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ABSTRACT 

 
Shipping and stevedoring industry is going to witness a massive increase in the amount of 

containers to be handled while land constraints become more critical. Offshore transfer operations hence 
offer a preferable solution to deal with the surge in cargos rather than to expand the port outwards. 
Recently, there has been increasing research interests on offshore crane automation. Suspended cargos in a 
ship-mounted crane system are caused to swing due to the vibratory motion of the ship induced by ocean 
waves, which can lead to collision between cargos and deck. Therefore, it is vital for offshore crane 
systems to satisfy rigorous requirements in terms of safety and efficiency. This paper presents the 
modelling and control development for offshore boom crane systems. A second-order sliding mode control 
law is proposed for trajectory tracking and sway suppression control, making use of its capability of 
actuator chattering alleviation while achieving high tracking performance and preserving strong robustness. 
The asymptotic stability of the closed-loop system is guaranteed in the Lyapunov sense. Simulation results 
indicate that the proposed controller can significantly reduce the effect of disturbances coming from gusty 
waves and other dynamic loadings.  
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INTRODUCTION 
 

One of the fastest growing segments of the world shipping industry is that of containers. It has 
been reported that the level of container traffic through major ports in America, Europe and Asia has 
increases significantly in recent years (González & Trujillo, 2008; Goodchild & Daganzo, 2007; Low et al., 
2009). In response to growth in demand, increased ship sizes and competition, there has also been near 
simultaneous ambitions for many ports to pursue expansion (Fan et al, 2012). However, expanding 
outwards is not a feasible solution due to land constraints. As a result, they are examining alternative ways 
to cope with the potential surge in cargo handling demands (Yin et al., 2011). One way to improve port 
efficiency is open-sea ship-to-ship transfer operations, which involve the transfer of containers between 
seagoing ships positioned alongside each other, either while stationary or underway, as shown in Figure 1. 
As a result, port congestion due to the increased of cargo ships traffic can be minimized. 

Research on cranes' control and automation has focused on addressing challenges in their offshore 
operations (Küchler et al., 2011; Messineo & Serrani, 2009; Skaare & Egeland, 2006). The synthesis of 
feedback control for offshore cranes remains a challenge since the systems involve the presence of 
parameter variations, e.g. changes of load during the process of loading/unloading, and the presence of 
disturbances, e.g. wave- and wind-induced movements. Besides, the presence of obstacles around the 
environment, such as harbour and vessel, must be taken into consideration for the path planning of load 
transportation. The models and control strategies of the gantry-type and boom-type offshore cranes have 
been reported in Ngo & Hong (2012) and Fang & Wang (2012), respectively. However, obtaining the 
offshore crane models which reflect their real motions and environment, and synthesizing the control 
algorithms remains a challenge due to a large number of degrees-of-freedom must be taken into 
consideration in developing the cranes' dynamics. 



 
 

 

Sliding mode control offers a good capability to deal with uncertainties and nonlinearities of a 
plant. The methodology is based on keeping exactly a properly chosen dynamic constraint by means of 
high-frequency control switching, and is known as robust and very accurate. The first-order sliding mode 
control (1-SMC) has been successfully implemented in surface vessel and offshore crane systems 
(Ashrafiuon, 2008; Fahimi, 2007; Ngo & Hong, 2012; Yu et al., 2012). Unfortunately, 1-SMC general 
application may be restricted, i.e., for an output sliding function to be zeroed, the standard sliding mode 
may keep the sliding function equal to zero only if the outputs relative degree is one (Levant, 2007). High-
frequency control switching may also cause the undesired chattering effect (Boiko et al., 2010). Higher-
order sliding modes remove the relative degree restriction and, if properly designed, can practically 
eliminate the chattering. A few numbers of papers have addressed the application of second-order sliding 
mode control (2-SMC) in crane automations. The implementations of second-order sliding mode controller 
and observer for laboratory gantry cranes control have been reported in Bartolini et al. (2002) and Raja 
Ismail et al. (2012). The development of 2-SMC for gantry type offshore crane has also been reported in 
Raja Ismail & Ha (2012). 

This paper presents the modelling and control development for offshore boom cranes system. A 
second-order sliding mode control (2-SMC) law is proposed for trajectory tracking and sway suppression 
control, making use of its capability of actuator chattering alleviation while achieving high tracking 
performance and preserving strong robustness. The asymptotic stability of the closed-loop system is 
guaranteed in the Lyapunov sense. Simulation results indicate that the proposed controller can significantly 
reduce the effect of disturbances coming from gusty waves and other dynamic loadings.  

