and λR are chosen so that such αj and βj satisfy the power con-

straints (5.31) and (5.33) at equality sign, which can be located by the golden

search.

Algorithm 1 is a pseudocode for solving the nonconvex optimisation problem

(5.47), which yields a suboptimal solution of the computationally intractable

problem (5.43). The following result is a consequence of Proposition 1 and [194].

Proposition 2: Algorithm 1 generates a sequence {(α(κ), β(κ))} of improved points,

which converges to an optimal solution of the nonconvex problem (5.47).

Proof. We have shown in (5.53) that {(α(κ), β(κ))} is a sequence of improved

points to (5.47). Due to the constraints (5.31) and (5.33), the convergence of

1the unique positive root of cubic equation ax3 − cx − d = 0 with a > 0, c > 0, d > 0 is
[(d/2a) +

√
(d/2a)2 + (c/3a)2]1/3 + [(d/2a)−

√
(d/2a)2 + (c/3a)2]1/3
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Algorithm 1 Fast iterative procedure for two-hop (2H) power allocation

1: Initialize κ := 0 and (α(0), β(0)) feasible to (5.31) and (5.33).

2: repeat Generate a feasible solution (α(κ+1), β(κ+1)) according to formula

(5.58) and (5.59).

3: until

ϕ(α(κ), β(κ))− ϕ(α(κ+1), β(κ+1))

ϕ(α(κ), β(κ))
≤ ε, (5.60)

for a given tolerance ε.

4: Extract (α∗, β∗) = (α(κ), β(κ)) as an suboptimal solution of the computation-

ally intractable problem (5.43).

{(α(κ), β(κ))} can be easily shown by using Cauchy’s theorem. According to [194],

the limit point of {(α(κ), β(κ))} satisfies the KKT conditions for optimality of

(5.47).

5.4.1 One-hop communication

In one-hop communication between the sensors and FC, the relay plays the role

of the FC, so

CX|Zααα = (CX −CT
YX(CY)

−1CYX)

+CT
YX(CY)

−1((CY)
−1

+diag[ϕj(αj)]
M
1 )−1(CY)

−1CYX (5.61)

with ϕj(αj, βj) = hjR
αj

σj

. Recall that hjR is the channel gain from the sensor j

to the FC, and σjR is the power of the background noise at FC/relay.

Consider minααα>0 tr(Clmse(ααα)) s.t. (5.31), which is equivalent to the following

program

min
ααα>0

ϕ(ααα) := tr(ΨH(Φ+ diag[ϕj(αj)]
M
1 )−1Ψ) s.t (5.31), (5.62)

where Ψ = C−1
Y CYX,Φ = C−1

Y . Unlike (5.47), the program (5.62) is convex,

which has been solved in [[125]] by semi-definite programming (SDP). The com-

plexity of SDP is still high for online applications and more importantly, it is not
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scalable. We now develop a path-following scalable procedure for the computa-

tional solution of (5.62).

Given α(κ) feasible to (5.31), we now process the following successive approxima-

tion. Define

ϕ
(κ)
j = ϕj(α

(κ)
j ),

ΘΘΘ(κ) = diag[ϕ
(κ)
j ]M1 (Φ+ diag[ϕ

(κ)
j ]M1 )−1ΨΨH

×(Φ+ diag[ϕ
(κ)
j ]M1 )−1diag[ϕ

(κ)
j ]M1 � 0,

ρ
(κ)
j = ΘΘΘ(κ)(j, j) > 0,

(5.63)

where ΘΘΘ(κ)(j, j) is the j-th diagonal entry of Θ(κ). Analogously to Theorem 3 we

can show that

ϕ(ααα) ≤ ϕ(κ)(ααα) := ϕ(α(κ), β(κ)) +
M∑
j=1

ρ
(κ)
j (

σjR

hjRαj

− 1

ϕ
(κ)
j

).

Accordingly, we consider the majorant minimization

min
ααα

ϕ(κ)(ααα) s.t. (5.31),

which admits the optimal solution in closed-form

α
(κ+1)
j = λT

√
ρ
(κ)
j σjR/hjR (5.64)

where λT > 0 such that α
(κ+1)
j satisfies the power constraint (5.31), i.e.

λT = PT/

M∑
j=1

||yj||2
√
ρ
(κ)
j σjR/hjR.

