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Abstract

This paper focuses on concept drift in business intelligence and data-driven
decision support systems (DSSs). The assumption of a fixed distribution in
the data renders conventional static DSSs inaccurate and unable to make
correct decisions when concept drift occurs. However, it is important to
know when, how, and where concept drift occurs so a DSS can adjust its
decision processing knowledge to adapt to an ever-changing environment at
the appropriate time. This paper presents a data distribution-based concept
drift detection method called fuzzy competence model drift detection (FCM-
DD). By introducing fuzzy sets theory and replacing crisp boundaries with
fuzzy ones, we have improved the competence model to provide a better, more
refined empirical distribution of the data stream. FCM-DD requires no prior
knowledge of the underlying distribution and provides statistical guarantee
of the reliability of the detected drift, based on the theory of bootstrapping.
A series of experiments show that our proposed FCM-DD method can detect
drift more accurately, has good sensitivity, and is robust.
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1. Introduction

Various information systems have been widely used in previous decades,
resulting in the generation of a tremendous amount of unprocessed streaming
data that is waiting to be excavated and analyzed. Concept drift is a big
challenge that must be faced for current business intelligence and data-driven
decision support systems (DSSs) when processing streaming data. It refers
to unpredictable changes that may occur over time in the underlying data
distribution [1]. Current machine learning and DSS research still assumes
that historical data and new data are drawn from a fixed yet unknown dis-
tribution [2], and they are not adaptive; they do not have the ability to detect
or even react to concept drifts. When concept drift occurs, the patterns ex-
cavated from past data may be outdated and may not be suitable to apply to
the new incoming data; hence, a static DSS will make poor decisions leading
to a decrease in prediction accuracy [3]. The phenomenon of concept drift
is very pervasive in many decision-related, real-world applications, such as
user interest change in recommender systems, the emergence of new types of
spam in email filtering systems, or the evolution of fraud methods in elec-
tronic transactions, to name a few [4]. Therefore, adaptive DSSs that can
handle concept drift are extremely important and urgently needed.

In the research area of machine learning, the problem of concept drift
means that the statistical properties of the target variable change over time
in uncertain ways. Concept drift can formally be described as follows: we
denote the data feature vector as x and the corresponding data class label as
y; therefore, streaming data will be an infinite sequence of (x, y) with time
stamp t. The joint distribution of (x, y) at time stamp t is denoted as Pt(x, y).
A concept drift between time stamp t0 and time stamp t1 can be written as
∃x : Pt0(x, y) 6= Pt1(x, y), where t0 refers to the time stamp before the concept
drifts, and t1 refers to the time stamp after the concept drift [5]. Concept
drift can be categorized into three common types: sudden drift, gradual drift,
and re-occurring drift [6, 7]. Minku et al. [8] presented another drift category
based on multiple criteria: drift speed, severity, predictability, frequency, and
recurrence. Since the joint distribution of (x, y) may evolve with time, well-
trained static learning models may lose accuracy and become outdated. At
present, approaches for coping with concept drift can be categorized into two
learning modes: incremental adaptation and drift detection with retraining
[5]. Incremental adaptation approaches [2, 9, 10, 11, 12] continuously adjust
the current model using the most recently available data to track concept
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drift. They might also use a forgetting mechanism, such as instance selection
or instance weighting [13, 14], to discard outdated patterns. Drift detection
retraining approaches [15, 16] usually adopt a lazy learning strategy whereby
drift detection techniques monitor whether concept drift is occurring. When
a drift is detected, the current outdated learning model is discarded, and a
new model is retrained with recent data representing the new concept.

However, due to the lack of explicit drift detection techniques, incremen-
tal adaptations may encounter a significant performance decrease preventing
timely adaptation after a drift has occurred [17]. As well-built DSSs need to
quickly react to environmental changes to make correct decisions, adaptive
DSSs are better suited to cope with drift detection techniques. Most popular
drift detection techniques are usually achieved by a statistical test that mon-
itors the output (error) of the learner [18, 19, 20, 21], the parameters of the
learner [22], or the raw data distribution [23, 24, 25, 26, 17]. The drift detec-
tion methods that monitor the output and the parameters of the learner can
trigger a signal when a concept drift occurs; however, they cannot provide
further information about the concept drift. While, by monitoring variations
in the data distribution, data distribution-based drift detection methods can
reveal information that describes how and where the concept drift has oc-
curred. Information that describes when, how, and where concept drift has
occurred benefits DSSs when adapting to changing environments by adding,
modifying, and deleting their problem process knowledge accordingly.

Motivated by these issues, we propose a novel method called fuzzy com-
petence model drift detection (FCM-DD). FCM-DD can indirectly measure
the change of data distribution via its fuzzy competence model. It requires
no prior knowledge of the raw data distribution. In addition to triggering a
signal when concept drift occurs, our proposed method can also describe the
degree of concept drift and identify where it occurs within the raw data dis-
tribution. By introducing fuzzy sets theory, we can improve the competence
model partition from crisp boundaries to fuzzy boundaries to estimate a more
refined empirical distribution. This makes our proposed drift detection more
sensitive and robust, and it achieves better results as shown in our series of
experiments.

The rest of this paper is organized as follows. Section 2 discusses related
works. Section 3 presents our proposed FCM-DD method. Section 4 de-
scribes and discusses the results of the experimental evaluation. Section 5
concludes this study with suggestions for future work.
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2. Related work

The problem of data distribution-based concept drift detection is briefly
described in Section 2.1. Section 2.2 presents a general framework of data
distribution-based concept drift detection methods, and a review of the es-
tablished literature on data distribution-based drift detection methods. The
limitations of the current research are also identified.

