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Abstract The study of tractable subclasses of constraint satisfaction problems is a central
topic in constraint solving. Tree convex constraints are extensions of the well-known row
convex constraints. Just like the latter, every path-consistent tree convex constraint network
is globally consistent. However, it is NP-complete to decide whether a tree convex con-
straint network has solutions. This paper studies and compares three subclasses of tree con-
vex constraints, which are called chain-, path-, and tree-preserving constraints respectively.
The class of tree-preserving constraints strictly contains the subclasses of path-preserving
and arc-consistent chain-preserving constraints. We prove that, when enforcing strong path-
consistency on a tree-preserving constraint network, in each step, the network remains tree-
preserving. This ensures the global consistency of consistent tree-preserving networks after
enforcing strong path-consistency, and also guarantees the applicability of the partial path-
consistency algorithms to tree-preserving constraint networks, which is usually much more
efficient than the path-consistency algorithms for large sparse constraint networks. As an
application, we show that the class of tree-preserving constraints is useful in solving the
scene labelling problem.

Keywords Tree-preserving constraint - connected row convex constraint - scene labelling
problem

1 Introduction

Constraint satisfaction problems (CSPs) have been widely used in many areas, such as scene
labelling [19]], natural language parsing [33]], picture processing [34], and spatial and tem-
poral reasoning [14,31]. Since deciding the consistency of CSP instances is NP-complete
in general, lots of efforts have been devoted to identifying tractable subclasses. There are
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two main approaches for constructing tractable subclasses. The first approach is structural-
based, in which tractable subclasses are obtained by restricting the topology of the underly-
ing graph of the constraint network (being a tree or having treewidth bounded by a constant
[13]); the second approach is language-based, in which tractable subclasses are obtained
by by restricting the type of the allowed constraints between variables (cf. [35]). Recently,
researchers also propose a hybrid approach for constructing tractable classes, see e.g., the
subclass of CSP instances satisfying the broken-triangle property (BTP) [[10.11].

In this paper, we are mainly interested in the language-based tractable subclasses. Mon-
tanari [34] showed that path-consistency is sufficient to guarantee that a constraint network
is globally consistent if the relations are all monotone. Van Beek and Dechter [35] gener-
alised monotone constraints to row convex constraints, which are further generalised to tree
convex constraints by Zhang and Yap [38]]. These constraints also have the nice property that
every path-consistent constraint network is globally consistent.

However, neither row convex constraints nor tree convex constraints are closed under
composition and intersection, which are the main operations of path-consistency (PC) al-
gorithms. This means that enforcing path-consistency may destroy row and tree convexity.
Deville et al. [[15] proposed a tractable subclass of row convex constraints, called connected
row convex (CRC) constraints, which are closed under composition and intersection. Zhang
and Freuder [37] also identified a tractable subclass of tree convex constraints, called locally
chain convex and strictly union closed constraints. They also proposed the important notion
of consecutive constraints. Kumar [27] showed that the subclass of arc-consistent consec-
utive tree convex (ACCTC) constraints is tractable by providing a polynomial time ran-
domised algorithm. Nevertheless, for the ACCTC problems, “it is not known whether there
are efficient deterministic algorithms, neither is it known whether strong path-consistency
ensures global consistency on those problems.”|37]|]

In this paper, we study and compare three subclasses of tree convex constraints which
are called, respectively, chain-, path- and tree-preserving constraints.

In Section 2] we start with basic notations and concepts that will be used throughout the
paper. Based on the concept of tree domains, we introduce chain-, path- and tree-preserving
constraints. Chain-preserving constraints are exactly “locally chain convex and strictly union
closed” constraints in the sense of [37]], which include CRC constraints as a special case
where tree domains are linear. Arc-consistent chain-preserving constraints, path-preserving
constraints and ACCTC constraints are all strictly contained in the class of tree-preserving
constraints.

Therefore, the remainder of this paper will focus on the more general tree-preserving
constraints. We show in Section [3|that the class of tree-preserving constrains is closed under
intersection and composition, which are operations of the path-consistency algorithm. This
guarantees that a tree-preserving constraint network remains tree-preserving after enforcing
path-consistency on it. Recall that every path-consistent tree convex constraint network is
globally consistent [38]]. This shows that the class of tree-preserving constraints is tractable
and can be solved by the path-consistency algorithm. We also prove in this section that
our definitions and results for tree-preserving constraints can be extended to domains with
acyclic graph structures, called forest domains in this paper.

