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Abstract The study of tractable subclasses of constraint satisfaction problems is a central
topic in constraint solving. Tree convex constraints are extensions of the well-known row
convex constraints. Just like the latter, every path-consistent tree convex constraint network
is globally consistent. However, it is NP-complete to decide whether a tree convex con-
straint network has solutions. This paper studies and compares three subclasses of tree con-
vex constraints, which are called chain-, path-, and tree-preserving constraints respectively.
The class of tree-preserving constraints strictly contains the subclasses of path-preserving
and arc-consistent chain-preserving constraints. We prove that, when enforcing strong path-
consistency on a tree-preserving constraint network, in each step, the network remains tree-
preserving. This ensures the global consistency of consistent tree-preserving networks after
enforcing strong path-consistency, and also guarantees the applicability of the partial path-
consistency algorithms to tree-preserving constraint networks, which is usually much more
efficient than the path-consistency algorithms for large sparse constraint networks. As an
application, we show that the class of tree-preserving constraints is useful in solving the
scene labelling problem.

Keywords Tree-preserving constraint · connected row convex constraint · scene labelling
problem

1 Introduction

Constraint satisfaction problems (CSPs) have been widely used in many areas, such as scene
labelling [19], natural language parsing [33], picture processing [34], and spatial and tem-
poral reasoning [14,31]. Since deciding the consistency of CSP instances is NP-complete
in general, lots of efforts have been devoted to identifying tractable subclasses. There are
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two main approaches for constructing tractable subclasses. The first approach is structural-
based, in which tractable subclasses are obtained by restricting the topology of the underly-
ing graph of the constraint network (being a tree or having treewidth bounded by a constant
[13]); the second approach is language-based, in which tractable subclasses are obtained
by by restricting the type of the allowed constraints between variables (cf. [35]). Recently,
researchers also propose a hybrid approach for constructing tractable classes, see e.g., the
subclass of CSP instances satisfying the broken-triangle property (BTP) [10,11].

In this paper, we are mainly interested in the language-based tractable subclasses. Mon-
tanari [34] showed that path-consistency is sufficient to guarantee that a constraint network
is globally consistent if the relations are all monotone. Van Beek and Dechter [35] gener-
alised monotone constraints to row convex constraints, which are further generalised to tree
convex constraints by Zhang and Yap [38]. These constraints also have the nice property that
every path-consistent constraint network is globally consistent.

However, neither row convex constraints nor tree convex constraints are closed under
composition and intersection, which are the main operations of path-consistency (PC) al-
gorithms. This means that enforcing path-consistency may destroy row and tree convexity.
Deville et al. [15] proposed a tractable subclass of row convex constraints, called connected
row convex (CRC) constraints, which are closed under composition and intersection. Zhang
and Freuder [37] also identified a tractable subclass of tree convex constraints, called locally
chain convex and strictly union closed constraints. They also proposed the important notion
of consecutive constraints. Kumar [27] showed that the subclass of arc-consistent consec-
utive tree convex (ACCTC) constraints is tractable by providing a polynomial time ran-
domised algorithm. Nevertheless, for the ACCTC problems, “it is not known whether there
are efficient deterministic algorithms, neither is it known whether strong path-consistency
ensures global consistency on those problems.”[37]

In this paper, we study and compare three subclasses of tree convex constraints which
are called, respectively, chain-, path- and tree-preserving constraints.

In Section 2, we start with basic notations and concepts that will be used throughout the
paper. Based on the concept of tree domains, we introduce chain-, path- and tree-preserving
constraints. Chain-preserving constraints are exactly “locally chain convex and strictly union
closed” constraints in the sense of [37], which include CRC constraints as a special case
where tree domains are linear. Arc-consistent chain-preserving constraints, path-preserving
constraints and ACCTC constraints are all strictly contained in the class of tree-preserving
constraints.

Therefore, the remainder of this paper will focus on the more general tree-preserving
constraints. We show in Section 3 that the class of tree-preserving constrains is closed under
intersection and composition, which are operations of the path-consistency algorithm. This
guarantees that a tree-preserving constraint network remains tree-preserving after enforcing
path-consistency on it. Recall that every path-consistent tree convex constraint network is
globally consistent [38]. This shows that the class of tree-preserving constraints is tractable
and can be solved by the path-consistency algorithm. We also prove in this section that
our definitions and results for tree-preserving constraints can be extended to domains with
acyclic graph structures, called forest domains in this paper.

The above properties of tree-preserving constraints bear similarity to CRC constraints.
Bliek and Sam-Haround [4] showed that enforcing partial path-consistency (PPC) is suf-
ficient to solve sparse CRC constraint networks. PPC enforces PC on sparse constraint
graphs by triangulating instead of completing them and thus can be enforced more effi-
ciently than enforcing PC. As far as CRC constraints are concerned, the pruning capacity of
path-consistency on triangulated graphs and their completion are identical on the common
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edges. In Section 4, we show that PPC [4] is sufficient to decide the consistency of tree-
preserving constraint networks. Moreover, we show that, after enforcing PPC, we can find a
solution in a backtrack-free style if no inconsistency is detected.

Section 5 is concerned with the application of tree-preserving constraints in scene la-
belling. Solving the scene labelling problem is a crucial part of figuring out the possible 3D
scenes of a 2D projection, which has applications in both vision and geometric modelling.
Research in this field has centred on the trihedral scene labelling problem, i.e. scenes where
no four planes share a point. The trihedral scene labelling problem has been shown to be
NP-complete [23]. Based on the forest domains associated to each possible variable type
by Zhang and Freuder [37] (see Fig. 9), we show that all 39 possible types of the trihe-
dral scene labelling problem instances are tree convex, and 29 of them are tree-preserving.
This means that a large subclass of the trihedral scene labelling problem can be modelled
by tree-preserving constraint networks and thus can be efficiently solved by the techniques
discussed in this paper. As a byproduct, since every instance of the NP-complete trihedral
scene labelling problem can be modelled by a tree convex constraint network, we show that
the class of tree convex constraints is NP-complete.

It is interesting to compare our approach with another research line of studying tractable
subclasses of CSPs, which focuses on the algebraic closure property of constraints [5,16,
20]. In Section 6, we study the algebraic closure property of tree-preserving constraints and
establish the equivalence between tree-preserving constraints and constraints that are closed
under a “standard” majority operation. In this way, we provide an alternative way to prove
the tractability of tree-preserving constraints.

Section 7 reports experimental evaluations on enforcing PPC and PC on tree-preserving
constraint networks and Section 8 concludes the paper.

This paper is a significant extension of the conference paper [26]. Apart from detailed
proofs for most of our results and more figures for illustrating the key notions and tech-
niques, we make the following major extensions: (i) We add Section 4 to show that en-
forcing PPC will enable us to find a solution for a tree-preserving constraint network in a
backtrack-free style. By this result, we also present an efficient algorithm based upon PPC
for finding a solution of a tree-preserving constraint network. (ii) We add Section 6 to discuss
the algebraic closure property of tree-preserving constraints. Actually, we prove that, given
a relation δ between two tree domains Tx and Ty , if both δ and its inverse are arc-consistent,
then δ is closed under the “standard” majority operations (on Tx and Ty) if and only if δ and
its inverse are both tree-preserving (w.r.t. Tx and Ty). (iii) We add Section 7 to report ex-
perimental evaluations of local consistency enforcing algorithms for sparse tree-preserving
constraint networks.

2 Preliminaries

Let D be the domain of a variable x. An undirected graph structure can often be associated
to D such that there is a bijection between the vertices in the graph and the values in D.
If the graph is connected and acyclic, i.e. a tree, then we say it is a tree domain of x. Tree
domains arise naturally in e.g., scene labelling [37] and combinatorial auctions [8]. We note
that, in this paper, we fix a specific tree domain for each variable x.

In this paper, we distinguish between trees and rooted trees. Standard notions from graph
theory are assumed. In particular, the degree of a node a in a graph G, denoted by deg(a),
is the number of neighbours of a in G. A node a is called a leaf node if it has only one
neighbour, i.e. deg(a) = 1.
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Fig. 1 (a) A tree T . Subgraphs with node sets {a, b, c, d}, {a, b, c}, and {c, b, d} form, respectively, a
subtree, a chain, and a path of T . The degree of node b is 3 and the three branches of b are the subtrees with
node sets {c}, {d} and {a, e} respectively. (b) A binary constraint δxy between Tx and Ty , where a dashed
arrow from a node u in Tx to a node v in Ty indicates that (u, v) is in δxy . Node c is supported under δxy
with image {f, g, h}, and b is unsupported under δxy .

Definition 1 A tree is a connected graph without any cycle (cf. Fig. 1(a)). A tree is rooted
if it has a specified node r, called the root of the tree. Given a tree T , a subgraph I is called
a subtree of T if I is connected. The empty subgraph is a subtree of any tree.

Let T be a tree (rooted tree, resp.) and I a subtree of T . I is a path (chain, resp.) in T if
each node in I has at most two neighbours (at most one child, resp.) in I . Given two nodes
p, q in T , the unique path that connects p to q is denoted by πp,q .

Suppose a is a node of a tree T . A branch of a is a connected component of T \ {a}.

Fig. 1 gives illustrations of these notions.
Throughout this paper, we always associate a tree structure Tx = (Dx, Ex) with a given

domainDx, whereEx is the set of tree edges connecting values inDx. For convenience, we
often use the notation Tx to denote the domain Dx and call Tx a tree domain. Also, a ∈ Tx
means that a ∈ Dx.

Definition 2 A binary constraint has the form (xδy), where x, y are two variables with
domains Dx and Dy and δ is a binary relation from Dx to Dy , i.e. δ ⊆ Dx × Dy . For
simplicity, we often denote this constraint by δ. A value u ∈ Dx is supported under δ if
there exists a value v in Dy s.t. 〈u, v〉 ∈ δ. In this case, we say v is a support of u. We say
a subset F of Dx is unsupported if every value in F is not supported. Given A ⊆ Dx, the
image of A under δ is defined as δ(A) = {b ∈ Dy : (∃a ∈ A)〈a, b〉 ∈ δ}. For A = {a},
without confusion, we also use δ(a) to represent δ({a}) (cf. Fig. 1(b)).

A binary constraint network consists of a set of variables V = {x1, x2, ..., xn} with
a finite domain Di for each variable xi ∈ V , and a set ∆ of binary constraints over the
variables of V . The usual operations on relations, e.g., intersection (∩), composition (◦),
and inverse (−1), are applicable to constraints. As usual, we assume that there is at most one
constraint for any ordered pair of variables (x, y). Write δxy for this constraint if it exists.
In this paper, unless stated otherwise, we assume that δxy is the inverse of δyx, and if there
is no constraint for (x, y), we assume that δxy is the universal constraint (i.e. Dx ×Dy).

Definition 3 [17,18] A constraint network ∆ over n variables is k-consistent if any con-
sistent instantiation of any distinct k − 1 variables can be consistently extended to any k-th
variable. We say ∆ is strongly k-consistent if it is j-consistent for all j ≤ k; and say ∆
is globally consistent if it is strongly n-consistent. 2- and 3-consistency are usually called
arc-consistency (AC) and path-consistency (PC) respectively.