2.1. Problem description of data distribution-based concept drift detection

A generic data distribution-based concept drift detection can be formu-
lated as follows. Let x1,x2, . . . be infinite streaming data, where each data
point xi = (x1, x2, . . . , xd) belongs to a d-dimensional feature space Rd. Con-
cept drift detection works by making a comparison between two sets of data
points in different time windows; one time window, Wt represents the previ-
ous environment, while Wt′ represents the current environment. The window
Wt = {xt−n+1, . . . ,xt} contains a successive sequence of data points ending at
xt of size n. We assume the data points within a window are independent ran-
dom samples drawn from two unknown, multi-dimensional, non-parametric
distributions. Let Ft and Ft′ be unknown distributions of each time window
Wt and Wt′ , respectively. The goal of concept drift detection is to use a
statistical test to verify whether Ft and Ft′ are identical. The null hypoth-
esis H0 : Ft = Ft′ means no concept drift; thus, the alternative hypothesis
H1 : Ft 6= Ft′ means concept drift occurs between time window Wt and Wt′ .
The significance level α is the probability of making an error that Ft and Ft′
are different when, in fact, they are identical.

2.2. Data distribution-based concept drift detection methods

Data distribution-based drift detection methods have the advantage of
sensitive detection and valuable output knowledge (when, how and where
concept drift occurs) since they use raw data points directly instead of
using indirect abstract information (the output or the parameters of the
learner). According to the problem description in Section 2.1, a general data
distribution-based concept drift detection framework consists of three mod-
ules, as shown in Figure 1: 1) data modeling; 2) divergence measurement;
and 3) statistical significance test.

In general, data from real-world applications rarely hold any specific dis-
tribution, and it is unrealistic to obtain an unknown non-parametric dis-
tribution Ft directly from the raw data points Wt. Most drift detection
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Figure 1: A general data distribution-based concept drift detection framework

methods use data modeling to estimate non-parametric empirical distribu-
tion F̂t. Gama et al. [24] used a decision tree to model raw data points;
the class distribution they monitored is reflected on the tree’s leaves. Dasu
et al. [25] claimed to use a kdq-tree as a space partitioning scheme, where
the empirical distribution is derived from the counts of leaf nodes. Sebastiao
and Gama [26] used a histogram constructed from data points to represent
empirical probability distribution. Lu et al. [17] modeled the raw data points
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through a competence model which is used in case-based reasoning systems.
The empirical distribution is reflected upon its competence closure.

A divergence measurement is a quantified value to describe the distance
between two probability distributions. In the drift detection methods area,
it is used to quantify the similarity of estimated empirical distributions F̂t
and F̂t′ . Usually, a lower distance value indicates that two probability dis-
tributions have more similarity. Kifer et al. [23] employed a notation of A-
distance to measure the difference between the two distributions, which, in
fact, is a relaxation of the total variation distance. Lu et al. [17] constructed
a competence-based empirical distance to show the difference between two
data windows, which related the total variation distance to the 1-norm of the
difference between the two probability distributions. Other change detection
methods use information-theoretic distance. For example, Kullback-Leibler
divergence, also called relative entropy, was used in two studies [25, 26]. Vor-
burger and Bernstein [27] presented an entropy-based metric to measure the
distribution inequality between two data windows, where an entropy measure
of 1 indicates that the distributions are equal, and a measure of 0 means they
are totally different.

A statistical significance test is applied to determine whether the diver-
gence measurement is statistically significant. One solution is to use the
Chernoff bound [23], which has several reported advantages, such as being
able to control the rate of false alarm (false positive) and missed detection
(false negative). The bootstrap method [28] is another approach to determin-
ing the significance of a test statistic. It has the advantage of being applied
to a problem that has an unknown, complicated, and non-parametric dis-
tribution, which suits concept drift detection. Dasu et al. [25] applied a
percentile bootstrap method [28] on one estimated empirical distribution F̂t
to construct a critical region. If the divergence measurement of F̂t and F̂t′
falls into this region, they considered that H0 to be invalidated; thus, con-
cept drift occurred. Lu et al. [17] adopted a two-sample non-parametric
permutation test method [28] to approximate the achieved significance level,
or the p-value of the test. If the probability of observing a divergence mea-
surement is less than the user-defined significance level, then a concept drift
has occurred.

All mentioned drift detection methods have different advantages and lim-
itations. Kifer et al.’s [23] work still contains some technical challenges when
applying it to higher-dimensional data environments. Dasu et al.s [25] work
has the ability to locate the drift regions with the greatest differences though
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Kulldorffs spatial scan statistic, while the space partition made by kdq-tree
does not guarantee that the regions of greatest change will coincide with true
and interesting concepts; therefore, the partition may not be easily explained
and understood. Nevertheless, Lu et al.s [17] work achieved better results
because of share distribution contributions, although the way they used crisp
boundaries to model data and estimate rough empirical distribution could
be improved.

3. Fuzzy competence model drift detection

A novel solution for concept drift detection, called fuzzy competence
model drift detection (FCM-DD), is proposed in this paper. An overview
and the top-algorithm of FCM-DD are presented in Section 3.1. FCM-DD
analyses and compares the two data distributions thought empirical distri-
bution constructed by fuzzy competence model instead of the original data
feature space, which is presented in Section 3.2. The fuzzy competence-based
empirical distance is the divergence measurement between the two data sam-
ples, and this is discussed in Section 3.3. Lastly, we apply a permutation
test for the divergence measurement to provide statistical guarantee of the
detected concept drift in Section 3.4.

3.1. Overview

This section begins with an overview of our drift detection method and
a presentation of the main mechanism of the method without mentioning
specific details.

Recall the concept drift detection problem description in Section 2.1. The
purpose of drift detection is to monitor whether the data distribution of new
incoming data differs from the previous environment. In general, we use a
time window Wt = {xt−n+1, . . . ,xt} that consists of data points x of size
n representing the previous environment, and another time window Wt′ to
representing the current environment, where the time stamp t′ > t. If the
underlying data distributions of Wt and Wt′ have a statistically significant
difference, a concept drift has occurred.

Concept drift may occur in different data scales. Therefore, in practice,
we could apply our drift detection with different-sized windows in parallel
to detect any potential drifts. The size of the window could be user defined
with meaningful parameters, such as weekly or monthly periods, and each
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occurrence of concept drift detected in the different windows could be pro-
cessed independently. The following example using a fixed window size n
makes this context clear.