The above properties of tree-preserving constraints bear similarity to CRC constraints.
Bliek and Sam-Haround [4] showed that enforcing partial path-consistency (PPC) is suf-
ficient to solve sparse CRC constraint networks. PPC enforces PC on sparse constraint
graphs by triangulating instead of completing them and thus can be enforced more effi-
ciently than enforcing PC. As far as CRC constraints are concerned, the pruning capacity of
path-consistency on triangulated graphs and their completion are identical on the common
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edges. In Section EI], we show that PPC [4] is sufficient to decide the consistency of tree-
preserving constraint networks. Moreover, we show that, after enforcing PPC, we can find a
solution in a backtrack-free style if no inconsistency is detected.

Section [3] is concerned with the application of tree-preserving constraints in scene la-
belling. Solving the scene labelling problem is a crucial part of figuring out the possible 3D
scenes of a 2D projection, which has applications in both vision and geometric modelling.
Research in this field has centred on the trihedral scene labelling problem, i.e. scenes where
no four planes share a point. The trihedral scene labelling problem has been shown to be
NP-complete [23]. Based on the forest domains associated to each possible variable type
by Zhang and Freuder [37] (see Fig. [9), we show that all 39 possible types of the trihe-
dral scene labelling problem instances are tree convex, and 29 of them are tree-preserving.
This means that a large subclass of the trihedral scene labelling problem can be modelled
by tree-preserving constraint networks and thus can be efficiently solved by the techniques
discussed in this paper. As a byproduct, since every instance of the NP-complete trihedral
scene labelling problem can be modelled by a tree convex constraint network, we show that
the class of tree convex constraints is NP-complete.

It is interesting to compare our approach with another research line of studying tractable
subclasses of CSPs, which focuses on the algebraic closure property of constraints [5/16}
20].. In Section[6] we study the algebraic closure property of tree-preserving constraints and
establish the equivalence between tree-preserving constraints and constraints that are closed
under a “standard” majority operation. In this way, we provide an alternative way to prove
the tractability of tree-preserving constraints.

Section[7]reports experimental evaluations on enforcing PPC and PC on tree-preserving
constraint networks and Section [§]concludes the paper.

This paper is a significant extension of the conference paper [26]. Apart from detailed
proofs for most of our results and more figures for illustrating the key notions and tech-
niques, we make the following major extensions: (i) We add Section [] to show that en-
forcing PPC will enable us to find a solution for a tree-preserving constraint network in a
backtrack-free style. By this result, we also present an efficient algorithm based upon PPC
for finding a solution of a tree-preserving constraint network. (ii) We add Section[f]to discuss
the algebraic closure property of tree-preserving constraints. Actually, we prove that, given
arelation § between two tree domains 7, and T, if both ¢ and its inverse are arc-consistent,
then ¢ is closed under the “standard” majority operations (on 7%, and T%) if and only if § and
its inverse are both tree-preserving (w.r.t. T and T7). (iii) We add Section [/| to report ex-
perimental evaluations of local consistency enforcing algorithms for sparse tree-preserving
constraint networks.

2 Preliminaries

Let D be the domain of a variable . An undirected graph structure can often be associated
to D such that there is a bijection between the vertices in the graph and the values in D.
If the graph is connected and acyclic, i.e. a tree, then we say it is a tree domain of x. Tree
domains arise naturally in e.g., scene labelling [37]] and combinatorial auctions [8]. We note
that, in this paper, we fix a specific tree domain for each variable x.

In this paper, we distinguish between trees and rooted trees. Standard notions from graph
theory are assumed. In particular, the degree of a node a in a graph G, denoted by deg(a),
is the number of neighbours of a in G. A node a is called a leaf node if it has only one
neighbour, i.e. deg(a) = 1.
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Fig. 1 (a) A tree T Subgraphs with node sets {a,b,c,d}, {a,b,c}, and {c,b,d} form, respectively, a
subtree, a chain, and a path of T". The degree of node b is 3 and the three branches of b are the subtrees with
node sets {c}, {d} and {a, e} respectively. (b) A binary constraint d, between T} and T}, where a dashed
arrow from a node u in T} to a node v in T} indicates that (u,v) is in 0zy. Node c is supported under 6y
with image { f, g, h}, and b is unsupported under 85,,.

