
© [2006] IEEE. Reprinted, with permission, from [M. Ye and K. Sandrasegaran, Teaching about Firewall Concepts
using the iNetwork Simulator, Information Technology Based Higher Education and Training, 2006. ITHET '06. 7th
International Conference on 2006]. This material is posted here with permission of the IEEE. Such ermission of the
IEEE does not in any way imply IEEE endorsement of any of the University of Technology, Sydney's products or
services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it

Teaching about Firewall Concepts using the iNetwork
Simulator

M. Ye and K. Sandrasegaran
Institute for Information and Communication Technologies (IICT)

University of Technology Sydney
P.O. Box 123, Broadway

NSW 2007, Australia
Email: melissa.ye@uts.edu.au, kumbes@eng.uts.edu.au

Abstract

The iNetwork Simulator is a software application created
provides a user:friendly graphical interface for building
and simulating basic communication networks. Such
networks can comprise of devices such as workstations,
servers, switches and routers.

This project enhances the iNetwork Simulator application
by allowing firewalls to be simulated. Firewalls play in
integral part in the security infrastructure of many
organisations (and individuals). Being able to interact
with a virtual firewall would benefit many students with
an interest in the security-related aspects of
communication networks.

The firewall component was implemented using the
Microsoft .NET Framework and the C# programming
language (the same platform used to originally develop
the iNetwork Simulator application). The full software
development lifecycle was followed during the course of
this project.

1 Introduction

The iNetwork Simulator was originally conceived as a
convenient and cost-effective method of allowing students
to experiment with a realistic networking environment
without the need of having to physically assemble and
configure actual hardware. Its aim was "to improve the
quality of education by supplementing the work done in
the classroom with appropriate and realistic laboratory or
practical work" (Trieu 2004).

A number of options, including that of adding a firewall
component, were identified that would extend and
enhance the application's usefulness as an educational
tool. With the advent of the internet there has been an
increasing focus on security.

"The global Internet security market is expected to grow
at an annual 16 percent over the next five years to reach
$58.1 billion by 2010...serious Internet security threats
will continue to be the key market driver." (Walko 2005).

As a result, firewalls have since become an important
component of many networks. Incorporating these
devices into the iNetwork Simulator would therefore
further benefit students.

.

2 Background

A firewall is a hardware- or software-based device that is
used to allow or block traffic (i.e. packets of data)
between different networks. The firewall is placed
"between" these networks and examines all data that pass
through it. A network administrator configures the rules
on the firewall that specifies which types of traffic are
allowed to pass through and which types of traffic will be
blocked.

Firewalls form an integral part of an organisation's
security policy as they can be used to prevent access to
inappropriate content or prevent intruders from accessing
a company's internal network from the internet.

2.1 Network & Application Layer Firewalls

Network layer firewalls are firewalls that operate in the
network layer of the International Standards Organization
(ISO) Open Systems Interconnect (OSI) networking
model. They act as packet filters - allowing or blocking
packets based on their source address, source port,
destination addresses and/or destination port.

Application layer firewalls are those that operate in the
application layer of the OSI networking model. They can
block data such as certain websites, viruses and content
deemed inappropriate by the network administrator.

Hybrid firewalls also exist. These are a combination of
network layer and application layer firewalls.

2.2 Stateless & Stateful Firewalls

Firewalls can also be classified as stateless or stateful.
Stateless firewalls treat each packet of data separately.
Stateful frrewalls, on the other hand, monitor packets of
data as part of a network connection. Thus, stateful
firewalls can determine whether a packet is part of a
legitimate connection. This provides an important
advantage over stateless firewalls.

