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Abstract

In this paper, an online auto-calibration method for MicroElectroMechanical

Systems (MEMS) triaxial accelerometer (TA) is proposed, which can simulta-

neously identify the time-dependent model structure and its parameters during

the changes of the operating environment. Firstly, the model as well as its as-

sociated cost function is linearized by a new proposed linearization approach.

Then, exploiting an online sparse recursive least square (SPARLS) estimation,

the unknown parameters are identified. In particular, the online sparse re-

cursive method is based on an L1-norm penalized expectation-maximum (EM)

algorithm, which can amend the model automatically by penalizing the insignif-

icant parameters to zero. Furthermore, this method can reduce computational

complexity and be implemented in a low-cost Micro-Controller-Unit (MCU).

Based on the numerical analysis, it can be concluded that the proposed recur-

sive algorithm can calculate the unknown parameters reliably and accurately

for most MEMS triaxial accelerometers available in the market. Additionally,

this method is experimentally validated by comparing the output estimations

before and after calibration under various scenarios, which further confirms its

feasibility and effectiveness for online TA calibration.
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1. Introduction

With the rapid development of the MicroElectroMechanical Systems (MEMS)

technology, recently, the chip-based triaxial accelerometer (TA) improved sig-

nificantly in terms of performance and power consumption. Meanwhile, the

accelerometer integrates with more modules and keeps reducing the size, which5

makes it flexible to be applied in different applications among several areas.

As evidences, these sensors have already been extensively utilized in wearable

health monitoring devices [1],[2],[3],[4] motion tracking systems [5],[6],[7] and

consumer electronic devices [8],[9] including smart phone and smart watch.

Due to the limitation of MEMS technology, the MEMS accelerometer still10

suffers from bias instability, noisy output and daily drift. To remedy these

deficiencies, the calibration of MEMS accelerometers is a necessary step prior

to application of appliance. To calibrate the MEMS accelerometer, conven-

tional calibration methods [10] need to know the exact orientation of the ac-

celerometer. It requires sophisticated equipment (e.g., rotary table) to obtain15

the precise orientation, which is hard to be accessed by the majority of users.

Recently, several papers [11],[12],[13],[14] proposed a new idea for the calibra-

tion of triaxial accelerometer, referred to as auto-calibration, which is suitable

for implementation without sophisticated laboratory equipments. Furthermore,

[15],[16],[17] consummated the auto-calibration by considering the quality of in-20

dividual calibration, in which the selection of experimental observations is well

discussed based on Design of Experiment (DoE). However, the output of MEMS

accelerometer still suffers from drifting caused by ambient temperature [18],[19].

If the accelerometer is intended to be used in multiple environments with sharp

temperature variations, the user may need to frequently re-calibrate their ac-25

celerometers to overcome the variation of calibrated parameters. Therefore, an

online calibration is desired to improve the measurement accuracy.
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To the authors’ best knowledge, most studies, including [11],[14],[20],[21],[22]

focus on offline TA calibration. Only, a few papers [23],[24] are devoted to online

calibration, but the methods proposed are mainly based on classical calibration30

methods that constructed by employing Kalman filter technique. This paper

firstly introduces a new linearization method based on the most commonly used

9-parameter auto-calibration model [13],[16]. After that, a sparse recursive least

square (SPARLS) estimation method [25] is utilized to solve the unknown pa-

rameters. Particularly, we demonstrate that this method is effective while the35

model parameters are varying. Furthermore, based on the characteristic of

L1-norm penalized expectation-maximum (EM) algorithm, this method can au-

tomatically determine the model complexity in an optimal manner. In addition,

this method has successfully been implemented in an embedded Micro Control

Unit (MCU) for online testing. Both simulation and experimental results are40

provided which show the effectiveness of the proposed approach.

The major contributions of the paper can be summarized as follows. Firstly,

it is the first time that the SPARLS algorithm is applied to solve a special non-

linear parameter estimation problem for the auto-calibration of TA, which is

non-convex in nature. Secondly, the proposed approach is able to accurately45

estimate the significant TA parameters in real-time while penalizing the insuffi-

cient parameters converging to zero. Thirdly, the convergence condition of the

iterative approach has been identified and investigated based on vast numerical

simulations. Finally, the effectiveness of the approach has been demonstrated

by both simulation and real-time experiment.50

This paper is organized as follows. In section 2, the linearization method for

9-parameter model is introduced. In section 3, the online estimation method is

presented based on the linearized model. In section 4, both the simulation and

experiment are presented. Section 5 concludes the paper.
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2. Linearization of TA 9-parameter model55

For the autocalibration of triaxial accelerometer, 6-, 9- and 12-parameter

models are widely selected by researchers. In [22], the authors demonstrate

that for most MEMS accelerometers, 6- and 9-parameter models are accurate

enough. For this reason, as the proposed method can automatically adjust the

number of unknown parameters, the 9-parameter model is selected. Let us

define V = [vx, vy, vz]
T as the measurement from accelerometer of each axis

and A = [ax, ay, az]
T as the true local acceleration. The relationship between

the measurement V and the true value A can be expressed as:

A = S · T · (V +O) + ς

= K · (V +O) + ς,
(1)

where O = [ox, oy, oz]
T represents the offset vector, ς is a zero mean white noise

vector, and S represents the scale factor matrix:

S =


Sx 0 0

0 Sy 0

0 0 Sz

 , (2)

where Sx, Sy and Sz denote sensitivity factor for each axis. T is described as:

T =


1 0 0

φxy 1 0

φxz φyz 1

 , (3)

where φxy, φxz and φyz denote error in the alignment of the three single axis

sensors of a complete three-axis accelerometer. K is the product of S and T :

K =


Sx 0 0

Sxφxy Sy 0

Szφxz Szφyz Sz

 ,


kxx 0 0

kxy kyy 0

kxz kyz kzz

 . (4)

The matrix K can be considered as the completed scale factor matrix, where

diagonal elements (kxx, kyy, kzz) and off-diagonal (kxy, kxz, kyz) are sensitivity

scale factors and misalignment elements respectively.
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Based on this model, classical method [10] can solve unknown scale factors

and offsets from K and O directly, but it normally requires high precision

equipment which is hardly accessed by most users. Thus, auto-calibration is

developed and widely used for TA calibration. The idea of auto-calibration

method is that the measurements of triaxial accelerometer should be equal to

local gravity in static state, i.e.,

g =
√
a2x + a2y + a2z. (5)

Based on (5), the error ε̃i for the i-th measurement can be expressed as

follows [13],

ε̃i =a2x,i + a2y,i + a2z,i − g2 i = 1, 2, · · · , n, (6)

where n is the number of total measurements.

Then, with Eq.(1) and Eq.(6), if assume that β is the vector of the unknown

model parameters, the cost function can be often defined as:

J(β) =

n∑
i=1

(
||fβ(Vi)− g2||

)
, (7)

where Vi = [vx,i, vy,i, vz,i]
T (i = 1, 2, · · · , n) is the i-th measurement, and fβ(Vi)60

is a scalar function of Vi. The parameter estimation can then be formulated as

a nonlinear non-convex optimization problem:

β̂ = arg min
β

J(β). (8)

In real life situation, to minimize the effect of environmental temperature,

daily drift and so on, some online calibration methods are proposed. Several

optimization methods [23],[24],[26] are selected to solve this problem based on65

unscented Kalman filter (UKF) [23],[26] or extended Kalman filter [24]. How-

ever, most of these methods are not based on auto-calibration; precise orienta-

tion information is still required. Although existing off-line methods are able to

identify the unknown parameters, it will be inconvenient for users to re-calibrate

frequently.70
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To achieve online calibration by inertial measurement unit (IMU), we pro-

pose a method to linearize the cost function to decrease computational com-

plexity. According to [22], ε̃i in Eq.(6) is the summation of zero mean Gaussian

distribution and Chi-square distribution. Comparing to the Gaussian distribu-

tion component, the Chi-squared distribution part is negligible [22]. Hence, the

error ε̃i can be approximated as normal distribution with zero mean. Based

on Eq.(1) and Eq.(5), the squared form of auto-calibration method of the i-th

measurement is given by:

g2 =
[
kxx

(
vx,i + ox

)]2
+
[
kxy

(
vx,i + ox

)
+ kyy

(
vy,i + oy

)]2
+
[
kxz

(
vx,i + ox

)
+ kyz

(
vy,i + oy

)
+ kzz

(
vz,i + oz

)]2
+ εi,

(9)

where εi is a zero mean white noise. Apparently, Eq.(9) is nonlinear for un-

known parameters kxx, kyy, kzz, kxy, kxz, kyz, ox, oy, oz. Recently, the MEMS

packing and soldering technologies have been improved rapidly, leading to the

reduction of the value of the undesired parameters to a very low level. The

square or product terms of the off-diagonal elements of K and offset O are75

close to zero (kij < 0.01 and Oi < 0.1). To linearize Eq.(9), we can neglect

some terms which have small impact during estimation. Let us expand Eq.(9),

so that several terms contain at least the square of kxy, kxz, kyz, ox, oy, oz or their

products. Furthermore, even for those terms with measurements (vx,i, vy,i, vz,i),

the maximum value of measurements is 1g during calibration. To simply the80

online estimation procedure, let us replace the sum of these terms as ψi for the

i-th measurement, and we will estimate ψi iteratively during online estimating

procedure. Eq.(9) can then be rewritten as:

g − ψi =k2xxv
2
x,i + 2k2xxvx,iox + 2kxykyyvx,ivy,i + k2yyv

2
y,i + 2k2yyvy,ioy

+ k2zzv
2
z,i + 2k2zzvz,ioz + 2kxzkzzvx,ivz,i + 2kyzkzzvy,ivz,i + εi,

(10)

where the residual ψi is assumed as a constant during each iteration, expressed
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as:

ψi =
(
kxy(vx,i + ox)

)2
+
(
kxz(vx,i + ox) + kyz(vy,i + oy)

)2
+ k2xxo

2
x + k2yyo

2
y + k2zzo

2
z

+ 2kxykyy(vx,ioy + vy,iox + oxoy) + 2kxzkzz(vx,ioz + vz,iox + oxoz)

+ 2kyzkzz(vy,ioz + vz,ioy + oyoz).

