
FBRC: Optimization of task scheduling in Fog-based

Region and Cloud

Thanh Dat Dang

University of Technology Sydney, Australia

School of Computing and Communications

Thanh.D.Dang@student.uts.edu.au

Doan Hoang

University of Technology Sydney, Australia

School of Computing and Communications

Doan.Hoang@uts.edu.au

Abstract— Fog computing preserves benefits of cloud

computing and is strategically positioned to address

effectively many local and performance issues because its

resources and specific services are virtualized and located

at the edge of the customer premises. Resource

management is a critical issue affecting system performance

significantly. Due to the complex distribution and high

mobility of fog devices, computation resources still

experience high latencies in fog’s large coverage area. This

paper considers a Fog-based Region and Cloud (FBRC) in

which requests are locally handled not just by a region but

multiple regions when additional resources are needed. An

efficient task scheduling mechanism is thus essential to

minimize the completion time of tasks and improve user

experiences. To this end, two issues are investigated in the

paper: 1) designing a fog-based region architecture to

provide nearby computing resources; 2) investigating

efficient scheduling algorithms to distribute tasks among

regions and remote clouds. To deal with the complexity of

scheduling tasks, a heuristic-based algorithm is proposed

based on our formulation and validated by extensive

simulations.

Keywords—fog computing; task scheduling; fog resource;

sensitive latency; region; fog cloud.

I. INTRODUCTION

Fog computing has become a new computing model in
providing local computing resources and storage for end-users
rather than cloud computing. It provides a popular platform to
facilitate a wide range of applications such as smart transports,
healthcare, smart grid applications. Users’ applications and data,
however, are increasing not only in number, volume, and variety
but also in complexity with strict latency requirements. As a
large number of physical devices move about in a large area,
processing tasks may experience high latencies and jitters as
needed computing resources may not be optimally distributed
and are located far from their users. This paper introduces a local
computing concept called “Region” to deal with these issues. A
Region centres on a physical location which provides services
for users within its coverage. It includes all fog devices such as
high-end servers, smart phones, and vehicles connected to one
another via wire or wireless connections in a defined geo-

graphic location. Some fog devices, which may share computing
resources in multiple regions, move to a new region but still
request and/or provide computing services.

Fog computing has been recently introduced as “Cloud at
edge network” to provide computing services, storage, and
network services locally to its users. It bridges between users
and clouds by providing single-hop wireless communications
such as Wi-Fi, Bluetooth. Integrating resources at the edge of
the network into computation groups enables fog to handle
requests from nearby clients individually and efficiently.
Nevertheless, heavy computation tasks still need to be processed
at a remote cloud due to the limitation of fog’s resources.
Research on computation offloading has been explored on
methods and in frameworks over the last few years [1-3]. These
approaches showed that processing requests at local fog
platforms results in faster response times in general compared to
handling them at centralized clouds. Handling a large number of
fog nodes, however, results in an excessive increase in
transmission time for sending requests and receiving results.
Other efforts focus on scheduling tasks for fog and cloud
resources but they only considered costs and energy
consumption [4-7]. Research on scheduling tasks on fog and
cloud resources have not been well-established yet due to the
lack of fog architecture that manages and allocates resources
efficiently.

This paper proposes a concept of “Region” which provides
computation resources to nearly clients in order to reduce data
transmission times. We do not consider a region as a pre-
established entity but as a dynamic region in terms of
computation resources and locations relative to their clients.
Furthermore, task processing involves not just a single region
but multiple regions and/or possibly cloud servers in order to
minimize the its completion time. The resources of a region are,
however, limited and their availability varies. Some tasks may
be processed on one region for faster response but others may
have to be distributed and executed over multiple regions or
even at remote cloud servers as they have more computational
resources. Although more computation resources result in
shorter processing time, data transmission between them and
their users leads to higher latency. Thus, how to systematically
manage the resources and schedule the tasks on a Fog-based
region is still an open issue. An effective resource management
and task scheduling mechanism is required in order to provide

high user experience, e.g., task completion time minimization.
The following questions shall be answered to achieve minimum
task completion time.