The strategies of sliding window have the advantage of being able to
detect different types of drift. There are two kinds of window strategies [25]:

1. adjacent windows : where two adjacent windows, Wt−n and Wt are
moved together when new data arrives; t denotes the current time
stamp. This strategy is specifically designed to detect sudden drift,
i.e., drift that occurs over a short period of time.

2. fix-slide windows : where the first reference window Wn is fixed at time
stamp n without movement and the second window Wt slides when new
data arrives. After a concept drift is discovered, the reference window
is fixed to the current time stamp, and the process is repeated, with the
next incoming window becoming the second window. This strategy is
designed to detect gradual drift, i.e., smaller changes that accumulate
over time.

Data points in the time windows Wt and Wt′ are subject to the unknown
non-parametric distributions Ft and Ft′ accordingly. Since it is unrealistic to
obtain the two distributions of Ft and Ft′ , we use a fuzzy competence model
to perform a space partition and obtain the estimated empirical distributions
F̂t and F̂t′ . They are discussed in Section 3.2. We then compute the fuzzy
competence-based empirical distance d̂ = distFCM(F̂t, F̂t′) between F̂t and F̂t′ .
d̂ is the divergence measurement between the two windows of data. Section
3.3 provides more details on how to compute the fuzzy competence-based
empirical distance d̂.

The next step is to determine whether this measurement is statistically
significant. Our hypothesis test asserts null hypothesis of H0 : F̂t = F̂t′ . We
wish to determine the probability of observing the value d̂ if H0 is accepted.
A permutation test is repeated K times to approximate the achieved sig-
nificance level (ASL) of the null hypothesis and obtain the threshold of the
distance measurement dASL. If d̂ > dASL, H0 is rejected with a false positive
rate at the desired significance level α. This is described in more details in
Section 3.4.

The top-algorithm of FCM-DD described above is summarized in Algo-
rithm 1.
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Algorithm 1 The top-algorithm of FCM-DD for a fixed window size

Require:
data streams x1,x2, . . . ,xi, . . .
window size n
repeat time of permutation test K
desired significance level α

1: t← n
2: t′ ← 2n
3: construct data windows Wt = {x1, . . . ,xn} and Wt′ = {xn+1, . . . ,x2n}
4: while not reach the end of data steam do
5: estimate F̂t of Wt by fuzzy competence model (Algorithm 2)
6: estimate F̂t′ of Wt′ by fuzzy competence model (Algorithm 2)
7: d̂← distFCM(F̂t, F̂t′)
8: dASL ← K times of permutation test with α (Algorithm 3)
9: if d̂ > dASL then

10: report a concept drift
11: end if
12: move two windows Wt and Wt′ with desired strategy.
13: end while
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3.2. Fuzzy competence model

Data in real-world applications are usually multi-dimensional and subject
to an unknown non-parametric distribution. Therefore, obtaining the true
distribution of data is unrealistic. One solution is to use a space partition
technique that constructs an empirical probability distribution, which is a
maximum likelihood estimation of the true distribution. This section explains
how a fuzzy competence model is used as a space partition technique to
estimate an empirical distribution.

Competence is a measurement of how well a case-based reasoning (CBR)
system fulfills its goal. Competence is usually taken to be the proportion of
problems at hand that can be solved successfully [29]. Since it measures the
solving capabilities of a CBR system as a proportion of problem spaces, the
probability distribution change of its data should also be a reflection of its
competence [17]. Inspired by this, Lu et al. [17] measured the distribution
of change of data with regard to its competencies.

The formal definitions for modeling data in terms of competence are given
below:

Definition 1. [30] For a set of data X = {x1,x2, . . . ,xn}, any xi ∈ X:

CoverageSet(xi) = {xj ∈ X : Solve(xi,xj)} (1)

where Solve(xi,xj) indicates a Solve rule that xi can be retrieved and adapted
to solve xj.

A Solve rule can be defined in different ways. For example, data xi can
solve data xj if their distance is less or their similarity is greater than a
threshold dε; or in a classification task, the data xi and xj have the same
label and they are k-nearest neighbors.

Definition 2. [30] For a set of data X = {x1,x2, . . . ,xn}, any xi ∈ X:

ReachabilitySet(xi) = {xj ∈ X : Solve(xj,xi)} (2)

Definition 3. [31] For a set of data X = {x1,x2, . . . ,xn}, any xi ∈ X:

RelatedSet(xi) = CoverageSet(xi) ∪ ReachabilitySet(xi) (3)

10



 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.3  0.4  0.5  0.6  0.7  0.8  0.9

x2

x1

x1

x2

x3

x4

x5

"Solve" range

"Solve" range

data points

Figure 2: An example of competence model.

To illustrate the Definitions 1, 2, and 3, we give an example to show
the CoverageSet, ReachabilitySet, and RelatedSet. The Solve rule is defined
as follows: two data can mutually solve each other if the Euclidean dis-
tance between them is less than dε = 0.1. As shown in Figure 2, color-filled
circles highlight the Solve ranges of the data. Data x1,x2,x3,x4,x5 are lo-
cated within the Solve range of x1, which is highlighted by a yellow circle
whose center is x1. According to Definition 1, we have a CoverageSet(x1) =
{x1,x2,x3,x4,x5}. In addition, we have a ReachabilitySet(x1) = {x1,x2,x3,x4,x5}
and a RelatedSet(x1) = {x1,x2,x3,x4,x5}. The essential of a RelatedSet(xi)
is a sphere defined in Euclidean distance space of X. The center of the sphere
is xi, and the radius of the sphere is dε.

In [17], the empirical distribution is estimated using RelatedSets of com-
petence model, which is a kind of space partition techniques. Thus, there
are n overlapped spheres defined in the original data feature space. Each
data xi is the center of the sphere, and the radius dε of the sphere is de-
fined by the Solve rule. A competence-based empirical weight can then be
used to represent the estimated distribution of data over the RelatedSets
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of competence model. There are two advantages of partitioning the space
with this competence model: 1) It compresses the original multi-dimensional
data feature space into a 1-dimensional discrete data distance space without
losing information about the relationship between the two data. 2) Rather
than splitting the space simply by cutting its edges, the overlapping spheres
generate a tolerable sample bias [17]. However, the crisp boundaries used to
build the RelatedSet will result in a roughly estimated distribution. There-
fore, we introduce fuzzy sets theory [32] to provide a more refined empirical
distribution.