Algorithm 2 is a pseudocode for solving (5.62). The limit point by Algorithm 2

is the global optimal solution of (5.62) because it satisfies KKT conditions of the

convex program (5.62).

5.5 Applications to static target localization

Let us emphasise that the receive equations (5.30) and (5.34) for the relay and FC

and the power budget constraints (5.31) and (5.33) are generic for whatever sensor

107



Algorithm 2 Fast iterative procedure for 1H power allocation

1: Initialize κ := 0 and α(0) feasible to (5.31).

2: repeat Generate a feasible solution α(κ+1) according to formula (5.64) .

3: until
ϕ(α(κ))− ϕ(α(κ+1))

ϕ(α(κ))
≤ ε for a given tolerance ε. (5.65)

4: Extract α∗ = α(κ) as the solution of 1H power allocation.

networks. In this section we show how linear and nonlinear sensor input-output

equations facilitate the joint GM distribution (5.28) and thus utilise Algorithm 1

for sensor and relay power allocation in locating a GM target.

5.5.1 Linear sensor networks

For M linear sensors observing a GM target X ∼ ∑L
i=1 λiN (.;mX

(i),CX
(i)), the

input-output equation is [125]

Y = GX+Ns, (5.66)

where the noise Ns ∼ N (.; 0,Rn) is independent from x. Here G ∈ RM×N , so the

observation y is the noisy linear combination of the target x. Then it is obvious

that (X,Y) follows the joint distribution (5.28) with

m
(i)
X,Y =

⎛⎝ m
(i)
X

m
(i)
Y

⎞⎠ =

⎛⎝ m
(i)
X

Gm
(i)
X

⎞⎠ ,

C(i) =

⎛⎝ C
(i)
X C

(i)
XY

C
(i)
YX C

(i)
Y

⎞⎠ ,

C
(i)
XY = (C

(i)
X +m

(i)
X (m

(i)
X )T −mX(mX)

T )GT ,

C
(i)
YX = (C

(i)
XY)

T ,

C
(i)
Y = G(C

(i)
X +m

(i)
X (m

(i)
X )T −mX(mX)

T )GT +Rn,

CY = GCXG
T +Rn,CYX = GCX,

and CXY = CXG
T .

(5.67)

We first consider a static target X in a two-dimensional field where the target is

positioned at location (X1,X2)m. Specifically X has the following prior proba-
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bility distribution

X ∼ 1

3
N (.; (0, 0)T , I2) +

1

3
N (.; (5, 5)T , I2)

+
1

3
N (.; (−5− 5), I2), (5.68)

i.e. the target can be either located at (0, 0)m, (5, 5)m or (−5,−5)m and uncer-

tainty in its position is characterized by a variance of 1m. The sensor measuring

parameterG in (5.66) is determined by linearizing the following nonlinear ranging

and bearing function at the target mean mX

gj(X) =

(√
(sj,x −X1)2 + (sj,y −X2)2,

sj,y −X2

sj,x −X1

)T

(5.69)

with sensor position (sj,x, sj,y)
T , with j = 1, . . . ,M .

We let the relay and FC be positioned at (100, 0)m and (200, 0)m but M = 10

sensors be positioned randomly surrounding the mean mX of the target. The

channel gains hjR and hjD are determined according to the free-space path gain

[126] h = GtGr(λ/4πd)
2, with the distance between two ends d, signal wavelength

λ and antenna gains Gt = 2dB, Gr = 5dB. The covariance matrices are defined

as Rn = RwR
= RwD

= 0.5I and the sensor transmit power budget varies as

PT = 0.1�, � = 1, 2, ..., 10 but the relay power budget is fixed at PR = 5. The

simulation is validated via Nmc = 10000 Monte Carlo channel realizations. To

show the viability of our proposed suboptimal solution by Algorithm 1, in Fig. 5.2

the normalized mean squared error (NMSE) is benchmarked with the proposed

suboptimal power allocation (2H-Algorithm 1), only sensor power allocation in

one-hop (1H) communication between the sensors and FC (1H-Algorithm 2),

which is based on Algorithm 2) given in Appendix B, and equal power allocation

schemes for one-hop (1H) and two-hop (2H) communication environments (1H

and 2H-equal power) Overall, 2H-Algorithm 1 provides the lowest NMSE for all

power budgets PT . The average iterations for 2H Algorithm 1 and 1H Algorithm

2 under error tolerance ε = 10−3 in the stopping condition are shown in Table

5.1.

