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Abstract
This paper addresses social network embedding,
which aims to embed social network nodes, in-
cluding user profile information, into a latent low-
dimensional space. Most of the existing works on
network embedding only consider network struc-
ture, but ignore user-generated content that could
be potentially helpful in learning a better joint
network representation. Different from rich node
content in citation networks, user profile informa-
tion in social networks is useful but noisy, sparse,
and incomplete. To properly utilize this informa-
tion, we propose a new algorithm called User Pro-
file Preserving Social Network Embedding (UPP-
SNE), which incorporates user profile with net-
work structure to jointly learn a vector represen-
tation of a social network. The theme of UPP-
SNE is to embed user profile information via a non-
linear mapping into a consistent subspace, where
network structure is seamlessly encoded to jointly
learn informative node representations. Extensive
experiments on four real-world social networks
show that compared to state-of-the-art baselines,
our method learns better social network represen-
tations and achieves substantial performance gains
in node classification and clustering tasks.

1 Introduction
The huge growth of online social networks, e.g., Facebook,
Twitter, Google Talk, Wechat, etc., has revolutionized a new
way for people to connect, express themselves, and share
content with others in today’s cyber society. Users in on-
line social networks are connected with each other to form
a social graph (e.g., the friendship graph). One of the most
critical problems in social network analysis is the automatic
classification of users into meaningful groups based on their
social graphs, which has many useful practical applications
such as user search, targeted advertising and recommendation
systems. Therefore, it is essential to accurately learn use-
ful information from social networks. One promising strat-
egy is to learn a vector representation of a social network:
each network node is represented as a low-dimensional vec-
tor such that the information conveyed by the original social

network can be effectively captured. As a result, existing ma-
chine learning methods can be directly applied in the low-
dimensional vector space to perform network analytic tasks
such as node classification, network clustering, etc.

Recently, a series of algorithms have been proposed
for network representation learning (NRL), such as Deep-
Walk [Perozzi et al., 2014], LINE [Tang et al., 2015],
GraRep [Cao et al., 2015], and node2vec [Grover and
Leskovec, 2016]. These approaches have been shown to
be effective in a variety of network analytic tasks, ranging
from node classification [Sen et al., 2008], anomaly detec-
tion [Bhuyan et al., 2014], community detection [Yang et
al., 2013], to link prediction [Lü and Zhou, 2011]. However,
most of them have considered network structure only, e.g., the
links between nodes, but ignored other user-generated content
(e.g., text, user profiles) that could potentially benefit network
representation learning and subsequent analytic tasks.

In this paper, we are mainly concerned about the problem
of social network embedding, which embeds each user in a
social network into a latent low-dimensional space. In so-
cial networks, users are not only connected by social rela-
tionships (e.g., friendship or the follower-followee relation-
ship), but they are also associated with user profile infor-
mation, consisting of attributes such as gender, geographic
location, interests, or school/affiliation. Such profile in-
formation can reflect and affect the forming of community
structures and social circles [Leskovec and Mcauley, 2012;
Yang et al., 2013]. Motivated by the fact that user profile in-
formation is potentially helpful in learning a better joint net-
work representation, we focus on studying how user profile
information can be leveraged and incorporated into the learn-
ing of social network representations.

Indeed, several very recently developed algorithms [Yang
et al., 2015; Pan et al., 2016] have attempted to utilize node
content information, such as textual features of each node in
citation networks, for effective network representation learn-
ing. These existing works have confirmed that node content
indeed provides crucial information to learn better network
representations. However, as we will soon demonstrate in
Section 5, these methods are mainly designed to consider
consistent node content, but fail to work for user profiles in
social networks. This is mainly attributed to two reasons.
First, today’s online social networks rely on users to manually
input profile attributes, so attributes in profiles could be very
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Table 1: Characteristics of information sources used for network
embedding

Info. Sources Consistency Sparsity Noise Incompleteness

Structure Medium High Medium Low
Node content High Medium Low Low
User profile Low High High High

sparse, incomplete, and noisy. The values of user profile at-
tributes are often long-tail distributed, and the values of some
attributes like school or address may occur very infrequently
or are simply missing. Second, different from node content
such as posts and comments that are topic-centric, user pro-
files are depicted by user attributes on different dimensions,
such as interests, or school/affiliation, and the values on these
dimensions are completely distinct and inconsistent. It is thus
very difficult to find useful information from user profiles that
could complement network structure towards learning a joint
vector representation of social networks.