 

 
Figure 1 – Offshore boom crane (Neupert et al., 2006) 

 
 

MODELLING OF OFFSHORE BOOM CRANES 
 

The offshore crane system considered in this study consists of a boom crane mounted on a ship 
vessel. The coordinates system of the offshore crane is shown in Figure 2, where }{ NNNN zyxo  

and }{ BBBB zyxo  are respectively represent the coordinate frames of the ground and the vessel. The masses 

of the boom and the payload are respectively denoted by mb and m. The lengths Lb and l are respectively 
for the boom and the rope, and h is the height of the tower. θ is the luff angle of the boom, ϕ is the swing 
angle of the payload and ψ is the roll angle of the vessel due to the ocean wave. Thus, the dynamic model 
of the offshore crane system can be cast in the form of 
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where )(qD  is the inertia, ),( qqC &  is the centrifugal-Coriolis, B is the friction, and )(qG  is the gravity 
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Figure 2 – Motion of the offshore boom crane system 

 
 
The system matrices are defined as follows: 
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where g is the gravitational acceleration. The vector of generalized coordinates q and the input vector τ are 

respectively defined as Tl ],,[ φθ=q  and T
lb f ]0,,[τ=τ . 

In order to find the payload swing angle with respect to the ground coordinate frame, at first we 
obtain the position vector pm of the payload with respect to the vessel coordinate frame }{ BBBB zyxo  as 
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The position vector of the payload coordinates with respect to the ground coordinate frame }{ NNNN zyxo , 

namely mp′ , can be obtained by multiplying the augmented position vector of mp with the homogenous 

transformation matrix  
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such that m
B
N

T
mmmm zyx PP T]1,,,[ =′′′=′ , where ψ and z are respectively the roll and the heave of the vessel, 

while TT
mm ]1,[pP =  and TT

mm ]1,[pP ′=′  are the augmented vectors of homogenous representation. Therefore, 

the payload swing angle with respect to the ground coordinate frame }{ NNNN zyxo , namely δ, is defined as 
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SECOND-ORDER SLIDING MODE CONTROL 
 

This section presents the design of the control algorithm for trajectory tracking control of the 
offshore crane.  
 
The Control Algorithm 

 

The vectors of generalized coordinates can be partitioned as ],[ T
u

T
a

T qqq =  where qa and qu are 

the actuated and underactuated state vectors respectively. Similarly we partition the input vector as 

]0,[ TTT uτ = . The partitioned vectors are defined as follows:  
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Then (1) can be rewritten as 
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By substituting )(1
uuuuuuauaauauuu GqBqCqCqDDq ++++−= −

&&&&&&&  obtained from the second row of (2) into 

the first row, we get the following form 
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where uauuauaa DDDDD 1−−= , uauuauaa CDDCC 1−−= , uuuaua GDDGG 1−−=  and =),( qqf &  
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The tracking problem is constituted in finding a control action guaranteeing that 

)()(lim tt d
t qq =∞→ , where )(tdq  represents the reference trajectories for the vectors of generalized 

coordinates. By defining the tracking error as dqqe −= , similarly, it can be partitioned as ],[ T
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in which ea(t) and eu(t) are the tracking error vectors of the actuated and underactuated generalized 
coordinates. 

Let us define the vector of sliding functions as 
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or in a more convenient form 
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in which ),(diag 21 λλ=Λ a , T
u ]0,[ 3λ=Λ  and T]0,[γ=Γ . Thus, from (4) the second-order derivative of 

the sliding function is 
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that the second-order derivative of the sliding function is bounded by a known function, i.e. )(|| ⋅Υ≤ iiσ&&  

(Pisano & Usai, 2011). In order to simplify the control synthesis, a constant value ΥMi is further assumed to 
exist such that |Υi(·)| ≤ ΥMi. 

Consider an auxiliary system constituted by a double integrator with output x1 and input w defined 
as  
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where ε1 is assumed bounded such that |ε1i| ≤ ε1iM. The equivalent control of the system (5) can be obtained 
once the second-order sliding mode has been established on the manifold ε1 = ε2 = 0, i.e. == σw &&eq  

uqDuqq && )(),,( 1−+ξ . This leads to the equivalent representation of system (5) as follows: 
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The equivalent system (6) can be stabilized by using first-order sliding mode control. Let us define the 
sliding function as 
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where Λx = diag(λx1, λx2). By defining the suitable discontinuous control u& , the system (6) can be steered 
onto the sliding manifold s = 0. 

The proposed control algorithms for the control derivative u&  and the auxiliary control signal w 
are defined as   
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where ηi is a positive constant and the definition of constant  ΞMi will be discussed in the next subsection. 
 
