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ABSTRACT 
Despite past substantial research efforts, the prediction of brake squeal propensity remains a largely unresolved prob-

lem. The standard practice to predict the brake squeal propensity is to analyse dynamic instabilities using the complex 

eigenvalue analysis. However, it is well known that not every predicted unstable vibration mode will lead to squeal 

and vice-versa. Owing to nonlinearity and problem complexity (e.g. operating conditions), treating brake squeal with 

uncertainty seems appealing. Another indicator of brake squeal propensity, not often used, is based on negative dissi-

pated energy. In this study, uncertainty analysis induced by polynomial chaos expansions is examined for 1-dof and 

4-dof friction models. Results are compared with dissipated energy calculations and standard complex eigenvalue 

analysis.  The potential of this approach for the prediction of brake squeal propensity is discussed. 

1 INTRODUCTION 

Brake squeal originates from friction-induced vibrations with 

complex underlying relationships and poses a major concern 

to automotive industries owing to customer dissatisfaction 

and related warranty claims (Kinkaid et al., 2013). Mecha-

nisms known to cause brake squeal are stick-slip, sprag-slip, 

instantaneous modes, negative gradient of the friction coeffi-

cient with respect to relative velocity, gyroscopic effects and 

damping itself, mode coupling, surface waves, moving loads 

and parametric resonances (Kinkaid et al., 2003, Chen, 2009, 

Oberst, 2011) Problem complexity poses serious modelling 

issues especially when it comes to contact and friction laws 

(Butlin and Woodhouse, 2009). Geometrical modifications of 

pads have been shown to be highly related to the degree of 

nonlinearity of a brake system (Oberst and Lai, 2011a) and 

microphone test data of a squealing brake system shows that 

deterministic chaos is one route to instability in disc brake 

squeal (Oberst and Lai, 2011b).  Simulation tools for predict-

ing brake squeal based only on structural vibrations are avail-

able as frequency and time domain methods (Ouyang., 2005). 

The complex eigenvalue analysis (CEA) in the frequency 

domain is the most popular method implemented in commer-

cial software packages owing to its ease of application and 

interpretation. The calculation of acoustic radiation with fric-

tion contact between the pad and the rotor is rarely tackled. 

However, guidelines on how to perform proper numerical 

analysis in the frequency domain to calculate structural vibra-

tions and acoustic radiation of simple models of brake sys-

tems are given by (Oberst et al., 2013) for the first time. 

While the CEA predicts vibration modes stability which are 

interpreted as potential squeal frequencies, neither the sign 

nor the magnitude of the real part of the complex eigenvalue 

are indications that audible squeal would occur. Another 

method is to examine the energy values such as the kinetic 

energy or dissipated energy (Hoffmann and Gaul, 2004, 

Oberst, 2011). Negative dissipated energy by friction can be 

interpreted as energy provided to the system by friction such 

as feed-in energy or viscous work (Guan and Huang, 2003, 

Pappiniemi, 2007, Oberst, 2011). Negative dissipated energy 

may therefore complement the CEA not to detect vibration 

instabilities but to focus on prediction of increased squeal 

propensity.  

One major problem in the prediction of brake squeal propen-

sity  is that the instability of vibration modes predicted by the 

CEA have been shown not to be a necessary condition and 

the CEA may only be capable to predict the onset of squeal 

of some types of instabilities (Shin et al., 2002, Massi et al., 

2007, Sinou, 2010). Due to the problems complexity, the 

transient character of squeal and nonlinearities involved 

(Oberst, 2011), the incorporation of uncertainty into brake 

squeal propensity prediction should be considered (Hoffmann 

and Gaul, 2008, Oberst and Lai, 2010, Oberst 2011).  

A comprehensive review on numerous methods for incorpo-

rating uncertainty into modelling has been presented by So-

ize, (2013). One conventional way of incorporating uncer-

tainties involves establishing governing equations with ran-

dom components, then solving them using the Monte Carlo 

method. The Monte Carlo method features sampling from 

populations and usually a large number of samples is re-

quired to achieve convergence. The use of “Polynomial 

Chaos expansions” (PC) is a non-sampling method for faster 

calculations of a stochastic problem. It was firstly introduced 

by Wiener (1938) and has been shown by Cameron and Mar-

tin (1947) to converge in a L2 sense (quadratically) for any 

second-order stochastic process, compared to 1 n  for 

Monte Carlo methods (Rubinstein and Kroese, 2007) which 

renders the application of the polynomial chaos method suit-

able for finite element simulations. The polynomial chaos has 

been recently applied to investigate how uncertainties affect 

the stability of brake models both analytically (Nechack et 

al., 2011) and numerically (Sarrouy et al., 2013). However, it 

has yet not being reported how uncertainties influence the 

squeal propensity of a model from the energy point of view 

as a brake system might be stable but still get a higher squeal 

propensity.  

