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Abstract 

Dinoflagellates of the genus Symbiodinium underpin the survival and ecological success of 

corals. The use of cultured strains has been particularly important to disentangle the complex 

life history of Symbiodinium and their contribution to coral host physiology. However, these 

cultures typically harbour abundant bacterial communities which likely play important, but 

currently unknown, roles in Symbiodinium biology. We characterised the bacterial 

communities living in association with a wide phylogenetic diversity of Symbiodinium 

cultures (18 types spanning 5 clades) to define the core Symbiodinium microbiome. Similar to 

other systems, bacteria were nearly two orders of magnitude more numerically abundant than 

Symbiodinium cells and we identified three operational taxonomic units (OTUs) which were 

present in all cultures. These represented the α-proteobacterium Labrenzia and the γ-

proteobacteria Marinobacter and Chromatiaceae. Based on the abundance and functional 

potential of bacteria harboured in these cultures, their contribution to Symbiodinium 

physiology can no longer be ignored. 

Introduction 

Abundant bacterial communities occur in association with reef-building corals, where they 

play critical roles in recycling nutrients and protection against pathogens (Bourne et al. 

2016). Recent research has focussed on identifying the stable and consistent members within 

coral-associated microbial communities in order to better characterise their functional 

importance (Astudillo-Garcia et al. 2017), with “core coral microbiomes” recently 

characterised (Ainsworth et al. 2015). However, despite evidence that microalgae typically 

also live in close association with bacterial partners (Amin et al. 2015; Seymour et al. 2017), 

little is known about the bacterial consortia associated with the key symbiotic partner of 

corals, Symbiodinium.  
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Dinoflagellates of the genus Symbiodinium are globally important primary producers across 

coastal ecosystems, and also form a key symbiotic partnership with reef-building corals 

(Suggett et al. 2017). The genetic and functional diversity of this genus is extremely high 

(Thornhill et al. 2017; Suggett et al. 2015), and the phylogenetic identity of the dominant 

Symbiodinium symbiont directly influences the environmental stress tolerance and recovery 

of their coral hosts (Suggett et al. 2017). Consequently, Symbiodinium biology and its impact 

on the ecological success of reef building corals over space and time, has been a central 

research focus for decades (Warner & Suggett 2016). These dinoflagellates can be cultivated 

ex-hospite in monocultures, which remains a primary platform to understand their biology 

and the complex role they play in coral functioning (Warner & Suggett 2016). However, 

these cultures inherently contain abundant bacterial communities co-isolated with 

Symbiodinium (Ritchie 2011; Shoguchi et al. 2013; Frommlet et al. 2015a). Bacteria are 

involved in sophisticated interactions with microalgae and their complex metabolic 

exchanges typically influence the health and physiological performance of both partners 

(Seymour et al. 2017). To date, the potential roles bacteria may play in Symbiodinium 

physiology have been almost entirely overlooked. We characterised the bacterial 

communities associated with 18 Symbiodinium types (spanning 5 clades; Supporting 

Information Table S1), to define the Symbiodinium core microbiome and thus develop a 

framework for considering the putative functional roles of bacteria in moderating 

Symbiodinium biology.  

Results & Discussion 

Bacterial cells were on average 65 times more numerically abundant than Symbiodinium in 

culture (1.04×10
7
 ± 1.37×10

6
 versus 1.59×10

5
 ± 2.38×10

4
 cells/mL respectively; Fig. 1A), 

which is consistent with bacterial densities commonly reported from other microalgae 
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cultures (Amin et al. 2015). These bacterial communities were also diverse (Supporting 

Information Table S2; Shannon diversity index: 2.72–5.61) and, perhaps notably, their 

composition and structure differed substantially from that typically observed in other 

microalgae cultures and coral-associated communities (Neave et al. 2017; Ainsworth et al. 

2015). For example, the extremely common coral endosymbiont Endozoicomonas (Neave et 

al. 2017) was not detected in any Symbiodinium strains.  