Specially, we call a constraint network strongly path-consistent if it is both arc-consistent
and path-consistent, and call a binary constraint δxy arc-consistent if for any a ∈ Dx, there
is some b ∈ Dy such that 〈a, b〉 ∈ δxy .
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Fig. 2 (a) δxy is a chain- but not path-preserving constraint as the the image of the path {c, b, d} of Tx is
{e, f, g, h}, which is not a path of Ty ; (b) δxy is a path- but not chain-preserving constraint as the image
of the chain {a, c} of Tx is {e, f, g}, which is not a chain of Ty ; (c) δxy is a tree-preserving but neither
path- nor chain-preserving constraint as the image of the path {a, b} of Tx, which is also a chain of Tx, is
{e, f, g, h} that is neither a path nor a chain of Ty .

Definition 4 Let x, y be two variables with finite tree domains Tx = (Dx, Ex) and Ty =
(Dy, Ey), and δ a constraint from x to y. We say δ, w.r.t. Tx and Ty , is (cf. Fig. 2)

- tree convex if the image of every value a in Dx (i.e. δ(a)) is a subtree of Ty;
- consecutive if the image of every edge in Tx is a subtree in Ty;
- path-preserving if the image of every path in Tx is a path in Ty;
- tree-preserving if the image of every subtree in Tx is a subtree in Ty .

In case Tx and Ty are rooted, we say δ, w.r.t. Tx and Ty , is

- chain-preserving if the image of every chain in Tx is a chain in Ty .

We note that a subtree (a path or a chain) of Tx (or Ty) in the above definition is possibly
empty. We also note that chain-preserving constraints are exactly those “locally chain convex
and strictly union closed” constraints defined in [37].

Connected row convex (CRC) constraints are special chain-preserving constraints de-
fined over chain domains. The following definition of CRC constraints is equivalent to the
one given in [15].

Definition 5 Let x, y be two variables with finite tree domains Tx and Ty , where Tx and
Ty are chains. A constraint δ from x to y is connected row convex (CRC), w.r.t. Tx and Ty ,
if both δ and δ−1 are chain-preserving.

The class of CRC constraints is tractable and closed under intersection, inverse, and compo-
sition [15].

Definition 6 A binary constraint network ∆ over variables in V and tree domains Tx (x ∈
V ) is called tree convex, chain-, path-, or tree-preserving if every constraint δ ∈ ∆ is tree
convex, chain-, path-, or tree-preserving, respectively. A CRC constraint network is defined
similarly.

The following proposition summarises relations between these tree convex constraints.

Proposition 1 Every chain-, path-, or tree-preserving constraint (network) is consecutive
and every path-preserving constraint (network) is tree-preserving. Moreover, every arc-
consistent consecutive tree convex (ACCTC) constraint (network) is tree-preserving.

Proof First, we notice that an edge is a chain, a path and a subtree, and a chain or a path is a
subtree. Then the claim that every chain-, path-, or tree-preserving constraint is consecutive
directly follows from Definition 4.
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Second, we show that if a constraint δxy is path-preserving, then it is also tree-preserving.
Let δxy be a path-preserving constraint over tree domains Tx and Ty . Suppose that δxy is
not tree-preserving. We know that there exists a subtree tx of Tx such that δxy(tx) is not a
subtree of Ty . Therefore, tx can be divided into two parts, say t1x and t2x, such that δxy(t1x) is
disconnected from δxy(t

2
x). Let v1 ∈ t1x, v2 ∈ t2x such that δxy(v1) 6= ∅ and δxy(v2) 6= ∅.

Let πv1,v2 be the path from v1 to v2 in Tx. Let π1 = πv1,v2 ∩ t1x and π2 = πv1,v2 ∩ t2x.
Then δxy(π1) is disconnected from δxy(π2). Therefore, δxy(πv1,v2) cannot be a path of Ty
which contradicts that δxy is path-preserving.

Finally, if a constraint δxy over tree domains Tx and Ty is arc-consistent consecutive
tree convex, we show that δxy is also tree-preserving. Let tx be an arbitrary subtree of Tx.
We show that δxy(tx) is a subtree of Ty . Let t0 be a subtree of tx such that |t0| = 1.
Because δxy is tree convex, δxy(t0) is a subtree of Ty . Let t be a subtree of tx and ev1v2
be an edge of Tx with v1 ∈ t, v2 6∈ t and v2 ∈ tx. Suppose δxy(t) is a subtree of Ty .
Because δxy is arc-consistent consecutive tree-convex, δxy(ev1v2) is also a subtree of Ty ,
and δxy(v1) 6= ∅. Because ∅ 6= δxy(v1) ⊆ δxy(t) ∩ δxy(ev1v2), δxy(t) and δxy(ev1v2)
are connected. Thus, δxy(t ∪ ev1v2) is also subtree of Ty . Therefore, by induction, we can
add edges to t0 one by one until t0 = tx, and in each step, δxy(t0) is a subtree of Ty . ut

Although every arc-consistent chain- or path-preserving constraint is tree-preserving,
Fig. 2(c) shows that the other direction is not always true. Furthermore, Fig. 1(b) shows
that not every chain-preserving (or consecutive tree convex) constraint is tree-preserving
and Fig. 2(a,b) show that chain-preserving constraints and path-preserving constraints are
incomparable.

The following results of trees will be used in the proof of some results in our paper.

Lemma 1 [38] Let T be a tree and suppose ti (i = 1, . . . ,m) are subtrees of T . Then⋂m
i=1 ti is nonempty iff ti ∩ tj is nonempty for every 1 ≤ i 6= j ≤ m.

Lemma 2 Let T be a tree and t, t′ subtrees of T . Suppose {u, v} is an edge in T . If u ∈ t
and v ∈ t′, then t ∪ t′ is a subtree of T ; if, in addition, u 6∈ t′ and v 6∈ t, then t ∩ t′ = ∅.

Proof The first part is clear as the edge {u, v} connects t and t′. Suppose u 6∈ t′, v 6∈ t. We
show t ∩ t′ = ∅. Suppose this is not the case and there exists w ∈ t ∩ t′. Then we have
πw,u ⊆ t and πw,v ⊆ t′. Since u is a neighbour of v, we have either u ∈ πw,v or v ∈ πw,u,
i.e. either u ∈ t′ or v ∈ t. Both contradict our assumption that u 6∈ t′, v 6∈ t. Therefore, we
must have t ∩ t′ = ∅. ut

Using Lemma 1, Zhang and Yap [38] proved the following result:

Theorem 1 A tree convex constraint network is globally consistent if it is path-consistent.

In the following, we will focus on the class of tree-preserving constraints.

3 Tree-Preserving Constraints

In this section, we show that the class of tree-preserving constraints is tractable. Given a tree-
preserving constraint network ∆, we show that, when enforcing strong path-consistency on
∆, in each step, the network remains tree-preserving. Hence, by Theorem 1, we know that,
if no inconsistency is detected, a tree-preserving constraint network will be transformed into
an equivalent globally consistent network after enforcing strong path-consistency.

Firstly, we show that tree-preserving constraint networks are closed under arc-consistency.



On Tree-Preserving Constraints 7

Lemma 3 Suppose δxy and δyx are tree-preserving (tree convex) w.r.t. tree domains Tx and
Ty . Let t be a subtree of Tx and δ′xy = {〈a, b〉 ∈ δxy : a ∈ t} and δ′yx = {〈b, a〉 ∈ δyx :
a ∈ t} the restrictions of δxy and δyx to t. Then both δ′xy and δ′yx are tree-preserving (tree
convex).

Proof Note that a path or subtree of t is also a path or subtree of Tx. The conclusion then
follows directly from the definitions of tree-preserving and tree convex constraints. ut

As a corollary, we have

Corollary 1 Let ∆ be a tree-preserving (tree convex) constraint network over tree domains
Tx (x ∈ V ). Assume that t is a nonempty subtree of Tx. When restricted to t, ∆ remains
tree-preserving (tree convex).

The following lemma examines unsupported values of a tree-preserving constraint.

Lemma 4 Suppose δxy is nonempty and tree-preserving w.r.t. tree domains Tx and Ty . If
v ∈ Ty has no support in Tx under δyx, then all supported nodes of Ty are in the same
branch of v. That is, every node in any other branch of v is not supported under δyx.

Proof Suppose a, b are two supported nodes in Ty . There exist u1, u2 in Tx s.t. u1 ∈ δyx(a)
and u2 ∈ δyx(b). By δyx = δ−1

xy , we have a ∈ δxy(u1) and b ∈ δxy(u2). Hence a, b ∈
δxy(πu1,u2). Since δxy is tree-preserving, δxy(πu1,u2) is a subtree in Ty . If a, b are in two
different branches of v, then πa,b must pass v and hence we must have v ∈ δxy(πu1,u2).
This is impossible as v has no support. ut

It is worth noting that this lemma does not require δyx to be tree-preserving.
The following result then follows directly.

Proposition 2 Let ∆ be a tree-preserving constraint network over tree domains Tx (x ∈
V ). If no inconsistency is detected, then ∆ remains tree-preserving after enforcing arc-
consistency.

Proof Enforcing arc-consistency on ∆ only removes values which have no support under
some constraints. For any y ∈ V , if v is an unsupported value in Ty , then, by Lemma 4, ev-
ery supported value of Ty is located in the same branch of v. Deleting all these unsupported
values from Ty , we get a subtree t of Ty . Applying Corollary 1, the restricted constraint
network to t remains tree-preserving. ut

Secondly, we consider the intersection and composition of tree-preserving constraints.
When doing relational intersection, we may need to remove some unsupported values

from domains. Unlike CRC [15, Lemma 13] and chain-preserving constraints [37, Propo-
sition 5], removing a value from a domain may change the tree-preserving property of a
network. Instead, we need to remove a ‘trunk’ from the tree domain or just keep one branch.

Definition 7 Suppose a 6= b are two nodes of a tree T that are not neighbours. The trunk
between a, b, written as Ma,b, is defined as the connected component of T \ {a, b} which
contains all the internal nodes of πa,b (see Fig. 3). The M-contraction of T byMa,b, denoted
by T 	Ma,b, is the tree obtained by removing the nodes with associated edges in Ma,b and
adding an edge {a, b} to T .

To improve readability, we defer the proofs of Lemmas 5-7 to Appendix.
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Fig. 3 Mab is a trunk of tree T , i.e., the subtree induced by vertices with red colour.

Lemma 5 Let ∆ be an arc-consistent and tree-preserving constraint network over tree do-
mains Tx (x ∈ V ). Suppose x ∈ V andMa,b is a trunk in Tx. When restricted to Tx	Ma,b

and enforcing arc-consistency, ∆ remains tree-preserving if no inconsistency is detected.

The following two lemmas consider the intersection of two tree-preserving constraints.

Lemma 6 Assume δxy and δ′xy are two arc-consistent and tree-preserving constraints w.r.t.
trees Tx and Ty . Let δ∗xy = δxy ∩ δ′xy . Let W = {w ∈ Tx | δ∗xy(w) 6= ∅} be the set of
supported values of δ∗xy . Suppose u ∈ Tx and u 6∈ W . Then there exist at most two values
w1, w2 in W s.t. no value in W other than wi is on the path πwi,u for i = 1, 2.

Remark 1 If there is only one value w1 in W that satisfies the condition in Lemma 6, re-
garding u as the root of Tx, then W is contained in the subtree rooted at w1; if there are
two values w1, w2 in W that satisfy the condition in the Lemma 6, then the trunk Mw1,w2

should be contracted from Tx to make W connected.

Lemma 7 Suppose δxy and δ′xy are arc-consistent and tree-preserving constraints w.r.t.
trees Tx and Ty and so are δyx and δ′yx. Let δ∗xy = δxy ∩ δ′xy . Assume {u, v} is an edge in
Tx s.t. δ∗xy(u) 6= ∅, δ∗xy(v) 6= ∅, and δ∗xy(u) ∪ δ∗xy(v) is disconnected in Ty . Then there
exist unique r ∈ δ∗xy(u) and s ∈ δ∗xy(v) s.t. every node in Mr,s is unsupported under δ∗yx.