Definition 4. For a set of data X = {x1,x2, . . . ,xn}, any xi ∈ X, a fuzzy
RelatedSet FRi is defined as:

FRi = {xj, µFRi
(xj) | xj ∈ X} (4)

µFRi
(xj) is membership function with the form as follows:

µFRi
(xj) = exp(

−‖xi − xj‖2

2d2ε
) (5)

where ‖ · ‖ stands for Euclidean distance and dε is the threshold defined by
Solve rule.

By using fuzzy competence model, the original data feature space is
mapped into a discrete space with n alphabets. Each alphabet in that discrete
space is associated with a fuzzy RelatedSet. The next step is to represent
the empirical distribution of data points upon that discrete space.

Definition 5. For a set of data X = {x1,x2, . . . ,xn}, any xj ∈ X, the fuzzy
competence-based density vector w(xj) is defined as:

w(xj) = (
µFR1(xj)∑n
i=1 µFRi

(xj)
,

µFR2(xj)∑n
i=1 µFRi

(xj)
, . . . ,

µFRn(xj)∑n
i=1 µFRi

(xj)
) (6)

The fuzzy competence-based density vector of xj is a vector with n-
dimensional; each dimension equals a normalized membership value of xj
in fuzzy RelatedSet FRi. In addition, given a w(xj) = (w1, w2, . . . , wn), the
sum of each dimension

∑n
i=1wi equals to 1. The empirical distribution of

data points depends on these fuzzy competence-based density vectors.
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Definition 6. For a set of data X = {x1,x2, . . . ,xn}, given a subset S ⊆ X,
the fuzzy competence-based empirical vector P(S) is defined as:

P(S) =
1

|S|
∑
xi∈S

w(xi) (7)

The fuzzy competence-based empirical vector of a set of data points is
calculated by adding the fuzzy competence-based density vector of each data
point and then dividing the number of data points. The sum of each dimen-
sion equals 1. This vector can be treated as the discrete distribution of the
data points on fuzzy competence model.

Returning to our drift detection problem, the procedure to obtain the
fuzzy competence-based empirical distributions of the two data time windows
Wt and Wt′ are summarized in Algorithm 2:

Algorithm 2 Fuzzy competence-based empirical distribution estimation

Require:
two data time windows Wt and Wt′

threshold dε defined by Solve rule

1: union to data time windows to W = Wt ∪Wt′

2: construct all fuzzy RelatedSets of W by Definition 4.
3: for all xi ∈ W , calculate each w(xi) by Definition 5
4: F̂t ← P(Wt) by Definition 6
5: F̂t′ ← P(Wt′) by Definition 6

3.3. Fuzzy competence-based empirical distance

In the previous subsection, we obtained the estimated empirical discrete
distributions F̂t and F̂t′ using fuzzy competence model. Therefore, the di-
vergence measurement of F̂t and F̂t′ can be determined by measuring the
distance between two discrete distributions. In statistics and information
theory, f -divergence is the largest and most frequently used form of diver-
gences. An f -divergence is a function Df (P‖Q) that measures the difference
between two probability distributions P and Q. Many common divergences,
such as total variation distance, Kullback-Leibler divergence and Hellinger
distance are special cases of an f -divergence [33]. In our drift detection
method, we chose total variation distance as our divergence measurement,
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since it is easy, symmetric, and satisfies the triangle inequality. The fuzzy
competence-based empirical distance is defined as follows:

Definition 7. For a set of data X = {x1,x2, . . . ,xn}, given two subsets
S1, S2 ⊂ X, P(S1) = (p1, . . . , pn) and P(S2) = (q1, . . . , qn) are their respec-
tive fuzzy competence-based empirical vectors, the fuzzy competence-based
empirical distance distFCM(P(S1),P(S2)) is defined as:

distFCM(P(S1),P(S2)) =
1

2
‖P(S1)− P(S2)‖1 =

1

2

n∑
i=1

|pi − qi| (8)

Note that, the fuzzy competence-based empirical distance distFCM com-
pares the distance between two datasets through their fuzzy competencies,
rather than their real distributions. It is also a measurement that describes
how the concept drift has occurred. If distFCM(P(S1),P(S2)) equals 0, it
means that two datasets S1 and S2 are identical. While if distFCM(P(S1),P(S2))
equals 1, the two datasets are totally different. In addition, by identifying
fuzzy RelatedSet FRi with greater difference |pi− qi|, we can locate the area
where concept drift occurs.

3.4. Hypothesis test for divergence measurement

A divergence measurement that determines the difference between two
datasets is only one important achievement in our drift detection method.
Another achievement is providing a statistical guarantee of the detected
change. Given a divergence measurement d̂ between two data empirical dis-
tributions F̂t and F̂t′ , this issues can be resolved by deriving the probability
that d̂ can be obtained under the null hypothesis H0: F̂t = F̂t′ . The fuzzy
competence-based empirical distance, viewed as a test statistic, has an un-
known distribution. Therefore, permutation test [28] is a good way to provide
a statistical guarantee of concept drift detection. It has several advantages
in several aspects: 1) it is easy to implement; 2) it is free of mathematical
assumptions; and 3) it is suitable when the theoretical distribution of the
test statistic is unknown.

In our proposed drift detection methods, given two data time windows Wt

and Wt′ and their estimated empirical distributions F̂t and F̂t′ , the hypoth-
esis test determines whether F̂t and F̂t′ are identical. Once an observation
d̂ = distFCM(F̂t, F̂t′) is made, the achieved significance level (ASL) of the
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observation is the likelihood that d̂ appears naturally under H0:

ASL = PH0(d̂
∗ ≥ d̂) (9)

where d̂∗ is a random variable measuring d that assuming the null hypothesis
H0 is true.