Definition 1 A tree is a connected graph without any cycle (cf. Fig. [T(a)). A tree is rooted
if it has a specified node , called the root of the tree. Given a tree 7T', a subgraph [ is called
a subtree of T if I is connected. The empty subgraph is a subtree of any tree.

Let T" be a tree (rooted tree, resp.) and I a subtree of T'. [ is a path (chain, resp.) in T if
each node in I has at most two neighbours (at most one child, resp.) in /. Given two nodes
p, q in T', the unique path that connects p to g is denoted by 7y 4.

Suppose a is a node of a tree T'. A branch of a is a connected component of T\ {a}.

Fig.[T] gives illustrations of these notions.

Throughout this paper, we always associate a tree structure 7, = (D, E) with a given
domain D,, where E is the set of tree edges connecting values in D. For convenience, we
often use the notation 7, to denote the domain D, and call T, a tree domain. Also, a € T3,
means that a € D,.

Definition 2 A binary constraint has the form (xdy), where x,y are two variables with
domains D; and D, and ¢ is a binary relation from Dy to Dy, ie. § C Dy x D,. For
simplicity, we often denote this constraint by 0. A value u € D, is supported under ¢ if
there exists a value v in Dy s.t. (u,v) € 4. In this case, we say v is a support of u. We say
a subset F' of D, is unsupported if every value in F' is not supported. Given A C D, the
image of A under 0 is defined as §(A) = {b € Dy : (3a € A){a,b) € §}. For A = {a},
without confusion, we also use 6(a) to represent §({a}) (cf. Fig.[I[b)).

A binary constraint network consists of a set of variables V' = {z1, z2, ..., zn } with
a finite domain D; for each variable x; € V, and a set A of binary constraints over the
variables of V. The usual operations on relations, e.g., intersection (M), composition (o),
and inverse (~ '), are applicable to constraints. As usual, we assume that there is at most one
constraint for any ordered pair of variables (z,y). Write d5, for this constraint if it exists.
In this paper, unless stated otherwise, we assume that 6.y is the inverse of dy., and if there
is no constraint for (z, y), we assume that d, is the universal constraint (i.e. Dy X Dy).

Definition 3 [17/[18]] A constraint network A over n variables is k-consistent if any con-
sistent instantiation of any distinct £ — 1 variables can be consistently extended to any k-th
variable. We say A is strongly k-consistent if it is j-consistent for all 7 < k; and say A
is globally consistent if it is strongly n-consistent. 2- and 3-consistency are usually called
arc-consistency (AC) and path-consistency (PC) respectively.

Specially, we call a constraint network strongly path-consistent if it is both arc-consistent
and path-consistent, and call a binary constraint d, arc-consistent if for any a € D, there
is some b € Dy, such that (a,b) € dzy.
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Fig. 2 (a) 64y is a chain- but not path-preserving constraint as the the image of the path {c, b, d} of T} is
{e, f, g, h}, which is not a path of T7; (b) sy is a path- but not chain-preserving constraint as the image
of the chain {a, ¢} of Ty is {e, f, g}, which is not a chain of T; (c) 05y is a tree-preserving but neither
path- nor chain-preserving constraint as the image of the path {a, b} of T%, which is also a chain of T, is
{e, f, g, h} that is neither a path nor a chain of T},.

Definition 4 Let x, y be two variables with finite tree domains T, = (D, ;) and Ty =
(Dy, Ey), and § a constraint from z to y. We say d, w.r.t. T, and Ty, is (cf. Fig.

- tree convex if the image of every value a in Dy, (i.e. §(a)) is a subtree of Ty;
- consecutive if the image of every edge in 73 is a subtree in T7;

- path-preserving if the image of every path in 77, is a path in T7;

- tree-preserving if the image of every subtree in 77 is a subtree in T},.

In case T, and T}, are rooted, we say J, w.r.t. T and Ty, is

- chain-preserving if the image of every chain in T’ is a chain in T,.

We note that a subtree (a path or a chain) of T (or T} ) in the above definition is possibly
empty. We also note that chain-preserving constraints are exactly those “locally chain convex
and strictly union closed” constraints defined in [37].

Connected row convex (CRC) constraints are special chain-preserving constraints de-
fined over chain domains. The following definition of CRC constraints is equivalent to the
one given in [15].

