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TRAJECTORY TRACKING CONTROL FOR OFFSHORE BOOM CRANES USING HIGHER-
ORDER SLIDING MODES

ABSTRACT

Shipping and stevedoring industry is going to wése massive increase in the amount of
containers to be handled while land constraintoimecmore critical. Offshore transfer operationsdeen
offer a preferable solution to deal with the suigecargos rather than to expand the port outwards.
Recently, there has been increasing research st¢eva offshore crane automation. Suspended cargos
ship-mounted crane system are caused to swingadthe tvibratory motion of the ship induced by ocean
waves, which can lead to collision between carguod deck. Therefore, it is vital for offshore crane
systems to satisfy rigorous requirements in terrhsalety and efficiency. This paper presents the
modelling and control development for offshore bommamne systems. A second-order sliding mode control
law is proposed for trajectory tracking and swappsession control, making use of its capability of
actuator chattering alleviation while achievingthtgacking performance and preserving strong rotasst
The asymptotic stability of the closed-loop sysierguaranteed in the Lyapunov sense. Simulatioultees
indicate that the proposed controller can signifibareduce the effect of disturbances coming frgumsty
waves and other dynamic loadings.
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INTRODUCTION

One of the fastest growing segments of the worigphg industry is that of containers. It has
been reported that the level of container traffiotigh major ports in America, Europe and Asia has
increases significantly in recent years (Gonzalegrgjillo, 2008; Goodchild & Daganzo, 2007; Lowat,
2009). In response to growth in demand, increabgu Sizes and competition, there has also been near
simultaneous ambitions for many ports to pursueargpn (Fan et al, 2012). However, expanding
outwards is not a feasible solution due to landstraints. As a result, they are examining alteveatvays
to cope with the potential surge in cargo handliegnands (Yin et al., 2011). One way to improve port
efficiency is open-sea ship-to-ship transfer openat which involve the transfer of containers besw
seagoing ships positioned alongside each othéereithile stationary or underway, as shown in Feglr
As a result, port congestion due to the increaseargo ships traffic can be minimized.

Research on cranes' control and automation hasddoon addressing challenges in their offshore
operations (Kuchler et al., 2011; Messineo & Serra@09; Skaare & Egeland, 2006). The synthesis of
feedback control for offshore cranes remains alehgé since the systems involve the presence of
parameter variations, e.g. changes of load dutiegprocess of loading/unloading, and the presefice o
disturbances, e.g. wave- and wind-induced movemesgsides, the presence of obstacles around the
environment, such as harbour and vessel, mustkes tato consideration for the path planning ofdoa
transportation. The models and control strategfethe gantry-type and boom-type offshore craneshav
been reported in Ngo & Hong (2012) and Fang & W#R@12), respectively. However, obtaining the
offshore crane models which reflect their real wiéi and environment, and synthesizing the control
algorithms remains a challenge due to a large nundfiedegrees-of-freedom must be taken into
consideration in developing the cranes' dynamics.



Sliding mode control offers a good capability teadeith uncertainties and nonlinearities of a
plant. The methodology is based on keeping exactyoperly chosen dynamic constraint by means of
high-frequency control switching, and is known abust and very accurate. The first-order slidingdeno
control (1-SMC) has been successfully implementedsirface vessel and offshore crane systems
(Ashrafiuon, 2008; Fahimi, 2007; Ngo & Hong, 20Mj et al., 2012). Unfortunately, 1-SMC general
application may be restricted, i.e., for an outgliding function to be zeroed, the standard slidimgde
may keep the sliding function equal to zero onlthé outputs relative degree is one (Levant, 208igh-
frequency control switching may also cause the sineé chattering effect (Boiko et al., 2010). Highe
order sliding modes remove the relative degreericisn and, if properly designed, can practically
eliminate the chattering. A few numbers of papergehaddressed the application of second-ordemnglidi
mode control (2-SMC) in crane automations. The en@ntations of second-order sliding mode controller
and observer for laboratory gantry cranes conteslehbeen reported in Bartolini et al. (2002) angaRa
Ismail et al. (2012). The development of 2-SMC dantry type offshore crane has also been reponted i
Raja Ismail & Ha (2012).