In Table 1, we summarize major characteristics of informa-
tion sources available for network embedding. Our analysis
and empirical study confirm that user profiles are largely dif-
ferent from node content features, and therefore existing rich
node content based network embedding methods are ineffec-
tive in handling user profiles for representation learning.

To overcome the above-mentioned difficulties, we propose
a new algorithm called User Profile Preserving Social Net-
work Embedding (UPP-SNE), which incorporates user pro-
file information with network structure to jointly learn a vec-
tor representation of social networks. The theme of the UPP-
SNE algorithm is to learn a joint embedding representation
by performing a non-linear mapping on user profiles guided
by network structure. In this feature reconstruction process,
network structure helps filter out noisy information from user
profiles and embed them into a consistent subspace, into
which topology structure is seamlessly encoded to jointly
learn an informative embedding representation. The inter-
play between user profile information and network structure
enables them to complement with each other towards learn-
ing a joint network representation that preserves both network
proximity and user profile affinity. The effectiveness of the
UPP-SNE algorithm is validated on four real-world social
networks for the tasks of node classification and clustering.
Experimental results show that, UPP-SNE’s representation
yields superior performance to the state-of-the-art baselines.

The main contribution of this paper is threefold:

• We introduce user profile preserving social network em-
bedding, in which user profiles that widely exist in social
networks are leveraged for effective and informative so-
cial network embedding;
• We propose UPP-SNE that employs a non-linear map-

ping to incorporate noisy, sparse, and incomplete user
profile with network structure to learn joint embeddings;
• We empirically evaluate the effectiveness of the pro-

posed algorithm through node classification and clus-
tering tasks on real-world social networks, showing its
superior performance to the state-of-the-art baselines.

2 Related Work
In this section, we review two lines of NRL algorithms,
namely network structure preserving NRL methods that are
based on network structure only, and content augmented NRL
methods that combine node content with network structure to
enhance network representation learning.

2.1 Network Structure Preserving NRL Methods
DeepWalk [Perozzi et al., 2014] is one of the pioneer works
for learning node representations in networks. Following
the idea of Skip-Gram [Mikolov et al., 2013], DeepWalk
generates node context using truncated random walks and
learns node representations that allow the nodes sharing sim-
ilar node context to be represented similarly. LINE [Tang
et al., 2015] formulates a more clear objective function to
preserve the first-order proximity and the second-order prox-
imity. GraRep [Cao et al., 2015] further considers higher
order proximities that describe the representation similarity
between nodes sharing indirect neighbors. Very recently,
SDNE [Wang et al., 2016] is proposed to learn non-linear
network representations by applying deep autoencoder model
on node adjacent matrix and exploiting the first-order prox-
imity as supervised information. To capture both the lo-
cal and global network structure, node2vec [Grover and
Leskovec, 2016] exploits biased random walks to generate
context nodes, and then applies DeepWalk [Perozzi et al.,
2014] to learn node representations. The above NRL algo-
rithms consider only network structure, without taking ad-
vantage of user-generated content widely available in social
networks to learn more informative network representations.