Definition 5 Let z, y be two variables with finite tree domains 73 and T, where T, and
T, are chains. A constraint § from x to y is connected row convex (CRC), w.r.t. T;; and T,
if both § and 6! are chain-preserving.

The class of CRC constraints is tractable and closed under intersection, inverse, and compo-
sition [[15].

Definition 6 A binary constraint network A over variables in V and tree domains 7%, (x €
V') is called tree convex, chain-, path-, or tree-preserving if every constraint 6 € A is tree
convex, chain-, path-, or tree-preserving, respectively. A CRC constraint network is defined
similarly.

The following proposition summarises relations between these tree convex constraints.

Proposition 1 Every chain-, path-, or tree-preserving constraint (network) is consecutive
and every path-preserving constraint (network) is tree-preserving. Moreover, every arc-
consistent consecutive tree convex (ACCTC) constraint (network) is tree-preserving.

Proof First, we notice that an edge is a chain, a path and a subtree, and a chain or a path is a
subtree. Then the claim that every chain-, path-, or tree-preserving constraint is consecutive
directly follows from Definition [4]
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Second, we show that if a constraint .., is path-preserving, then it is also tree-preserving.
Let 0. be a path-preserving constraint over tree domains 7% and 7%,. Suppose that 0. is
not tree-preserving. We know that there exists a subtree ¢, of T}, such that 4y (¢ ) is not a
subtree of T),. Therefore, ¢, can be divided into two parts, say ¢ and 2, such that §, () is
disconnected from 8., (t2). Let v1 € t1, va € t2 such that 8,y (v1) # @ and 84y (v2) # @.
Let 7y, v, be the path from v1 to ve in Ty. Let m1 = oy 0, N ts and T2 = Ty, v, N 12,
Then d4y (1) is disconnected from 5 (72). Therefore, dzy (7o, v, ) cannot be a path of T,
which contradicts that . is path-preserving.

Finally, if a constraint d,, over tree domains 73 and T}, is arc-consistent consecutive
tree convex, we show that d;, is also tree-preserving. Let ¢, be an arbitrary subtree of 7.
We show that d.y(t2) is a subtree of Ty. Let ¢o be a subtree of ¢, such that |to] = 1.
Because d,y is tree convex, dzy(to) is a subtree of Ty,. Let ¢ be a subtree of ¢y and ey, v,
be an edge of T, with v1 € ¢, v2 & t and v2 € t. Suppose dzy(t) is a subtree of Ty.
Because 0,y is arc-consistent consecutive tree-convex, dgy (€v,v,) is also a subtree of Ty,
and 0.y (v1) # @. Because @ # 0zy(v1) C Ozy(t) N dzy(€vyvy), Oay(t) and duy(€v,v,)
are connected. Thus, dzy (t U ey, v, ) is also subtree of T7,. Therefore, by induction, we can
add edges to to one by one until tg = ¢, and in each step, 0,y (f0) is a subtree of Ty,. O

Although every arc-consistent chain- or path-preserving constraint is tree-preserving,
Fig. PJc) shows that the other direction is not always true. Furthermore, Fig. [I(b) shows
that not every chain-preserving (or consecutive tree convex) constraint is tree-preserving
and Fig. [[a,b) show that chain-preserving constraints and path-preserving constraints are
incomparable.

The following results of trees will be used in the proof of some results in our paper.

Lemma 1 [38] Let T be a tree and suppose t; (i = 1,...,m) are subtrees of T. Then
(i, ti is nonempty iff t; N t; is nonempty for every 1 < i # j < m.

Lemma 2 Let T be a tree and t,t' subtrees of T. Suppose {u,v} is an edge in T. If u € t
andv € t', then t Ut' is a subtree of T if, in addition, w € t' andv & t, thent Nt = @.

Proof The first part is clear as the edge {u, v} connects ¢ and ¢'. Suppose u & t', v & t. We
show ¢t Nt' = @. Suppose this is not the case and there exists w € t N ¢’. Then we have
Tw,u C tand 7y » C t'. Since u is a neighbour of v, we have either u € Ty, 0TV € Mo, u,
i.e. either u € ¢’ or v € t. Both contradict our assumption that u & t’, v & t. Therefore, we
must have t Nt = @. O

Using Lemma[I] Zhang and Yap [38]] proved the following result:
Theorem 1 A tree convex constraint network is globally consistent if it is path-consistent.