1) Where should the computation of required tasks take
place, on regions or cloud servers? Generally, a cloud server has
a larger amount of computation resources and faster processing
time than regions. Nevertheless, it is located far from clients
such that high latency occurs in task processing due to data
transmission between clients at a region and cloud servers. In
contrast, when a region is located near the clients, the
transmission time is shortened, but low computation
performance may result in an excessive increase the response
time. If a task is not appropriately scheduled, the task completion
time may be even longer when placed in a cloud server or a
region. Efficiently scheduling tasks on regions and cloud server
is thus a critical issue to reduce task completion time.

2) Which cloud servers or regions shall process the task
when requests at original region are submitted? The tasks
processing time on cloud servers and regions may be different
from time to time due to workloads on them. It is desirable to
allocate heavy tasks to light load cloud servers or regions
depending on their conditions and locations to balance the loads
and improve both computation and response times.

The main contributions of the paper are summarized as
follows:

We propose the use of Region that addresses requirements
of application’s latency-sensitive in fog computing and in
combination with cloud computing to provision computation
resources on demand. To our best knowledge, we are the first
investigate the task scheduling problem for Fog-based Region
and Cloud (FBRC). In particular, we consider a scenario where
computation can be processed either at local regions and/or
remote cloud servers. By obtaining efficient task schedules at
both regions and cloud servers, we choose to minimize the
computation and transmission latency of all requests. We
formulate the task scheduling problem for the FBRC as an
Integer Program (called as FBRC-IP). The optimal scheduling
problem is NP-hard problem. Thus, we design an efficient
heuristic algorithm to solve the FBRC-IP problem.

We conduct simulations to demonstrate that the FBRC can
significantly complement the Cloud-based only option to
optimally minimize response latency.

The remaining of the paper is organized as follows. Section
II presents the overview of our proposed model. Section III
presents the formulation of the scheduling problem. Section IV
shows numeric results for the proposed model. Section V
discusses related work. The conclusion is drawn in Section VI.

II. PRELIMINARIES

A. System model

The logical view of FBRC is shown in Figure 1, where there
is a set R of fog-based regions, a set C of cloud servers. All these
nodes are inter-connected. Clients at the original region can
request computation resources from other regions placed around
it or cloud servers. Thus, tasks can be scheduled to minimize the
completion time either at regions or cloud servers. In each

region, a fog node is selected to manage the region. This fog
node handles tasks submitted .in the region such as a join/leave
requests, receiving and submitting computation requests,
scheduling tasks to appropriate computation nodes. Hence, these
fog nodes also collect and update throughputs and resources
availability of closest regions and cloud servers. In our model,
regions and cloud servers are required to periodically notify each
other the average throughput and the amount of data that they
can sustain.

Fig. 1. The Logic view of FBRC

B. Fog-based Region scenario

Figure 2 presents a fog-based region scenario. In this design,
a region can be structured by one or several fog nodes. A fog
node consists of several fog devices with weak performance
which are deployed at edge network. It can provide computation,
network resources and storages. The fog devices are
heterogeneous ranging from high-end servers to end devices
such as mobile devices, wearable devices. For example, Region
1 is structured by fog node 1 and fog node 2 while Region 2 is
formed by fog node 3 and fog node 4.

Fog election: It is essential to delegate a fog node to manage
a region’s activities and computing resources due to frequent
join and leave node requests. Furthermore, task executions with
a region need to be secure to protect sensitive data. We use a
decentralized method [8] to select the delegated fog node in the
region. Each fog node sends its vote for other fog nodes. In turn,
it receives votes from other fog nodes. Thus, the votes in the
region are collected into high capacity nodes among which the
delegated node may be selected. A heartbeat is sent by every fog
node to other fog nodes in a region periodically, at a heartbeat
interval. Heartbeats are used by a fog node as a means to inform
all fog nodes it is alive. A delegated fog also sends all fog nodes
in its region every time the region changes by the detection of

C
lo

u
d
 se

rv
ers

R
e
g
io

n
s

cloud server c1

cloud server c2

region m1 region m2
region mi

end-user end-user end-user

cloud server ci

an event, which is either a new fog that entered the region or one
that left or crashed.