The permutation test is, therefore, a clear way to estimate ASL for the
null hypothesis and works as follows: We combine all 2n data points of Wt

andWt′ , then take a sample of size n data without replacement to represent as
Si1; the remaining n data are used for Si2. We compute the test statistic di =
distFCM(P(Si1),P(Si2)) for each permutation and repeated a large number of
times K. Finally, the permutation test is estimated through the Monte Carlo
approach [34].

Once the desired ASL α has been established, we let dASL be the (1−α)-
percentile of all di, where i = 1, . . . , K. The probability of d̂ falling into
interval (dASL,∞) is α. Therefore, if d̂ > dASL, the divergence measurement
is statistically significant, H0 is rejected, and a concept drift has occurred.

The algorithm for obtaining dASL is summarized in Algorithm 3.

Algorithm 3 The algorithm for obtaining dASL

Require:
two data time windows Wt and Wt′

repeat time of permutation test K
desired significance level α

1: union to data time windows to W = Wt ∪Wt′

2: for i = 1, . . . , K do
3: Si1 ← Sample n data from W without replacement
4: Si2 ← W − Si1
5: di ← distFCM(P(Si1),P(Si2))
6: end for
7: dASL ← (1− α)-percentile of all di

4. Experimental evaluation

To demonstrate the universality of the proposed FCM-DD, our evaluation
consisted of two sections and seven experiments on various kinds of datasets.
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The datasets used in each experiment were synthesized using standard dis-
tributions. The advantage of using these simulated datasets is that the drift
patterns can be controlled by carefully choosing different parameters and
verifying how the concept drift detection methods reacts to different types
of changes.

4.1. Evaluating the accuracy of the fuzzy competence-based empirical distance

In Section 3.3, we introduced fuzzy competence-based empirical distance
distFCM to measure how different distributions are placed from on another.
This distance equals 0 if two distributions are identical, and equals 1 if they
are totally different. We established three experiments to see how distFCM

varies as the degree of drift changes. Data points in each experiment were
generated independently from 1D normal distribution with preset parame-
ters. We compared our results with competence-based empirical distance
distCM [17]. For this series of experiments, we did not use permutation test
to detect drift, since our goal was to demonstrate the behavior of fuzzy
competence-based empirical distance on changing data.

We considered that two data points were able to mutually solve each other
if their Euclidean distance is smaller than a threshold dε. Therefore, the
radius of RelatedSet is dε. In order to eliminate the impact of randomness,
all results are calculated as the mean of 100 independent tests.

Experiment 1. Varying the mean. In this experiment, we compared
data samples drawn from 11 normal distributions. The ith normal distri-
bution has a fixed standard deviation σ = 0.2, but with a different mean
value µ = 0.2 + 0.06 ∗ (i − 1), where i = 1, 2, . . . , 11. We did a total t = 21
test. For t = 2 × i − 1, we compared two data samples both drawn from
the ith distribution; when t = 2 × i, we compared two data samples drawn
from the ith distribution and i + 1st distribution. Figure 3 shows how the
fuzzy competence-based empirical distance reacts as the data distribution
changes. distFCM still has the same peak-valley pattern as distCM after in-
troducing fuzzy sets theory. Since the peak-valley margin only depends on
the means between two adjacent distributions, we found similar height on
all peaks for each series. We listed the peak-valley margin of each series for
each time stamp, which is shown in Table 1. For a fixed dε, distFCM always
has a greater peak-valley margin than distCM, which means distFCM is more
sensitive than distCM to the changes.
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Figure 3: Fuzzy competence-based empirical distance between normal distribution with
varying the mean

Table 1: Peak-valley margin of distFCM and distCM in Figure 3

t 1,2 3,4 5,6 7,8 9,10 11,12 13,14 15,16 17,18 19,20

distFCM dε = 0.05 0.0481 0.0454 0.0340 0.0423 0.0438 0.0413 0.0428 0.0363 0.0521 0.0491

distCM dε = 0.05 0.0384 0.0364 0.0240 0.0306 0.0325 0.0332 0.0327 0.0256 0.0439 0.0381

distFCM dε = 0.10 0.0523 0.0538 0.0418 0.0528 0.0538 0.0501 0.0507 0.0454 0.0567 0.0567

distCM dε = 0.10 0.0469 0.0455 0.0350 0.0447 0.0450 0.0411 0.0434 0.0382 0.0514 0.0494

Experiment 2. Varying the standard deviation. In this experiment,
we fixed the mean of normal distribution at µ = 0.5, but changed the stan-
dard deviation σ = 0.1 + 0.02 × (i − 1) for the ith distribution. Again, we
still did a total of t = 21 tests. For t = 2 × i − 1, we compared two data
samples both drawn from the ith distribution; when t = 2× i, we compared
two data samples drawn from the ith distribution and the i+1st distribution.
Since the change of standard deviation is hard to reflect on a small sample
size, we tested 1000 samples. As shown in Figure 4, distFCM still has the
same peak-valley pattern as distCM. The peak-valley margin shrinks as σ
increases; because the distribution becomes less concentrated so the relative
distance is smaller. The specific peak-valley margin for each series on differ-
ent time stamps is shown in Table 2. For a fixed dε, distFCM has a greater
average peak-valley margin than distCM in larger σ, which means distFCM is
more sensitive than distCM to small changes. More evidence will be shown
in Section 4.2.
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Figure 4: Fuzzy competence-based empirical distance between normal distribution with
varying standard deviation

Table 2: Peak-valley margin of distFCM and distCM in Figure 4

t 1,2 3,4 5,6 7,8 9,10 11,12 13,14 15,16 17,18 19,20

distFCM dε = 0.05 0.0407 0.0319 0.0260 0.0214 0.0201 0.0181 0.0100 0.0132 0.0096 0.0069

distCM dε = 0.05 0.0381 0.0284 0.0223 0.0181 0.0165 0.0152 0.0075 0.0111 0.0086 0.0060

distFCM dε = 0.10 0.0270 0.0248 0.0231 0.0211 0.0205 0.0187 0.0126 0.0139 0.0096 0.0091

distCM dε = 0.10 0.0386 0.0309 0.0259 0.0215 0.0200 0.0180 0.0103 0.0133 0.0092 0.0076

Experiment 3. Varying the sample size. In this experiment, we com-
pared distances between two data samples drawn from normal distribution
N (0.2, 0.2) and N (0.44, 0.2), respectively. We changed the sample size of
each test from 100 to 1000. As shown in Figure 5, the trend of series of
distFCM and distCM are similar and remain steady as the sample size in-
creases. The standard deviation of each series was calculated and is shown
in Table 3. With a fixed dε, distFCM has a lower standard deviation than
distCM, which means distFCM is more robust than distCM for small samples.