In the following, we will focus on the class of tree-preserving constraints.

3 Tree-Preserving Constraints

In this section, we show that the class of tree-preserving constraints is tractable. Given a tree-
preserving constraint network A, we show that, when enforcing strong path-consistency on
A, in each step, the network remains tree-preserving. Hence, by Theoremﬂ], we know that,
if no inconsistency is detected, a tree-preserving constraint network will be transformed into
an equivalent globally consistent network after enforcing strong path-consistency.

Firstly, we show that tree-preserving constraint networks are closed under arc-consistency.
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Lemma 3 Suppose 6y and 6y are tree-preserving (tree convex) w.r.t. tree domains T, and
Ty. Let t be a subtree of Ty, and 0y, = {(a,b) € zy : a € t} and 5y, = {(b,a) € by :
a € t} the restrictions of 8.y and 8y to t. Then both 6y, and by, are tree-preserving (tree
convex).

Proof Note that a path or subtree of ¢ is also a path or subtree of 7T’;. The conclusion then
follows directly from the definitions of tree-preserving and tree convex constraints. a

As a corollary, we have

Corollary 1 Let A be a tree-preserving (tree convex) constraint network over tree domains
Ty (x € V). Assume that t is a nonempty subtree of Ty. When restricted to t, A remains
tree-preserving (tree convex).

The following lemma examines unsupported values of a tree-preserving constraint.

Lemma 4 Suppose 65y is nonempty and tree-preserving w.r.t. tree domains Ty and Ty. If
v € Ty has no support in Ty under 8y, then all supported nodes of T, are in the same
branch of v. That is, every node in any other branch of v is not supported under 6.

Proof Suppose a, b are two supported nodes in T},. There exist u1, u2 in Ty s.t. u1 € dyz(a)
and uz € Syq(b). By 6yz = 65, , we have @ € dzy(u1) and b € Jay(u2). Hence a,b €
02y (Tuy us ). SINCE gy 18 tree-preserving, duy (7w, ,u, ) is a subtree in Ty. If a, b are in two
different branches of v, then 7, ; must pass v and hence we must have v € Juy (Tu, us,)-

This is impossible as v has no support. a

It is worth noting that this lemma does not require d, to be tree-preserving.
The following result then follows directly.

Proposition 2 Let A be a tree-preserving constraint network over tree domains Ty (x €
V). If no inconsistency is detected, then A remains tree-preserving after enforcing arc-
consistency.

Proof Enforcing arc-consistency on A only removes values which have no support under
some constraints. For any y € V/, if v is an unsupported value in T, then, by Lemma[d] ev-
ery supported value of T}, is located in the same branch of v. Deleting all these unsupported
values from T}, we get a subtree ¢ of Ty. Applying Corollary [T} the restricted constraint
network to ¢ remains tree-preserving. O

Secondly, we consider the intersection and composition of tree-preserving constraints.

When doing relational intersection, we may need to remove some unsupported values
from domains. Unlike CRC [15| Lemma 13] and chain-preserving constraints [37, Propo-
sition 5], removing a value from a domain may change the tree-preserving property of a
network. Instead, we need to remove a ‘trunk’ from the tree domain or just keep one branch.

Definition 7 Suppose a # b are two nodes of a tree T that are not neighbours. The trunk
between a, b, written as M, p, is defined as the connected component of T' \ {a, b} which
contains all the internal nodes of 7, 3 (see Fig. EI) The M-contraction of T' by M, 3, denoted
by T'© M, 3, is the tree obtained by removing the nodes with associated edges in M, 3 and
adding an edge {a, b} to T.

To improve readability, we defer the proofs of Lemmas B}{7]to Appendix.
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Fig. 3 M, is a trunk of tree 7', i.e., the subtree induced by vertices with red colour.

Lemma 5 Let A be an arc-consistent and tree-preserving constraint network over tree do-
mains Ty (x € V). Suppose x € V and My p is a trunk in T.,. When restricted to T © Mg
and enforcing arc-consistency, A remains tree-preserving if no inconsistency is detected.

The following two lemmas consider the intersection of two tree-preserving constraints.

Lemma 6 Assume 05, and 5;11 are two arc-consistent and tree-preserving constraints w.r.t.
trees Ty and Ty. Let 03y = Ouy N Oy Let W = {w € Ty | 05,y (w) # @} be the set of
supported values of 0. Suppose u € Ty, and w  W. Then there exist at most two values
w1, w2 in W s.t. no value in W other than w; is on the path T,  for i = 1,2.