Fig. 2. The overview of Region-based Trust-Aware scenario

C. Problem statement

The transmission latency between any two nodes, e.g., is
denoted as lij and other major symbols are summarized in Table
I.

TABLE I. NOTATIONS

Basic

Notation

Description

I A set of fog nodes in the original region

T A set of tasks

R A set of regions

C A set of cloud servers

t A pending task in T.

R’ A set of fog nodes in other regions (R\I).

��� Transmission latency between the original

region and other region m∈ R’

��� Transmission latency between the original

region and cloud server c∈ C

ηc Service rate for cloud server c∈ C

µ� Service rate for other region m∈ R’

st Average request rate of task t from client i

���� The 	0,1
 variable indicates whether the

cloud server c is selected.

���� The 	0,1
 variable indicates whether another

region m is selected.

���� The 	0,1
 variable indicates whether the

original region is selected.

We consider applications in fog computing consisting of a
set of T tasks that need to be completed in a required time. Tasks
can be run in parallel. Let R and C be the set of computation
resources of regions and cloud servers for the applications. The
computation resources in regions and cloud have different
capacities and characteristics. Generally, cloud servers own
more computation resources and process tasks faster compared
to those of regions, but they are often located far away from their
clients. In other words, these servers can provide faster
computation but have higher latency because of the long transfer
time between clients and servers. In contrast, the computational

results may be transferred quickly from a region to its
surrounding clients but the processing time to complete a
client’s request may be very large because of limited computing
resources. For these reasons, FBRC effectively deploys
resources of multiple regions as well as cloud servers to reduce
task completion time. We assume that the processing time of
tasks and the number of hops for transferring data between
regions and cloud servers are known. In doing so, we could pre-
compute the processing and transmission time of tasks along
with the amount of data throughput.

Task processing requests are submitted randomly at each fog
node. For each task t in a set T of tasks, the average task arrival

to a fog node i ∈ R is τti. Without loss of generality, we assume

that a region r ∈ R has the computational capacity µr for FBRC

and a cloud server c ∈ C has computation rate ηc. Let st denote

the size of task t ∈ T.

In the FBRC, a task can be processed by the fog nodes in a
region itself, or in multiple regions, and/or in cloud servers.
Although static scheduling may be feasible for task processing
locally, limited resources prevent handling all tasks locally in a
region. In fact, it is difficult to estimate accurately computational
requirements of task requests. Alternatively, more flexibility and
higher efficiency could be obtained if the task scheduling
process can choose stochastic strategies based on the
distributions of submitted tasks and their requirements. We

denote ptim as the probability that a task t ∈ T submitted from a

fog node i ∈ I in the original region to other regions R’ where

R’⊆ R. Let ptic be the probability that a task t request submitted

from the original region is sent to cloud node c∈ C for handling
disk reading and task processing. Let ptio be the probability that

task t ∈ T request is processed at the original region itself.

A task may be processed at different regions or cloud servers
other than always in a particular region due to the availability of
computing resources. Usually, cloud servers have higher service
rates than fog nodes in regions since they are shared by multiple
clients for many tasks. How to balance the requests among the
original region, other regions, and cloud servers is a critical issue
to task completion time. In addition, the transmission latency is
also another critical issue because tasks may be processed fasters
at cloud servers or multiple regions that have available resources
but transferring data among nodes results in a high delay in the
whole process. Clearly, the probability distribution of submitted
requests and strategies of the scheduling process play big roles
in minimizing task completion times.

III. PROBLEM FORMULATION

In this section, we provide a formal description of our
problem with consideration of task scheduling by formulating it
into an Integer program problem.