4.2. Evaluating the fuzzy competence model drift detection

In the previous subsection, we demonstrated how fuzzy competence-based
empirical distance reacts as the underlying distribution changes. In order
to determine if a given measurement is sufficiently statistically significant
enough to identify a concept drift, we integrated the permutation test to
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Figure 5: Fuzzy competence-based empirical distance between normal distribution with
different sample size

Table 3: Stand deviation of distFCM and distCM in Figure 5

dε = 0.05 dε = 0.10

distFCM 0.0021 0.0015

distCM 0.0037 0.0015

estimate the dASL as described in Section 3.4. We report that a concept drift
has occurred when d̂ > dASL. The significant level is defined by α, and K
indicates the times of repeat permutation test. In the following experiments,
we compared our drift detection results with a Kullback-Leibler divergence-
based drift detector (KLD) [25], a maximum mean discrepancy-based kernel
two-sample test (MMD) [35], and a competence model drift detector (CM-
DD) [17]. As we mentioned in Section 4.1, our proposed method (FCM-DD)
is more sensitive and robust than CM-DD. To provide a fair comparison, we
used the same experimental setup, including data source, data processing
strategy, evaluation criteria and parameter settings.

Data source. For each test, we simulated streaming data consisting of
N = 5, 000, 000 data points. The streaming data are divided into 100 groups
of 50, 000 data points. Data points within the ith group are drawn from a
distribution Fi with parameters pi1, . . . , p

i
k. For each group, we simulated a

drift by varying a particular set of parameters (pir1 , p
i
r2
, . . . ) of Fi. Therefore,
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we obtained a streaming data with a total of 99 drifts. We denoted a step
size ∆ to control the degree of drift. When we reached each new group i,
for each changing parameter pirj , we uniformly chose a random number c in

[−∆,−∆/2] ∪ [∆,∆/2] and added it to the parameter pirj = pi−1rj
+ c. If

the new pirj fell out of a predefined allowable interval [pimin, p
i
max], we chose

another random number and repeated it. We prepared four basic types of
streaming data:

1. M(∆) stream: Data samples are drawn from a 2-dimensional normal
distribution. Drift is simulated by fixing the standard deviation σ1 =
σ2 = 0.2 and correlation ρ = 0.5 but varying the mean µ1 and µ2. The
mean µ1 and µ2 start at 0.5, and walk randomly in interval [0.2, 0.8]
with step ∆ as described.

2. C(∆) stream: Data samples are drawn from a 2-dimensional normal
distribution. Drift is simulated by fixing the mean µ1 = µ2 = 0.5
and σ1 = σ2 = 0.2 and but varying the correlation ρ. The correlation
ρ starts at 0, and walks randomly in interval [−1, 1] with step ∆ as
described.

3. P (∆) stream: Data samples are drawn from a 2-dimensional discrete
Poisson distribution. Drift is simulated by generating data according
to (X, Y ) ∼ Poisson(500(1−ρ), 500(1−ρ), 500ρ), where ρ starts at 0.5,
and the walks randomly in interval [0, 1] with step ∆ as described. As
we keep the marginal distribution of X and Y the same (with λ = 500),
the drift is reflected on correlation.

4. ∆D C(0.20) stream: Data samples in this stream are generated by
extending the C(0.20) stream to a ∆-dimensional stream. The first
2-dimensional data are generated by following the C(0.20) stream rule.
We expand it by adding (∆− 2)-dimensional normal distribution data
that do not change. Data in stationary distribution are drawn from
N (0.5, 0.2) without any correlations.

One issue that should be noted is we assume that two window data sam-
ples used for drift detection should correctly represent previous and current
environments. Data samples that contain missing value or errors should be
preprocessed and cleaned. However, data preprocessing is not our main focus.

Data processing strategy. We adopted fix-slide window models: we
fixed the first reference time window starting at Wn and the second sliding
time window starting at W2n, where n is the window size. We fixed the
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first reference window and moved slide window if there was no concept drift
reported; otherwise we moved both windows together. Keeping a fixed ref-
erence window allows us to capture gradual drift as well as sudden drift. If
we both windows are moving together, the change is completely missed af-
ter passing the drift point. If the first reference window is fixed, we have a
chance of detecting drift at a later time.

Evaluation criteria. We reported four statistics in our drift detection
experiments:

1. True (true positive): the number of drifts correctly detected in time,
that is, a drift signal alerted before the sliding window has seen the 3rd
window of the new data concept group.

2. Late: the number of drifts detected late, that is, a drift signal alerted
after the sliding window has seen more than two windows of new data
concept groups.

3. False (false positive): the number of drifts detected when there is no
drift.

4. Miss (false negative): the number of drifts not detected.

Note that there is an inherent trade-off of between power (1 - false posi-
tive rate) and sensitive (1 - false negative rate), which will be shown in the
following experiments.

Parameter settings. Without stating special experimental settings,
we used the same parameters for comparing all methods: window size n =
10, 000, the times of repeat permutation test or bootstrap samples K = 500,
desired significance level α = 0.01. The parameter dε, which is used to
construct the competence model and the fuzzy competence model, is chosen
empirically according to each experiment with fair comparison as describe
in [17]. The parameters used in KLD and MMD have the same settings as
mentioned in their respective manuscripts. More specifically, for KLD: the
minimum side length of a cell δ = 2−10, the maximum number of data point
in a cell τ = 100, and the persistence factor γ = 0.05. For MMD, a Gaussian
RBF kernel was used, and the kernel size σ was set to the median distance
heuristic.

