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Abstract.We recently established a novel assignment of the visible absorption spectrum of chlorophyll-a that sees the 
two components Qx and Qy of the low-energy Q band as being intrinsically mixed by non-adiabatic coupling.  This ended 
50 years debate as to the nature of the Q bands, with prior discussion poised only in the language of the Born-
Oppenheimer and Condon approximations. The new assignment presents significant ramifications for exciton transport 
and quantum coherence effects in photosystems. Results from state of the art electronic structure calculations have 
always been used to justify assignments, but quantitative inaccuracies and systematic failures have historically limited 
usefulness. We examine the role of CAM-B3LYP time-dependent density-functional theory (TD-DFT) and Symmetry 
Adapted Cluster-Configuration Interaction (SAC-CI) calculations in first showing that all previous assignments were 
untenable, in justifying the new assignment, in making some extraordinary predictions that were vindicated by the new 
assignment, and in then identifying small but significant anomalies in the extensive experimental data record.     

 

INTRODUCTION 

Recently, we demonstrated a new assignment of the Q-band spectrum of chlorophyll-a (Chl-a) and many other 
chlorophyllides.[1-3]  Its key features, plus those of the previously competitive “traditional” 1960’s [4-7] and 
“modern” 1980’s [8-12] proposals are depicted in FIG. 1.  Shown for Chl-a in ether are the observed absorption 
band contour ( A/ ( ) where A is the absorption coefficient [12] and  is frequency), reflected emission band 
contour (E( )/ 3( ) where E( )=E( )/ 2 is the emission strength [13]), and magnetic circular dichroism (MCD) band 
contour.[12]  The Q-band is made up of two independent electronic transitions Qy and Qx, each with a dominant 
origin band and associated vibrational sideband tail tohigher energy; the lowest-energy band is clearly the intense Qy 
origin, the debated issue concerns the location of the weak Qx origin somewhere amidst the Qy sideband.  As the 
emission is much weaker at Qy+~2000 cm-1 than is the absorption, the Qx origin is likely to be located here, [7] 
leading to the “traditional” assignment.  MCD spectra are like absorption spectra except that Qyappears with positive 
signal whilst the Qx appears negative, and the relative intensity ratios (known as the “B/D ratio”) are very different 
for Qx and Qy.   
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“traditional” assignment.  These aspects again reoccur for the “modern” assignment.  However, good agreement is 
found with our new vibronic-coupling assignment, although free-basechlorophyllides (e.g., pheophytins) appear 
displaced by 1000 cm-1 from metal-containing analogues, and the slopes of the lines of best fit are near 0.75 instead 
of unity.  These differences are attributed to unknown shortcomings of CAM-B3LYP. 

 
 

 
 

FIGURE 3.  CAM-B3LYP calculated Qx-Qy band gaps E are compared to observed values based on the “traditional”, 
“modern”, and our new vibronic-coupling assignment of chlorophyllide spectra.  Red- 6CO species, blue- 5CO species, green- 
free-base species.  The inserts show the changes in E  (scale -2000 to 0 cm-1) from 6CO to 5CO species in the same solvent.   

 
 
When the CAM-B3LYP calculations were completed in 2007,results were difficult to interpret as it was 

unknown as to whether or not the method had delivered the required quantitative accuracy.  In the following years 
we demonstrated that CAM-B3LYP could predict the exciton couplings and energy dispersion amongst chlorophylls 
in Photosystem-I using coordinates from a PW91/6-31(+)G* optimization of the 150000-atom photosystem trimer, 
[29] suggesting that the Qy band is described well. [30]  Later we also showed that it could predict and interpret the 
unexpected large asymmetry between absorption and emission observed for BChl-a, [31] indicating that CAM-
B3LYP gives a good representationQyas a function of Condon-allowed nuclear coordinates.  These results suggested 
that the CAM-B3LYP results for E were reliable, highlightingthe need for a new assignment. 

While the results shown in FIG. 3 then provided strong theoretical endorsement for the new assignment, even 
more important results turned out to be the prediction of a 7-fold variability in the relative Qx intensity, a completely 
unforeseen property that emerged during the spectral fitting to the vibronic-coupling model that was initially 
interpreted as arising from a flawed assignment. [1]  Also, spectroscopic data in ether was initially highly 
inconsistent with the CAM-B3LYP predictions, leading to the discovery that 30 years of critical data had been 
compromised (to a small but significant extent) through trace water contamination.[3] 

In conclusion we see that the availability of high-quality calculated data contributed significantly to the 
understanding that a new assignment was required, and thenwas essential to the establishment of its legitimacy.  The 
assignment not only explains all available experimental data but is also consistent with basic theory.  It was only 
because a wide range of experimental and theoretical data was available that the assignment could be made. 
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