The following result follows from the definition of tree-preserving constraints.

Proposition 3 Assume that δxz and δzy are two tree-preserving constraints w.r.t. trees Tx,
Ty , and Tz . Then their composition δxz ◦ δzy is tree-preserving.

Proof Let δ′xy = δxz ◦ δzy and tx be an arbitrary subtree of Tx. Then we have that
δ′xy(tx) = δzy(δxz(tx)). Because δxz is tree-preserving, we have that δxz(tx) is a sub-
tree of Tz . Similarly, δzy(δxz(tx)) is a subtree of Ty . Thus, δ′xy is tree-preserving. ut

Finally, we give the main result of this section.

Theorem 2 Let ∆ be a tree-preserving constraint network. If no inconsistency is detected,
then enforcing strong path-consistency determines the consistency of ∆ and transforms ∆
into a globally consistent network.

Proof Fig. 4 is the flow diagram of the proof.
If we can show that ∆ is still tree-preserving after enforcing strong path-consistency,

then by Theorem 1 the new network is globally consistent if no inconsistency is detected.
By Proposition 2,∆ remains tree-preserving after enforcing arc-consistency. To enforce

path-consistency on ∆, we need to call the following updating rule:

δxy ←δxy ∩ (δxz ◦ δzy) (1)

δyx ←δ−1
xy (2)
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∆
∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 
𝑅*+	?= 	 𝑅*+ ∩ 𝑅*0 ∘ 𝑅0+

𝑅*+∗ = 𝑅*+ ∩ (𝑅*0 ∘ 𝑅0+)

Yes
∆′ is globally consistent

No Yes

Enforce AC 

NoRestrict 𝑻𝒙 to a subtree, or Delete some 
trunk from 𝑻𝒙 and enforce AC on

𝑅*+∗ is AC? 𝑅*+ ← 𝑅*+∗

Lemmas 5, 6 and Proposition 2

Lemma 7

Proposition 2
∆′

∆′

Fig. 4 The flow diagram of proof of Theorem 2.

for x, y, z ∈ V until the network is stable.
Suppose ∆ is arc-consistent and tree-preserving w.r.t. trees Tx for x ∈ V before apply-

ing (1). Note that if δ∗xy = δxy ∩ (δxz ◦ δzy) (as well as its inverse δ∗yx) is arc-consistent,
then δ∗xy(u) is nonempty for any node u in Tx. By Lemma 7, δ∗xy(u)∪ δ∗xy(v) is connected
for every edge {u, v} in Tx as otherwise there will exist unsupported nodes in Ty under the
inverse of δ∗xy . Therefore δ∗xy is arc-consistent and consecutive, and hence, tree-preserving.
Since δ∗yx = δ∗−1

xy = δyx ∩ (δyz ◦ δzx), analogously, we have δ∗yx is tree-preserving.
If δ∗xy is not arc-consistent, then there exists u ∈ Tx s.t. δ∗xy(u) is empty. By Lemma 6

and Remark 1, we should restrict the domain to a subtree or contract some trunk from Tx and
enforce arc-consistency. If δ∗yx is not arc-consistent, then we do analogously. By Lemma 5
and Proposition 2, if no inconsistency is detected, then we have an updated arc-consistent
and tree-preserving network. Still write ∆ for this network and recompute δ∗xy, δ∗yx and
repeat the above procedure until either an inconsistency is detected or both δ∗xy and δ∗yx are
arc-consistent. Note that, after enforcing arc-consistency, the composition δxz ◦ δzy may
have changed.

Once arc-consistency of δ∗xy and δ∗yx is achieved, we update δxy with δ∗xy and δyx with
δ∗yx and continue the process of enforcing path-consistency until ∆ is path-consistent or an
inconsistency is detected. ut

In above, we assume that each domain is associated to a tree structure. Actually, our
definitions and results of tree-preserving constraints can be straightforwardly extended to
domains with acyclic graph structures (which are connected or not). We call such a structure
a forest domain.

Proposition 4 The consistency of a tree-preserving constraint network over forest domains
can be reduced to the consistency of several parallel tree-preserving networks over tree
domains.

Proof Given a tree-preserving constraint network ∆ over forest domains F1, ..., Fn of vari-
ables v1, ..., vn, suppose that Fi consists of trees (i.e., maximally connected components)
ti,1, . . . , ti,ki

. Note that the image of each tree, say ti,1, of Fi under constraint δij is a sub-
tree t of Fj . Assume t is contained in the tree tj,s of forest Fj . Then the image of tj,s under
constraint δji is a subtree of ti,1. This establishes, for any 1 ≤ i 6= j ≤ n, a 1-1 corre-
spondence between trees in Fi and trees in Fj if the image of each tree is nonempty. In this
way, the consistency of ∆ is reduced to the consistency of several parallel tree-preserving
networks over tree domains. ut

Fig. 5 shows a tree-preserving network over forest domains. We note that ∆ cannot be
modelled as tree-preserving over tree domains. For example, if we modify F1 as a tree T1
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Fig. 5 A tree-preserving network ∆ = {δ12, δ13, δ23} over forest domains F1, F2, and F3, where each
forest domain consists of three trees which contain only one node.

by adding edges {a, b} and {b, c}. Then, in order to make δ13 tree-preserving, edges {g, h}
and {h, i} should be added to F3. Write T3 for the new tree. Likewise, in order to make δ12
tree-preserving, edges {d, e} and {e, f} should be added to F2. Write T2 for the new tree.
However, δ23 is not tree-preserving w.r.t. T2 and T3.

Recall that when enforcing path-consistency, we transform a constraint network into a
complete constraint graph despite the number of non-trivial constraints it has. In the fol-
lowing section, we consider a more efficient path-consistency algorithm that respects the
density of non-trivial constraints in the network.

4 Partial Path-Consistency

Partial path-consistency (PPC) [4] is a more general consistency condition than PC and can
be enforced more efficiently for constraint networks with sparse constraint graphs. The idea
of PPC is to enforce path-consistency on sparse constraint graphs by triangulating instead
of completing them. Bliek and Sam-Haroud demonstrated that, as far as CRC constraints
are concerned, the pruning capacity of path-consistency on triangulated graphs and their
completions are identical on the common edges. In this section, we show that a similar result
applies to tree-preserving constraints. Moreover, we show that, after enforcing strong PPC
(i.e. both AC and PPC), we can find a solution in a backtrack-free style if no inconsistency
is detected.

We first recall some basic definitions and results related to graph triangulation. An undi-
rected graph G = (V,E) is triangulated or chordal if every cycle of length greater than 3
has a chord, i.e. an edge connecting two non-consecutive vertices of the cycle.

Definition 8 (cf. e.g. [4]) Given a graph G = (V,E), the neighbourhood of vertex v in V
is N(v) = {w ∈ V | (v, w) ∈ E}. A vertex v of G is a simplicial vertex if the induced
subgraph of N(v) is complete. A perfect vertex elimination ordering of G is an ordering
〈v1, v2, ..., vn〉 such that for 1 ≤ i ≤ n − 1, vi is a simplicial vertex of the subgraph of G
induced by {vi, vi+1, ..., vn}.

Proposition 5 ([24]) Every triangulated graph has a simplicial vertex, and a graph is tri-
angulated iff it has a perfect vertex elimination ordering.

Definition 9 ([4]) Suppose ≺= 〈v1, v2, ..., vn〉 is a perfect vertex elimination ordering
of graph G. For 1 ≤ i ≤ n, we denote by Gi the subgraph of G induced by Si =
{vn−i+1, ..., vn} and write Fi = {vk ∈ N(vn−i)|vn−i ≺ vk}.
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Fig. 6 A triangulated graph G, where 〈v1, v2, v3, v4, v5〉 is a perfect vertex elimination ordering of G.

Since the vertex elimination ordering is perfect, the subgraph induced by Fi is complete.
An example is given in Fig. 6, whereG is a triangulated constraint graph and 〈v1, . . . , v5〉 is
a perfect vertex elimination ordering of G. By Definition 9, we can see that Si just denotes
the last i vertices w.r.t. the ordering. Therefore, we have S1 = {v5}, S2 = {v4, v5}, S3 =
{v4, v4, v5}, S4 = {v2, v3, v4, v5} and S5 = {v1, v2, v3, v4, v5}. Finally, Fi denotes the
set of vertices that are adjacent to vn−i and after it w.r.t. the ordering. Therefore, we have
F1 = {v5}, F2 = {v4, v5}, F3 = {v3, v5} and F4 = {v2, v5}.

For a constraint network ∆ over V = {v1, ..., vn}, the constraint graph of ∆ is the
undirected graph G(∆) = (V,E(∆)), for which we have {vi, vj} ∈ E(∆) iff δvivj ∈ ∆.
Note that here we do not assume that there is a constraint between every pair of variables.

Let π = 〈x = u0, · · · , ui, · · · , uk = y〉 be a path in G with {x, y} ∈ E(∆). We say
π is path-consistent (PC) if for all (c0, ck) in δxy , we can find values for the intermediate
variables ui (0 < i < k) such that all the constraints δui,ui+1 (0 ≤ i < k) are satisfied.
Note that if δxy is empty for some x, y, then π is regarded as not path-consistent in this
paper. A constraint graph G is PC iff all paths in G are PC [32]. Note that this constraint
graph-based definition of PC is equivalent to the one given in Definition 3 when G is a
complete graph.

In this section, we make a distinction between enforcing PC on a constraint network ∆
and on its constraint graphG(∆). It is clear that a constraint network is PC if the completion
of its constraint graph is PC. We say a constraint network ∆ is partially path-consistent
(PPC) if its constraint graph G(∆) is PC. The following result shows that we only need to
consider paths of length 2 if the constraint graph is triangulated.

Proposition 6 ([4]) A triangulated constraint graph G is path-consistent iff every path of
length 2 is path-consistent.

The following result is a straightforward extension from CRC constraints [4] to tree-
preserving constraints. For the purpose of being self-contained, we provide a complete proof
below.

Lemma 8 Suppose ∆ is a strongly partial path-consistent tree-preserving constraint net-
work with a triangulated constraint graph G = (V,E). Assume that ≺= 〈v1, v2, ..., vn〉
is a perfect vertex elimination ordering of G. Let Gi, Si, Fi(1 ≤ i ≤ n) be defined as in
Definition 9. Suppose i is the largest index such that Gi is complete. Assume that vj is a
node in Si that is not a neighbour of vn−i in G. Let δvn−i,vj =

⋂
x∈Fi

(
δvn−i,x ◦ δx,vj

)
.

Then

(i) The constraint graphG′ = (V,E∪{(vn−i, vj)}) is triangulated and≺ is also a perfect
vertex elimination ordering ofG′ and Fi is exactly the set {x | (vn−i, x), (x, vj) ∈ E};

(ii) G′ is strongly path-consistent;
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Fig. 7 Illustration of proof of Lemma 8. The figure is taken from [4].

(iii) The constraint δvn−i,vj and its inverse are tree-preserving.

Proof (i) This result directly follows from the proof of [4, Lemma 1].
(ii) First, we show that G′ is PC. To this end, because G′ is triangulated, it is sufficient

to show that every path of length 2 of G′ is PC by Proposition 6. Because G is PC, paths of
length 2 ofG′ that do not go through vn−i and vj are PC. So, let us consider paths of length
2 of G′ that go through vn−i and vj .