(11)

After re-arranging the original parameters, a new set of parameters can be

defined as:85



β1 = 2k2xxox

β2 = 2k2yyoy

β3 = 2k2zzoz

β4 = 2kxykyy

β5 = 2kxzkzz

β6 = 2kyzkzz

β7 = k2xx

β8 = k2yy

β9 = k2zz

(12)

Thus, Eq.(10) can be rewritten as:

g − ψi =β1vx,i + β2vy,i + β3vz,i + β4vx,ivy,i + β5vx,ivz,i + β6vy,ivz,i + β7v
2
x,i

+ β8v
2
y,i + β9v

2
z,i + εi.

(13)

Assuming that we have n sets of measurement data, Eq.(13) can be rear-

ranged into a matrix form as:

gn −ψn = Xnβn + εn

yn = Xnβn + εn,
(14)

where the i-th rows of gn, ψn, Xn are g, ψi and [vx,i, vy,i, vz,i, vx,ivy,i, vx,ivz,i,

vy,ivz,i, v
2
x,i, v

2
y,i, v

2
z,i], i ∈ {1, 2, · · · , n} respectively. Vector βn = [β1,n, β2,n,

β3,n, β4,n, β5,n, β6,n, β7,n, β8,n, β9,n]T .
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Therefore, for the i-th measurement, the instantaneous error can be ex-

pressed as:

ei = yi − ŷi

= yi − xiβ̂n,
(15)

where β̂n is the estimated unknown parameters of n times measurements. Hence,

we have the following optimization problem:

β̂n = arg min
βn

fβ(e1, e2, · · · , en). (16)

With a non-negative forgetting factor λ, which is a non-negative constant

scalar, the alternative cost function of Eq.(16) can be adjusted as:

J(βn) =

n∑
i=1

λn−i|ei|2, (17)

which is a well-known cost function that can be solved directly by Recursive

Least Squares(RLS) method. To convert Eq.(17) into matrix form, let us define:

Dn = diag(λn−1, λn−2, · · · , 1), (18)

yn = [y1, y2, · · · , yn]T , (19)

and

Xn =


xT1

xT2
...

xTn


, (20)

where xTi (the i-th row ofXn) is [vx,i, vy,i, vz,i, vx,ivy,i, vx,ivz,i, vy,ivz,i, v
2
x,i, v

2
y,i, v

2
z,i].

Therefore, the RLS cost function can be written in the following form:

J(βn) = ||D1/2
n yn −D1/2

n Xnβ̂n||22, (21)

where the i-th diagonal element d
1/2
ii,n of D

1/2
n is the squared root of the i-th

diagonal element dii,n of Dn, as:

d
1/2
ii,n =

√
dii,n. (22)
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Although Recursive Least Square (RLS) method can be applied to solve the

unknown parameter based on cost function (21), it can not consider the physical

characteristic of MEMS accelerometer. As we know, for the matrixK in (4), the

misalignment error may be quite small due to the improvement of MEMS tech-

nologies. Therefore, instead of applying Akaike information Criterion (AIC) [22]

to determine the true model of a specific accelerometer, we can adopt a spares

recursive least square (SPARLS) [25] method to solve the unknown parameter.

In practice, this method can play a role in reducing the number of undesired

parameters. With a sparse RLS, the model can automatically be selected and

updated in a real-time manner. Based on Eq.(21), the cost function of linearized

auto-calibration model with L1 regularizer can be described as follows:

min
β̂n

1

2σ2
||D1/2

n yn −D1/2
n Xnβ̂n||22 + γ||β̂n||1, (23)

where σ is the standard deviation of noise, γ represents a trade off between

estimation error and sparsity of the parameter, and the term γ||β̂n||1 can be90

considered as L1 regularization. Typically, for L1 regularization, the penalty

term can reduce the overfitting which can lead to the shrinkage of unknown

parameters [27].

3. Online calibration method for Linearized 9-parameter model

After obtaining a linearize auto-calibration model of TA and the correspond-95

ing cost function with L1-norm regularization (23), the parameter estimation

problem can be solved by various optimization methods. Then, we can solve

the original parameter K and O of TA model (1) based on (4) and (12). Here,

we adopt a recursive sparse method from [25], which can remove insignificant

parameters and significantly reduce the computational complexity. With some100

modifications, this method can estimate the removal term ψn recursively, which

results in the reduction of the bias and thereby achieving an accurate estimation

accuracy.

To apply this method, let us recall the linearized TA model (14) with n
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observations:

yn = Xnβn + ξn, (24)

where for online estimation, the error term can be adjusted to ξn ∼ N (0, σ2D−1n ).

For Eq.(24), to solve β̂n without undeserved parameters, penalized log-

likelihood estimation log p(yn|βn) − pen(βn) can be applied where pen rep-

resents penalty. However, for penalized log-likelihood estimation, in general,

it is hard to be maximized directly [28]. Therefore, a penalized expectation-

maximum (EM) algorithm is adopt to maximize the penalized complete log-

likelihood. To estimated βn with penalized expectation-maximum problem, we

decompose ξn as:

ξn = αXnτn +D−1/2n δn, (25)

where α is a positive parameter. τn and δn are independent noise such that:

τn ∼ N (0, I),

δn ∼ N (0, σ2I − α2D1/2
n XnX

T
nD

1/2
n ).