Remark 1 If there is only one value wi in W that satisfies the condition in Lemma |§|, re-
garding u as the root of T3, then W is contained in the subtree rooted at wy; if there are
two values w1, w2 in W that satisfy the condition in the Lemma@ then the trunk My, ,w,
should be contracted from 7%, to make W connected.

Lemma 7 Suppose 6y and 5;y are arc-consistent and tree-preserving constraints w.r.t.
trees Ty and T,y and so are Sy, and 8. Let 85y = 62y N 04y Assume {u, v} is an edge in
Ty s.t. 0y (u) # @, 03y (v) # @, and 53, (u) U 63, (v) is disconnected in T),. Then there
exist unique v € 0y, (u) and s € §y,,(v) s.t. every node in M. 5 is unsupported under 0.,

The following result follows from the definition of tree-preserving constraints.

Proposition 3 Assume that §,.. and &,y are two tree-preserving constraints w.r.t. trees Ty,
Ty, and T. Then their composition 6 © 0y is tree-preserving.

Proof Let 8y, = 02z © 0.y and t, be an arbitrary subtree of T,. Then we have that
8y (te) = 02y(22(tz)). Because &, is tree-preserving, we have that 6, (¢z) is a sub-
tree of 7% Similarly, §. (9= (tz)) is a subtree of Ty Thus, 5'my is tree-preserving. m]

Finally, we give the main result of this section.

Theorem 2 Let A be a tree-preserving constraint network. If no inconsistency is detected,
then enforcing strong path-consistency determines the consistency of A and transforms A
into a globally consistent network.

Proof Fig. E|is the flow diagram of the proof.
If we can show that A is still tree-preserving after enforcing strong path-consistency,
then by Theorem|[I]the new network is globally consistent if no inconsistency is detected.
By Proposition@ A remains tree-preserving after enforcing arc-consistency. To enforce
path-consistency on A, we need to call the following updating rule:

Oy 0zy N (0zz 0 dy) €))
Sy Oy )
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|

Enforce AC Vx,y,z € X, L| A’ is globally consistent |
N -
A A= R, 7= R,y N (Ryyo Ryy)

Proposition 2
No N . Yes N
Riy =Ry N(Ryz° Ryy) |——> Ry ISAC?| 5| Ry < Ry
Lemma 7

Restrict T, to a subtree, or Delete some
trunk from T, and enforce AC on A’

No

Lemmas 5, 6 and Proposition 2

Fig. 4 The flow diagram of proof of Theorem

for x,y, z € V until the network is stable.

Suppose A is arc-consistent and tree-preserving w.r.t. trees T for x € V before apply-
ing (I). Note that if 63, = 02y N (0zz © d2y) (as well as its inverse d,,) is arc-consistent,
then d7,, (v) is nonempty for any node v in 7. By Lemma O3y () Udg, (v) is connected
for every edge {u, v} in T} as otherwise there will exist unsupported nodes in Ty, under the
inverse of dz,,. Therefore d,, is arc-consistent and consecutive, and hence, tree-preserving.
Since 6}, = 03y ' = 6yz N (Jyz © J:2), analogously, we have &, is tree-preserving.

If 63, is not arc-consistent, then there exists u € Ty s.t. 03, (u) is empty. By Lemma|§|
and Remark [T} we should restrict the domain to a subtree or contract some trunk from 7%, and
enforce arc-consistency. If d,,,, is not arc-consistent, then we do analogously. By Lemma
and Proposition 2] if no inconsistency is detected, then we have an updated arc-consistent
and tree-preserving network. Still write A for this network and recompute ¢3,, 9, and
repeat the above procedure until either an inconsistency is detected or both &7, and J;,, are
arc-consistent. Note that, after enforcing arc-consistency, the composition d, o §., may
have changed.

Once arc-consistency of d;,, and d,,,, is achieved, we update 9,y with 03, and &y, with
d, and continue the process of enforcing path-consistency until A is path-consistent or an
inconsistency is detected. a

In above, we assume that each domain is associated to a tree structure. Actually, our
definitions and results of tree-preserving constraints can be straightforwardly extended to
domains with acyclic graph structures (which are connected or not). We call such a structure
a forest domain.