Three different OTUs were present in all Symbiodinium cultures and were identified as core 

members of the Symbiodinium microbiome (Fig. 2; Supporting Information Table S3). These 

OTUs belonged to bacterial genera from the α- and γ-proteobacteria (Fig. 2), and included 

Labrenzia, Marinobacter and an unclassified purple sulfur bacterium from the 

Chromatiaceae family. The most abundant core member, Labrenzia, represented up to 38.4% 

of the Symbiodinium-associated communities (Fig. 1B), has been previously identified in 

corals and other microalgae cultures (Supporting Information Table S7) and is notable for its 

ability to produce dimethylsulfoniopropionate (DMSP) (Curson et al. 2017). High 

concentrations of this compound, which likely plays a role in stress tolerance (Sunda et al. 

2002), are present in Symbiodinium cultures (Steinke et al. 2011) and have until now been 

fully attributed to the microalgae. However, the large proportion of the DMSP-producing 

Labrenzia in Symbiodinium culture illustrates how bacteria might in fact be partially 

responsible for some traits solely ascribed to Symbiodinium. Another core member, 

Marinobacter, has been demonstrated to produce specific siderophores which can provide 

enhanced levels of bioavailable iron to phytoplankton (Amin et al. 2009) and could therefore 

positively impact Symbiodinium growth (Ritchie 2011), this bacteria has also been previously 

identified in Symbiodinium cultures (Frommlet et al. 2015b). Marinobacter, together with the 

last core member, an unclassified Chromatiaceae, have also both been previously reported in 

corals and other microalgae cultures (Supporting Information Table S7). 
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The small numbers of OTUs shared across the 18 Symbiodinium strains investigated here is 

perhaps unsurprising given the large phylogenetic and functional diversity of these 

dinoflagellates (Fig. 1B). Therefore, we also defined the core microbiome for each 

Symbiodinium clade (Fig. 2). The number of OTUs in these clade-specific cores ranged from 

4 in clade A to 35 in clade C (which is potentially a consequence of the lower number of 

clade C representatives used here). Four bacterial genera were present and abundant in more 

than one Symbiodinium clade. These included the Flavobacteria Muricauda and the γ-

proteobacteria, Haliea, Oceanococcus and Algiphilus. Notably, the latter preferentially uses 

polycyclic aromatic hydrocarbons that accumulate on phytoplankton cell surfaces as primary 

carbon sources (Gutierrez et al. 2012). Furthermore, Flavobacteria such as Muricauda are 

known for their association with phytoplankton: they can degrade both high and low 

molecular weight compounds exuded from these cells and secrete surface proteins that might 

facilitate their attachment (Buchan et al. 2014).  

Notably, clade F harboured bacterial communities that were significantly different from all 

other clades (ANOSIM; significance level = 0.1%) and were also the most uniform 

(similarity: 63.50%) (Supporting Information Table S4-S5). Furthermore, some unique core 

members from this clade have potentially been conserved after years of growth in culture 

(Supporting Information Table S1): Gilvibacter represented, on average, 51.4 ± 3.65% of the 

F1 and F1’ Symbiodinium type communities, while only having a mean abundance of 

0.02±0.003% across all other types. These two F1 strains were isolated from Hawaii and 

Heron Island (Australia) respectively (Supporting Information Table S1). This bacterium has 

been isolated from the sediment of tropical marine environments, where F1 Symbiodinium is 

often found in association with Foraminifera (Pochon et al. 2001) and we propose that, given 

its conserved occurrence across two strains isolated 7000 km apart, it is possible that F1 
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Symbiodinium might have coevolved in tight association with this nitrate-reducing bacterium 

(Khan et al. 2007).  

Less than 5% of the hundreds of studies on Symbiodinium cultures have worked with axenic 

cultures (Supporting Information Table S6). Our results clearly show that bacteria are 

abundant and diverse within most Symbiodinium cultures and that some bacteria are 

conserved across the large Symbiodinium phylogenetic diversity, and may be potentially 

responsible for traits that are presently solely attributed to these dinoflagellates. 

Consequently, the role played by bacteria in Symbiodinium physiology should no longer be 

overlooked and future work should precisely target some of the core members identified here 

and clearly resolve the metabolic interactions that likely occur between core bacterial taxa 

and this globally important dinoflagellate.  
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Supporting Information 

Appendix S1. Descriptive information regarding the methods used within this study. 