(26)

To guarantee that δn has a positive semi-definite covariance matrix, we105

need to make sure that α2 ≤ σ2/λ1, where λ1 is the largest eigenvalue of

D
1/2
n XnX

T
nD

1/2
n .

Then, based on (25) and (26), Eq.(24) can be rearranged as: vn = βn + ατn

yn = Xnvn +D
−1/2
n δn

(27)

where vn is the hidden variable for penalized EM algorithm.

It is easy to verify that the variance of yn from Eq.(27) is:

Var[yn] = α2XnX
T
n +D

−1/2
n

(
σ2I − α2D

1/2
n XnX

T
nD

1/2
n

)
D
−1/2
n

= σ2D−1n ,
(28)

where it is the same for the variance of yn from Eq.(24).

Thereby, the complete penalized log-likelihood of penalized expectation max-110

imum algorithm can be expressed as log p(yn,vn|βn) − pen(βn) which can be

achieved in two steps. For the expectation step, the condition expectation is
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calculated. For the maximization step, the parameters are computed to maxi-

mize condition expectation [28]. The specific penalized recursive EM method,

which can be applied for solving our particular problem, can be encapsulated in115

the following two steps:

• E-step: Calculate the conditional expectation log p(yn|βn) for Eq.(23),

defined as Q-function Q(βn, β̂
(l)

n ) in the l-th iteration:

Q(βn, β̂
(l)

n ) = E

[
log p(yn,vn|βn)|yn, β̂

(l)

n

]
, (29)

• M-step: Updates the estimated β̂
(l+1)

n based on:

β̂
(l+1)

n = arg max
βn

(
Q(βn, β̂

(l)

n )− pen(β̂
(l)

n )

)
. (30)

Considering the second equation of Eq.(27), when vn is known, yn can be

directly estimated without necessarily known βn, i.e., in this case, yn is indepen-

dent of βn. Therefore, the complete likelihood p(yn,vn|βn) can be simplified

as:

p(yn,vn|βn) = p(yn|vn,βn)p(vn|βn)

= p(yn|vn)p(vn|βn).
(31)

Then, if we define that Σy = σ2D−1n −α2XnX
T
n , the complete log-likelihood

log p(yn,vn|βn) can be computed as:

log p(yn,vn|βn) = log p
(
(yn|vn)p(vn|βn)

)
= log

{
1

2πn/2||Σy||1/2
exp

(
−

(yn −Xnvn)TΣ−1y (yn −Xnvn)

2

)

· 1

2πn/2||α2I||1/2
exp

(
−||vn − βn||2

2α2

)}

= log

{
L1 ·

1

2πn/2||α2I||1/2
exp

(
−||vn − βn||2

2α2

)}

= logL2 −
||vn − βn||2

2α2
,

(32)
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where L1 and L2 are independent of βn. Based on Eq.(29), the Q-function can

be expressed as:

Q(βn, β̂
(l)

n ) = logL2 −
||vn − β̂

(l)

n ||2

2α2
. (33)

After the expectation step, to maximize the Q-function with penalty, the

value of hidden variable vn needs to be calculated first. Since p(vn|yn, β̂
(l)

n ) ∝

p(yn|vn)p(vn|β̂
(l)

n ) from Eq.(31), with Eq.(26) and Eq.(27), we have:

p(yn|vn) = N (Xnvn|σ2D−1n − α2XnX
T
n )

p(vn|β̂
(l)

n ) = N (β̂
(l)

n |α2I).
(34)

Then, with p(vn|yn, β̂
(l)

n ) ∝ p(yn|vn)p(vn|β̂
(l)

n ) and Eq.(34), the estimate

value of the hidden variable v̂
(l)
n can be computed as (details in [29], chapter 2):

v̂(l)n = α2XT
n (α2XnX

T
n + σ2D−1n − α2XnX

T
n )−1(yn −Xnβ̂

(l)

n ) + β̂
(l)

n

=
α2

σ2
XT
nDn(yn −Xnβ̂

(l)

n ) + β̂
(l)

n

=
α2

σ2
XT
nDnyn + (I − α2

σ2
XT
nDnXn)β̂

(l)

n .

(35)

Eventually, with Eq.(33), the penalized maximum likelihood Eq.(30) can be

rewritten as:

β̂
(l+1)

n = arg max
βn

(
Q(βn, β̂

(l)

n )− pen(β̂
(l)

n )

)

= arg max
βn

−||vn − β̂
(l)

n ||2

2α2
− pen(β̂

(l)

n )


= arg max

βn

(
−||vn − β̂

(l)

n ||2 − 2α2pen(β̂
(l)

n )

)
.

(36)

To solve Eq.(36), with L1 regularization, the penalty term pen(β̂
(l)

n ) can be

rewritten as:

pen(β̂
(l)

n ) = γ||β(l)
n ||1 = γ

∑
i

|β(l)
i,n|, i = 1, 2, 3 · · ·M. (37)

where M is the number of unknown parameters and β̂
(l)
i,n is the i-th element of

β̂
(l)

n .
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Therefore, β̂
(l+1)

n can be obtained by applying a soft-threshold function. For

the (l + 1)-th iteration, the i-th element β̂
(l+1)
i,n of β̂

(l+1)

n can be computed by

[28]:

β̂
(l+1)
i,n = sgn(v̂

(l)
i,n)

(
|v̂(l)i,n| − γα

2
)
, (38)

where v̂
(l)
i,n is the i-th element of v̂

(l)
n .