The objective of this study is to examine the use of the uncer-

tainty analysis on CEA and friction work calculations (e.g., 

the work done by the friction force) in predicting unstable 
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vibration modes and squeal propensity in a linear system. For 

this purpose, polynomial chaos expansions (Galerkin and the 

collocation method benchmarked against the Monte Carlo 

simulation and deterministic (Det) results) are incorporated 

into the equations of motion of a sinusoidally forced one 

degree of freedom (DOF) and a 4-DOF friction oscillator. 

The friction coefficient and viscous damping are treated as 

random variables. Numerical validity is established and in-

stabilities are quantified by comparing the probabilities and 

median values of real part of the complex eigenvalues and 

friction work as squeal prediction and indicator respectively 

over stiffness as a bifurcation parameter.  

2 ANALYTICAL MODELS AND NUMERICAL 
METHODS 

The analytical models of a sinusoidally forced 1-DOF and a 

4-DOF friction oscillator with random friction and viscous 

damping coefficients are described. The Monte Carlo method 

and the use of polynomial chaos expansions using the 

Galerkin and the collocation method are introduced to the 

analytical models  

2.1 The sinusoidally forced 1-DOF friction oscillator 

The model of the sinusoidally forced 1-DOF friction oscilla-

tor proposed by Hinrichs et al. (1998) is shown in Figure 

1(a). 
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Figure 1. Friction oscillators (a) Hinrichs et al. (1998); 

 (b) Papinniemi (2007) 

A slider connected with a spring and a dashpot is pushed by 

an external normal force against a belt. The friction in the 

interface of the slider and the belt is a Coulomb-Amonton 

type. Only the motion of the slider in the x-direction is con-

sidered without the slider being able to lift off from the belt 

(Oberst et al., 2013). The equation of motion for the slider is: 

m��x+ c(ξ
1
) �x+ kx = −Nf (ξ

2
)sgn(v

B
− �x)+ ku

0
sinωt      (1) 

Here, m is the mass, x is the displacement of the 

slider, ( )dx dt = ⋅ denotes the derivative with respect to time, c 

is the viscous damping coefficient, k is the spring’s stiffness, 

F is an  external normal force acting on the slider, f is the 

friction coefficient, sgn is the signum function, vB is the ve-

locity of the belt, 
0

u is the amplitude of the displacement 

u(t), ω  is the circular frequency of the excitation and t is the 

time. Let 1ξ and 2ξ be two i.i.d. (independent and identically 

distributed random variables), then uncertainty associated 

with the viscous damping and the friction coefficient can be 

denoted as 1( )c ξ and 2( )f ξ respectively. 

However, it is difficult to obtain a closed form solution for 

Equation (1) with a signum function (discontinuity) (von 

Wagner, 2004). The value of the signum function would be a 

constant if the velocity of the belt is fast enough (Nechak et 

al., 2012), so that the direction of the relative velocity be-

tween the slider and the belt would not change and a ‘steady-

sliding condition’ is established (Bajer et al., 2004). The ap-

proximate threshold velocity of the belt has been estimated 

numerically as given in the Appendix so that equation (1) can 

be reduced as: 

m��x+ c(ξ
1
) �x+ kx = −Nf (ξ

2
)+ ku

0
sinωt            (1b) 

2.2 The 4-DOF friction oscillator 

The 1-DOF system in section 2.1 serves to illustrate how the 

uncertainty would influence dynamics of the slider only in 

the x-direction. The 4-DOF system proposed by (Papinniemi, 

2007) shown in Figure 1b may be used to investigate how 

uncertainties influence the interplay between different DOFs. 

The equation of free vibration for the 4 DOF system can be 

written as (Papinniemi, 2007): 

+ =MX KX 0��  with X = [x
1
, y

1
,x

2
, y

2
]
T                  (2) 

2.3 Numerical Methods 

2.3.1 Monte Carlo method  

The Monte Carlo method (MC) relies on repeated sampling 

from the population to achieve a reasonable accuracy. Based 

on the central limit theorem (Casella and Berger, 1990), the 

average of a large number of independent samples tends to 

converge to the mathematical expectation of the population. 

