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EXTENDED ABSTRACT. Resource-Constrained Project Scheduling Prob-
lem (RCPSP) has been extensively studied in the past few decades due to its wide
application in diverse industries and the computational challenges it poses as an NP-
hard problem. Despite of the rapid theoretical and technical advances in this field [8],
heuristics are still the only viable approach for large scale industrial applications. In
this paper we aim to provide both tight upper bound and lower bound for the problem
of maximising the Net Present Value (NPV) of large projects with resource constraints
by using Lagrangian relaxation. The relaxed version of the RCPSP can be represented
as a network, and solved as a maximal flow problem. A standard representation has
a node for each task at each time-point when it could start, and an edge between
each pair of tasks that has precedence relationship. For a problem with thousands
of tasks and thousands of possible start times per task, the resulting network has
millions of nodes. For a problem instance we have solved which has 1400 activities
and a project deadline of 4000, the network has about 5 million nodes and it takes on
average 4 minutes to solve the maximal flow problem. For some larger cases we could
not even set up the network model on a desktop computer with 16GB memory. To
overcome this issue we relax some precedence constraints so that activities can form
clusters that are independent from each other. Our goal here is to relax as fewer as
possible the precedence constraints but still obtain activity clusters small enough to
be solved efficiently. Another problem is that the Lagrangian dual problem converges
more slowly due to the high dimensions. We observed that the Lagrangian multipli-
ers related to the precedence constraints converges even more slowly. This makes the
Lagrangian relaxation based list scheduling perform poorly. Some preliminary results
are reported on the stope scheduling problems ranging from 1400 to 11000 activities.

Main results. We use the Lagrangian Relaxation (LR) method to calculate the
upper bound as in [7]. Let T be the deadline of the project, Rk be the capacity of
resource k ∈ R, rjk be the resource requirement of activity j ∈ J on resource k, pj
be the processing time of activity j, wjt be the net present value of activity j when
starting at time t, and precedence relation (i, j) ∈ L if activity j cannot start before
activity i completes. The time-indexed formulation for the RCPSP problem is as
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follows:

maximise npv(x) =
∑

j

∑

t

wjtxjt(0.1)

subject to
∑

t

xjt = 1 j ∈ J(0.2)

T∑

s=t

xis +

t+pj−1∑

s=0

xjs ≤ 1 ∀(i, j) ∈ L, t = 0, · · · , T(0.3)

∑

j

rjk(
t∑

s=t−pj+1

xjs) ≤ Rk k ∈ R, t = 0, · · · , T(0.4)

all variables binary(0.5)

The Lagrangian Relaxation Problem (LRP) obtained by dualizing the resource con-
straints (0.4) provides a valid upper bound for the RCPSP problem. This upper
bound is further optimised by solving the related Lagrangian dual problem.

The LRP for RCPSP can be transformed into a maximal flow problem [7] . The
network flow model has O(|J |T ) nodes and O((|J | + |L|)T ) edges, a state of the
art max-flow solver [1] can solve it in O(|J ||L|T 2 log(T )). We use the push-relabel
implementation in c++ BOOST BGL [9]. In our case the number of nodes V may be
in the millions, or for larger instances, hundreds of millions. To overcome this problem
we can relax some precedence constraints so that activities can form clusters that are
independent from each other. Consequently we can solve a sequence of maximal
flow problems more efficiently with respect to both CPU time and memory for large
RCPSP problems. However, many more Lagrangian multipliers have to be introduced
for (0.3) which will make the Lagrangian dual problem even harder. We could also
use a weaker formulation of (0.3)

∑

t

t(xjt − xit) ≥ pi, ∀(i, j) ∈ L(0.6)

but the achieved upper bound would be weaker.
Our goal here is to relax as fewer as possible the precedence constraints but still

obtain activity clusters small enough to solve efficiently as a maximal flow problem.
This can be formulated as the Min-Cut Clustering problem (MCC) as in [3]

minimise

U∑

g=1

∑

e∈L

zeg(0.7)

subject to
∑U

g=1
xig = 1 i ∈ J(0.8)

xig − xjg ≤ zeg ∀e = (i, j) ∈ L, g = 1, · · · , U(0.9)

l ≤
∑

i∈J
xig ≤ u g = 1, · · · , U(0.10)

all variables binary(0.11)

where U is the upper bound of the number of clusters, xig is 1 if activity i is included
in the cluster g, and otherwise 0.

MCC is also NP-hard, and only small problems can be solved to optimality. For
our purpose we can use heuristics to generate good partitions. Our experimentation
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with METIS [4] shows that the project with 11,000 activities can be partitioned into
100 balanced parts by relaxing just 384 precedence constraints.

The normal Subgradient Algorithm (SA) may converge very slowly on large prob-
lems due to the zig-zag phenomenon and small steps. The relax-and-cut idea in [6]
identifies the set of active constraints to be dualized at each iteration, which leads to
a problem of lower dimension. The simplified bundle method in [10] tried to overcome
the zig-zag problem by using ǫ−subgradient as in the bundle algorithm. We found
that for large RCPSP the relax-and-cut method improves more rapidly in the first few
iterations but may slow down thereafter. The reason may be that the active set of
constraints changes too frequently in consecutive iterations. We tried different fuzzy
membership functions in the simplified bundle method. It can converge faster than
the other two methods for some test cases.

The Lagrangian relaxation DLRP produces upper bounds for the original NPV
problem. But in practice we are interested in finding feasible solutions of high value.
We can use the Lagrangian relaxation solution to create a heuristic which created
strong solutions. Combining Lagrangian relaxation with list scheduling has been
previously successfully applied to different variants of RCPSP [7] [5] problems.

The basic idea is motivated by the intuition that violation of relaxed constraints
tend to be reduced in the course of the subgradient optimization. In [7] the activities
are sorted in the increasing order of the so called α−point. A parallel list scheduling
scheme [2] is then employed to produce feasible solutions. For RCPSPDC left and
right shifting techniques are used to further improve the solution quality [5] of the
parallel list scheduling using just the start time in the Lagrangian relaxation solution.

We use the parallel list scheduling scheme to generate feasible solution at each
iteration of the subgradient algorithm. However the quality of our heuristic deteri-
orates dramatically after relaxing precedence constraints. In the end we found that
the culprit is the pre-mature convergence of the precedence multipliers. Our improve-
ments on the Lagrangian relaxation method produced very competitive results on
large underground mining scheduling problems in our preliminary test results.
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