To further increase the accuracy of the estimation, the residual term ψn+1

from Eq.(10) is updated based on the estimated β̂
(t)
i,n after a total of t times of

iteration. For the n-th input, the estimated original parameter matrix K̂n of

Eq.(4) can be solved based on Eq.(12):

k̂xx,n =
√
β̂
(t)
7,n

k̂yy,n =
√
β̂
(t)
8,n

k̂zz,n =
√
β̂
(t)
9,n

k̂xy,n = β̂
(t)
4,n/2

√
β̂
(t)
8,n

k̂xz,n = β̂
(t)
5,n/2

√
β̂
(t)
9,n

k̂yz,n = β̂
(t)
6,n/2

√
β̂
(t)
9,n

ôx,n = β̂
(t)
1,n/2β̂

(t)
7,n

ôy,n = β̂
(t)
2,n/2β̂

(t)
8,n

ôz,n = β̂
(t)
3,n/2β̂

(t)
9,n

(39)

Then, the estimated residual ψ̂n+1 of Eq.(10) can be estimated based on

Eq.(11). For online implementation, assuming that after t-th iteration within

EM algorithm, a new set of data xn+1 is inputted into the system, and the

following updation can be applied to Eq.(35) for the initial estimation of v
(0)
n+1:

v
(0)
n+1 = λ

α2

σ2
XT
nDnyn+

α2

σ2
yn+1xn+1+(I−λα

2

σ2
XT
nDnXn−

α2

σ2
xn+1x

T
n+1)β̂

(t)

n ,

(40)

where yn can be replaced by g− ψ̂n. This procedure can reduce the bias caused

13



by linearization of original TA models of auto-calibration. Therefore, we have:

v
(0)
n+1 = λ

α2

σ2
XT
nDn(g − ψ̂n) +

α2

σ2
(g − ψ̂n+1)xn+1

+ (I − λα
2

σ2
XT
nDnXn −

α2

σ2
xn+1x

T
n+1)β̂

(t)

n .

(41)

To simplify Eq.(41), let us define:

Hn =
α2

σ2
XT
nDn(g − ψ̂n), (42)

and

Rn = I − α2

σ2
XT
nDnXn. (43)

Eq.(40) can then be simplified as:

v
(0)
n+1 = λHn+

α2

σ2
(g− ψ̂n+1)xn+1 +(λRn−

α2

σ2
xn+1x

T
n+1 +(1−λ)I)β̂

(t)

n . (44)

Then, let us recall Eq.(35) and Eq.(38), the relationship between v̂
(l)
n and

v̂
(l−1)
n is:

v̂(l)n =
α2

σ2
XT
nDn(g − ψ̂n) + (I − α2

σ2
XT
nDnXn)β̂

(l)

n

= Hn +Rnsgn(v̂(l−1)n )
(
|v̂(l−1)n | − γα2

)
,

(45)

where the i-th element of sgn(v̂
(l−1)
n )

(
|v̂(l−1)n | − γα2

)
can be computed by:

sgn(v̂
(l)
i,n)

(
|v̂(l)i,n| − γα

2
)

=


v̂
(l)
i,n − γα2 i ∈ U (l)

+

v̂
(l)
i,n + γα2 i ∈ U (l)

−

0 i /∈ U (l)
+ ∪ U

(l)
−

(46)

where U (l)
+ and U (l)

− are sets defined as: U
(l)
+ = {i : v̂

(l)
i,n > γα2}

U (l)
− = {i : v̂

(l)
i,n < −γα2}

(47)

In summation, let us assume we need t times of iteration during EM al-120

gorithm. Then, the complete algorithm for the online TA calibration can be

summarized by Algorithm 1 and Algorithm 2.

14



Algorithm 1 SPARLS

1: Initial: R1 = I − α2

σ2x1x
T
1 , H1 = α2

σ2x1y1, ψ1 = 0 and t.

2: for any xn do,

3: Rn = λRn−1 − α2

σ2xnx
T
n + (1− λ)I.

4: Hn = λHn−1 + α2

σ2 (g − ψ̂n)xn.

5: Run EM (Rn, Hn, β̂n−1, U (l)
+ , U (l)

− , t, TA’s measurement (vx,n, vy,n,

vz,n)).

6: Update β̂n, ψ̂n+1.

7: end for

8: Output: β̂n, ψ̂n

15



Algorithm 2 EM Algorithm for the linearized TA model

1: Input: Rn, Hn, β̂n, U (l)
+ , U (l)

− , t, TA’s measurement (vx,n, vy,n, vz,n).

2: v̂
(0)
n = RUt

+,n
β̂Ut

+,n
+RUt

−,n
β̂Ut

−,n
+Hn.

3: U (0)
+ = {i : v̂

(0)
i,n > γα2}.

4: U (0)
− = {i : v̂

(0)
i,n < −γα2}.

5: for l = 1, 2, 3, · · · , t, do

v̂(l)n = RU(l−1)
+ ,n

(
v̂
(l−1)
U(l−1)

+ ,n
− γα21U(l−1)

+ ,n

)
+RU(l−1)

− ,n

(
v̂
(l−1)
U(l−1)

− ,n
+ γα21U(l−1)

− ,n

)
+Hn.