LetGs be the subgraph ofG that is induced byFi∪{vn−i}. Note thatGi is the subgraph
of G that is induced by Fi ∪ {vj}. See Fig. 7 for an illustration where the vertices in Fi are
colored black. We claim that Gs and Gi are globally consistent. By assumption, we know
that Gi is complete. Because ≺ is a perfect vertex elimination ordering of G, we know that
Gs is also complete. Now, because Gi and Gs are complete, strongly path-consistent and
tree-preserving, they are globally consistent by Theorem 1.

Let π be a path of length 2 of G′ that goes through vn−i and vj . We now show that π is
PC. To this end, we have to consider the following two cases:

Case 1: π = 〈vn−i, vk, vj〉 with some vk ∈ V (vk 6= vn−i, vj). By (i), we know
that Fi is exactly the set {x | (vn−i, x), (x, vj) ∈ E}. Therefore, vk ∈ Fi. Because
Gs is globally consistent, it admits at lease one solution, say α. Because Gi is also glob-
ally consistent, α|Fi

can be consistently extended to vj such that all constraints in Gi
are satisfied. Therefore, α can be extended to a solution of Gs ∪ Gi, say β. Then we
have that, for all x ∈ Fi, 〈β|vn−i , β|x〉 ∈ δvn−i,x and 〈β|x, β|vj 〉 ∈ δx,vj . Therefore,
〈β|vn−i , β|vj 〉 ∈

⋂
x∈Fi

(
δvn−i,x ◦ δx,vj

)
. Thus, δvn−i,vj =

⋂
x∈Fi

(
δvn−i,x ◦ δx,vj

)
6= ∅.

Further, because vk ∈ Fi, for any 〈a, b〉 ∈ δvn−i,vj , there is some c ∈ Dk such that
〈a, c〉 ∈ δvn−i,vk and 〈c, b〉 ∈ δvk,vj , and thus π = 〈vn−i, vk, vj〉 is PC.

Case 2: π = 〈vn−i, vj , vk〉with some vk ∈ V (vk 6= vn−i, vj). SinceG′ is triangulated
by (i), there is an edge {vn−i, vk} of G′. Therefore, vk ∈ Fi. Surely, δvn−i,vk is not empty,
because it is a constraint in G and G is PC. Now, we show that for any 〈a, b〉 ∈ δvn−i,vk ,
there is some c ∈ Dj such that 〈a, c〉 ∈ δvn−i,vj and 〈c, b〉 ∈ δvjvk . BecauseGs is globally
consistent, 〈a, b〉 can be extended to a solution of Gs. Similar to case 1, we know that the
solution ofGs can be extended to a solution ofGs∪Gi. We write such a solution ofGs∪Gi
as ψ. Let value c be the restriction of ψ to variable vj . Certainly, 〈c, b〉 ∈ δvjvk . Further,
for any x ∈ Fi, let c′ be the restriction of ψ to x. We have that 〈a, c′〉 ∈ δvn−i,x and
〈c′, c〉 ∈ δx,vj , and thus 〈a, c〉 ∈ δvn−i,vj =

⋂
x∈Fi

(
δvn−i,x ◦ δx,vj

)
. Therefore, we have

that π = 〈vn−i, vj , vk〉 is also PC.
Second, we show that G′ is AC. To this end, it is sufficient to prove that δvn−i,vj is

AC. Because δvn−i,vk(vk ∈ Fi) is AC, for any a ∈ Dn−i, there is a v ∈ Dk such that
〈a, b〉 ∈ δvn−i,vk

. Further, because π = 〈vn−i, vj , vk〉 is PC, there is a c ∈ Dj such that
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〈a, c〉 ∈ δvn−i,vj and 〈c, b〉 ∈ δvj ,vk . Similarly, for any c ∈ Dj , there is a a ∈ Dn−i such
that 〈c, a〉 ∈ δvj ,vn−i . So, δvn−i,vj is AC.

(iii) By (i), we have Fi = {x | {vn−i, x}, {x, vj} ∈ E}. According to Proposi-
tion 3, we know that δvn−i,x ◦ δx,vj is tree-preserving for any x ∈ Fi. Furthermore, be-
cause δvn−i,vj is arc-consistent by (ii), according to Lemma 7, we know that δvn−i,vj =⋂
x∈Fi

(
δvn−i,x ◦ δx,vj

)
is tree-preserving. Similarly, since

δ−1
vn−i,vj =

⋂
x∈Fi

(
δvn−i,x ◦ δx,vj

)−1
=
⋂
x∈Fi

(
δ−1
x,vj ◦ δ

−1
vn−i,x

)
=
⋂
x∈Fi

(
δvj ,x ◦ δx,vn−i

)
,

we know that the inverse of δvn−i,vj is also tree-preserving. ut

By the above lemma, we now prove that the result obtained for CRC constraints in [4]
also applies to tree-preserving constraints.

Theorem 3 For a tree-preserving constraint network∆with a triangulated constraint graph
G, strong PC on G is equivalent to strong PC on the completion of G in the sense that the
relations computed for the constraints in G are identical.

Proof The proof is analogous to that for CRC constraints in [4]. Suppose we have a triangu-
lated constraint graph G = (V,E) that is strongly PC. We will add to G the missing edges
one by one until the graph is complete. To prove the theorem, we show that the relations
of the constraints can be computed from the existing ones so that each intermediate graph,
including the completed graph, is strongly PC. Let i be the largest index such that Gi is
complete. SinceGi+1 is not complete, we add one by one all missing edges {vn−i, vj} into
Gi+1 and compute their corresponding constraints as

δvn−i,vj =
⋂
x∈Fi

(
δvn−i,x ◦ δx,vj

)
(see Fig. 8 for an illustration, where vertices in Fi are denoted in black). By Lemma 8, we
know δvn−i,vj and its inverse are tree-preserving and the revised graph G′i+1 remains trian-
gulated. Continuing in this way, we will transform Gi+1 into a complete graph. Applying
the above procedure to Gi+1, and so on, until the whole graph is complete, we will have the
desired result. ut

Then, we show that enforcing PPC on a consistent tree-preserving constraint network
transforms it into an equivalent constraint network that is backtrack-free in the following
sense.
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Definition 10 ([13]) A constraint network is backtrack-free relative to a given ordering
≺= 〈x1, · · · , xn〉 if for every i ≤ n− 1, every partial solution of {x1, . . . , xi} can be
consistently extended to xi+1.

We now have the main result of this section.

Theorem 4 Suppose∆ is a tree-preserving constraint network with triangulated constraint
graph G. If no inconsistency is detected, then enforcing strong PPC on G transforms it into
an equivalent consistent network that is backtrack-free relative to the reverse ordering of
any perfect elimination ordering ≺= 〈v1, · · · , vn〉 of G.

Proof Suppose ≺= 〈v1, · · · , vn〉 is a perfect elimination ordering of G. In the following,
we use notations Si, Fi and Gi that are defined in Definition 9.

Assume that no inconsistency is detected. Write∆∗ for the equivalent network obtained
from enforcing strong PPC on ∆. We show that ∆∗ is backtrack-free w.r.t. the ordering
≺−1= 〈vn, vn−1, ..., v1〉. To this end, we need to show that, for any 2 ≤ i ≤ n, any
consistent instantiation of vertices in Si−1 = {vn, vn−1, · · · , vn−i+2} can be consistently
extended to vn−i+1.

Suppose the above statement holds for any 2 ≤ i ≤ j. We show that it holds for i = j+
1. Because the elimination ordering is perfect, Fj ∪ {vn−j} is complete. So, the restriction
of ∆ into Fj ∪{vn−j} is strongly PC and tree-preserving and thus, by Theorem 2, globally
consistent. Therefore, any consistent instantiation to vertices in Fj could be consistently
extended to vn−j . Also, because there are no edges (i.e. no constraints) between vn−j and
vertices in Gj \ Fj , any consistent instantiation to vertices in Gj could be consistently
extended to vn−j such that all constraints in Gj+1 are satisfied. In this way, we have shown
that ∆∗ is backtrack-free w.r.t. ≺−1. ut

According to Theorem 4, enforcing PPC is sufficient to solve tree-preserving constraint
networks. In the following, we will show that conservative dual-consistency (CDC) [28] is
equal to PPC for tree-preserving constraint networks with triangulated constraint graphs.

Given a binary constraint network ∆, ∆|vi=ai represents the network obtained from ∆
by restricting the domain of vi to the singleton {ai} andAC(∆|vi=ai) denotes the network
obtained by enforcing AC on ∆|vi=ai .

Definition 11 [28] Let ∆ be a binary constraint network over variable set V . ∆ is called
conservative dual-consistent (CDC) if for any δvivj ∈ ∆ and any 〈ai, aj〉 ∈ δvivj , we have
aj ∈ D∗j where D∗j is the domain of vj w.r.t. AC(∆|vi=ai). ∆ is called strongly CDC if it
is both AC and CDC.

Proposition 7 Strong partial path-consistency is equivalent to strong conservative dual-
consistency for tree-preserving constraint networks with triangulated constraint graphs.

Proof Let ∆ be a tree-preserving constraint network over variable set V . Suppose that the
constraint graph G = (V,E) of ∆ is triangulated. If ∆ is strongly CDC, then ∆ is also
strongly PPC, because conservative dual-consistency is a stronger consistency condition
than partial path-consistency [30]. Now, suppose that ∆ is strongly PPC, we show that ∆ is
also strongly CDC. We first obtain a new network ∆′ by adding all the missing edges to G
to make it complete. Constraints of newly added edges are all set to be universal. Then we
enforce strong PC on ∆′. Now,∆′ is strongly PC and ∆′ is equivalent to ∆. By Theorem 2,
∆′ is globally consistent. Let δvivj be an arbitrary constraint of ∆. By Theorem 3, δvivj is
also a constraint of ∆′. Then, for any tuple 〈ai, aj〉 ∈ δvivj , it can be extended to a solution
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ψ of∆′ which is also a solution of∆. Therefore, we have aj ∈ D∗j whereD∗j is the domain
of vj w.r.t.AC(∆|vi=ai), and we know that∆ is CDC. Because∆ is also AC, it is strongly
CDC. ut

Consequently, we can adopt efficient strong CDC enforcing algorithms, such as sCDC1
[30], to enforce PPC for tree-preserving constraint networks.

Finally, we give Algorithm 1 below to find solutions for tree-preserving constraint net-
works.

Algorithm 1: Solving tree-preserving constraint network using PPC.
input : A tree-preserving constraint network ∆.
output: A solution or inconsistency.

1 Triangulate the constraint graph G(∆);
2 Find a perfect elimination order of G(∆), {v1, v2, · · · , vn};
3 Enforce PPC on G(∆);
4 if no inconsistency is detected then
5 Choose values an and an−1 for vn and vn−1 respectively s.t. (an, an−1) satisfies δn,n−1;
6 for i← n− 2 to 1 do
7 S =

⋂
vk∈Fn−i

δki(vk);

8 Pick a value ai from S for vi;
9 end

10 end
11 else return inconsistency;

We first explain how Algorithm 1 works, and then prove its correctness and analyse its
time complexity in Theorem 5. Lines 1-3 are self-explanatory. Line 5 instantiates G2 =
{vn, vn−1}, and then Lines 6-9 consistently instantiate G3 to Gn in a sequential way. Line
8 extends the consistent instantiation of Gi to Gi+1 by finding a consistent value for vn−i.