Taking the estimation of the mean of the real part of the 

complex eigenvalues as an example, the procedure of MC 

simulation involves (Rubinstein and Kroese, 2007): 

1. Generate random damping and friction coefficient from the 

population 1( )c ξ  and f(ξ2), respectively.  

2. Perform computations to extract eigenvalues using Equa-

tion (2) with random damping and friction coefficients. 

3. Calculate the statistical properties of the results and treat 

them as the estimators for statistical population descriptors. 

2.3.2 Polynomial chaos  

Any second order stochastic process can be approximated by 

the sum of a series of expansions of polynomials. Let 

{ };X t ξ be a stochastic process. This process may then be 

expanded by the polynomial chaos expansions as done by 

(Sepahvand et al., 2012): 

           { }
0

; ( ) ( )i i

i

X t x t
∞

=

= Φ∑ξ ξ                          (3) 

where ξ is a vector of an independent random variable with a 
known probability density function p(ξ). The expansion coef-
ficients are referred to as xi(t). iΦ is a family of orthogonal 
polynomials with the following relationship:      

2, (ξ) (ξ) (ξ) ξ , 0,1, ,i j i j i ijp d i jδ
Ω

Φ Φ = Φ Φ = Φ = ∞∫ …  (4)     

where ijδ is the Kronecker delta, ,⋅ ⋅  is the ensemble average 

and Ω is the compact support of the probability space defined 

by ξ. Since (ξ)p  and 
iΦ are known and chosen by the user, 

the key step of using polynomial chaos expansions, is there-

fore the calculation of the expansion coefficients xi(t). Basi-

cally, there are two numerical methods for calculating the 

expansion coefficients which are namely the Garlerkin 
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method and the collocation method. We take the 1-DOF fric-

tion oscillator model (Figure 1(a)) as an example to illustrate 

the application of the two numerical methods. The damping 

and friction coefficients in the one DOF system are assumed 

to be distributed normally by using the linear transforma-

tions: 

1 1( ) c cc ξ µ σ ξ= +                                      (5) 

2 2( ) f ff ξ µ σ ξ= +                                    (6) 

where 
1ξ  and 

2ξ  denote two i.i.d. standard normal random 

variables, and µ denote the distribution means, and σ denote 

the standard deviations for
1( )c ξ and

2( )f ξ respectively. 

With equations (5) and (6), the response of the 1-DOF system 

becomes stochastic and can be expanded using the polyno-

mial chaos expansions as described by equation (3). Practi-

cally, the order of the polynomial chaos has to be truncated to 

a finite order N; the trade-off is slightly reduced accuracy 

depending on of which order is X. 

   
1 2 1 2

0

( , , ) ( ) ( , )
N

i i

i

X t x t Hξ ξ ξ ξ
=

=∑                           (7) 

iH represents the ith Hermite polynomial (probabilistic type) 

with N being the truncation order. Substituting equations (5), 

(6), (7) into (1b) yields the equation of motion considering 

uncertainties. 

m ��x
i

i=0

N

∑ (t)H
i
(ξ

1
,ξ

2
)+ (c

0
+ c

1
ξ
1
) �x

i

i=0

N

∑ (t)H
i
(ξ

1
,ξ

2
)+

+k x
i

i=0

N

∑ (t)H
i
(ξ

1
,ξ

2
) = −F (µ

0
+ µ

1
ξ
2
)+ ku

0
sinωt

           (8) 

2.3.2.1 Galerkin method 

The Galerkin method is based on the orthogonality of poly-

nomials (Sepahvand et al., 2012) and represents a mathemati-

cal rigorous way of solving stochastic differential equations. 

By multiplying both sides of equation (8) with 
iH and calcu-

lating the ensemble average by making use of the orthogonal-

ity in equation (4), one can solve the following equation with 

using an appropriate solver for differential equations (e.g. 

ODE45 in Matlab). 

M��X(t,ξ
1
,ξ

2
)+C �X(t,ξ

1
,ξ

2
)+KX(t,ξ

1
,ξ

2
)=F

1
+F

2
sinωt      (9) 

where M, C, K, F1 and F2 are the resultant matrices; the solu-

tion of equation (9) represent the expansion coefficients(c.f. 

Equation (8), more details of the resultant matrices are in the 

Appendix).     