Experiment 4. Varying the data sources. In this experiment, we evalu-
ated the performance of our proposed drift detection method on the different
streaming data sources, with results shown in Table 4. As we expected, the
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performance of the drift detection methods increased as the degree of drift in-
creased. All four methods can detect all drift with small False counts within
the streaming data: M(0.05), C(0.20), and P (0.20). However, FCM-DD was
more powerful than other three methods in showing smaller changes within
the streaming data, such as M(0.02), C(0.15), C(0.10), and P (0.10). With
equal or fewer False counts to CM-DD, FCM-DD is able to detect more
drift accurately. Therefore, this proves that FCM-DD is more sensitive than
CM-DD to various types of concept drift.

Table 4: Drift detection results on different streaming
data sources.

Data stream Method dε True Late False Miss

M(0.05) KLD n/a 98 0 10 1

MMD n/a 99 0 6 0

CM-DD 0.05 99 0 3 0

FCM-DD 0.05 99 0 9 0

M(0.02) KLD n/a 71 12 5 16

MMD n/a 99 0 7 0

CM-DD 0.05 92 6 13 1

FCM-DD 0.05 99 0 7 0

C(0.20) KLD n/a 96 1 9 2

MMD n/a 99 0 11 0

CM-DD 0.05 96 2 6 1

FCM-DD 0.05 99 0 11 0

C(0.15) KLD n/a 85 8 9 6

MMD n/a 98 1 3 0

CM-DD 0.05 91 2 4 6

FCM-DD 0.05 99 0 4 0

Continued on next page
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Table 4 – continued from the previous page

Data stream Method dε True Late False Miss

C(0.10) KLD n/a 31 19 2 49

MMD n/a 50 11 2 38

CM-DD 0.05 41 12 2 46

FCM-DD 0.05 59 11 5 29

P (0.20) KLD n/a 96 1 10 2

MMD n/a 99 0 9 0

CM-DD 10 99 0 5 0

FCM-DD 10 99 0 8 0

P (0.10) KLD n/a 65 10 4 24

MMD n/a 76 5 5 18

CM-DD 10 84 5 5 10

FCM-DD 10 89 3 4 7

Experiment 5. Varying the window size. In this experiment, we varied
the size of the window to see how it affected the performance of our proposed
drift detection method. We chose C(∆) data streams since changing corre-
lation ρ is harder to detect, while we can gauge the robustness of each drift
detection method. The results are shown in Table 5. As we expected, the
performance of drift detection methods works better with larger window sizes
because more data points provide a better approximation of the true data
distribution. The True detect counts of FCM-DD dropped less than CM-DD
but had similar False counts. For example, in data stream C(0.15), the True
detect counts of FCM-DD dropped from 99 to 84 as window size varied from
10, 000 to 5, 000, while the True detect counts of CM-DD dropped from 91
to 69. Thus, FCM-DD improves its robustness to small sample size through
introducing fuzzy sets theory. Even when compared to KLD and MMD,
FCM-DD still had higher True detect counts and less Miss counts.
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Table 5: Drift detection results on different window size.

Data stream Window size Method True Late False Miss

C(0.20) 10000 KLD 96 1 9 2

MMD 99 0 11 0

CM-DD 96 2 6 1

FCM-DD 99 0 11 0

C(0.20) 5000 KLD 89 5 13 5

MMD 92 5 17 2

CM-DD 88 10 7 1

FCM-DD 97 2 10 2

C(0.15) 10000 KLD 85 8 9 6

MMD 98 1 3 0

CM-DD 91 2 4 6

FCM-DD 99 0 4 0

C(0.15) 5000 KLD 80 7 18 12

MMD 72 15 6 12

CM-DD 69 16 14 14

FCM-DD 84 8 12 7

C(0.10) 10000 KLD 31 19 2 49

MMD 50 11 2 38

CM-DD 41 12 2 46

FCM-DD 59 11 5 29

C(0.10) 5000 KLD 26 12 4 61

MMD 35 21 9 43

CM-DD 35 22 10 42

FCM-DD 38 21 7 40
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Experiment 6. Varying the number of permutation test and signif-
icance level. In this experiment, we varied the number of permutation test
and significance level to see how they affect the performance. We still ran
our experiments with C(∆) data streams. As we mentioned above, there is
a trade-off between power and sensitivity. We adjusted K = 100, α = 0.02
to make drift detection not only more powerful but also more sensitive. As
shown in Table 6, the False counts increased as K decreased and α increased.
In fact, the false positive rate depends on the number of permutation test and
significant level due to the nature of the permutation test. We found that
FCM-DD has fewer Miss counts than CM-DD, but has similar False counts.
This is further evidence that shows FCM-DD is more sensitive to true drift
than CM-DD. However, KLD and MMD are more powerful with lower sig-
nificance level in data stream C(0.1), but FCM-DD still outperformed them
with higher True detect counts and the same level of False counts.

Table 6: Drift detection results on different number of
permutation test and significance level.