This paper presents the modelling and control dgreent for offshore boom cranes system. A
second-order sliding mode control (2-SMC) law isgarsed for trajectory tracking and sway suppression
control, making use of its capability of actuatdrattering alleviation while achieving high tracking
performance and preserving strong robustness. Bieotic stability of the closed-loop system is
guaranteed in the Lyapunov sense. Simulation efudicate that the proposed controller can sigaiftly
reduce the effect of disturbances coming from gustyes and other dynamic loadings.

moving deviee

Figure 1 — Offshore boom crane (Neupert et al. 56200

MODELLING OF OFFSHORE BOOM CRANES

The dfshore crane system considered in this study censfsh boom crane mounted on a ship
vessel. The coordinates system of théstlwre crane is shown in Figure 2, whed® x,Yyyzy}
and{ogxzYz2Z5} are respectively represent the coordinate frarhéiseoground and the vessel. The masses

of the boom and the payload are respectively denloyam, andm. The lengthd,, andl are respectively
for the boom and the rope, ahds the height of the towe#. is the luff angle of the boong, is the swing
angle of the payload andis the roll angle of the vessel due to the oceamewThus, the dynamic model
of the dfshore crane system can be cast in the form of

D(a)d +C(a,9)4 +BG+G(q) =, @



where D(q) is the inertia,C(q,q) is the centrifugal-CoriolisB is the friction, andG(q) is the gravity
matrices.

Figure 2 — Mation of the offshore boom crane system

The system matrices are defined as follows:

LM, (AL +wWo) + L2 +212 -2LIsin@-¢)] -mL,cos@-¢ m2’-L]sin@-¢)]
D(q) = —mL, cos@ - ¢) m 0 :
m[21? - Ll sin@@ - ¢)] 0 2ml?

m-L,) cos@-¢)(@- @) -LJsin@-¢@ +2II] m-L,sin@-ge+2d
C(a,9) = mL, sin@ - 96 -2 ¢ 0
m-L,| cos@ - )8 +2lI] 2mlg

mL,| cos@ - @)@ L,Isin@-¢) +2I1]
-2mlg
2mil

B =diag(B,,B,B,), G(q):[%Mbng cosd + mg(L, cosf +1sing) —-mgcosy mgl sin;o]T,

whereg is the gravitational acceleration. The vector efgralized coordinategand the input vectar are
respectively defined ag =[6,,¢]" andt=[z,,f 0]".

In order to find the payload swing angle with regpe the ground coordinate frame, at first we
obtain the position vectqr, of the payload with respect to the vessel cootdiframe{o,x;Y;z;} as

P =X Yo Zol" = 1[0, L, cos@+1sind, h+L,sind—-1cosd]" .

The position vector of the payload coordinates wétpect to the ground coordinate frafogx, Yz} .

namelyp!,, can be obtained by multiplying the augmented tfosivector ofp ,, with the homogenous
transformation matrix



1 O 0 0
B _ 0 1 -sing O
Nlo sing cosp zl|’

0 0 0 1

such thatP, =[x, V., 2z, 1" =ToP,,, wherey andz are respectively the roll and the heave of theseles

while P, =[p; 1]" and P, =[p!, 1]" are the augmented vectors of homogenous repréisentaherefore,
the payload swing angle with respect to the grazomtdinate framgo, x, Yy 2y} , namelyd, is defined as

5= -y =tan™ 3'/m —hsing - L, cos@—w) .
-z, +z+hcogy +L,sin@-y)
SECOND-ORDER SLIDING MODE CONTROL

This section presents the design of the contrabrilgm for trajectory tracking control of the
offshore crane.