Proposition 4 The consistency of a tree-preserving constraint network over forest domains
can be reduced to the consistency of several parallel tree-preserving networks over tree
domains.

Proof Given a tree-preserving constraint network A over forest domains F1, ..., F}, of vari-
ables v1, ..., vy, suppose that F; consists of trees (i.e., maximally connected components)
ti1,...,tik,. Note that the image of each tree, say ¢; 1, of F; under constraint d;; is a sub-
tree t of F;. Assume ¢ is contained in the tree ¢; s of forest I;. Then the image of ¢; s under
constraint d;; is a subtree of ¢; 1. This establishes, for any 1 < 7 # j < n, a 1-1 corre-
spondence between trees in I} and trees in F} if the image of each tree is nonempty. In this
way, the consistency of A is reduced to the consistency of several parallel tree-preserving
networks over tree domains. a

Fig. |§] shows a tree-preserving network over forest domains. We note that A cannot be
modelled as tree-preserving over tree domains. For example, if we modify Fi as a tree 11
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F 823 F3

Fig. 5 A tree-preserving network A = {812, §13, d23} over forest domains Fy, F>, and F3, where each
forest domain consists of three trees which contain only one node.

by adding edges {a, b} and {b, c}. Then, in order to make 913 tree-preserving, edges {g, h}
and {h, ¢} should be added to F3. Write T3 for the new tree. Likewise, in order to make d12
tree-preserving, edges {d, e} and {e, f} should be added to F». Write T% for the new tree.
However, d23 is not tree-preserving w.r.t. 75 and T3.

Recall that when enforcing path-consistency, we transform a constraint network into a
complete constraint graph despite the number of non-trivial constraints it has. In the fol-
lowing section, we consider a more efficient path-consistency algorithm that respects the
density of non-trivial constraints in the network.

4 Partial Path-Consistency

Partial path-consistency (PPC) [4] is a more general consistency condition than PC and can
be enforced more efficiently for constraint networks with sparse constraint graphs. The idea
of PPC is to enforce path-consistency on sparse constraint graphs by triangulating instead
of completing them. Bliek and Sam-Haroud demonstrated that, as far as CRC constraints
are concerned, the pruning capacity of path-consistency on triangulated graphs and their
completions are identical on the common edges. In this section, we show that a similar result
applies to tree-preserving constraints. Moreover, we show that, after enforcing strong PPC
(i.e. both AC and PPC), we can find a solution in a backtrack-free style if no inconsistency
is detected.

We first recall some basic definitions and results related to graph triangulation. An undi-
rected graph G = (V, E) is triangulated or chordal if every cycle of length greater than 3
has a chord, i.e. an edge connecting two non-consecutive vertices of the cycle.

Definition 8 (cf. e.g. [4]) Given a graph G = (V, E), the neighbourhood of vertex v in V
is N(w) ={w € V | (v,w) € E}. A vertex v of G is a simplicial vertex if the induced
subgraph of N (v) is complete. A perfect vertex elimination ordering of G is an ordering
(v1,v2, ..., vn) such that for 1 < ¢ < n — 1, v; is a simplicial vertex of the subgraph of G
induced by {vi, vit1, ..., Un}.

Proposition 5 ([24]) Every triangulated graph has a simplicial vertex, and a graph is tri-
angulated iff it has a perfect vertex elimination ordering.

Definition 9 ([4]) Suppose <= (v1,va2,...,vn) is a perfect vertex elimination ordering
of graph G. For 1 < i < n, we denote by GG; the subgraph of GG induced by S; =
{Un—i—i-la . ’Un} and write F; = {Uk c N(Un_i)|1)n_i < Uk}.
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U1

Vs V2

Uy V3

Fig. 6 A triangulated graph G, where (v1,v2, v3,v4, vs) is a perfect vertex elimination ordering of G.

Since the vertex elimination ordering is perfect, the subgraph induced by F; is complete.
An example is given in Fig.[6] where G is a triangulated constraint graph and (v1, . .., vs) is
a perfect vertex elimination ordering of G. By Definition[J] we can see that S; just denotes
the last ¢ vertices w.r.t. the ordering. Therefore, we have S1 = {vs}, S2 = {v4,v5},S3 =
{v4,va,v5},S4 = {v2,v3,v4,v5} and S5 = {wv1,v2,v3,va,vs}. Finally, F; denotes the
set of vertices that are adjacent to v,—; and after it w.r.t. the ordering. Therefore, we have
F1 = {U5},F2 = {’U4,U5},F3 = {Ug,v5} and F4 = {’L)Q,U5}.