Additionally, Figs 5.3 demonstrates the value of the surrogate function ϕ(α(κ), β(κ))

in (5.46), and the Fig. 5.4 shows the corresponding MSE (5.41). Of course, from
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Figure 5.2 – Normalized MSE of LSN by different power schemes

Table 5.1 – Average iterations of two algorithms for LSN.

Power Budget PT

Algorithm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1H 4.06 4.20 4.16 4.03 3.86 3.63 3.38 3.19 3.09 3.02

2H 5.18 4.40 4.02 3.83 3.63 3.51 3.46 3.40 3.36 3.36

(5.44), the improvements of the former and the latter are not necessarily parallel

and that’s why the optimal solution of the former is only a suboptimal solution

of the latter.

5.5.2 Nonlinear sensor networks

Rather than using (5.66), the input-output equation of a NSN is given as

Y = g(X) +Ns. (5.70)

Then, (X,Y) approximately follows the joint GMM (5.28) with m
(i)
Y , C

(i)
XY and

C
(i)
Y calculated through the unscented transformation [195] as follows. For each
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Figure 5.3 – The function ϕ(α(κ), β(κ)) for power allocation at each iteration κ.

Figure 5.4 – The MSE calculated for each estimated target X̃(κ) at iteration κ.
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i, take the Cholesky decomposition2

C
(i)
X =

N∑
r=1

x̃(r)(x̃(r))T . (5.71)

Accordingly, 2N + 1 regression points x(r), r = 0, 1, . . . , 2N are defined by

x(0) = m
(i)
X ,

x(r) = mX
(i) +

√
2N + 1

2
x̃(r),

x(N+r) = m
(i)
X −

√
2N + 1

2
x̃(r), r = 1, 2, ...., N.

(5.72)

Clearly,

mX
(i) =

1

2N + 1

2N∑
r=0

x(r),

C(i)
x =

1

2N + 1

2N∑
r=0

(x(r) −mX
(i))(x(r) −mX

(i))T ,

and thereby transform y(r) := g(x(r)), r = 0, 1, ..., 2N for approximations

m
(i)
Y =

1

2N + 1

2N∑
r=0

y(r)

C
(i)
Y =

1

2N + 1

2N∑
r=0

(y(r) −m
(i)
Y )(y(r) −m

(i)
Y )T

C
(i)
XY =

1

2N + 1

2N∑
r=0

(x(r) −mX
(i))(y(r) −m

(i)
Y )T .

(5.73)

We use nonlinear ranging and bearing functions (5.69) with sensor position (sj,x, sj,y)
T

for gj(x) = (g1(x), g2(x))
T in (5.70), while the target is prior characterized by

(5.68). The simulation environment is the same as that in the previous LSN

simulation. Table 5.2 shows the average iterations for 2H Algorithm 1 and 1H

Algorithm 2.

2For the SVD (singular value decomposition): C
(i)
X =

N∑
r=1

λrx
(r)(x(r))T , it is obvious that

x̃(r) =
√
λrx

(r). For notational simplicity we omit the index i in xr, i.e. rigorously speaking, it
should be x(i,r).
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Table 5.2 – Average iterations of two algorithms in NSN.

Power Budget PT

Algorithm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1H 4.49 5.56 6.16 6.42 6.71 6.86 7.11 7.17 7.21 7.22

2H 5.83 6.56 6.77 6.86 6.89 6.88 6.90 6.88 6.87 6.77

Fig. 5.5 shows the NMSE curves. Like Fig. 5.2, 2H provides a notable difference

in dB, especially in lower fixed power budgets.

Figure 5.5 – Normalized MSE Performance of NSN by different power schemes.