The Control Algorithm

The vectors of generalized coordinates can betioatd asq’ =[q.,q.] whereq, andq, are
the actuated and underactuated state vectors teghgc Similarly we partition the input vector as
1" =[u",0"]. The partitioned vectors are defined as follows:

qa:[g!I]Tl qu:qa! U:[Tb, fI]T'

Then (1) can be rewritten as
|:Daa(q) Dau(Q)}Pa}r[Caa(q,Q) Cau(q.Q)}{qa}{Ba O}Pa}{Ga(Q)}{U} @
Dw(@ Dy,@]&,| [Cu@® Cu@a)]a.] |0 B,|a,] [G.@] [0]

By substitutingd, = -D_ (D4, + C,d. + C.4, +B,d, +G,) obtained from the second row of (2) into
the first row, we get the following form

Dd, +Cq, +B,4, +G +f(a,4) =u, ®)
where B = Daa - DauD;L:JLDua ’ 6 = Caa - DaUDJ&Cua y 6 = Ga - DauD;jGu and f(q,q) =

(Cau - DauD;quu)qu - DaUD;&BUQU :

The tracking problem is constituted in finding a ntol action guaranteeing that
lim, ., q(t)=q°(t) , where q°(t) represents the reference trajectories for theovecof generalized
coordinates. By defining the tracking erroreassq—q°, similarly, it can be partitioned a8 =[e! el ],

where

e, =[0-6°1-1°", e =¢p-¢w=7,



in which ey(t) and e (t) are the tracking error vectors of the actuated anderactuated generalized
coordinates.
Let us define the vector of sliding functions as

o=l )2 0-0°+2,(0-6")+ 5+ A0
g, =19+ 2,30 -19)

or in a more convenient form
6=q,-q;, 4
where
ds =42 ~A.(0.—03) ~TO-AJ,

in which A, =diag(4,,4,), A, =[4;,0]" andT =[y,0]". Thus, from (4) the second-order derivative of
the sliding function is

6=£(a.9,u)+D™()u,

where &(q,4,u) = -D(q)[D(@)d, + C(a,a)d, + C(@.Q)d, +G(@,4) +f(a,q)] - &L . It is assumed here
that the second-order derivative of the slidingction is bounded by a known function, i|éi; |<Y; (¥

(Pisano & Usai, 2011). In order to simplify the tmhsynthesis, a constant valtg; is further assumed to
exist such that/}i(")| < Y.
Consider an auxiliary system constituted by a deifttegrator with output; and inputw defined

as
X, =X,
X, = W. (5)
Putting e, =6 — X, yields
€ =g,
€,=6-W,

whereg; is assumed bounded such that { ;. The equivalent control of the system (5) can bioed
once the second-order sliding mode has been egtetllion the manifold; = &, = 0, i.e.w,, =06 =

£(g,G,u) + D*(q)u. This leads to the equivalent representation sfesy (5) as follows:

X =X,

X, =W, =& =&(a,q,u) + D (). ©

The equivalent system (6) can be stabilized bygquéirst-order sliding mode control. Let us defitet
sliding function as

S=X, +A Xy, (7)



whereA, = diag@y, 1). By defining the suitable discontinuous contepl the system (6) can be steered
onto the sliding manifolg@ = 0.

The proposed control algorithms for the controliiive U and the auxiliary control signa
are defined as

U =—(Zy, +77 )signs ®)
w, = (2Y,, +n,)signle; -1&y, ), =12,

wherey; is a positive constant and the definition of cansEy; will be discussed in the next subsection.
Stability of the Equivalent System

From the conditior; = &, = 0 for the equivalent dynamics, we have

X, =6=0,-0,
X, =6 =0, 0, 9)

G, =s—N\, 6 +4;.

To prove the stability of the equivalent systemniiyans of control algorithm (8), we choose the feifg
Lyapunov function candidate

V =1s"Ds.
Then, the derivative of is
V =1(5'Ds+s Ds+s'D3) =s'Ds+1s' Ds.
From (4), (6) and (7), one has
S=X, +A X, =6+ A X, =G, —G. +AX,.
Thus,
V =5"(D{j, - D’ + DA x,) + 15 Ds.