Take the constraint graph in Fig. 6 as an example. The algorithm first assigns consistent
values a5 and a4 to the variables v5 and v4 ofG2 = {v5, v4} respectively, and then extends
the instantiation of G2 to G3 by finding a consistent value for v3, i.e. to find a value a3
for vertex v3 such that (ai, a3) ∈ δvi,v3 for all i ∈ F2. To achieve this, Algorithm 1
computes the intersection of δvi,v3(ai) for all i ∈ F2. By Theorem 3, the intersection S is
nonempty. Then Algorithm 1 picks any value from S for v3. Similarly, the algorithm extends
the instantiation of G3 to G4, and then extends the instantiation of G4 to G5.

Theorem 5 Algorithm 1 is correct and its time complexity is O(n(e + f) + α(e + f)d3),
where α is the maximum degree of vertices in G(∆), the constraint graph of the input tree-
preserving constraint network, f is the number of added edges to make G(∆) triangulated
and d is the maximal domain size.

Proof The correctness of Algorithm 1 follows directly from Theorem 3. Now, we analyse
time complexity of the algorithm. Finding a minimum triangulation for G(∆) in Line 1
could be done inO(n(e+f))[24], where f is the number of added edges. In Line 2, a perfect
elimination ordering for the minimum triangulation ofG can be found inO(n+e+f) [24].
Also, enforcing PPC in Line 3 can be done in O(α(e + f)d3)[4], and Lines 6-9 take time
O(αnd). Therefore, the overall time complexity of the algorithm is O(n(e + f) + α(e +
f)d3). ut

In the next section, we consider a particular application of tree-preserving constraints.
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Fig. 9 Possible labelled line configurations of a junction in a picture and their corresponding forest structures.

5 The Scene Labelling Problem

The scene labelling problem [19] is a classification problem where every edge in a line-
drawing picture has to be associated with a label describing it. The scene labelling problem
is NP-complete in general and this is true even in the case of the trihedral scenes, i.e. scenes
where no four planes share a point [23]. Several tractable subclasses of scene labelling prob-
lem have been identified (cf. [9,22]).

Labels used in the scene labelling problem are listed as follows:

‘+’ The edge is convex, i.e., the edge can be touched by a ball;
‘−’ The edge is concave, i.e., the edge cannot be touched by a ball;
‘→’ Only one plane associated with the edge is visible, and when one moves in the direction

indicated by the arrow, the pair of associated planes is to the right.

In the case of trihedral scenes, there are only four basic ways in which three plane
surfaces can come together at a vertex [7,19]. A vertex projects into a ‘V ’, ‘W ’, ‘Y ’ or ‘T ’-
junction in the picture (each of these junction-types may appear with an arbitrary rotation in
a given picture). A complete list of the labelled line configurations that are possible in the
vicinity of a node in a picture is given in Fig. 9.

In this section, we show that (i) every instance of the trihedral scene labelling problem
can be modelled by a tree convex constraint network over forest domains; (ii) a large sub-
class of the trihedral scene labelling problem can be modelled by tree-preserving constraints.

A CSP for the scene labelling problem can be formulated as follows. Each junction in
the line-drawing picture is a variable. The domains of the variables are the possible configu-
rations as shown in Fig. 9. The constraints between variables are simply that, if two variables
share an edge, then the edge must be labelled the same at both ends.

Proposition 8 Every instance of the trihedral scene labelling problem can be modelled by
a tree convex constraint network. Furthermore, there are only 39 possible configurations of
two neighbouring nodes in 2D projected pictures of 3D trihedral scenes, and 29 out of these
can be modelled by tree-preserving constraints.

Proof The complete list of these configurations and their corresponding tree convex or tree-
preserving constraints can be found in the online appendix1. Because ‘—’ must be labelled
by an arrow from right to left and ‘|’ can be labelled by any labels, the T-junctions decom-
pose into unary constraints. For this reason, we do not consider T-junctions in line drawing
pictures. ut

1 https://www.researchgate.net/publication/301815699_Appendix

https://www.researchgate.net/publication/301815699_Appendix
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Fig. 10 (a) A line drawing. (b) Constraints for the drawing. All of them are tree-preserving constraints.

As a consequence, the consistency of any constraint network whose relations are taken
from these 29 relations can be decided by enforcing strong path-consistency. Moreover,
because it is NP-hard to decide if a trihedral scene labelling instance is consistent, we have
the following corollary.

Corollary 2 The consistency problem of tree convex constraint networks is NP-complete.

A scene labelling instance and its corresponding constraint network are shown in Fig. 10;
the network is tree-preserving but neither chain-preserving nor CRC. Consider the line draw-
ing on the left of Fig. 10 and the constraints for the drawing listed on the right. One can easily
verify that all constraints are tree-preserving w.r.t. the forest structures listed in Fig. 9, but,
for example, δ21 is not chain-preserving w.r.t. the forest structures illustrated in Fig. 9 and
δ25 is not CRC.

In the following section we give another method for proving the tractability of the class
of tree-preserving constraints.

6 Algebraic Closure Properties of Tree-Preserving Constraints

We have shown that strong path-consistency ensures global consistency for the classes of
chain-, path-, and tree-preserving constraints and thus identified three tractable classes of
binary relations. Our approach follows the research line initiated by Dechter [12] and con-
tinued in e.g. [15,35,36,38], which are based on the idea of achieving global consistency by
enforcing local consistency.

An alternative approach to the study of tractable classes of relations focuses on certain
algebraic closure properties of constraints [5,16,21]. In this section, we will show that,
under mild restrictions, a relation is tree-preserving if and only if it satisfies some algebraic
closure property.

We first recall some basic notions introduced in [5] and [20]. A relation (or an operation)
is called one-sorted if it is defined over a single domain and multi-sorted otherwise.
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Definition 12 Suppose fD : Dr → D is a one-sorted operation on D. We say fD is
near-unanimity if

(∀a, b ∈ Di) fD(b, a, . . . , a) = fD(a, b, a, . . . , a) = . . . = fD(a, . . . , a, b) = a. (3)

A ternary (r = 3) near-unanimity operation is called a majority operation.

Definition 13 Given a collection of finite sets D = {D1, . . . , Dn}, an r-ary multi-sorted
operation f is a collection of one-sorted operations {fD1 , . . . , fDn}, where fDi : Dri →
Di. Let δ ⊆ Di1 ×Di2 × . . . ×Dim be a multi-sorted relation over D. δ is closed under
f if for any r m-tuples 〈d11, d21, . . . , dm1〉, 〈d12, d22, . . . , dm2〉, . . ., 〈d1r, d2r, . . . , dmr〉
in δ, we have

〈fDi1 (d11, d12, . . . , d1r), . . . , f
Dim (dm1, dm2, . . . , dmr)〉 ∈ δ

Definition 14 Let δ be an m-ary relation over domain D = {D1, . . . , Dn}. We say δ is r-
decomposable if, for any m-tuples t and any I = (i1, . . . , ik) (a list of indices chosen from
{1, . . . ,m}) with k ≤ r, we have t ∈ δ if πI(t) ∈ πI(δ), where πI(t) = 〈t[i1], ..., t[ik]〉
and πI(δ) = {πI(t′) | t′ ∈ δ}.

Definition 15 For a set of relations Γ , we write Γ+ for the set of all relations which can be
obtained from Γ by using some sequence of Cartesian product (for δ1, δ2 ∈ Γ, δ1 × δ2 =
{〈t1, t2〉 | t1 ∈ δ1, t2 ∈ δ2}), equality selection (for δ ∈ Γ, σi=j(δ) = {t ∈ δ | t[i] =
t[j]} ), and projection (for δ ∈ Γ, πi1,··· ,ik(δ) = {〈t[i1], · · · , t[ik]〉 | t ∈ δ}).

In the following, we denote by CΓ the set of constraint networks all relations of which
are taken from Γ . We have the following extension of [20, Theorem 3.5] from the one-sorted
case to the multi-sorted case. The proof is similar to the one-sorted case and thus omitted.

Theorem 6 Suppose Γ is a set of multi-sorted relations over a collection of finite sets D =
{D1, . . . , Dn}. For any r ≥ 3, the following conditions are equivalent:

1. There exists an r-ary near unanimity operation fDi onDi for each 1 ≤ i ≤ n such that
every relation δ in Γ is closed under the multi-sorted operation f = (fD1 , . . . , fDn).

2. Every δ in Γ+ is (r − 1)-decomposable.
3. For every constraint network∆ ∈ CΓ , establishing strong r-consistency ensures global

consistency.

For each tree domain, we introduce a natural majority operation.

Definition 16 Let Tx be a nonempty tree domain for a variable x. We define a majority
operation mx as:

(∀a, b, c ∈ Tx) mx(a, b, c) = πa,b ∩ πb,c ∩ πa,c, (4)

where a, b, c are not necessarily distinct and πu,v denotes the unique path from u to v in Tx.
We call mx the standard majority operation on Tx.

Even for one-sorted relations over a tree domain T , the class of tree-preserving relations
on T is not comparable to the class of relations that are closed under the standard majority
operation on T (see Fig. 11 for an illustration).

The following lemma gives two important properties of relations closed under standard
majority operations.
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Fig. 12 Illustration of proof of proposition 9. Broken arrow lines indicate images of the node and empty
circles indicates empty support nodes.

Lemma 9 Let Tx and Ty be two nonempty tree domains and mx and my their standard
majority operations. Suppose δ ⊆ Tx × Ty is a nonempty relation that is closed under
{mx,my}. Then

– δ−1, the inverse of δ, is closed under {my,mx};
– if a′, b′ ∈ Ty are the only supported nodes in the path from a′ to b′, then δ−1(Ma′,b′)

= ∅, where Ma′,b′ is the trunk between a′, b′ in Ty .

Proof The first result follows directly from the definition.
To prove the second result, suppose 〈a, a′〉 and 〈b, b′〉 ∈ δ and no other nodes in πa′,b′

are supported (see Fig. 12 (a) for an illustration). If there exist c′ ∈Ma′,b′ and c ∈ Tx such
that 〈c, c′〉 ∈ δ, then we have 〈mx(a, b, c),my(a

′, b′, c′)〉 ∈ δ. It is clear thatmy(a
′, b′, c′)

is a node in πa′,b′ which is different from a′ and b′. This is a contradiction and hence the
statement is correct. ut

Let T ′y = Ty 	Ma′,b′ and m′y the standard majority operation on tree T ′y . Based on
Lemma 9, it is easy to see that, when restricted to T ′y , δ and its inverse are also closed under
{mx,m

′
y}. If we continue contracting and revising Ty and Tx in this way, then, in finite

steps, we will reach a state in which every node is supported. Write the revised tree domains
in this state as T ∗x and T ∗y and let m∗x and m∗y be their corresponding standard majority
operations. Then, when restricted to T ∗x and T ∗y , δ and δ−1 are closed under {m∗x,m∗y}.
This suggests that it is reasonable to consider relations that are arc-consistent.

Based upon this observation, we have the following characterisation.