Table S1. Summary of Symbiodinium ITS2 type, strain identification number, location of 

original isolation, taxa of the cnidarian host species and the time spent in culture. Types are 

organised alphabetically (determined via ITS2 as per Lajeunesse et al. 2012 and Lee et al. 

2015); species names are given where known (as per Suggett et al. 2015). ’ indicates same 

type but different isolation location. 

Table S2. Shannon diversity index (H’) and number of observed species (O_sp.) calculated 

using the QIIME alpha_diversity.py command for bacterial communities present 18 ITS2 

types (in triplicate). Analysis done on rarefied data (to 14000 reads). Colour scale for H’: 

lowest = white, highest = purple; O_sp.: lowest = white, highest = green. 

Table S3. Operational taxonomic units (OTUs) defined as core members of the bacterial 

communities of Symbiodinium cultures and their corresponding GenBank accession numbers. 

Table S4. ANOSIM results on the bacterial communities associated with five clades (A, B, 

C, D & F) of Symbiodinium in cultures.  Significant values in bold.  

Table S5. SIMPER analysis of the bacterial communities associated with five clades (A, B, 

C, D & F) of Symbiodinium in cultures. Showing the main drivers of the cladal similarity and 

dissimilarity.  

Table S6. Web of Science literature search to identify studies on Symbiodinium using 

cultures. Search parameters: Search term “Symbiodinium culture” and “axenic Symbiodinium 

culture. These two lists were cross checked to ensure they did overlap and axenic studies 

were manually checked to ensure viability. All studies that used axenic cultures of 
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Symbiodinium are highlighted (12 studies out of 268 use axenic cultures). Search date: 

27/06/2017. 

Table S7. Summary of studies reporting Labrenzia, Marinobacter and Chromatiaceae 

sequenced or isolated from corals (pale blue) and microalgae (pale green). Literature search 

completed on the 17th of September 2017 using Google Scholar. 

Figure S1. Two-dimensional non-metric MDS plot of bacterial communities associated with 

18 Symbiodinium types generated in PRIMER6. Bray Curtis similarity was used and a square 

root transformation was used. Clades are designated by colour, clade A: red, clade B: orange, 

clade C: yellow, clade D: green, clade F: blue. Clustered according to 60 (grey line) and 80% 

(dotted black line) similarity. 2D stress: 0.18. 

Figure S2. Mean Fv/Fm (± SE, n=3) of Symbiodinium cultures maintained in exponential 

growth. Clades are designated by bar colour according to cladal identity (Red: A, Orange: B, 

Yellow: C, Green: D, Blue: F), ITS2 type is shown on the x-axis 

Figure S3. Rarefaction curves generated in QIIME using alpha_rarefaction.py. Data was then 

rarefied to 14000 sequences per sample.  
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Figure 1. (A) Symbiodinium and bacterial cell concentrations (cells/mL) across 18 cultures of Symbiodinium 
(spanning 5 clades) maintained in exponential growth in IMK medium (Supporting Information Table S1). 
Physiological performance of cultures was monitored using Fast Repetition Rate fluorometry and densities 

were determined by flow cytometry (Appendix S1). (B) Bacterial community composition (relative 
abundance %) of each Symbiodinium type at the genus level, based on extracted bacterial genomic DNA 
and 16S rRNA gene amplicon sequencing (Illumina MiSeq). Sequences were processed using a custom 
pipeline (see Appendix S1 for detail and references) and taxonomy was assigned using SILVA(v128). The 
low abundance category contains the sum of all genera that made up <5% of the community in at least one 

replicate. Bacteria listed in bold are members of Symbiodinium clade cores. UC: Unclassified.  
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Figure 2. (A) The Symbiodinium core microbiome and the individual clade core microbiomes. To be 
considered core, a single OTU (clustered at 97% using vsearch, see Appendix S1) must be present in 100% 

of samples and have a minimum abundance of 0.0001%, each OTU was then identified to the highest 
taxonomic resolution possible. (B) Diagram showing the number of OTUs in each clade core and the overall 

core, exclusively. UC: Unclassified.  
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