By differentiating (3), it can be shown thﬁu’ja = —6q‘a -Cd, —Eqa -B,4, -G-f (9,9) +u. Hence,
from this equation and the last equation of (9,dkrivative of the Lyapunov function becomes

V =s'[-Dg, -C§, -Cd, ~B,d, -G —f(q,4) - D4, + DA, x, +u] + s'Ds
=s'[-D(s~A,0+d}) ~C(-A,8+(}) ~Ca, ~B,d, -G ~f(0,0) ~ DG} + DA,x, +] +4s'(D-2C)s
=s'[2(0,9,u,9;,95,65.8;) +ul,
given that the matriD - 2C is skew-symmetric while all terms that do not emtthe derivative of
control signalu are lumped into the functioB(). To facilitate the proof, here if we defir®,; as the
bound of this function, i.e E(*)| < Ew;, then by substituting (8) into the last equatibran be shown that

V<-ns's,

which implies that the surface= 0 is globally reached in finite time.



RESULTSAND DISCUSSION

In this study the values of the crane parametersisted asvl, = 30x16 kg, m = 10x16 kg, h =
10 m,L, = 21 mw, = 2.5 m,B = diag(0.1 N-m/rad-3,0.2 N/m-§*,0.1 N-m/rad-s'), andg = 9.8065 mg’.
The mobile harbour heaweand rolly are considered as disturbance, where0.02 sin 1.26m andy =
0.01 sin 1.26rad. The controller parameters used in the sinwatarel; = 2,1, =13 =1,y = 0.5, = 1,

Ewi = 50x16, Yy = 10x16, #; = 30 andeyy = 10, Oi = 1, 2. The initial value of the generalized
coordinates vector is chosen &g, (o, ¢o) = (0 rad, 10 m, O rad). The swing angle respamnsieh will be
presented in this section is the swing angle vépect to the ground coordinate frafnevheres = ¢ — v,

as explained in the second section. The referemgectories are chosen such that 1.2 rad)?= 15 m,
ands®=0 @ =y).

Several scenarios were considered for simulatiorageess the capability of the proposed
controller. The first one is by considering that ghip vessel is stationary, i.e. both its heawkrail are
set to zeroZ = 0 andy = 0) as shown in Figure 3. In this case, the swingle is suppressed which results
a small amplitude of oscillation after a few secotide boom reached its reference luff angle, witiée
rope length reaches its reference after 5 secdrdssecond scenario considered in the study is tivé¢h
presence of both heave and pitch of the vesseisagtothnces to the crane system, such za0.02 sin
1.2% m andy = 0.01 sin 1.26rad. In practical, this situation can occur du¢hi® presence of ocean wave
movements. As shown in Figure 4(b), the maximumlauge of the swing angle increases to 0.03 rad due
to the presence of disturbances. There are alativedly small oscillations in the luff angle andeolength
responses as shown in Figures 4(a) and 4(c) resplgct
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Figure 3 — (a) Luff angle; (b) swing angle; andr@)e length; when the vessel is stationaryzize0 and
w=0.
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Figure 4 — (a) Luff angle; (b) swing angle; andr@)e length; whem = 0.02 sin 1.26m andy =
0.01 sin 1.26rad.

To demonstrate the robustness of the controllerpttyload is varied between 102 Hhd 30x16
kg as shown in Figure 5(d). It is shown that thi¢ &ngle, the swing angle and the rope length reses
are unperturbed by the presence of payload vamiatibich is similar with Figure 4.

CONCLUSION

In this paper we have proposed second-order slidiode control schemes for trajectory tracking
control and sway suppression for an offshore boanesystem. The offshore crane model which cansist
of a boom crane and a ship vessel has been sietplifi order to study the effects heaving and rglif
the vessel. From a chosen sliding surface vectoseand-order sliding mode control law has been
proposed, and the asymptotic stability of the dele®p system in the Lyapunov sense has been pessen
High performance in trajectory tracking and swimgle suppression are obtained either when the Mssse
stationary or navigating with heave and roll moti®obust control performance is also obtained when
system is subject to system disturbances and payladations. Simulation results are provided widate
the effectiveness of the proposed method.
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