2.3.2.2 Collocation method 

The coefficients of the expansion equation (7) could also be 
determined as follows:        

1 2 1 2

1 2 1 2

( , , ), ( , )
( ) , 1,2, ,

( , ), ( , )

i

i

i i

X t H
x t i n

H H

ξ ξ ξ ξ

ξ ξ ξ ξ
= = …        (10) 

Equation (10) has n unknowns ( )ix t to be determined. There-

fore, it needs n samples from the population to generate n=m 

realizations of
1 2( , , )X t ξ ξ  as the system would be otherwise 

for n<m underdetermined. Then the expansion coefficients 

are estimated by using a least square method (Tatang et al., 

1997).  These samples are termed the collocation points. It 

should be noted that the accuracy of ( )ix t largely depends on 

the quantity and quality of the samples. It has been suggested 

that the number of samples should be at least twice the num-

ber of unknowns in ( )ix t and the roots of the chosen polyno-

mials should be the collocation points (Huang et al., 2007).  

3 NUMERICAL RESULTS AND DISCUSSION 

The Monte Carlo method (MC) and the polynomial chaos 

expansions (PC) are applied to solve the response of the ana-

lytical oscillators respectively. The following numerical val-

ues are applied to the 1-DOF system: m=1 kg, k=2 Nm-1, 

F=10 N, x0=0.2 m and to the 4-DOF system: m1=0.2 kg, 

m2=1 kg, ki=2,…,5=1 Nm
-1, α1 =150

0, α2=30
0. The viscous 

damping in the 1-DOF friction oscillator and the friction 

coefficients in both oscillators are assumed to be normally 

i.i.d. with 2

1
( ) ( , ) (0.5,0.01)c N Nξ µ σ =∼ ,

2( ) (0.4,0.01)f Nξ ∼  

3.1 Collocation methods    

The collocation method is more convenient to use than the 
Galerkin method because it does not rely on orthogonality.  It 
is also faster than the MC method (L2 convergence) as the 
number of repeated  computations can be reduced owing to 
the of choice of the collocation points, which is at random for 
the MC method The collocation method is therefore more 
suitable for large-scale stochastic finite element problems 
than the Galerkin method (Huang et al., 2007).    

To assess the performance of the collocation method, the 
coefficients of expansions calculated by the collocation 
method are compared to the Galerkin method (Sepahvand et 
al., 2012). Figure 2 depicts the comparison of the coefficients 
of the first four expansion coefficients  of the collocation 
method (Equation (10)) with the results of the Galerkin 
method (Equation (9)) and shows that all modes agree rea-
sonably well after the steady state is reached.  
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Figure 2. Coefficients of the first four expansions for the displacement of silder in 1-DOF (PC order = 4)
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3.2 Accuracy of polynomial chaos expansions 

By substituting the expansion coefficients into Equation (7) a 

stochastic response is synthesised and statistical moments 

(mean or variance) can be obtained. It is expected that the 

first and the second statistical moments converge to those 

calculated by the MC method. Also, the deterministic result 

(i.e. the values of damping and friction coefficient remain 

constant with c=0.5 Nm/s, f=0.4) and the mean value of re-

sponses are shown in Figure 3 to be identical to the MC and 

PC.  

Figure 4 indicates the calculated variance applying the 

Galerkin and the collocation method is close to the variance 

of the Monte Carlo method once the steady state is reached. 

Comparing the performance of the three numerical methods 

depicted in Figures 3 and 4, it is revealed that the variance 

differs more than the mean. These discrepancies would 

probably be more prominent when of statistical moments 

higher than order two are compared (Cameron, 1947).  

3.3 Real parts of the complex eigenvalues 

The displacements of the 1-DOF and 4-DOF systems for free 

vibration may be expressed as: 

                             
( )x i te λ ω+= v                                (11) 

v is the complex eigenvector, i is the imaginary number 

1− , λ and ω are the real and imaginary part of a complex 

eigenvalue respectively. A CEA which gives a positive real 

part (divergence of trajectory) indicates a system’s status of 

stability. As a positive real part would only be caused here by 

an asymmetric stiffness matrix, the 1-DOF system without 

sign function (switching nonlinearity) would always be sta-

ble; therefore only the non-viscously damped 4-DOF friction 

oscillator is discussed. 

3.4 Stochastic friction work     

Friction between two contacting objects may dissipate energy 

(damping effect) but also could generate energy; if enough 

energy is produced and damping is overcome, the system will 

be driven into instability. So fed back energy increases the 

propensity of a system to squeal. This energy is generated by 

the combined effect of the friction and the phase difference 

between the relative displacement and the relative velocity of 

contacting objects (Guan and Huang, 2003, Papinniemi, 

2007). 