6: U (l)
+ = {i : v̂

(l)
i,n > γα2}.

7: U (l)
− = {i : v̂

(l)
i,n < −γα2}.

8: end for

9: for i = 1, 2, 3, · · · ,M , do

β̂i,n =


v̂
(l)
i,n − γα2 i ∈ U (l)

+

v̂
(l)
i,n + γα2 i ∈ U (l)

−

0 i /∈ U (l)
+ ∪ U

(l)
−

10: end for

11: Estimate original parameter of (K̂) based on β̂n:

k̂xx,n =
√
β̂7,n

k̂yy,n =
√
β̂8,n

k̂zz,n =
√
β̂9,n

k̂xy,n = β̂4,n/2
√
β̂7,n

k̂xz,n = β̂5,n/2
√
β̂8,n

k̂yz,n = β̂6,n/2
√
β̂9,n

ôx,n = β̂1,n/2β̂7,n

ôy,n = β̂2,n/2β̂8,n

ôz,n = β̂3,n/2β̂9,n

(48)
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12: Estimate ψ̂n based estimated K̂:

ψ̂n =
(
k̂xy,z(vx,n + ôx,n)

)2
+
(
k̂xz,n(vx,n + ôx,n) + k̂yz,n(vy,n + ôy,n)

)2
+ k̂2xx,nô

2
x,n + k̂2yy,nô

2
y,n + k̂2zz,nô

2
z,n

+ 2k̂xy,nk̂yy,n(vx,nôy,n + vy,nôx,n + ôx,nôy,n)

+ 2k̂xz,nk̂zz,n(vx,nôz,n + vz,nôx,n + ôx,nôz,n)

+ 2k̂yz,nk̂zz,n(vy,nôz,n + vz,nôy,n + ôy,nôz,n).

(49)

13: Output: β̂n, ψ̂n, U (t)
+ , U (t)

− .

The region of convergence of the proposed algorithm will be numerically

investigated by numerical simulation in Section 4.

4. Simulation and experimental results125

4.1. Simulation

In real life, we can not access to the true scale factors, offsets and mis-

alignments for individual TAs. Therefore, it is difficult to accurately validate

the performance of proposed calibration method by experiments alone. Mean-

while, it is also difficult to verify whether the proposed calibration method can130

correctly identify the zero parameters by experiments because it depends on

actual MEMS TAs. Hence, simulations are important to validate the proposed

calibration method.

First, the true scale factors, offsets and misalignments were pre-defined for

simulation section. Then, by applying the proposed calibration method, scale135

factors, offsets and misalignments are estimated and compared to pre-defined

true values. Several types of simulations were carried out to examine different

aspects of the proposed method.

Let us examine the performance of the online calibration method under nor-

mal condition first. For MEMS accelerometer, generally, the typical errors of140
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scale factors and offsets are within ±10% and ±0.1g respectively. These can

cause 20◦ difference in angle measurement during orientation in the worst-case

scenario [13]. With current MEMS technology, it is confident to assume the mis-

alignment between each axis is within 5%. In order to obtain reliable results from

simulation, the parameters were generated randomly under the following condi-145

tions: the errors of scale factors follow uniform distributions U(−10%, 10%); the

offsets follow U(−0.1g, 0.1g) and misalignments follow U(−5%, 5%). According

to the datasheets of some recently developed MEMS TAs, the noise density of

the measurements is around 100 ∼ 500ug/
√
Hz for most commercial grade low

cost MEMS TAs. With a typical 100Hz output frequency, the range of noise150

level in g is around 1mg ∼ 5mg. Thus, in this simulation, we used two differ-

ent noise levels, 1mg and 5mg standard deviation with zero mean subject to

Gaussian distribution. For each noise level, 500 ideal points on sphere with ′1g′

radium were generated randomly. Then, with the pre-defined model, these 500

generate points from ′1g′ sphere were converted to observations that noise was155

added based on different noise levels. After that, the proposed calibration were

applied for these 500 observations. We repeated this simulation 100 times for

the two noise levels respectively. Additionally, we set the following initial values

for each unknown parameter:

• Scale factors (kxx, kyy, kzz) : 1160

• Misalignments (kxy, kxz, kyz) : 0

• Offsets (ox,oy,oz) : 0

Since the proposed method is an online method, the first 100 observations are

used to obtain stable estimation. Therefore, only the errors after the initial 100

observations are recorded in Table 1. Besides that, we randomly chose 1 out of165

the 100 simulations with 1mg and 5mg noise levels respectively. Fig. 1 and Fig.