2.2 Content Augmented NRL Methods
Text-associated DeepWalk (TADW) [Yang et al., 2015] is the
first attempt to import textual features into NRL. By proving
DeepWalk is equivalent to matrix factorization, TADW incor-
porates textural features into network embedding through ma-
trix factorization. TADW can be regarded as a special case of
our proposed algorithm where a linear mapping is performed
on node content features. TriNDR [Pan et al., 2016] further
exploits supervised labels to learn better node representations
by modeling the inter-node relationship, node-word correla-
tion and label-word correspondence. TADW and TriNDR are
both designed for information networks with rich text con-
tent on node features (e.g., citation networks), but are ineffec-
tive for social networks with noisy user profile information.
LANE [Huang et al., 2017] proposes to learn three types of
latent node representations via spectral techniques from the
node content-level similarity matrix, network adjacent matrix
and node label-level similarity matrix, and project them into
a common embedding space. TriDNR and LANE primar-
ily focus on utilizing supervised labels to enhance network
representation learning. From their reported results, label in-
formation contributes more to performance gains, while the
potential of node content is not sufficiently exploited.

3 Problem Definition
We consider that a social network is given as an undirected
social graph G = (V , E), where V is the set of nodes and E
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is the set of edges. Each node vi ∈ V is characterized by a
d-dimensional feature vector xi that describes its profile in-
formation. Social network embedding aims to map each node
vi ∈ V into a low-dimensional space, and the mapped image
Φ(vi) of node vi is taken as the learned node representation.

The learned network representations should satisfy three
properties: (1) low-dimensional, i.e., the dimension of the
learned representations should be much smaller than the di-
mension of the original adjacent matrix representation, |V|;
(2) network structure preserving, i.e., the original network
structure is fully preserved in the embedded space; and (3)
user profile preserving, i.e., user profile information is suffi-
ciently exploited to complement network structure for learn-
ing a joint vector representation. Note that, we focus on user
profiles in this study, but our problem can be flexibly gener-
alized to handle other modalities of node content.

4 User Profile Preserving Social Network
Embedding

In this section, we first review preliminaries on DeepWalk,
and then describe our proposed solution in detail.

4.1 DeepWalk
DeepWalk [Perozzi et al., 2014] generalizes the Skip-Gram
model from word representation learning to the learning of
node representations in a network. Given a random walk
node sequence Sr = {vr1 , vr2 , . . . , vr|Sr|

} on the given net-
work, DeepWalk learns a representation for node vri by
using it to predict its context nodes within t-window size
{vri−t , . . . , vri+t}\vri . This is achieved by maximizing the
conditional probability of the occurrence of context nodes
given the current node:

max
Φ

log Pr({vri−t , . . . , vri+t}\vri |Φ(vri)). (1)

By making conditional independence assumption, the proba-
bility Pr({vri−t

, . . . , vri+t
}\vri |Φ(vri)) is calculated as

Pr({vri−t , . . . , vri+t}\vri |Φ(vri)) =

j=i+t∏
j=i−t,j 6=i

Pr(vrj |Φ(vri)).

(2)
Above, the probability Pr(vrj |Φ(vri)) is modeled by soft-
max:

Pr(vrj |Φ(vri)) =
exp(Ψ(vrj ) · Φ(vri))∑
v∈V exp(Ψ(v) · Φ(vri))

, (3)

where Φ(v) and Ψ(v) is the input and output representation
of node v, respectively.

4.2 The UPP-SNE Algorithm
For DeepWalk, the representation of node vi, Φ(vi), is
learned from scratch, which is independent of node content
features. However, as confirmed by existing works (e.g.,
[Yang et al., 2015; Pan et al., 2016]), node content can pro-
vide crucial information to enhance network representation
learning. Thus, we propose to construct node representations
via a non-linear mapping from node profile features ϕ(xi):

Φ(vi) = ϕ(xi). (4)

Kernel mapping is a common choice for non-linear mapping,
in which ϕ(xi) could be infinite dimensional. However, ac-
cording to [Rahimi et al., 2007], the infinite dimensional ker-
nel space can be approximated by some low-dimensional fea-
ture space, which provides the potential for ϕ(x) to be low-
dimensional. As shown in [Rahimi et al., 2007], for shift-
invariant kernels, the approximated low-dimensional feature
mapping ϕ(·) can be written as (with high probability):

xi → ϕ(xi) =
1√
m

[
cos(µT

1 xi), · · · , cos(µT
mxi),

sin(µT
1 xi), · · · , sin(µT

mxi)
]T
,

(5)

where {µ1, · · · ,µm} are the m projection directions sam-
pled according to the distribution from the Fourier transform
of the kernel function.