5.6 Dynamic target tracking by WSN

In this section, we consider the tracking of a dynamic target, which is moving

in a surveillance region. The sensor nodes are distributed geographically to take

independent measurements of a target’s position and send these measurements

to the FC via the relay node. These relayed observations are processed at each

time step to update and predict the target state. The following set of equations
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model the considered scenario:

Xk+1 = FkXk +Vk, (5.74)

Yk = gk(Xk) +Nk, (5.75)

Zk,R = diag
[√

αk

√
hjR

]
j=1,2...,M

Yk +Wk,R, (5.76)

Zk = Hk,(α,β)Yk +Wk,(α,β), (5.77)

At time step k = 0, 1, ..., (5.74) represents a linear Gaussian dynamical model

of a target with the state transition matrix Fk and (5.75) represents the sensor

measurement, where Vk ∼ N (.; 0,Rv) is process noise and Nk ∼ N (.; 0,Rn)

with diagonal Rn, is the sensor measurement noise. Similarly to (5.30), equation

(5.76) represents the signal received by the relay at time k, where
√

hjR is the

channel gain between sensor j and the relay, Wk,R ∼ N (.; 0,RR) with RR =

diag[σjR]
M
1 is a corrupt noise at relay, and

√
αj controls the transmitter power

Pj = αj||yk,j||2 = (CYk
(j, j) + m2

Yk
(j))αj of sensor j to satisfy the fixed sum

power budget PT > 0, which is defined similarly to (5.31) as

M∑
j=1

Pj =
M∑
j=1

||yk,j||2αj ≤ PT . (5.78)

Similar to (5.34), equation (5.77) with

Hk,(α,β) = diag[
√
hjDhjRβjαj/(hjR||yk,j||2αj + σjR)]

M
1

represents the signal received at the FC at time k, where
√

hjD is the channel

gain between the relay and the FC. Note that

Wk,(α,β) = diag[
√

hjDβj/(hjR||yk,j||2αj + σjR)]
M
1 WR +WD

is the total noise, whereWD ∼ N (.; 0, diag[σjD]
M
1 ) is the background noise, which

is independent with ZR. Accordingly, Wk,(α,β) ∼ N (.; 0,Ck,(α,β)) with

Ck,(α,β) = diag[σjRhjDβj/(hjR||yk,j||2αj + σjR) + σjD]
M
1 .

The power levels βj are constrained by the relay power budget PR in (5.33).

Given the initial informationX0|−1 ∼ pX0|−1
(x) =

L∑
i=1

λi(−1)N (x,m
(i)
X0|−1

,C
(i)
X0|−1

),

the FC iterates at time k = 0, 1, ..., as followings.
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• Power constrained filtering. Execute the unscented transformation in Sub-

section III.B with input {λi(k − 1),m
(i)
Xk|k−1

,C
(i)
Xk|k−1

}Li=1, Rn and g = gk to

write the approximate joint GM distribution

(Xk|k−1,Yk) ∼
L∑
i=1

λi(k − 1)N ((., .);

(m
(i)
Xk|k−1

,m
(i)
Yk

),C
(i)
k,R), (5.79)

where C
(i)
k,R is in sub-block form

C
(i)
k,R =

⎛⎝ C
(i)
Xk|k−1

C
(i)
Xk|k−1Yk

C
(i)
YkXk|k−1

C
(i)
Yk

⎞⎠ .

Execute Algorithm 1 to output the suboptimal power allocation (α∗
k, β

∗
k)

and then update Xk|k = Xk|k−1|Zk = zk as

λi(k) = λi(k − 1)×

N (zk;Hα∗
k,β

∗
k
m

(i)
Yk

,Hα∗
k,β

∗
k
C

(i)
Yk

Hα∗
k,β

∗
k
+Cα∗

k,β
∗
k
)

/
L∑
i=1

λi(k − 1)N (zk;Hα∗
k,β

∗
k
m

(i)
Yk

,

Hα∗
k,β

∗
k
C

(i)
Yk

Hα∗
k,β

∗
k
+Cα∗

k,β
∗
k
), (5.80)

m
(i)
Xk|k = m

(i)
Xk|k−1

+C
(i)T
YkXk|k−1

Hα∗
k,β

∗
k
×

(Hα∗
k,β

∗
k
C

(i)
Yk

Hα∗
k,β

∗
k
+Cα∗

k,β
∗
k
)−1 ×

(zk −Hα∗
k,β

∗
k
m

(i)
Yk

), i = 1, 2, ..., L, (5.81)