For a constraint network A over V' = {v1, ..., vn}, the constraint graph of A is the
undirected graph G(A) = (V, E(A)), for which we have {v;, v;} € E(A)iff 04,0, € A.
Note that here we do not assume that there is a constraint between every pair of variables.

Letm = (x = wo,- - ,u;, -+ ,ur = y) be a path in G with {z,y} € E(A). We say
m is path-consistent (PC) if for all (co, k) in dzy, we can find values for the intermediate
variables u; (0 < 4 < k) such that all the constraints 0y, ., (0 < ¢ < k) are satisfied.
Note that if 5y is empty for some z, y, then 7 is regarded as not path-consistent in this
paper. A constraint graph G is PC iff all paths in G are PC [32]. Note that this constraint
graph-based definition of PC is equivalent to the one given in Definition [3| when G is a
complete graph.

In this section, we make a distinction between enforcing PC on a constraint network A
and on its constraint graph G(A). It is clear that a constraint network is PC if the completion
of its constraint graph is PC. We say a constraint network A is partially path-consistent
(PPC) if its constraint graph G(A) is PC. The following result shows that we only need to
consider paths of length 2 if the constraint graph is triangulated.

Proposition 6 ([4]) A triangulated constraint graph G is path-consistent iff every path of
length 2 is path-consistent.

The following result is a straightforward extension from CRC constraints [4] to tree-
preserving constraints. For the purpose of being self-contained, we provide a complete proof
below.

Lemma 8 Suppose A is a strongly partial path-consistent tree-preserving constraint net-
work with a triangulated constraint graph G = (V, E). Assume that <= (v1,v2, ..., Un)
is a perfect vertex elimination ordering of G. Let G;, S;, F;(1 < i < n) be defined as in
Definition [?] Suppose i is the largest index such that G; is complete. Assume that vj is a

node in S; that is not a neighbour of vn—; in G. Let 6y, _, v, = N (5%_1@ o) 51;,Uj).
zEF;
Then

(i) The constraint graph G' = (V, EU{(vn—s,v;)}) is triangulated and < is also a perfect
vertex elimination ordering of G’ and F; is exactly the set {z | (vn—i, ), (x,v;) € E};
(ii) G’ is strongly path-consistent;
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Fig. 7 llustration of proof of Lemma The figure is taken from [4].

(iii) The constraint dy,,_, »; and its inverse are tree-preserving.

Proof (i) This result directly follows from the proof of [4, Lemma 1].

(ii) First, we show that G’ is PC. To this end, because G is triangulated, it is sufficient
to show that every path of length 2 of G’ is PC by Proposition@ Because G is PC, paths of
length 2 of G’ that do not go through v,,_; and v; are PC. So, let us consider paths of length
2 of G’ that go through v,,_; and v;.

Let G be the subgraph of G that is induced by F;U{v,—; }. Note that G; is the subgraph
of G that is induced by F; U {v;}. See Fig. for an illustration where the vertices in F; are
colored black. We claim that G and GG; are globally consistent. By assumption, we know
that GG; is complete. Because < is a perfect vertex elimination ordering of G, we know that
(s is also complete. Now, because G; and G are complete, strongly path-consistent and
tree-preserving, they are globally consistent by Theorem [I]

Let 7 be a path of length 2 of G’ that goes through v,,_; and v;. We now show that 7 is
PC. To this end, we have to consider the following two cases:

Case 1: m = (Un—s, v, v;j) with some vy, € V(vgp # vn—s,v;5). By (1), we know
that F; is exactly the set { | (vn—i, ), (z,v;) € E}. Therefore, vy, € F;. Because
G is globally consistent, it admits at lease one solution, say «. Because G; is also glob-
ally consistent, |, can be consistently extended to v; such that all constraints in G;
are satisfied. Therefore, o can be extended to a solution of Gs U Gj, say 5. Then we
have that, for all x € Fi, (Blv,_;,Blz) € v,_; .« and (8|, Blv;) € Oz ;. Therefore,
Blon_isBlo;y € N (v, e ©02w,;). Thus, du, 0, = 