In social networks, user profile attributes and network
structure are highly interrelated. For example, users with sim-
ilar attributes are much more likely to be friends, and groups
of users with common attributes often form dense communi-
ties. Thus, in order to capture this dependency, we propose to
encode network structure into the mapping ϕ(·) in the Deep-
Walk framework, such that noisy information in user profiles
can be filtered out, and useful information consistent with net-
work structure can be preserved in the embedded space.

In DeepWalk, to learn node representation Φ(v) for each
node v ∈ V , we need to solve the joint optimization problem:

min
Φ
−
∑
r

|Sr|∑
i=1

log Pr({vri−t , . . . , vri+t}\vri |Φ(vri)), (6)

By making the conditional independence assumption, Eq. (6)
is reformulated as

min
Φ
−
∑
r

|Sr|∑
i=1

j=i+t∑
j=i−t,j 6=i

log Pr(vrj |Φ(vri)). (7)

For convenience, Eq. (7) can be reformulated as

min
Φ
−
|V|∑
i=1

|V|∑
j=1

n(vi, vj) log Pr(vj |Φ(vi)), (8)

where n(vi, vj) is the number of times that vj occurs in vi’s
context in a given set of random walk sequences. If vj never
occurs in vi’s context, the value of n(vi, vj) is 0.

Following Eq. (3), the probability Pr(vj |Φ(vi)) is mod-
eled by softmax. Here, we set Φ(vi) to ϕ(xi) and we note
Ψ(vj), a 2m-dimensional parameter vector related to vj , as
νj . Therefore, the probability Pr(vj |Φ(vi)) is formulated as

Pr(vj |Φ(vi)) =
exp(νj · ϕ(xi))∑|V|

k=1 exp(νk · ϕ(xi))
. (9)

After substituting Eq. (9) into Eq. (8), and adopting negative
sampling [Gutmann and Hyvärinen, 2012], we can get the
objective function of the optimization task in Eq. (8):

O = −
|V|∑
i=1

|V|∑
j=1

n(vi, vj)

[
log σ(νj · ϕ(xi)) +

K∑
k=1

log σ(−ν
Nk

i
· ϕ(xi))

]
,

(10)
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where σ(·) is the sigmoid function with σ(x) = 1
1+exp(−x)

and Nk
i is the index for the kth sampled negative node for

node vi. To construct node representation Φ(v) for each node
v ∈ V , parameters {µ1, · · · ,µm} and {ν1, · · · ,ν|V|} need
to be solved by the gradient descent algorithm:

µs ← µs − η
∂O
∂µs

, ∀s = 1, · · · ,m;

νs ← νs − η
∂O
∂νs

, ∀s = 1, · · · , |V|;
(11)

where the gradients are calculated as

∂O
∂µs

=−
|V|∑
i=1

|V|∑
j=1

n(vi, vj)

[
σ (−νj · ϕ(xi))

∂ϕ(xi)

∂µs
νj

−
K∑

k=1

σ
(
νNk

i
· ϕ(xi)

) ∂ϕ(xi)

∂µs
νNk

i

]
,

(12)

∂O
∂νs

=−
|V|∑
i=1

|V|∑
j=1

n(vi, vj) [1s(j)σ (−νj · ϕ(xi))ϕ(xi)

−
K∑

k=1

1s(Nk
i )σ

(
νNk

i
· ϕ(xi)

)
ϕ(xi)

]
,

(13)

where ∂ϕ(xi)
∂µs

is a d × 2m Jacobian matrix. 1s(·) is an indi-
cator function, which is defined as

1s(x) =

{
1 if x = s,

0 if x 6= s.
(14)

The learning rate η is specified by line search.