2 show two cases for the proposed method, which is chosen randomly from the

100 simulations.
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Figure 1: Estimated parameters by proposed calibration during online estimation under 1mg

noise level.
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Figure 2: Estimated parameters by proposed calibration during online estimation under 5mg

noise level.
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In order to verify the performance of the proposed calibration during environmental

change, the value of unknown parameters were changed during online calibration.170

For each run of the simulation, we generated a model and 500 observations

based on previous assumption. Then, we randomly increased or decreased the

parameters by 10%. Based on these modified parameters, 500 new observations

were generated. A threshold of 95% is used, when the estimation reaches 95%

of steady state value, the number of observations are recorded in Table.2. For175

this simulation, we focused on scale factor kxx, kyy, kzz because the change of

offset and misalignment is minimal due to its small value and relatively large

noises. We repeated this simulation for 100 times and the noise level was set

to 5mg. Fig.3 shows the estimation results which is randomly chosen from the

100 simulations.180

To verify whether the proposed calibration method can correctly identify the

parameters which are zero, the misalignments were set to zero. Then, the errors

of scale factors still follow a uniform distribution U(−10%, 10%), the offsets

follow U(−0.1g, 0.1g) as previous. For each simulation, 200 observations were

generated and tested for 1mg and 5mg noise level. A total of 100 times of185

simulations were carried out for this step. Fig. 3 and Fig. 4 show a typical

run of simulation for this test. Eventually, all zero parameters were correctly

identified within 100 steps of iteration.
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Figure 3: Sparsity test of proposed calibration method under 1mg noise level.
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Figure 4: Sparsity test of proposed calibration method under 5mg noise level.

The convergence of EM algorithm for linear model has been proved [25].

However, as the model of auto-calibration is nonlinear, the convergence of the190

proposed online EM-based algorithm should still be investigated. The con-

vergence condition for the iterative approach might be similar with that for

6-parameter TA model as presented in [17]. However, comparing with the con-

vergence analysis for 6-parameter model, the major difficulty here is due to the

neglected term ψi. From Eq.(11), it can be observed that ψi is a function of195

input acceleration (vx,i, vy,i, and vz,i), which are randomly changing during

online calibration. This makes the rigorous proof of the convergence becomes

difficult. In this section, we will use Monte Carlo simulation to numerically

show that the convergence of the proposed algorithm is guaranteed if the initial

estimation error of the TA parameters is within a certain range.200

Let us reset the uncertainty range of the unknown parameters: errors of

scale factors kxx, kyy, kzz follow U(−30%, 30%) (i.e., the scale factors are within

the range (−0.7, 1.3)), offsets ox, oy, oz are within the range U(−0.25, 0.25) and

misalignment kxy, kxz, kyz are within the range U(−0.1, 0.1). It should be noted

that almost all MEMS TAs available in the current market are well below these205

error ranges. Now, for each set of simulation, we generated 500 random ob-

version on 1g sphere with 5mg noise density, and we executed 500, 000 sets of

simulation. From the results of 500, 000 sets of simulations, it was seen that

all estimated parameters were convergent. To show the rate of convergence, we

chose two sets of simulation and showed the results in Fig. 5 and Fig. 6. Fig. 6210
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Figure 5: Estimated parameters during online calibration based on the proposed algorithms

with extended error range

shows the initial 200 times of estimation of ψ. It indicates the estimated ψ̂ can

converge to the true value in a short period of time.

However, if we increase the variation ranges of the scale factors and offsets

to U(−40%, 40%) and U(−30%, 30%) respectively, it can be observed that, in

some cases, the estimation does not converge. Fig. 8 and Fig. 9 show a divergent215

case.

4.2. Experiment

To implement the proposed linearization and calibration method, we de-

veloped a health monitoring device which contains SCM (TI F430), IMU (In-
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venSense MPU9150) and featured with Bluetooth module for wireless commu-220

nication in Centre for Health Technologies, University of Technology, Sydney.

From the datasheet of MPU9150, the integrated accelerometer is a digital 3-axis

accelerometer. Therefore, we can apply the 9-parameter model together with

the proposed calibration algorithm for online calibration. The device of the

experiments is shown in Fig. 7.

Figure 7: A self-designed IMU module for the experiment

225

Based on Algorithm 1 and 2, firstly, the accelerometer was randomly placed

in 100 different orientations. Then, we applied the proposed algorithms to cal-

culate scale factors, offsets and misalignments. The outputs from the accelerom-

eter were converted to acceleration with unit g based on standard factory pa-

rameters (i.e., sensitivity) first based on initial lsb/g. During experiments, the230

sampling frequency was set to 100Hz. The output range was selected as ±2g

with 14 bit resolution, which results in 16384 lsb/g. The data was transferred

through Bluetooth directly between computer and IMU module. To evaluate

24



the accuracy of the estimation, we collected another 40 sets of data and esti-

mated the acceleration based on estimation parameters. Furthermore, for the235

performance of parameter variation tracking during the change of temperate,

the IMU module was illuminated by a lamp for 20mins. After that, we collect

another 60 sets of data for online estimation. The results are shown in Fig. 8
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Figure 8: Estimated parameters of 200 set of observations.
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In Fig. 8, the unknown parameters were estimated within 80 observations.

In addition, the variation of parameters of the accelerometer has been identified240

by the proposed algorithm, indicating that the proposed online algorithm can

track parameter variations during temperature changes. Furthermore, in Fig.

8-(c), the misalignment kxz is within the threshold. Therefore, the model is

simplified by assigning k̂xy to zero. This indicates that the proposed algorithm

can adapt to the model structure variation due to the changing of temperature.245

The errors between the vector sum of the estimated accelerations and the local

acceleration ′1g′ of observations 100 to 200 were recorded in Table 2, which

shows that the accuracy of measurements is significantly increased after online

calibration.