C
(i)
Xk|k = C

(i)
Xk|k−1

−C
(i)
Xk|k−1Yk

Hα∗
k,β

∗
k
×

(Hα∗
k,β

∗
k
C

(i)
Yk

Hα∗
k,β

∗
k
+Cα∗

k,β
∗
k
)−1 ×

Hα∗
k,β

∗
k
(C

(i)
Xk|k−1Yk

)T , i = 1, 2, ..., L, (5.82)

Xk|k ∼
L∑
i=1

λi(k)N (.;m
(i)
Xk|k ,C

(i)
Xk|k), (5.83)

xk|k =
L∑
i=1

λi(k)m
(i)
Xk|k . (5.84)
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• State distribution prediction. Write the joint GM distribution

(Xk|k,Xk+1|k) ∼
L∑
i=1

λi(k)N

⎛⎝(., .);

⎛⎝ m
(i)
Xk|k

m
(i)
Xk+1|k

⎞⎠ ,

⎛⎝ C
(i)
Xk|k C

(i)
Xk|kXk+1|k

C
(i)
Xk+1|kXk|k C

(i)
Xk+1|k

⎞⎠⎞⎠ ,

(5.85)

with

m
(i)
Xk+1|k = Fkm

(i)
Xk|k ,

C
(i)
Xk+1|kXk|k = (C

(i)
Xk|kXk+1|k)

T ,

C
(i)
Xk|kXk+1|k = (C

(i)
Xk|k +m

(i)
Xk|k(m

(i)
Xk|k)

T

−mXk|k(mXk|k)
T )FT

k ,

C
(i)
Xk+1|k = Fk(C

(i)
Xk|k +m

(i)
Xk|k(m

(i)
Xk|k)

T

−mXk|k(mX|k|k)
T )FT

k +Rv

to update

Xk+1|k ∼
L∑
i=1

λi(k)N (.;m
(i)
Xk+1|k ,C

(i)
Xk+1|k). (5.86)

Thus, the track of Xk is xk|k defined by equation (5.84), while the track of Xk

by LMMSE estimate is defined by (5.15) (in Appendix B) with X → Xk|k and

Y → Zk.

5.6.1 Linear Sensor Networks

Consider a scenario with a 2D dynamic target moving in the surveillance region

[−80, 40]× [0, 500]m2, where the relay is at [100, 0]m, FC is at [200, 0]m and M =

10 sensors are randomly distributed within a region [−100, 100]× [−100, 100]m2.

The state Xk = (pxk, pyk, ṗxk, ṗyk)
T of the target consists of position (pxk, pyk)

and velocity (ṗxk, ṗxk), while the measurement is a noise corrupted version of the

position. The target’s dynamics follows the linear Gaussian dynamical model
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(5.74) with

Fk =

⎛⎝ I2 TI2

02 I2

⎞⎠ ,

and

Rv =

⎛⎝ T 4

4
I2

T 3

2
I2

T 3

2
I2 T 2I2

⎞⎠ ,

where T = 1s is the sampling period. All the sensors are linear, so (5.75) is

gk(Xk) =
(

I2 02×2

)
Xk. We assume that the initial state of the target is

X0|−1 ∼ 1

3
N (x;m

(1)
X0|−1

,C
(1)
X0|−1

)

+
1

3
N (x;m

(2)
X0|−1

,C
(2)
X0|−1

)

+
1

3
N (x;m

(3)
X0|−1

,Cx0

(3))

where

m
(1)
X0|−1

= [0, 0, 0, 0]T ,m
(2)
X0|−1

= [50, 50, 0, 0]T ,

m
(3)
X0|−1

= [−50,−50, 0, 0]T ,C
(1)
X0|−1

= diag([2, 2, 5, 5]T ),

C
(2)
X0|−1

= diag([3, 4, 5, 6]T ),C
(3)
X0|−1

= diag([5, 6, 7, 8]T ).

Fig. 5.6 shows the motion of the target. Overall, all the algorithms 1 and 2 help

track the true path considerably well because the blue line (true track) is hidden

by the estimated tracks. This implies the algorithms can accurately recognize the

true track, however at larger distances from the Relay (or FC), 2H algorithm 1 is

more robust in tracking the path of the target, followed by 2H using equal power

allocation (2H-EP), 1H and 1H with equal power allocation (1H-EP).