Proposition 9 Let Tx and Ty be two nonempty tree domains andmx andmy their standard
majority operations. Suppose δ ⊆ Tx × Ty is a nonempty relation such that both δ and its
inverse, δ−1, are arc-consistent. Then δ is closed under {mx,my} iff both δ and δ−1 are
tree-preserving w.r.t. Tx and Ty .
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Proof Suppose δ is closed under {mx,my}. We first prove that δxy is tree convex. Suppose
not. Then we have a ∈ Tx, a′, b′, c′ ∈ Ty such that 〈a, a′〉, 〈a, b′〉 ∈ δ, c′ ∈ πa′,b′ but
〈a, c′〉 6∈ δ (see Fig. 12 (b) for an illustration). Because δ−1 is arc-consistent, there exists
c ∈ Tx such that 〈c, c′〉 ∈ δ. Consider the three tuples 〈a, a′〉, 〈a, b′〉, 〈c, c′〉 in δ. We have
〈mx(a, a, c),my(a

′, b′, c′)〉 ∈ δ as δ is closed under {mx,my}. Since mx(a, a, c) = a
and my(a

′, b′, c′) = c′, we have 〈a, c′〉 ∈ δ, which is a contradiction. Therefore, δxy
is tree convex. Next, we prove that δ is consecutive. Suppose not. Then there exist two
neighbouring nodes a, b ∈ Tx such that δ(a) ∪ δ(b) is not a subtree of Ty . This means
that there are a′ ∈ δ(a), b′ ∈ δ(b), and c′ ∈ Ty such that c′ is in πa′b′ but not in either
δ(a) or δ(b). Because δ−1 is arc-consistent, there exists c in Tx such that 〈c, c′〉 ∈ δ (see
Fig. 12 (c) for an illustration). Consider the three tuples 〈a, a′〉, 〈b, b′〉, 〈c, c′〉 in δ. We have
〈mx(a, b, c),my(a

′, b′, c′)〉 ∈ δxy . Because a is a neighbour of b, mx(a, b, c) = πab ∩
πbc ∩ πac is either a or b. Therefore, we have either 〈a, c′〉 ∈ δ or 〈b, c′〉 ∈ δ, which is
a contradiction. Therefore, δxy is arc-consistent and consecutive tree convex and, hence,
tree-preserving. Similarly, δ−1 is tree-preserving since it is also closed under {mx,my}.

On the other hand, suppose both δ and δ−1 are tree-preserving. We prove that δ is closed
under {mx,my}. Take three arbitrary tuples 〈a, a′〉, 〈b, b′〉, 〈c, c′〉 from δ. We need to prove
〈mx(a, b, c),my(a

′, b′, c′)〉 ∈ δ. For convenience, we denote m,m′ for mx(a, b, c) and
my(a

′, b′, c′) respectively. Because δ is tree-preserving, from a′, b′ ∈ δ(πa,b), we know
πa′,b′ is contained in δ(πa,b). In particular, m′ ∈ δ(πa,b). Similarly, we also have m′ ∈
δ(πa,c) andm′ ∈ δ(πb,c). Note that πa,b = πa,m∪πb,m, πb,c = πb,m∪πc,m, and πa,c =
πa,m ∪ πc,m. We know m′ belongs to at least two of δ(πa,m), δ(πb,m), and δ(πc,m).
Suppose m′ 6∈ δ(πc,m). Then 〈m,m′〉 6∈ δ and m′ ∈ δ(πa,m) and m′ ∈ δ(πb,m). There
are a1 ∈ πa,m and b1 ∈ πb,m such that 〈a1,m′〉 ∈ δ and 〈b1,m′〉 ∈ δ. Since δ−1 is
tree-preserving, δ−1(m′) is a subtree of Tx. From πa1,b1 ⊆ δ−1(m′) and m ∈ πa1,b1 , we
know m ∈ δ−1(m′), i.e. 〈m,m′〉 ∈ δ, which is a contradiction. Therefore, the assumption
that m′ 6∈ δ(πc,m) is incorrect. This implies that m′ belongs to each of δ(πa,m), δ(πb,m),
and δ(πc,m). We therefore have a1 ∈ πa,m, b1 ∈ πb,m, and c1 ∈ πc,m such that 〈a1,m′〉,
〈b1,m′〉, and 〈c1,m′〉 are all in δ. Let t be the subtree spanned by a1, b1, c1 in Tx. Then
t is contained in δ−1(m′) since δ−1 is tree-preserving. From m ∈ t, we have the desired
result that 〈m,m′〉 ∈ δ. ut

Remark 2 Proposition 9 establishes the connection between tree-preserving constraints and
those binary constraints that are closed under the standard majority operation. Using this
result, it is natural to extend the definition of tree-preserving constraints to non-binary tree-
preserving constraints. For a non-binary relation R, assuming that it is arc-consistent in
each variable, we may call R a tree-preserving constraint if it is closed under the standard
majority operation induced by the relevant tree domains.

Using Proposition 9, we now give an alternative proof for Theorem 2.

Proof of Theorem 2: Let ∆ = {xiδijxj | 1 ≤ i, j ≤ n} be a tree-preserving constraint
network. We note that if no inconsistency is detected after enforcing arc-consistency, then
∆ remains tree-preserving (see Proposition 2). Without loss of generality, we suppose ∆
is arc-consistent. Write Ti for the tree-domain of variable xi. Let Γ be the set of binary
relations over D = {Ti | 1 ≤ i ≤ n} that are closed under the multi-sorted operation
f = (mxi | 1 ≤ i ≤ n), where each mxi is the standard majority operation over Ti.
By Proposition 9, every relation δij in ∆ is closed under {mxi ,mxj}. That is, each δij is
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a relation in Γ and thus ∆ is an instance of CΓ . By Theorem 6, we have the result that
establishing strong path-consistency ensures global consistency for ∆. ut

Proposition 9 considers only tree domains. We can also generalise it to forest domains.

Definition 17 Given a forest domain Fx with trees {t1, ..., tn}, the standard majority op-
eration mx for Fx is defined as:

mx(a, b, c) =


πab ∩ πbc ∩ πac if a, b, c ∈ ti (1 ≤ i ≤ n),

a if a, b ∈ ti, c ∈ tj ; or a, c ∈ ti, b ∈ tj (i 6= j),
b if a ∈ ti, b, c ∈ tj (i 6= j),
a if a ∈ ti, b ∈ tj , c ∈ tk (i 6= j 6= k).

We note that the order of a, b, c matters. That is, for example, mx(a, b, c) may not be the
same as mx(b, c, a).

Proposition 10 If δ and its inverse δ−1 are both arc-consistent and tree-preserving over
forest domains Fx and Fy , then δ and δ−1 are closed under {mx,my} and {my,mx}
respectively.

Proof Because δ and δ−1 are arc-consistent and tree-preserving, there is a bijection be-
tween trees in Fx = {t1, t2, ..., tn} and trees in Fy = {t′1, t′2, ..., t′n} such that δ(ti) = t′i
and δ−1(t′i) = ti for every 1 ≤ i ≤ n. For any 〈a, a′〉, 〈b, b′〉, 〈c, c′〉 ∈ δ, consider the
following cases separately.

(1) Suppose a, b, c ∈ ti for some ti ∈ Fx. Because δ and δ−1 are tree-preserving, a′, b′, c′

are all in t′i. Then, by Proposition 9, 〈mx(a, b, c),my(a
′, b′, c′)〉 ∈ δ.

(2) Suppose a, b ∈ ti and c ∈ tj , or a, c ∈ ti and b ∈ tj for some i 6= j. We have a′, b′ ∈ t′i
and c′ ∈ t′j , or a′, c′ ∈ t′i and b′ ∈ t′j . Thus 〈mx(a, b, c),my(a

′, b′, c′)〉 = 〈a, a′〉 ∈ δ.
(3) Suppose a ∈ ti and b, c ∈ tj for some i 6= j. We have a′ ∈ t′i and b′, c′ ∈ t′j . Thus
〈mx(a, b, c),my(a

′, b′, c′)〉 = 〈b, b′〉 ∈ δ.
(4) Suppose a ∈ ti, b ∈ tj and c ∈ tk for some pairwise different i, j, k. We have a′ ∈

t′i, b
′ ∈ t′j and c′ ∈ t′k. Thus 〈mx(a, b, c),my(a

′, b′, c′)〉 = 〈a, a′〉 ∈ δ. ut

Remark 3 For the 39 different relations in the trihedral scene labelling problem, 29 of them
are tree-preserving. These 29 relations are all closed under the standard majority operations
defined above for forest domains. As we have expected, the other ten relations are not closed
under the standard majority operations.

7 Experiments

In this section, we report experimental evaluations of local consistency enforcing algorithms
for sparse tree-preserving constraint networks.

As we have shown in Section 4, enforcing strong PPC is sufficient to solve tree-preserving
constraint networks. Although enforcing PPC should be generally faster than enforcing PC
for sparse constraint networks [4], for practical interests, we conduct experimental com-
parisons between PPC algorithms and their counterparts, PC algorithms, for solving sparse
tree-preserving constraint networks. We consider two competitive strong PC algorithms,
sDC1 [29,30] and PC2001 [3], for comparisons. It is worthwhile to note that sDC1 is a
strong dual consistency (DC) enforcing algorithm and DC has been shown to be equal to
PC for binary constraint networks [29,30]. Just like PC, DC considers every distinct pair
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Fig. 13 Performance evaluation of different local consistency algorithms for solving tree-preserving con-
straint networks with different densities. We set n = 100, d = 30 and l = 0.5.

of variables of binary constraint networks. However, conservative DC (CDC) only consid-
ers a pair {vi, vj} if there is a constraint δvivj imposed on it. As Proposition 7 suggests
strong CDC is equivalent to strong PPC for tree-preserving constraint networks with trian-
gulated constraint graphs, we adopt the efficient strong CDC enforcing algorithm sCDC1 to
enforce strong PPC on such networks. We also devise another strong PPC algorithm, called
PPC2001, upon the algorithm PC2001. We do it by modifying PC2001 to enforce PC on a
triangulation instead of the completion of the input constraint graph.

By Proposition 9, the class of tree-preserving constraints is closed under the standard
majority operation, and thus tree-preserving constraint networks can also be solved by en-
forcing singleton arc-consistency (SAC) (see e.g., [6]). We also include two state-of-the-art
SAC algorithms, SAC3-SDS [1] and SAC-opt [2], for comparisons. However, it is worth-
while to note that it is unknown whether enforcing SAC would enable backtrack-free search
for tree-preserving constraint networks.

By Proposition 7, a random tree-preserving constraint network can be generated as fol-
lows:

(1) For every domain Dx of the network, generate a random tree Tx for with vertex set Dx.
(2) For each pair of variables x and y, generate an arc-consistent relation δxy ⊆ Dx ×Dy

s.t. δxy is closed under {mx,my}.

Four parameters are used to generate a random tree-preserving network: (1) n - the
number of variables, (2) d - the size of the domains, (3) ρ - the density of the constraint graph
(i.e. the ratio of non-universal constraints to n2), (4) l - the looseness of the constraints (i.e.
the ratio of the number of allowed tuples to d2).

All constraints are represented as Boolean matrices. Experimentation was carried out on
a computer with an Inter Core i5 processor with a frequency of 2.9 GHz per CPU core, 8
GB of RAM, and the MAC OSX. The experimental platform is Eclipse with JDK 8.

Experimental results are presented in Fig. 13, where each test is averaged over 20 in-
stances. We can observe that lower densities of constraint graphs do not benefit the perfor-
mances of sCDC1 and PC2001 much. On the other hand, SAC3-SDS, SAC-opt, sCDC1
and PPC2001 are all exploiting the sparsity of constraint networks. In particular, they
all perform better when constraint networks are sparser. The PPC algorithms sCDC1 and
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PPC2001 can outperform their counterparts, the PC algorithms sCD1 and PC2001, by up
to a factor of 7 and 3.5 respectively. Moreover, sCDC1 beats all the other considered algo-
rithms.