For example, FTP is one of a number of communication
protocols that may open one or more random ports during
a session. A packet destined for one of these random ports
will be blocked by a stateless firewall, thus terminating a
valid FTP session. The reason is that a stateless firewall
will believe that the packet is for a non-standard service;
it cannot tell that the packet is part of a legitimate
connection.

mailto:melissa.ye@uts.edu.au
mailto:melissa.ye@uts.edu.au

3 Firewall Functionality

The firewall implemented for the iNetwork Simulator is a
stateless firewall that operates in the networking layer of
the OSI model. For consistency with the rest of the
application, it behaves in a similar manner to other
network devices, in terms of its interface and
configuration mechanism.

Users create one or more rules, known as the ruleset or
rulebase, to filter incoming packets. Outgoing packets are
not filtered. A rule examines packets by protocol, source
IP address, destination IP address, source port and
destination port.

When the firewall intercepts a packet, each rule in the
ruleset is executed until a matching rule is found.
Depending on how the rule is defined, a matching packet
has one of three possible actions taken on it:

• Permit. The packet is permitted to pass through the

firewall.

• Deny. The packet is not permitted to pass through the

firewall and the sender of the packet is notified by an
ICMP Destination Unreachable packet.

• Drop. The packet is not permitted to pass through the

firewall and the sender ofthe packet is not notified.

Packets that do not match any rule in the ruleset are
permitted to pass through the firewall.

There are two ways to simulate the firewall component:

• Using the existing iNetwork Simulator utilities such

as the DOS ping command; or

• Through a new interface specifically created for

sending ICMP, TCP or UDP packets.

The simulation results are viewed using the existing
Activity Log interface.

4 Development Environment

Due to the fact that the firewall component is a functional
extension to the iNetwork Simulator, the development
environment was identical to that used in the original
project.

Thus, the Microsoft .NET Framework Version 1.1 was
used as the development platform. C# was adopted as the
programming language and code was written using the
Microsoft Visual Studio .NET 2003 Integrated
Development Environment (IDE).

5 Software Architecture

The iNetwork Simulator application is based on a
"centralised controller architecture" (Trieu 2004). In other
words, the application is comprised of a number of
subsystems, all of which are driven from the user
interface.

The architecture diagram for the application has been
reproduced below in Figure 1.

iNetwork Simulator

Figure 1 - Software Architecture

6 Design Considerations

Although the original software architecture hinted at
discrete subsystems communicating with each other, a
review of the application code has revealed significant
coupling between these subsystems.

"One of the major problems with the iNetwork Software
is its ability to be upgraded. Due to the existing design
adopted, external developers will find it difficult adding
additional network devices to the iNetwork Software."
(Trieu 2004).

For example, classes representing the various hardware
devices (such as routers and switches) contain both
business logic and presentation logic - the former being
associated with the Hardware Devices subsystem and the
latter being associated with the User Interface subsystem.
Strong coupling between subsystems makes an
application difficult to maintain and extend.

This project did not seek to redress these issues, because
it would involve restructuring a significant portion of the
application. For this reason, different design strategies
were adopted for new classes (created specifically for the
firewall component) and changes to existing classes.

6.1 New Classes

New classes were designed with two major goals:

• To allow code to be maintained without difficulty.

• To allow the functionality of the firewall component

to be easily extended in the future.

As such, oriented techniques and common design patterns
were adopted. Design patterns are "descriptions of
communicating objects and classes that are customized to
solve a general design problem in a particular context"
(Gamma, et al1995, p.3).

Figure 2 provides an illustration of this design rationale. It
is a UML diagram that specifies the design of the
protocols used by a firewall rule when examining packets.

...-.-c
 · -

AnyProtoco!FirewaiiRule UDPProtocoiFirewaiiRule

Figure 2 - Firewall Protocol Class Hierarchy

A requirement of a firewall rule is the ability to match a
packet on the following protocols: TCP, UDP, ICMP or
any protocol. Each class in Figure 2 encapsulates
functionality specific to its domain. For example, the
ICMPProtocolFirewallRule class contains code that deals
with matching ICMP packets only.

This makes adding support for other protocols simple -
create a new class that inherits from the
BaseProtocolFirewallRule class. The other classes are not
impacted at all, thus reducing the amount of uncertainty
and time associated with all code changes.