The MSE can be seen for the x-coordinate and y-coordinate in Figs. 5.7 and 5.8,

respectively. In the majority of time steps, the 2H Algorithm 1 has less MSE

in comparison to the other methods in both x and y-coordinates. Furthermore,

it can be seen that 1H outperforms 1H-EP in the majority of time steps in the

y-coordinate and about half the time-steps in the x-coordinate. Thus it can be

concluded that 2H completely outperforms 1H for this example.
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Figure 5.6 – Path of a constant velocity target and the estimated tracks.

Figure 5.7 – Comparison of MSE performance for the x-coordinate.
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Figure 5.8 – Comparison of MSE performance for the y-coordinate.

5.6.2 Nonlinear Sensor Networks

In this example, we study the tracking performance of a maneuvering target in

a region [0, 600]× [−50, 300]m2. The sensors are distributed geographically over

a surveillance region [−150, 150]× [−150, 150]m2 to take maximum advantage of

estimation diversity. The relay and FC are positioned at [200, 0]m and [400, 0]m,

respectively. A coordinated turn model (see e.g. [196]) characterizes the dynamics

of the target. The target kinematic state Xk = (pxk
, ṗxk

, pyk , ṗyk)
T consists of the

target position (px, py) and its velocity (ṗx, ṗy). The state dynamical model of

the target is assumed to be linear Gaussian, which is mathematically expressed

by (5.74) with

Fk =

⎛⎜⎜⎜⎜⎜⎜⎝
1 sinωT

ω
0 −1−cosωT

ω

0 cosωT 0 − sinωT

0 1−cosωT
ω

1 sinωT
ω

0 sinωT 0 cosωT

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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Rv =

⎛⎜⎜⎜⎜⎜⎜⎝
T 4

4
T 3

2
0 0

T 3

2
T 2 0 0

0 0 T 4

4
T 3

2

0 0 T 3

2
T 2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where T is the sampling period and ω is the turn rate of the maneuvering target.

The sensor nonlinear measurements include range and bearing information of the

vehicle, which is represented by (5.75) with

gk(X) =

⎛⎝⎛⎝ √
(s1,x −Xk(1))2 + (s1,y −Xk(3))2

s1,y−Xk(3)

s1,x−Xk(1)

⎞⎠ , ...,⎛⎝ √
(sM,x −Xk(1))2 + (sM,y −Xk(3))2

sM,y−Xk(3)

sM,x−Xk(1)

⎞⎠⎞⎠ ,

where (sj,x, sj,y) is the position of sensor j. The initial state of target is assumed

that

XX0|−1
∼ 0.5N (x;m

(1)
X0|−1

,C
(1)
X0|−1

)

+0.5N (x;m
(2)
X0|−1

,C
(2)
X0|−1

)

where

m
(1)
X0|−1

= [50, 5, 10, 5]T ,

m
(2)
X0|−1

= [90, 5, 10, 5]T ,

C
(i)
X0|−1

≡ diag([3, 3, 2, 2]T ).

Fig. 5.9 shows the two-dimensional motion of a maneuvering target. At k = 1s,

the target begins its motions from a position [94, 10]m at a constant velocity

of 5m/s and after 14s performs a counterclockwise turn for 11s at a turn rate

of ω = 0.2rad/s. It then takes a clockwise turn after 25s with a turn rate of

ω = −0.1rad/s until it reaches its final position at [550, 175]m. The 2H algorithm

estimates the true path of the target very accurately in comparison to the other

algorithms. It can be seen that 1H and 1H-EP perform poorly since at several

time steps their estimated paths diverge from the original path of the target.
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A comparison of MSE for both x and y-coordinates can be seen in Figs. 5.10 and

5.11. Both 1H and 1H-EP have a significantly higher error overall in comparison

to the 2H algorithms. The 2H algorithm has quite lower MSE in comparison to

2H-EP and the difference in MSE increases as the target moves further away from

the sensors.

Figure 5.9 – Path of a maneuvering target and the estimated tracks.

Figure 5.10 – Comparison of MSE performance for the x-coordinate.
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Figure 5.11 – Comparison of MSE performance for the y-coordinate.

5.6.3 LSN for nonlinear dynamics

The unscented transformation in subsection III.B can be applied to a target with

nonlinear dynamics to have an approximated joint GM distribution (5.85) for

state prediction, which however may not lead to tracking a target’s true path.