Algorithm 1 The UPP-SNE Algorithm

Input: a given social network G = (V, E);
Output: node representation Φ(v) for each node v ∈ V;
1: start random walk from each node by γ times;
2: count n(u, v) for each node context pair {u, v} in all ran-

dom walk sequences;
3: generate K negative samples N1

i , · · · , NK
i for each vi;

4: initialize {µs}ms=1 and {νs}|V|s=1 with random numbers;
5: repeat
6: calculate ∂O

∂µs
for each s according to Eq. (12);

7: specify learning rate η for updating µ by line search;
8: update µs for each s according to Eq. (11);
9: calculate ∂O

∂νs
for each s according to Eq. (13);

10: specify learning rate η for updating ν by line search;
11: update νs for each s according to Eq. (11);
12: until convergence or a certain # of iterations
13: construct Φ(v) for each v ∈ V with {µs}ms=1;
14: return Φ(v) for each v ∈ V .

The description of the UPP-SNE algorithm is given in Al-
gorithm 1. In line 1-2, for each node acting as a starting
node, γ random walk sequences are generated to calculate
the statistics n(vi, vj). In line 5-12, to solve the optimization
problem of Eq. (8), gradient descent iteration is used, which
contributes to the main time consumption of our algorithm.

During the iteration, the most time-consuming steps are line 6
and line 9, i.e., the calculation of ∂O

∂µs
and ∂O

∂νs
for each s. The

time complexity of line 6 and line 9 is O(nnz(n) ·m · d̄ ·K)
and O(nnz(n) · m · K), respectively, where nnz(n) is the
number of non-zero entries of n(vi, vj) and d̄ is the averaged
number of non-zero entries of node profile feature xi. As the
sparsity of matrix n(vi, vj) and profile feature xi is utilized,
the calculation is efficient.

5 Experiments
We evaluate the validity of the proposed algorithm through
node classification and clustering tasks.

5.1 Benchmark Social Networks
We perform experiments on four real-world social networks
listed as follows:

Google+1 is an ego-network of a Google+ user and nodes
in this network represent the user’s friends. There are
1206 nodes and 66918 links in this network. We use peo-
ple’s gender as class label. Each node is described by a
940-dimensional bag-of-words vector constructed from tree-
structured user profiles [Leskovec and Mcauley, 2012].

Ego-Facebook1 is an ego-network of a Facebook user.
This network consists of 755 nodes and 60050 links. People’s
education type is used as class label. Each node is described
by a 477-dimensional vector [Leskovec and Mcauley, 2012].

Hamilton and Rochester2 are two of the collection of 100
US university Facebook networks [Traud et al., 2012]. The
two networks contain 2118 nodes, 87486 edges, and 4145
nodes, 145305 edges respectively. Each node’s profile is de-
scribed by 7 user attributes: student/faculty status flag, gen-
der, major, second major/minor, dorm/house, year, and high
school. We select student/faculty status flag as class label and
construct a 144-dimensional, and a 235-dimensional binary
feature vector for Hamilton and Rochester, respectively.

5.2 Baseline Methods
We compare our algorithm with two groups of baselines:
Network Structure Preserving NRL algorithms
• DeepWalk [Perozzi et al., 2014] learns network rep-

resentations with Skip-Gram model by using random
walks to generate context for each node.
• LINE-1 [Tang et al., 2015] is the version of LINE that

models the first-order proximity.
• LINE-2 [Tang et al., 2015] is the version of LINE that

models the second-order proximity.
• node2vec [Grover and Leskovec, 2016] uses biased ran-

dom walks to capture both local and global structure.
Content Augmented NRL algorithms
• TADW [Yang et al., 2015] learns node representations

by encoding node text features into the matrix factoriza-
tion version of DeepWalk. It can be considered as a de-
graded version of UPP-SNE that uses a linear mapping.