Stability of the Equivalent System 

 
From the condition ε1 = ε2 = 0 for the equivalent dynamics, we have 
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To prove the stability of the equivalent system by means of control algorithm (8), we choose the following 
Lyapunov function candidate 
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By differentiating (3), it can be shown that uqqfGqBqCqCqDqD &&&&
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from this equation and the last equation of (9), the derivative of the Lyapunov function becomes 
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given that the matrix CD 2−&  is skew-symmetric while all terms that do not contain the derivative of 
control signal u&  are lumped into the function Ξ(·). To facilitate the proof, here if we define ΞMi as the 
bound of this function, i.e., |Ξ(·)| ≤ ΞMi, then by substituting (8) into the last equation, it can be shown that 
 

ssT
iV η−≤& , 

 
which implies that the surface s = 0 is globally reached in finite time. 



 
 

 

RESULTS AND DISCUSSION 
 

In this study the values of the crane parameters are listed as Mb = 30×103 kg, m = 10×103 kg, h = 
10 m, Lb = 21 m, wb = 2.5 m, B = diag(0.1 N-m/rad-s−1,0.2 N/m-s−1,0.1 N-m/rad-s−1), and g = 9.8065 ms−2. 
The mobile harbour heave z and roll ψ are considered as disturbance, where z = 0.02 sin 1.25t m and ψ = 
0.01 sin 1.25t rad. The controller parameters used in the simulations are λ1 = 2, λ2 = λ3 = 1, γ = 0.5, λxi = 1, 
ΞMi = 50×103, ΥMi = 10×103, ηi = 30 and ε1iM = 10, i∀ = 1, 2. The initial value of the generalized 
coordinates vector is chosen as (θ0, l0, ϕ0) = (0 rad, 10 m, 0 rad). The swing angle response which will be 
presented in this section is the swing angle with respect to the ground coordinate frame δ, where δ = ϕ – ψ, 
as explained in the second section. The reference trajectories are chosen such that θ

d = 1.2 rad, ld = 15 m, 
and δd = 0 (ϕd = ψ). 

Several scenarios were considered for simulation to assess the capability of the proposed 
controller. The first one is by considering that the ship vessel is stationary, i.e. both its heave and roll are 
set to zero (z = 0 and ψ = 0) as shown in Figure 3. In this case, the swing angle is suppressed which results 
a small amplitude of oscillation after a few seconds the boom reached its reference luff angle, while the 
rope length reaches its reference after 5 seconds. The second scenario considered in the study is with the 
presence of both heave and pitch of the vessel as disturbances to the crane system, such that z = 0.02 sin 
1.25t m and ψ = 0.01 sin 1.25t rad. In practical, this situation can occur due to the presence of ocean wave 
movements. As shown in Figure 4(b), the maximum amplitude of the swing angle increases to 0.03 rad due 
to the presence of disturbances. There are also relatively small oscillations in the luff angle and rope length 
responses as shown in Figures 4(a) and 4(c) respectively. 
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Figure 3 – (a) Luff angle; (b) swing angle; and (c) rope length; when the vessel is stationary, i.e. z = 0 and 
ψ = 0. 
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Figure 4 – (a) Luff angle; (b) swing angle; and (c) rope length; when z = 0.02 sin 1.25t m and ψ =  
0.01 sin 1.25t rad. 

 
 

To demonstrate the robustness of the controller, the payload is varied between 10×103 and 30×103 
kg as shown in Figure 5(d). It is shown that the luff angle, the swing angle and the rope length responses 
are unperturbed by the presence of payload variation, which is similar with Figure 4.  

 
 

CONCLUSION 
 
In this paper we have proposed second-order sliding mode control schemes for trajectory tracking 

control and sway suppression for an offshore boom crane system. The offshore crane model which consists 
of a boom crane and a ship vessel has been simplified in order to study the effects heaving and rolling of 
the vessel. From a chosen sliding surface vector, a second-order sliding mode control law has been 
proposed, and the asymptotic stability of the closed-loop system in the Lyapunov sense has been presented. 
High performance in trajectory tracking and swing angle suppression are obtained either when the vessel is 
stationary or navigating with heave and roll motion. Robust control performance is also obtained when the 
system is subject to system disturbances and payload variations. Simulation results are provided to indicate 
the effectiveness of the proposed method. 
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Figure 5 – (a) Luff angle; (b) swing angle; and (c) rope length; and (d) payload mass; when z =  
0.02 sin 1.25t m, ψ = 0.01 sin 1.25t rad, and varying payload. 
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