Data stream K α Method True Late False Miss

C(0.20) 500 0.01 KLD 96 1 9 2

MMD 99 0 11 0

CM-DD 96 2 6 1

FCM-DD 99 0 11 0

C(0.20) 100 0.02 KLD 94 1 19 4

MMD 99 0 17 0

CM-DD 96 2 15 1

FCM-DD 99 0 19 0

C(0.15) 500 0.01 KLD 85 8 9 6

MMD 98 1 3 0

CM-DD 91 2 4 6

FCM-DD 99 0 4 0

Continued on next page
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Table 6 – continued from the previous page

Data stream K α Method True Late False Miss

C(0.15) 100 0.02 KLD 81 7 14 11

MMD 96 3 6 0

CM-DD 93 3 19 3

FCM-DD 99 0 13 0

C(0.10) 500 0.01 KLD 31 19 2 49

MMD 50 11 2 38

CM-DD 41 12 2 46

FCM-DD 59 11 5 29

C(0.10) 100 0.02 KLD 34 29 3 36

MMD 64 8 7 27

CM-DD 52 17 8 30

FCM-DD 73 12 8 14

Experiment 7. Higher Dimensions. We also compared FCM-DD and
CM-DD on higher dimensions of data stream to test the scalability. The
data streams that we used were 4D C0.20, 6D C0.20, and 10D C0.20. The
parameter dε used in fuzzy membership function is not as linear as dε in
constructing a competence model. Thus, we set dε by preliminary computa-
tional testing, and the specific values are listed in Table 7. As we expected,
it became harder to detect real drift when more stationary dimensions were
added. The performance of MMD decreased considerably when handling
higher data dimensions with smaller changes. Even though KLD and CM-
DD showed better performance than MMD in higher data dimensions, FCM-
DD still outperformed the other methods with more True counts and fewer
Miss counts. This provides further proof that our detection method is more
sensitive to smaller changes.
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Table 7: Drift detection results on ∆-dimensional data
streams.

Data stream dε Method True Late False Miss

4D C(0.20) n/a KLD 84 8 6 7

n/a MMD 93 4 3 2

0.150 CM-DD 91 4 8 4

0.120 FCM-DD 98 1 6 0

6D C(0.20) n/a KLD 81 6 5 12

n/a MMD 79 6 6 14

0.300 CM-DD 94 3 8 2

0.135 FCM-DD 96 1 7 1

10D C(0.20) n/a KLD 74 12 8 13

n/a MMD 50 12 3 37

0.500 CM-DD 82 7 4 10

0.160 FCM-DD 85 8 4 6

The results of Experiments 4, 5, and 7 are summarized below. The aver-
age counts of these experimental results are shown in Table 8. FCM-DD was
much more powerful than other drift detection methods in various situations
since it had a higher True detect rate and the same level of False detect rate.
In this series of experiments FCM-DD outperformed CM-DD in three areas:
1) detection rate, 2) sensitivity to smaller degrees of drift and a relaxation
of the statistical guarantee; and 3) robustness when used with small sample
sizes.
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Table 8: Average drift detection results

Method True Late False Miss

KLD 75.08 7.77 7.92 16.15

MMD 80.08 6.15 6.69 12.77

CM-DD 81.62 6.85 6.85 10.54

FCM-DD 87.77 4.23 7.35 6.92

Experiment 8. Efficiency. This experiment assessed the computational
effort of all four drift detection methods over different data dimensions and
window sizes. The nature of data distribution-based drift detection methods
comprises three modules: data modeling, divergence measurement, and the
statistical significance test. Since all four drift detection methods employ
similarity permutation/bootstrap test, the computation time of one round
of drift detection was compared with a permutation/bootstrap test repeated
K = 20 times. All four drift detection methods were implemented by MAT-
LAB, and the programs were run on a PC with a 2.2GHz Intel Core i7
processor and 16GB of memory.

As shown in Figure 6 and Table 9, the computation time of all methods
were slightly affected by the number of data dimensions d, and were directly
affected by the window size (n). The computation time of MMD, CM-DD
and FCM-DD exhibited quadratic growth when the window size increased.
In fact, CM-DD and FCM-DD need to maintain the relationship between
any two data points for modeling; thus, the computational complexities of
CM-DD and FCM-DD are O(n2). Also, the computational complexity of
MMD is O(n2) [35]. Since the computation complexity of KLD has been
proven to be O(nd log 1

δ
) [25], the computation time of KLD exhibits linear

growth when the window size increases.
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Figure 6: Computation time of 2D data with different window size

Table 9: Computation time (in second) with different data dimensions and window size

Method Dimensions
Window Size (n)

2000 4000 6000 8000 10000

KLD 2 0.1628 0.3253 0.4963 0.6500 0.8146

4 0.1604 0.3237 0.4949 0.6533 0.8521

10 0.1787 0.3426 0.5209 0.7082 0.8605

MMD 2 1.6577 6.5533 14.2638 28.6822 61.1449

4 1.6700 6.6027 14.3088 28.6444 61.0773

10 1.6627 6.5741 14.2506 28.8001 60.9580

CM-DD 2 1.1819 4.8053 11.0129 20.4323 37.1936

4 1.2114 4.9838 11.4777 21.2458 38.2489

10 1.2083 4.9793 11.4711 21.1521 38.4966

FCM-DD 2 1.0967 4.5338 10.2883 19.1183 34.3934

4 1.0885 4.5133 10.2956 19.1238 34.3761

10 1.0963 4.5553 10.3733 19.2427 34.5998
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5. Conclusions and further studies

In this paper, we presented and evaluated a drift detection-based model,
called FCM-DD. The model was designed to help DSSs recognize different
types of concept drift in non-stationary streaming data. FCM-DD requires
no prior knowledge of the underlying data and can output when, how, and
where concept drift occurs. How concept drift occurs is returned as fuzzy
competence-based empirical distance and where it occurs is reflected in the
partitions generated by the fuzzy competence model with great differences.
Our model provides a better estimation of the empirical distribution of data,
the use of fuzzy sets theory makes our drift detection method more sensitive
and reliable. Empirical experiments demonstrate three advantages of our
proposed FCM-DD over state-of-the-art competence model drift detection
[17]: 1) a higher detection rate; 2) more sensitive to smaller degrees of drift
and a relaxation of the statistical guarantee; and 3) robustness on small
sample sizes.

We find that estimating empirical data distribution using fuzzy compe-
tence models is very effective, but efficiency is reduced. Our next attempt
will aim to provide a high-performance drift detection method with less com-
putation cost by integrating tree data modeling techniques. We also should
reveal the relations between the parameters used to build fuzzy competence
model and the data dimensions. Finally, this paper is part of a greater body
of work that is responding to concept drift problems in DSSs. Effective
reaction strategies for adaptive DSSs are needed to improve final decision
outcomes and accuracy.
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