1https://snap.stanford.edu/data/
2https://escience.rpi.edu/data/DA/fb100/
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Table 2: Node classification accuracy (%) on Google+

Training Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

DeepWalk 55.24 56.51 60.85 62.17 63.41 62.30 65.86 66.08 67.06 67.39
LINE-1 52.46 54.97 58.28 59.81 60.74 61.30 62.27 63.08 63.67 63.37
LINE-2 52.14 56.24 58.78 61.18 62.49 63.33 64.83 64.83 65.81 65.50
node2vec 55.69 56.27 60.27 62.29 62.85 61.69 65.15 65.76 66.94 66.38
TADW 52.61 57.14 59.39 64.61 66.22 67.91 69.89 70.27 71.89 71.72
LANE 50.40 54.13 55.21 55.34 54.96 55.79 55.87 56.70 56.50 57.25
UPP-SNE 61.86 69.99 69.20 69.78 70.33 70.95 70.37 69.11 68.92 68.46

Table 3: Node classification accuracy (%) on Hamilton

Training Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

DeepWalk 84.64 86.76 87.63 89.40 89.67 90.11 90.37 90.81 90.79 90.51
LINE-1 80.68 83.16 83.98 86.94 87.36 88.22 89.11 89.56 89.89 89.90
LINE-2 80.23 82.41 83.03 86.78 86.79 87.87 88.36 89.05 89.15 89.55
node2vec 85.16 87.46 88.01 90.18 90.14 90.62 90.89 91.45 91.38 91.20
TADW 81.57 84.00 85.27 87.54 87.48 88.48 88.56 89.92 89.11 89.33
LANE 79.54 80.04 79.96 81.43 81.16 82.27 82.94 83.62 83.34 84.34
UPP-SNE 85.35 86.89 89.14 90.68 90.76 91.71 91.79 92.07 92.51 92.41

Table 4: Node classification accuracy (%) on Rochester

Training Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

DeepWalk 82.49 83.58 84.14 84.40 85.08 85.43 85.65 85.71 85.66 86.13
LINE-1 81.41 81.58 82.19 82.90 83.62 84.21 84.67 84.75 84.87 85.47
LINE-2 81.33 81.29 81.80 82.43 83.09 83.71 84.16 84.29 84.43 85.15
node2vec 82.24 82.93 83.29 83.99 84.57 84.99 85.52 85.25 85.33 86.02
TADW 80.68 80.83 81.44 81.70 81.98 82.33 82.83 83.16 83.32 84.26
LANE 80.91 80.90 80.84 80.98 81.10 81.09 81.11 81.22 81.17 81.48
UPP-SNE 83.28 84.88 85.89 86.14 87.20 87.83 87.61 87.82 88.33 88.20

• LANE [Huang et al., 2017] learns three kinds of node
latent representations by preserving node pairwise sim-
ilarity defined by node content, links, and labels, and
project them into a common embedding space. Here,
we only use the version that does not consider labels.

5.3 Parameter Settings
For UPP-SNE, we set the number of random walks per node
γ as 40, the walk length l as 40, the window size t as 10,
and the number of iterations as 40. All baselines use default
parameters as reported. The dimension of learned node rep-
resentations m is set as 128 for all the algorithms.

5.4 Node Classification
We first verify the effectiveness of the UPP-SNE algorithm
for multi-class node classification. To make fair comparisons,
we vary the training ratio from 1% to 10% by an increment
of 1%. For each training ratio, we randomly split the training
set and test set for 10 times and report the averaged accuracy.

Tables 2-4 report the classification accuracy of all the algo-
rithms on Google+, Hamilton and Rochester, where the best
results are bold-faced. We can see that, in most cases, UPP-
SNE outperforms both network structure preserving baselines
and content augmented baselines. On Google+, UPP-SNE’s
representations achieve the best accuracy on all training ra-
tios except for 8%, 9% and 10%. On Hamilton, UPP-SNE
performs best on 9 out of 10 training ratios. On Rochester,
UPP-SNE beats all baselines on all training ratios.