The 4-DOF friction oscillator (no viscous damping, see Fig-

ure 1(b)) is a good example to illustrate the relationship be-

tween the work due to friction and instabilities in a linear 

dynamic system. The relative velocity and relative displace-

ment of m1 and m2 in the x and y directions can be expressed 

respectively as 

�X t;ξ
2{ } = �x

1
t;ξ

2{ } − �x
2
t;ξ

2{ } = A
x
(ξ

2
)ω(ξ

2
)cos(ω(ξ

2
)t +θ

x
(ξ

2
))  (12) 

{ } { } { }2 1 2 2 2 2 2 2
; ; ; ( ) sin( ( ) ( ))

y y
Y t y t y t A tξ ξ ξ ξ ω ξ θ ξ= − = +       (13) 

The work done by friction in an arbitrary time interval [t1, t2] 

is can be calculated according to Papinniemi, (2007): 

W t,ξ
2{ } = k

2
f (ξ

2
)

t
1

t
2

∫ Y (t,ξ
2
) �X (t,ξ

2
)dt =

1

4
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2
f (ξ
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2
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(ξ

2
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))
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x
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)+θ
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2
))

+2ω(ξ
2
)sin(θ

y
(ξ

2
)−θ

x
(ξ

2
))(t

2
− t

1
)

 (14)          

where 2( )xA ξ , 2( )yA ξ and 1( )xθ ξ , 1( )yθ ξ are stochastic amplitudes 

and stochastic phases of the relative velocity (which points 

always in the same direction) and the displacement of the 

slider mass m1 and the belt mass m2 respectively. Let t1, t2 

be ( 1)n T− and nT, respectively, where T denotes period. By 

substituting (n-1)T and nT into equation (14), the friction work 

in the nth cycle is given by: 

2 2 2 2 2 2 2
( ) ( ) ( ) ( ) sin( ( ) ( ))

N

x y y x
W k f A Aξ ξ ξ ξ π θ ξ θ ξ= −      (15) 

Equation (15) shows that (i) the sign of the friction work is 

phase dependent, (ii) friction may cause the value calculated 

by the sin function to be non-zero; having no friction results 

in arguments of the sine function of either 00 or 1800. 

To assess the ability of the friction work for detecting higher 

squeal propensity, the median of the stochastic real part of 

the complex eigenvalue and the friction work of the 1st and 

2nd mode are compared with their deterministic values as 

shown in Figure 5 for various values of the stiffness constant 

k1. The results of the 3
rd and 4th mode are zero and not pre-

sented here. The results for the PC agree very well with those 

of the MC method, the deterministic values for the real part 

of the complex eigenvalue and the friction work (Figure 5). 

In this 4-DOF linear oscillator, only the 1st mode is predicted 

to have a positive friction work (Figure 5b) and a positive λ 

(Figure 5a) for values of k1 between 1.29 and 2.41 N/m.  
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Figure 3. Deterministic displacement and mean of the stochastic displacement for the slider in the 1-DOF 
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Figure 4. Variance of the stochastic displacement for the slider in the 1-DOF 
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         (b) Friction work per cycle of 1st and 2nd mode 

      Figure 5. Deterministic and median of λ and N
W for 4-   

DOF (MC samples: 1E4, PC order =14) 

A histogram and an empirical cumulative distribution func-

tion (CDF) of the friction work when k1 equals 2.2 N/m is 

given in the Appendix to show how the probability is esti-

mated. The relationship between the probabilities of generat-

ing a positive real part of the complex eigenvalue and posi-

tive friction work per cycle with k1 for the 1
st mode is shown 

in Figure 6a and 6b respectively. The probability of positive 

real part and positive friction work for values of k1 between 

1.16 N/m and 3.12 N/m is above 0.16%. The probability of 

positive real part of CEA and positive friction work corre-

sponding to the other three modes are all zero and not pre-

sented here for brevity.  

4 CONCLUSIONS 

An uncertainty analysis incorporating the method of polyno-

mial chaos expansions has been applied to compute the com-

plex eigenvalues and the stochastic friction work of two lin-

ear friction oscillators to illustrate its potential in predicting 

unstable vibration modes and squeal propensity with poten-

tial applications to automotive brake systems. . 