Consider a typical third-order nonlinear autoregressive model described mathe-

matically by [189, 125] as

qk+2 = −0.1qk+1 − q3
k + vk

with the noise corrupted observations y
(i)
k = g(i)qk+n

(i)
k , where vk ∼ N (., 0, 0.04),

n
(i)
k ∼ N (., 0, 0.1) and g(i) = 1 + 0.11(�− 1), � = 1, 2, ..., 10.

By choosing the state Xk = (qk,qk+1)
T ∈ R2, the state dynamic and measure-

ment equations are

Xk+1 = f(Xk) +V,Yk = GXk +Ns (5.87)
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where

f(Xk) =

⎛⎝ Xk(2)

−Xk(1)
3 − 0.1Xk(2)

⎞⎠ ,V =

⎛⎝ 0

1

⎞⎠vk,

G =

⎛⎜⎜⎜⎜⎜⎜⎝
g(1) 0

g(2) 0

... ...

g(M) 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,n = (n(1), ...,n(M))T .

The initial state of target is given by

X0|−1 ∼ 0.5N (x; (0.1, 0.1)T ,C
(1)
X0|−1

) + 0.5N (x; (−0.1,−0.1)T ,C
(2)
X0|−1

),

where C
(i)
X0|−1

=

⎛⎝ 1 ρ(i)

ρ(i) 1

⎞⎠ , ρ(1) = 0.75, ρ(2) = 0.8. In this example, using

the unscented transformation for updating the joint GM distribution of Xk|k and

Xk+1|k for state prediction will not track the target. Following [189], we represent

Xk+1 = (F + B(I2 −Δ(Xk)D)−1Δ(Xk)C)Xk

for

F =

⎛⎝ 0 1

0 −0.1

⎞⎠ , B =

⎛⎝ 0 0

0 −1

⎞⎠ , D =

⎛⎝ 0 0

1 0

⎞⎠ ,

C =

⎛⎝ 1 0

0 0

⎞⎠ ,Δ(xk) = xk(1)I2

and use the following procedure for updating C
(i)
Xk+1|k and m

(i)
Xk+1|k from C

(i)
Xk|k

and m
(i)
Xk|k .

• Take the Cholesky decomposition C
(i)
Xk|k = x̃(1)(x̃(1))T + x̃(2)(x̃(2))T and set

x(0) = m
(i)
Xk|k , x

(r) = x(0) +
√
5/2x̃(r) and x(r+2) = x(0) −

√
5/2x̃(r), r = 1, 2.

• Set w̄Δ = 1
5
(I2−Δ(x(0))D)−1

∑4
r=0 Δ(x(r))Cx(r) and then wΔr = Δ(x(r))(Cx(r)+

Dw̄Δ), r = 0, 1, .., 5.
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• Set RΔ = 1
5

∑4
r=0(wΔr − w̄Δ)(wΔr − w̄Δ)

T and take

m
(i)
Xk+1|k = Fm

(i)
Xk|k + Bw̄Δ,

C
(i)
Xk+1|k = FC

(i)
Xk|kF

T + BRΔB
T

+

⎛⎝ 0 0

0 σvk

⎞⎠ .

The trajectory of Xk(1) for 50 time steps along with the estimated tracks are

shown in Fig. 5.12 and the MSE is plotted in Fig. 5.13. The results suggest that

the 2H algorithm outperforms the other algorithms for the measured state esti-

mation. Also, the optimised power allocation algorithm offers less MSE compared

to the equal power allocation techniques.

Figure 5.12 – The true and estimated trajectory of the state xk.

5.7 Conclusion

The chapter addressed the problem of joint sensor and relay power allocation for

locating a stationary Gaussian mixture target or for tracking a dynamic Gaussian

mixture target by either linear sensor networks or nonlinear sensor networks.

We considered scenarios where the sensors noisy observations are transmitted
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Figure 5.13 – Comparison of MSE at each time step.

to the relay, who amplifies and then forwards them to the FC. To arrive at

an accurate estimate of a targets state, a novel technique based on tractable

and scalable optimisation was proposed to optimise Bayesian filtering under low

sensor transmitter and relay power budgets. Numerical examples have confirmed

the merits of our proposed technique.
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Chapter 6

Summary and outlook

6.1 Thesis summary

In the first part of this thesis, a historical and pedagogical background of ten-

sor decompositions is provided with an emphasis on MPS, tensor completion and

tensor-based machine learning. Additionally, a review of wireless sensor networks

is given to highlight another contribution of the thesis. Chapter 2 provides math-

ematical notation for Chapters 3-4, a preliminary introduction to tensors that

includes the definition and notation of the TD and MPS, as well as the impor-

tant measure of entropy known as the von Neumann entropy.