The performance gains of the UPP-SNE algorithm over
the structure preserving NRL baselines indicate that, with
user profile information being properly exploited, better so-
cial network representations can be learned. This confirms

the usefulness of user profiles in learning social network rep-
resentations and the capacity of UPP-SNE in effectively cap-
turing useful information from user profiles to complement
network structure for learning better user representations.

As reflected on Tables 3 and 4, on Hamilton and Rochester,
TADW performs even worse than the only network structure
preserving NRL algorithms. It implies that, on the two Face-
book networks, structural relationships are more indicative
if noisy user profile information is not properly exploited.
This observation also proves that the linear mapping used by
TADW cannot effectively filter noisy information from user
profiles, thereby degrading its performance.

We can also see that, LANE suffers from the same problem
in exploiting user profiles to learn social network representa-
tions. LANE learns latent user profile and network represen-
tations separately, and project them to get the final represen-
tations. Because the learning of latent user profile represen-
tations and latent network representations is uncorrelated, the
interplay between user profile and network structure is not
well captured, resulting in unsatisfactory performance.

5.5 Node Clustering
To evaluate our method on node clustering tasks, we apply k-
means to the learned representations of nodes and use accu-
racy and NMI [Strehl and Ghosh, 2003] to assess the quality
of the clustering results. We repeat the clustering process 20
times to reduce the sensitivity of k-means to the initial ran-
domly selected centroids, and report the averaged results.

Figure 3 reports the clustering results on Google+ and
Ego-Facebook. As we can see, UPP-SNE consistently yields
the best clustering results. On Google+, compared with the
second best results, UPP-SNE achieves 200% improvement
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Figure 1: Convergence of the objective function
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Figure 2: The effect of parameters m, γ, and t
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Figure 3: The performance of node clustering

over LINE-2 on NMI, and 4% improvement over LANE
on accuracy, demonstrating the superior performance of our
method. On Ego-Facebook, UPP-SNE significantly outper-
forms TADW, yielding 14% and 11% performance gains on
accuracy and NMI. This again confirms UPP-SNE’s better
capability in handling and incorporating noisy user profiles
to learn social network representations.

5.6 Convergence Analysis
We also conduct experiments to investigate the convergence
property of solving the optimization problem in Eq. (8). We
vary the number of iterations from 1 to 60 and plot the corre-
sponding value of the objective function on Google+, Hamil-
ton, and Rochester, as shown in Figure 1. We can see that,
our algorithm can achieve fast convergence within only 10
iterations on the three networks.

5.7 Parameter Sensitivity Study
Experiments are performed to analyze UPP-SNE’s sensitivity
to three parameters: (1) m: the dimension of learned node
representations; (2) γ: the number of random walks from

each node; and (3) t: the window size for collecting context
nodes. In turns, we fix any two of the three parameters and
study the effect of the third one on the classification accuracy.
Figure 2 shows the accuracy of multi-class node classification
on Google+, Hamilton, and Rochester, when the training ratio
is set as 5%. We can see that the performance of UPP-SNE is
stable with respect to different values of the parameters.

6 Conclusion
In this paper, we proposed a user profile preserving social net-
work embedding method. We argued that, although a handful
of methods exist to leverage node content for network repre-
sentation learning, node content and user profile are largely
different; while the former is topic-centric, the latter is noisy,
inconsistent, highly incomplete, and uninformative. As a re-
sult, existing node content augmented network representa-
tion learning methods are ineffective to leverage node pro-
file information. Accordingly, we proposed to use a non-
linear mapping to augment network structure and node profile
information, in order to jointly learn an informative repre-
sentation. Experiments on node classification and clustering
tasks demonstrate the superior performance of the proposed
method in learning effective social network representations.
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