SAC3-SDS performs reasonably well for sparse tree-preserving constraint networks and
is comparable to PPC2001. It also outperforms SAC-opt roughly by a factor of 2, but its
performance is about twice worse than that of sCDC1. Unexpectedly, sDC1 is comparable
to SAC-opt for sparse tree-preserving constraint networks, because SAC is a weaker consis-
tency condition than PC and thus SAC algorithms are usually expected to be more efficient
than PC algorithms.

8 Conclusion

The study of tractable subclasses of constraint satisfaction problems is one of the most im-
portant research problems in artificial intelligence. In this paper, we studied three tractable
subclasses of tree convex constraints, which are generalisations of the well-known row con-
vex constraint. We proved that enforcing strong path-consistency decides the consistency of
a tree-preserving constraint network and, if no inconsistency is detected, transforms the net-
work into a globally consistent constraint network. Actually, we proved this by two meth-
ods. The first method directly proved that enforcing strong path-consistency transforms a
tree-preserving constraint network into a path-consistent tree-preserving network, while the
second method relied on the characterisation of tree-preserving constraints by closure un-
der majority operations. Since every arc-consistent chain- or path-preserving constraint is a
tree-preserving constraint, we got a tractable subclass of CSPs that is genuinely larger than
the subclass of CRC constraints. We further showed that PPC algorithms can be applied to
solve tree-preserving constraint networks in a backtrack-free style, which is more efficient
than using a standard path-consistency algorithm. As an application, we proved that every
relation used in the trihedral scene labelling problem can be modelled by a tree convex con-
straint, and, among these different relations (39 in total), 29 are tree-preserving constraints.
This means that a large tractable subclass of the NP-hard trihedral scene labelling prob-
lem can be solved by the techniques discussed in this paper. As the class of tree-preserving
constraints has the Helly property as stated in Lemma 1, it is not difficult to show that the
deterministic distributed algorithm for solving CRC constraints, proposed in [25] and called
D∆CRC, can also be adapted to solving tree-preserving constraints.
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Appendix: Proofs

Lemma 5 Let ∆ be an arc-consistent and tree-preserving constraint network over tree do-
mains Tx (x ∈ V ). Suppose x ∈ V andMa,b is a trunk in Tx. When restricted to Tx	Ma,b

and enforcing arc-consistency, ∆ remains tree-preserving if no inconsistency is detected.
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Proof The proof of this result heavily uses Lemma 13 and Proposition 2.
First, we consider how trunks propagate in the network. Starting from the trunk Ma,b

in Tx, we get, as in Lemma 13, a unique trunk May,by in Ty for each y 6= x in V if
δxy(a) ∪ δxy(b) is not connected in Ty . Furthermore, each trunk May,by (in Ty) will also
propagate in the network, obtaining a (possibly new) trunk Mayz,byz

in Tz for each z 6= y.
Continuing this way, we stop until no new trunks are generated. Since there are finitely many
different trunks in each tree domain, the process will stop in a finite number of steps. Write
Ty for the set of trunks obtained for variable y. We note that nodes in these trunks have to
be deleted from the corresponding tree domain to maintain arc-consistency.

We next amalgamate these trunks in each Ty . By Lemma 11, the union of two connected
trunks can be the whole tree, a branch, or a larger trunk. Similarly, we can prove that if a
trunk and a branch are connected, then their union is a branch, a trunk, or the whole tree. If
the union of all trunks in a Ty is the whole tree, viz. Ty , then the network is inconsistent. In
the following, we assume that this is not the case. This implies that the trunks in Ty can be
merged into a set of pairwise disconnected maximal trunks and maximal branches. Let ty
be the subtree of Ty obtained after removing all these maximal branches. We now restrict
the constraint network to subtrees ty (y ∈ V ) and enforce arc-consistency. By Corollary 1
and Proposition 2, we get a new arc-consistent tree-preserving network ∆′ over smaller tree
domains, say T ′y (y ∈ V ), if no inconsistency is detected.

Consider the original trunkMa,b in Tx. IfMa,b∩T ′x = ∅ or T ′x ⊆Ma,b, then we need
do nothing as the network is either tree-preserving or trivially inconsistent after contracting
Ma,b. If Ma,b ∩ T ′x is a branch of T ′x, then we use Corollary 1 again and transform ∆′ into
a new arc-consistent and tree-preserving network if no inconsistency is detected. If neither
of the above happens, then Ma,b ∩ T ′x is a trunk in T ′x. We repeat the above process again
and again until no new branches are generated.

From now on, we suppose that no branches are obtained by merging trunks in any Ty .
Furthermore, for each variable y, we denote byMT y the set of maximal trunks of Ty after
amalgamation. We contract the maximal trunks inMT y one by one and write T ∗y for the
contracted tree.

For any two variables y 6= z, we show that δyz , when restricted to T ∗y and T ∗z , remains
tree-preserving. SupposeMT y = {Ma1,b1 , ...,Mak,bk} and assume, without loss of gen-
erality, that the first m ≤ k trunks satisfy the precondition of Lemma 13, i.e. δyz(ai) ∪
δyz(bi) is disconnected for 1 ≤ i ≤ m. By Lemma 13, there exists a unique trunk Ma′i,b

′
i

in Tz such that a′i ∈ δyz(ai), b′i ∈ δyz(bi) and δzy(Ma′i,b
′
i
) ⊆Mai,bi for each 1 ≤ i ≤ m.

Let MN y = {Ma1,b1 , ...,Mam,bm} andNz = {Ma′1,b
′
1
, ...,Ma′m,b

′
m
}. Note that

trunks inNz are not necessarily maximal. LetMa′′i ,b
′′
i

be the maximal trunk inMT z which
contains Ma′i,b

′
i
.2 We writeMN z = {Ma′′1 ,b

′′
1
, ...,Ma′′m,b

′′
m
}. We now show how to con-

tract these trunks so that we get T ∗y and T ∗z while preserving the tree-preserving property.
First, we contract all maximal trunks inMT y that are not inMN y . Because the images

of the two nodes ai, bi under δyz are connected in Tz , the constraint δyz remains tree-
preserving after the contraction. Let T ′y be the resultant tree domain of y.

Second, we contract all maximal trunks inMN y from T ′y and contract all correspond-
ing trunks in Nz from Tz . Clearly, the resultant tree domain of y is exactly T ∗y . Denote by
T ′z the resultant tree domain of z. By Lemma 13, δyz is tree-preserving when restricted to
T ∗y and T ′z . Note that, after the contraction of Ma′i,b

′
i

from Tz , Ma′′i ,b
′′
i

becomes a trunk in

2 Since no branches can be obtained by merging trunks in Tz , we know that Ma′i,b
′
i

is contained in a
maximal trunk.
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Fig. 14 Illustration of proof of Lemma 7.

T ′z . We then contract all these trunks together with all other maximal trunks inMT z from
T ′z . The resultant tree domain is exactly T ∗z .

We show that δyz is still tree-preserving when restricted to T ∗y and T ∗z . Given any sub-
tree t of T ∗y , because δyz is tree-preserving w.r.t. T ∗y and T ′z , we know t′ ≡ δyz(t) is a
nonempty subtree of T ′z . By Lemma 12 we know t′ is a (possibly empty) subtree of T ∗z .
This proves that δyz is still tree-preserving when restricted to T ∗y and T ∗z .

Because the arbitrariness of y, z above, we know every δuw, in particular δzy , is tree-
preserving w.r.t. T ∗u and T ∗w. Note that these constraints are not necessarily arc-consistent.
By Proposition 2 again, we transform these constraints into arc-consistent constraints while
remaining tree-preserving. In summary, we know that, when restricted to Tx 	Ma,b and
enforcing arc-consistency, ∆ remains tree-preserving if no inconsistency is detected. ut

Lemma 6 Assume δxy and δ′xy are two arc-consistent and tree-preserving constraints w.r.t.
trees Tx and Ty . Let δ∗xy = δxy ∩ δ′xy . Let W = {w ∈ Tx | δ∗xy(w) 6= ∅} be the set of
supported values of δ∗xy . Suppose u ∈ Tx and u 6∈ W . Then there exist at most two values
w1, w2 in W s.t. no value in W other than wi is on the path πwi,u for i = 1, 2.

Proof Suppose w1, w2, w3 are three supported values of δ∗xy in Tx s.t. no value in W other
than wj is on the path πwj ,u for 1 ≤ j ≤ 3. Take w′i ∈ δ∗xy(wi) (i = 1, 2, 3). Let
{u1} = πw1,w2 ∩πw1,w3 ∩πw2,w3 and {u′1} = πw′1,w′2 ∩πw′1,w′3 ∩πw′2,w′3 . By the choice
ofw1, w2, w3, they cannot be on a same path. In particular, u1 is different fromw1, w2, w3.
Furthermore, since u1 is on πw1,w2 , it must be on either πu,w1 or πu,w2 . In either case, we
have u1 is not in W .

Because δxy is tree-preserving, from wi, wj ∈ δyx(πw′i,w′j ), we know πwi,wj is con-
tained in δyx(πw′i,w′j ) for any 1 ≤ i 6= j ≤ 3. In particular, u1 is in δyx(πw′i,w′j ). In other
words, δxy(u1) ∩ πw′i,w′j 6= ∅. By Lemma 1, we know δxy(u1) ∩ πw′1,w′2 ∩ πw′1,w′3 ∩
πw′2,w′3 6= ∅. Because {u′1} = πw′1,w′2 ∩ πw′1,w′3 ∩ πw′2,w′3 , we know u′1 ∈ δxy(u1). Anal-
ogously, we have u′1 ∈ δ′xy(u1) and, hence, u1 is a value in W . This is a contradiction.
Therefore, there exist at most two values w1, w2 in W s.t. no value in W other than wj is
on the path πwj ,u for i = 1, 2. ut

Lemma 7 Suppose δxy and δ′xy are arc-consistent and tree-preserving constraints w.r.t.
trees Tx and Ty and so are δyx and δ′yx. Let δ∗xy = δxy ∩ δ′xy . Assume {u, v} is an edge in
Tx s.t. δ∗xy(u) 6= ∅, δ∗xy(v) 6= ∅, and δ∗xy(u) ∪ δ∗xy(v) is disconnected in Ty . Then there
exist unique r ∈ δ∗xy(u) and s ∈ δ∗xy(v) s.t. every node in Mr,s is unsupported under δ∗yx.

Proof Write Tr = δ∗xy(u) and Ts = δ∗xy(v). Clearly, Tr and Ts are nonempty subtrees of
Ty . Since they are disconnected, there exist (unique) r ∈ Tr , s ∈ Ts s.t. πr,s∩ (Tr ∪Ts) =
{r, s} (see Fig. 14 for an illustration). Write A = δxy(u), B = δxy(v), C = δ′xy(u) and
D = δ′xy(v). We show every node in Mr,s is not supported under δ∗yx.
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Suppose w is an arbitrary internal node on πr,s. We first show w is not supported under
δ∗yx. Note w ∈ A ∪ B, w ∈ C ∪ D, w 6∈ A ∩ C, and w 6∈ B ∩ D. There are two cases
according to whether w ∈ A. If w ∈ A, then we have w 6∈ C, w ∈ D, and w 6∈ B.
If w 6∈ A, then we have w ∈ B, w 6∈ D, and w ∈ C. Suppose w.l.o.g. w ∈ A. By
w ∈ A = δxy(u), we have u ∈ δyx(w); by w 6∈ B = δxy(v), we have v 6∈ δyx(w).
Similarly, we have u 6∈ δ′yx(w) and v ∈ δ′yx(w). Thus subtree δ′yx(w) is disjoint from
subtree δyx(w). This shows δ∗yx(w) = ∅ and hence w is not supported under δ∗yx.