To avoid the complexity due to a discontinuous nonlinearity 

(signum function), the condition of steady sliding is numeri-

cally estimated. Based on the 1-DOF oscillator, the colloca-

tion method for polynomial chaos expansions has been 

shown to be a robust alternative compared to the Galerkin 

method, both showing good agreement with the Monte Carlo 

simulation. Following the stochastic complex eigenvalue and 

friction work were calculated using the polynomial chaos 

expansions and the collocation method. The feasibility of 

using the friction work to detect higher squeal propensity is 

explored and two main conclusions can be drawn 

(1) Compared with the complex eigenvalue analysis, the 

friction work is equally capable of estimating instabilities in 

the linear undamped 4-DOF system. 
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Figure 6. Probability and Median of positive λ and NW of 1st 

mode for 4-DOF (MC samples: 1E4, PC order =14) 

 (2) Uncertainty could enlarge the instability region.  The 

deterministic analysis shows no instabilities if the stiffness k1 

is greater than or equal to 2.5 N/m, while both the stochastic 

complex eigenvalue and friction work shows that it still has 

30% probability of generating instability / higher squeal pro-

pensity at k1 = 2.5 N/m. 

As brake squeal is essentially a nonlinear problem, future 

work should be focussed on the analysis of combining 

nonlinearities with uncertainties.   
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APPENDIX 

(a) The matrices and vectors in equation (9) can be obtained 

by using orthogonality of Hermite polynomials. 

0 1
M= diag[ ( ) ( ) , ( ) ( ) ,

( ) ( ) ]
N

m H W d H W d

H W d

ξ ξ ξ ξ ξ ξ

ξ ξ ξ

Ω Ω

Ω

× ∫∫ ∫∫

∫∫�
      (16) 

0 1 1 0 0 1 1 1

0 1 1

C=diag[ ( ) ( ) ( ) , ( ) ( ) ( ) ,

( ) ( ) ( ) ] (17)N

c c H W d c c H W d

c c H W d

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

Ω Ω

Ω

+ +

+

∫∫ ∫∫

∫∫�

0
K=k diag[ ( ) ( ) , , ( ) ( ) ]

N
H W d H W dξ ξ ξ ξ ξ ξ

Ω Ω

× ∫∫ ∫∫�         (18) 

1 0 1 2 0

T

0 1 2

F =[ ( ) ( ) ( ) ,

( ) ( ) ( ) ]
N

F H W d

F H W d

µ µ ξ ξ ξ ξ

µ µ ξ ξ ξ ξ

Ω

Ω

− +

− +

∫∫

∫∫

�

                 (19) 

2 0 0
F =ku diag[ ( ) ( ) ,

( ) ( ) ]
N

H W d

H W d

ξ ξ ξ

ξ ξ ξ

Ω

Ω

× ∫∫

∫∫

�

                   (20) 

b) The solution of equation (1) should be identical to that of 

equation (21) if the velocity of the belt exceeds a threshold 

speed.  As shown in Figure 7, 0.16 m/s appears to be the 

threshold speed of the belt. Since the velocity of the belt is 

equal to 0.16 m/s, no stick-slip motion occurs anymore, the 

solution of equation (1) is closely matched by that of equa-

tion (21).  

m��x+ c(ξ
1
) �x+ kx = −Nf (ξ

2
)+ ku

0
sinωt              (21)                                                  
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The threshold speed for the 4-DOF oscillator can be esti-

mated in the same manner and the result is presented in Fig-

ure7 (b).  

(c) 10,000 samples and 50 bins were used to draw the histo-

gram in Figure 8 (a). The numerical value for generating 

Figure 8(a) is exactly as presented in Section 3. The probabil-

ity of generating positive friction work (WN) can be estimated 

by the CDF as:  

         
( 0) 1 ( 0)

1 ( 0) 1 0.2891 0.7109

N N

N

P W P W

F W

> = − <

= − = = − =
              (22) 

The probability of the positive real part of the complex ei-

genvalue is calculated in the same manner. It is shown in 

Figure 8(a) that the zero friction work takes the largest pro-

portion. This feature can also be observed in Figure 9 (b), 

which shows the area of zero friction work (white) occupying 

considerable proportion. A similar characteristic is shown in 

the contour plot of the real part of the complex eigenvalue 

(Figure 9 (a)).    
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Figure 7.  Estimating the threshold speed for eliminating sign 

function in the 1 and 4 –DOF oscillators (V is the speed of 

the belt). 
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Figure 8. The distribution of stochastic friction work for                     

the 1st mode when k1 = 2.2 (N/m)   

       

                                                                      
 (a)                                                                                                                             (b)  

Figure 9. Contour plot of deterministic real part of complex eigenvalue and friction work for 1st mode

 