Table 2: Estimation error of the vector sum before and after calibration

Error between estimation and local acceleration

mean error [g] standard deviation [g]

Before calibration 0.0917 0.2645

After calibration 0.0003 0.0159

Additionally, to demonstrate the effectiveness of this online calibration method250

during parameter varying, the error of the vector sum based on different esti-

mated parameters is analyzed for the last 40 sets of observations. For group 1,

the error of the vector sum was calculated based on a set of fixed estimated pa-

rameters from the 140th estimations. For group 2, the new estimator from the

online calibration method was used to calculate the error of vector sum. The re-255

sult is reported in Table 3, which indicates that the proposed online calibration

method can significantly improve the measurement accuracy.

We also mounted the accelerometer on a turntable with two degree of free-

dom and recorded the output from 10 different orientations. These 10 ori-

entations were considered as reference orientations, and the errors between the

estimated orientations and reference orientations were calculated. The turntable

has 2 optical rotary stages with 5′ resolution and 0.03mm reading accuracy. For
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Table 3: Error between estimation and local acceleration based on different parameters

Estimation error of vector sum

mean error [g] standard deviation [g]

Group 1 0.0386 0.0142

Group 2 0.0001 0.0084

the first five orientations, we set pitch (p̄) as 0◦, 30◦, 45◦, 60◦ and 90◦ while

yaw and roll remained the same. Then, we repeated this for roll (p̃) while pitch

and yaw remaining the same. Eq.(50) shows the relationship between reference

orientation and initial value:
ax

ay

az


T

=


ax,0

ay,0

az,0


T 

c(p̄) 0 s(p̄)

0 1 0

−s(p̄) 0 c(p̄)




1 0 0

0 c(p̃) −s(p̃)

0 s(p̃) c(p̃)

 , (50)

where [ax,0, ay,0, az,0]T is the initial value [0, 0, 1]T , c and s represent Cosine and

Sine respectively. The estimated [âx, ây, âz]
T was compared with [ax, ay, az]

T .

The results of experiments were analyzed and listed in Table 4. The errors260

between the reference values [ax, ay, az]
T and estimated values [âx, ây, âz]

T were

calculated for these 10 testing orientations. Since we do not know the actual

value of the scale factors, offsets and misalignments, we compared and analyzed

the errors between the reference orientations and the estimated orientations.

Due to the orientation inaccuracy of the turntable, the estimation of the vector265

sum (âvs) should be more accurate than that of the individual acceleration

on each axis. It is also anticipated that the proposed algorithm optimizes the

variance of âvs.
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Table 4: Estimation error of overall acceleration and acceleration components on each axis

Estimation error

Mean Error [g] Standard deviation [g]

εâx 0.0163 0.0075

εây -0.0080 0.0070

εâz -0.00002 0.0030

εâvs 0.0011 0.0100

Overall, the achieved results demonstrate the efficiency of the proposed pa-

rameter estimation method.270

5. Conclusion

In this paper, a linearization method for 9-parameter TA model has been

presented for auto-calibration. To solve the unknown parameters from the lin-

earized model online, a modified sparse least square estimation method was

introduced. The online calibration method can automatically remove the in-275

significant parameters during online calibration. Furthermore, the proposed

calibration method can track parameters when the parameters change due to

daily drift and/or temperature variation.

It should be noted that this study is the very first research that focused on

online calibration with automatic model selection for the auto-calibration of 9280

parameters. Comparing to most previous researches, which were mainly based

on off-line calibration, this method can achieve real-time online calibration of

a 9-parameter auto-calibration model. Furthermore, in contrast with the UKF

based online calibration method [26], the proposed calibration approach has

embedded an L1 norm penalty term for the elimination of the insignificant285

parameters in order to improve the reliability of the calibration.

To verify the presented method, both simulation and experiment were car-

ried out. Based on the simulation results, it can be concluded that the proposed

calibration method can achieve accurate estimation within 50 iterations in most
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cases, and the estimated response has a small mean error and standard devi-290

ation. Furthermore, the results from simulation indicated that the proposed

method can correctly identify the parameters which were zero.

Experiments were performed for the proposed calibration method with a

self-designed IMU. As the true scale factors and displacements were unknown,

the error between the estimated orientations and the reference orientations was295

calculated and analyzed. The experimental results demonstrated that the pro-

posed calibration approach could accurately estimate the vector sum of the three

axes in the whole measurement region.
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human movement by accelerometry, Medical Engineering & Physics 30 (10)

(2008) 1364–1386.

[8] M. Cornacchia, K. Ozcan, Y. Zheng, S. Velipasalar, A survey on activity

detection and classification using wearable sensors, IEEE Sensors Journal

17 (2) (2017) 386–403.325

[9] Y.-W. Bai, S.-C. Wu, C.-L. Tsai, Design and implementation of a fall mon-

itor system by using a 3-axis accelerometer in a smart phone, IEEE Trans-

actions on Consumer Electronics 58 (4).

[10] M. Pedley, High precision calibration of a three-axis accelerometer,

Freescale Semiconductor Application Note, Document Number: AN4399,330

Rev 1.

[11] D. Jurman, M. Jankovec, R. Kamnik, M. Topič, Calibration and data fusion
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