6.2 Existing Classes

Where possible, changes to the existing classes were
minimised for two main reasons:

• A project scope that was limited by time constraints.

• To ensure that the firewall component did not

adversely impact the existing functionality of the
application.

This choice was taken even if it meant perpetuating code
requiring refactoring. Refactoring is time-consuming
process but has the benefit of "changing a software
system in such a way that it does not alter the external
behaviour of the code yet improves its internal structure"
(Fowler 1999, p.xvi).

7 Testing Process

The process used to test the firewall component is
illustrated in Figure 3. Emphasis was placed on system
testing and regression testing.

Unit Testing

System testing was used to evaluate whether the firewall
component complied with the pre-defined requirements.

Regression testing was required to ensure that the existing
functionality of the iNetwork Simulation application still
worked. Particular attention was placed on functionality
dealing with the transmission of packets of data between
the network devices as most of the code changes to the
existing classes impacted this area.

8 Screenshots

The screenshots below provide an example of a network
with a firewall being simulated.

Figure 4 below provides an example of a network with a
firewall together with a couple of windows that are used
to configure the firewall's ruleset.

.-.. ·-=·=
·::-::::::::::: ·=

Figure 4 -Configuring the Firewall

Figure 5 below shows the results of pinging a workstation
protected by the firewall from a workstation outside the
firewall.

Figure 5- Testing the Firewall Using the DOS Ping Command

SystemTest J-Jg

Jlo.cceplanceTesling

Figure 6 below shows the results of using of the Firewall
Simulation tool to send a TCP packet from a workstation
outside the firewall to a workstation protected by the
firewall.

(Rn•g,- »k>eTo.-t _)

ReqCJimo fur suil ware d!imges su:;h as paU;/ e· a.•m

enhar"IO":me•Jfs

Figure 3 - Testing Process

-·-·----

December 2005,
<http://internetweek.cmp.com/trends/173603249>.

Wikipedia, Firewall, Answers.com, viewed 31 July 2005,
<http://www.answers.com/topic/packet-filter?method=6>.

c::::::::=:::J

Figure 6- Testing the Firewall from the Firewall Simulation
Tool

9 Conclusion

The project has successfully evolved from the project plan
to a functioning component of the iNetwork Simulator
application.

By following a set of user guides (that have been
documented as part of this project), students can
immediately "jump in" and experiment with the firewall
component. Most benefit, however, would be gained by
students having some prior knowledge of network
security.

Based on the experiences of this project, possible future
enhancements to the firewall component and the
iNetwork Simulator have been identified. These include:

• Refactoring the existing code. This would reduce the

amount of complexity involved when adding new
functionality to the application.

• Providing filtering capabilities for outgoing traffic.

• Building Network Address Translation (NAT)

functionality into the firewall component.

10 References

Fowler, M. 1999, Refactoring: Improving the Design of
Existing Code, Addison-Wesley, Indianapolis.

Gamma, E., Helm, R., Johnson R. & Vlissides, J. 1995,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Indianapolis.

Larman, C. 2005, Applying UMLand Patterns: An
Introduction to Object-Oriented Analysis and Design and
Iterative Development, 3rd edn, Prentice Hall PTR, Upper
Saddle River.

Strassberg, K.E., Gondek, R.J. & Rollie, G. 2002,
Firewalls: The Complete Reference, McGraw
Hill/Osborne, Berkeley.

Trieu, M.H. 2004, 'Interactive Learning Tool for
Communication Networks', Capstone Project, University
ofTechnology, Sydney.

Walko, J. 2005, 'Internet Security Market To Reach $58
Billion By 2010', InternetWeek, 15 November, viewed 11

http://internetweek.cmp.com/trends/173603249
http://www.answers.com/topic/packet-filter?method=6
http://www.answers.com/topic/packet-filter?method=6