Second, suppose w1 is an arbitrary node in Mr,s s.t. w1 is in a different branch of w to
r and s, i.e. πw,w1 ∩ (Tr ∪ Ts) = ∅. We show w1 is not supported under δ∗yx either.

Again, we assume w ∈ A. In this case, we have u ∈ δyx(w) ⊆ δyx(πw,w1) and v ∈
δ′yx(w) ⊆ δ′yx(πw,w1). As πw,w1∩(Tr∪Ts) = ∅, we have πw,w1∩Tr = πw,w1∩A∩C =
∅. As πw,w1 ∩ A 6= ∅ and A ∩ C 6= ∅, by Lemma 1, we must have πw,w1 ∩ δ′xy(u) =
∅. This shows u 6∈ δ′yx(πw,w1). Similarly, we can show v 6∈ δyx(πw,w1). Thus subtree
δ′yx(πw,w1) is disjoint from subtree δyx(πw,w1) and, hence, δ∗yx(πw,w1) = ∅. This proves
that w1 is unsupported under δ∗yx either.

In summary, every node in Mr,s is unsupported. ut

The following simple properties are used to assist the proofs of Lemmas 5-7.

Lemma 10 Suppose Ma,b and u are, respectively, a trunk and a node of tree T . Let ta =
{w ∈ T | a ∈ πw,b} and tb = {w ∈ T | b ∈ πw,a}. Then

(i) a ∈ ta, b ∈ tb, a, b 6∈ Ma,b. Moreover, ta and tb are subtrees of T separated by Ma,b

and {ta, tb,Ma,b} is a partition of T .
(ii) u 6∈ Ma,b iff a ∈ πu,b or b ∈ πu,a; if u ∈ Ma,b, then πu,a ⊆ Ma,b ∪ {a} and

πu,b ⊆Ma,b ∪ {b}.

Proof Take a as the root of T . Let a1 be the child of a that is on the path πa,b. Then ta is
the subtree obtained by removing the subtree rooted at a1, and tb is the subtree rooted at b.
The results are then clear. ut

The next lemma considers the union of two connected trucks.

Lemma 11 SupposeMa,b andMc,d are two trunks of tree T = (V,E). ThenMa,b∪Mc,d

is connected if and only if either (i) Ma,b ∩ Mc,d 6= ∅ or (ii) there exist x ∈ {a, b},
y ∈ {c, d} s.t. {x, y} is an edge in T and x ∈ Mc,d, y ∈ Ma,b. Moreover, if Ma,b ∪Mc,d

is connected, then it is T , or a trunk or branch of T .

Proof If either (i) or (ii) holds, then clearlyMa,b∪Mc,d is connected. SupposeMa,b∪Mc,d

is connected butMa,b∩Mc,d = ∅, we show (ii) holds. BecauseMa,b∪Mc,d is connected,
there exist u ∈ Ma,b, v ∈ Mc,d such that {u, v} is an edge in T . In addition, because
Ma,b ∩Mc,d = ∅, we have v 6∈Ma,b, u 6∈Mc,d. Then by Lemma 10, we know a ∈ πv,b
or b ∈ πv,a, and c ∈ πu,d or d ∈ πu,c. Without loss of generality, suppose a ∈ πv,b and
c ∈ πu,d. From a ∈ πv,b and u ∈ Ma,b, we have u ∈ πv,b. Because u is a neighbour
of v, this is possible only if v = a and u ∈ πa,b. Analogously, we also have u = c and
v ∈ πc,d. Therefore, we have {a, c} ∈ E, c ∈ Ma,b and a ∈ Mc,d. Note that in this case
Ma,b ∪Mc,d =Mb,d is another trunk.

We next suppose Ma,b ∩ Mc,d 6= ∅ and c, d /∈ Ma,b. We show that a ∈ Mc,d iff
b ∈ Mc,d. Suppose otherwise a ∈ Mc,d but b 6∈ Mc,d. Then by b 6∈ Mc,d and Lemma 10
we have either c ∈ πb,d or d ∈ πb,c. In either case, by a ∈ Mc,d and Lemma 10, we have
c ∈ πa,b or d ∈ πa,b, which contradicts the assumption that c, d 6∈ Ma,b. Thus, we have
a ∈Mc,d iff b ∈Mc,d.
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Fig. 15 Possible configurations of two connected trunks Ma,b and Mc,d, where Ma,b ∪Mc,d is the whole
tree in (c) and (d), a trunk in (a), (b) and (f), and a branch in (e).

We now consider the following possible cases (symmetric cases are omitted):
(1) Suppose c, d /∈ Ma,b and a, b /∈ Mc,d. By Lemma 10, we have a ∈ πc,b or b ∈

πc,a, a ∈ πd,b or b ∈ πd,a, c ∈ πa,d or d ∈ πa,c, and c ∈ πb,d or d ∈ πb,c. Since
Ma,b ∩Mc,d 6= ∅, it is straightforward to show that {a, b} = {c, d} and Ma,b =Mc,d.

(2) Suppose c, d /∈ Ma,b and a, b ∈ Mc,d. Because c, d 6∈ Mc,d, we know a, b, c, d are
pairwise different. Moreover, we have a ∈ πc,b or b ∈ πc,a, and a ∈ πd,b or b ∈ πd,a. We
can prove that Ma,b ∪Mc,d = Mc,d is a trunk. There are two possible configurations (see
Fig. 15 (a) and (b)).

(3) Suppose c, d ∈ Ma,b and a, b ∈ Mc,d. Then, a, b, c, d are pairwise different. We
can prove that Ma,b ∪Mc,d is the whole tree. There are two possible configurations (see
Fig. 15(c) and (d)).

(4) Suppose c, d ∈Ma,b, a ∈Mc,d, but b /∈Mc,d. Then a, b, c, d are pairwise different.
We can prove that Ma,b ∪ Mc,d is a branch of b. There is only one possible graph (see
Fig. 15(e)).

(5) Suppose c ∈ Ma,b, d /∈ Ma,b, a ∈ Mc,d, and b /∈ Mc,d. Then c 6= a, b and
a 6= c, d, but it is possible that b = d. In this case, we can prove that a, c ∈ πd,b, a ∈ πd,c,
and c ∈ πa,b (see Fig. 15(f)). Moreover, we have Ma,b ∪Mc,d =Md,b is a trunk. ut

The next lemma considers what happens to a subtree when we contract a trunk from the
tree domain.

Lemma 12 SupposeMa,b and t are, respectively, a trunk and a subtree of tree T . If t is not
contained in Ma,b, then t, when restricted to T 	Ma,b, is also a subtree of Tx 	Ma,b.

Proof Let ta = {u ∈ T | a ∈ πu,b} and tb = {u ∈ T | b ∈ πu,a}. By Lemma 10, a ∈ ta,
b ∈ tb, ta and tb are two subtrees separated by Ma,b, and {ta, tb,Ma,b} is a partition of T .

If t ⊆ Ma,b, then all nodes in t are deleted after the contraction of T by Ma,b; if
t∩Ma,b = ∅, then no nodes in t are deleted after the contraction of T byMa,b; if t 6⊆Ma,b

and t ∩Ma,b 6= ∅, there are three subcases. First, if t ∩ ta 6= ∅ and t ∩ tb 6= ∅, then both
a, b are in t. After contraction, t is the union of two subtrees t ∩ ta and t ∩ tb, which are
connected by the new edge {a, b}. Hence, t is still a subtree. Second, if t ∩ ta 6= ∅ but
t ∩ tb = ∅, then a ∈ t but b 6∈ t. After contraction, t will be replaced by t ∩ ta. Third, if
t ∩ ta = ∅ and t ∩ tb 6= ∅, then, after contraction, t will be replaced by t ∩ tb. ut

Given a tree-preserving constraint δxy w.r.t. tree domains Tx and Ty . Suppose a, b are
two nodes in Tx s.t. δxy(a)∪δxy(b) is not connected in Ty . We now consider how to modify
Ty so that δxy remains tree-preserving after contracting trunk Ma,b from Tx.

Lemma 13 Suppose δxy and δyx are arc-consistent and tree-preserving w.r.t. tree domains
Tx and Ty . Let a, b be two nodes in Tx s.t. δxy(a) ∪ δxy(b) is not connected in Ty . Then
there exist unique r, s ∈ Ty s.t. r ∈ δxy(a), s ∈ δxy(b), and δyx(Mr,s) ⊆Ma,b. Moreover,
δxy and δyx are tree-preserving when restricted to Tx 	Ma,b and Ty 	Mr,s.
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Fig. 16 Illustration of proof of Lemma 13.

Proof Choose r ∈ δxy(a) and s ∈ δxy(b) such that the path πr,s from r to s in Ty is a
shortest one among {πr′,s′ : r′ ∈ δxy(a), s′ ∈ δxy(b)} (see Fig. 16 for an illustration). In
particular, we have πr,s ∩ (δxy(a) ∪ δxy(b)) = {r, s}. We assert that the image of every
node v in Mr,s under δyx is contained in Ma,b. Suppose otherwise and there exists u in
Tx \Ma,b s.t. (u, v) ∈ δxy . Assume that u is in the same connected component as a. Since
the subtree δyx(πv,s) contains u and b, it also contains a. This implies that there is a node
v′ on πv,s which is in δxy(a). This is impossible as v ∈ Mr,s and δxy(a) ∩ πr,s = {r}.
Therefore δyx(v) ⊆Ma,b for any v ∈Mr,s. Hence δyx(Mr,s) ⊆Ma,b holds.

It is clear that, when restricted to Tx 	Ma,b and Ty 	Mr,s, δxy({a, b}) is connected
and so is δyx({r, s}). For any other edge {a′, b′} in Tx 	Ma,b, by δyx(Mr,s) ⊆ Ma,b,
δxy({a′, b′}) ∩Mr,s = ∅ and the image of {a′, b′} is unchanged (hence connected) after
the M-contraction of Ty . This shows that δxy is consecutive when restricted to Tx 	Ma,b.
Furthermore, for every node c in Tx 	Ma,b, since c is supported by a node in Ty 	Mr,s,
we know that δxy(c) is a nonempty subtree in Ty . By Lemma 12 and δxy(c) ∩Mr,s = ∅,
we know δxy(c) ∩ (Ty 	Mr,s) is also a nonempty subtree in Ty 	Mr,s. This shows that
δxy is tree-preserving when restricted to Tx 	Ma,b and Ty 	Mr,s. On the other hand,
for any subtree t in Ty 	 Mr,s, w.l.o.g., assume that r, s ∈ t. Then δyx(t) = δyx(t ∩
tr) ∪ δyx(t ∩ ts), where tr and ts are the two connected components of Ty separated by
Mr,s. Because both δyx(t ∩ tr) and δyx(t ∩ ts) are subtrees in Tx and, hence, subtrees in
Tx 	Ma,b by Lemma 12. By a ∈ δyx(t ∩ tr) and b ∈ δyx(t ∩ ts), we know δyx(t) is a
subtree of Ty 	Mr,s. This shows that δyx is tree-preserving when restricted to Tx 	Ma,b

and Ty 	Mr,s. ut

It is possible that there is a node v ∈ Ty 	Mr,s s.t. δyx(v) ⊆ Ma,b, but the image of
Tx 	Ma,b under the restricted δxy is a subtree of Ty 	Mr,s.
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