In Chapter 3, a new novel approach to machine learning dimensionality reduction

and classification based on the concept of MPS is given. It rigorously shows that

MPS is extremely efficient in retaining the relevant features of a tensor as well as

being able to project it to a matrix of moderate size. This is theoretically justi-

fied using the von Neumann entropy, which shows that MPS is able to capture

more correlations because it consists of matrices constructed from a balanced ma-

tricization scheme, whereas TD-based methods consists of matrices constructed

from an unbalanced matricization scheme. A comprehensive outline of an opti-

mised MPS-approach to tensor compression is given, with extensive discussions

on practical computations. The TTPCA and MPS algorithms are proposed to

demonstrate two different methods in which to apply the core algorithm for tensor
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object classification. The benchmark results demonstrate excellent performance

in tensor object recognition against several popular tensor-based methods. The

results of this chapter have been published in [C1] and [J3].

Chapter 4 introduces MPS to tensor completion, where it shows that an MPS

approach is substantially more efficient for estimating missing entries of data than

present state-of-the-art methods. A theoretical analysis via the von Neumann

entropy proves that correlations within the modes of a tensor are more efficiently

captured using TT rank than Tucker rank, which is advantageous for tensor

completion. From this analysis, several new problems based on TT rank for

tensor completion are formulated, along with new algorithms SiLRTC-TT and

TMac-TT to provide solutions. To supplement the TT rank-based algorithms, a

novel tensor augmentation technique known as ket augmentation creates a new

tensor structure that maps levels of textures in images and videos within the

modes of the tensor. Additionally, the ICTAC framework improves the results of

image completion significantly by utilising a new approach to image completion

by transforming an image to a video sequence tensor. Therefore, both ICTAC and

KA with TMac-TT can be considered state-of-the-art algorithms for colour image

and video completion, respectively, which is clearly seen from the impressive

results in the experiments. The results of this chapter have been published in

[C3] and [J2].

Finally, in Chapter 5, a new novel approach to target tracking in wireless sensor

networks is proposed. Specifically, the problem of joint sensor and relay power

allocation for locating a stationary Gaussian mixture target or for tracking a

dynamic Gaussian mixture target by either linear sensor networks or nonlinear

sensor networks is considered. This approach has not been considered previously

and a rigorous mathematical proof is given to theoretically justify the proposed

algorithm. The scenario considers when sensors transmit their noisy observations

to a relay, who amplifies and then forwards them to a fusion center. To obtain

an accurate estimate of a targets state, a novel technique based on tractable and

scalable optimisation is proposed to optimise Bayesian filtering under low sensor
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transmitter and relay power budgets. The extensive numerical simulations con-

sidered combinations of scenarios that included static and dynamic targets, and

linear and nonlinear sensor networks. In all simulations, the proposed algorithm

outperformed all other methods. The results of this chapter have been published

in [C2] and [J4].

6.2 Future Outlook

The introduction of ket augmentation as a novel tensor augmentation technique

supplements TT rank based algorithms. The structure of a tensor that has been

applied by KA is fixed in terms of the size of the block structured addressing

intended. Investigation into different block sizes, or even optimal block sizes for

tensor completion provides potential for future work. Additionally, KA enables

TMac-TT and SiLRTC-TT to perform very well for tensor completion problems.

Applying KA to other problems where the analysis of correlations between modes

of data is important could provide new sights and results. For example, in lossy

compression, where only significant features are retained in order to compress the

size of an image or video.

In quantum physics, tensor networks [[30]] is another name for using tensor de-

compositions to analyse quantum mechanical systems. There are decompositions

in tensor networks that have not been utilised outside of physics, one is known

as project entangled pair states (PEPS), which decomposes a large multidimen-

sional tensor into a two-dimensional grid of component tensors. Future research

and investigation into these types of decompositions for applications in computer

vision, machine learning and signal processing is an exciting prospect.
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