A. Task completion time analysis

1) Computation time
The computation time of a task depends on where the

processing is scheduled. If t is distributed on cloud server c ∈ C
with the service rate ηc, the server c may be shared by multiple
clients for different tasks. The overall task arrival rate at cloud
server c thus can be calculated as

 �� = ∑ ∑ �����∈��∈� ��� , ∀� ∈ � (1)
Recall that the task computation time is exponentially

distributed on a cloud server, which is based on an M/M/1
queue. The average computation time of all tasks at cloud server

c ∈ C can be calculated as

 ���� = �
���∑ ∑ � !"!∈# ∈$ % !

, ∀� ∈ �, (2)

Where we must ensure that

 &' > ∑ ∑ �����∈��∈� ��� , ∀� ∈ � (3)
If t is sent to another region m ∈ R’ with the service rate µr,

the region m may be requested from clients for different tasks.
Therefore, the overall task arrival rate at region m can be
calculated as

 �� = ∑ ∑ �����∈��∈� ��� , ∀) ∈ *+ (4)
Similarly, the computation on another region is also based

on an M/M/1 queue. It can be also calculated as

 ���� = �
µ,�∑ ∑ � !-!∈# ∈$ % !

, ∀) ∈ *+. (5)

We shall also guaranty that

 µ� > ∑ �����∈� ��� = 1, ∀/ ∈ *′ (6)
Finally, the computation is processed at the original region.

The overall task arrival rate at the original region can be
calculated as follows.

 �1 = ∑ ∑ �����∈��∈� ��� , ∀2 ∈ 3. (7)
We can derive the average computation time on the fog node

i ∈ I at the original region as

 ���� = �
µ4�∑ ∑ � !4!∈# ∈$ % !

, ∀2 ∈ 3. (8)

We shall also guaranty that

 µ� > ∑ �����∈� ��� = 1, ∀2 ∈ 3. (9)
2) Transmission time
If the computation tasks and data retrieval at the original

region i are handled by another region m and cloud server c,
respectively, the transmission latency between i, m and c shall
be considered. We use binary variables to indicate other region
and cloud server selection as

 ���� = 51, the task < from the original region 2 is handled by cloud server �,
0, otherwise (10)

Similarly, we define

 ���� = 51, the task < from the original region 2 is handled by region),
0, otherwise (11)

We also define

 ���� = 51, the task < is handled by original region,
0, otherwise (12)

Hence, we the relationship between the probabilities and
decision variables as follows: 1) when ���� > 0, the value of
���� shall be 1, indicating that the region m is selected; 2) when
���� > 0, the value of xMNO shall be 1, indicating that cloud server
c is selected; 3) when ���� > 0, the value of ���� shall be 1,
indicating that the original region is selected. Therefore, we have
following relationships

 ���� < ���� < Q���� , ∀< ∈ R, ∀2 ∈ 3, ∀) ∈ *+ (13)
and

 ���� < ���� < Q���� , ∀< ∈ R, ∀2 ∈ 3, ∀� ∈ � (14)
and

 ���� < ���� < Q����, ∀< ∈ R, ∀2 ∈ 3 (15)
where A is an arbitrarily large number.

For tasks scheduled onto cloud servers and other regions, all
the transmissions for data retrieval process happened between

the original region i and m ∈ R’, c ∈ C. Let ntm and ntc are the
average data retrieval during task execution from the original
region i to another region m and cloud c, respectively. The
expected transmission time of task t from the original region i
allocated to m and c can be calculated as

 ������ = 2T�� + ��� , ∀< ∈ R, ∀2 ∈ 3, ∀) ∈ *+. (16)
and the expected transmission time of task t between the

original region i and a cloud server c can be calculated as

 ������ = 2T�� + ��� , ∀< ∈ R, ∀2 ∈ 3, ∀� ∈ �. (17)
3) Task completeness constraints

To ensure the Quality of service (QoS), it is required all
requests submitted to the original region must be processed,
either at regions or cloud servers. This results in

 ∑ �����∈VW + ∑ �����∈� + ∑ �����∈' = 1, ∀< ∈ R, ∀2 ∈ 3. (18)
Tasks need to be completed without exceeding the deadline.

This leads to
 ∑ ���� . X���� + ������ Y�∈' + ∑ ���� . X���� + ������ Y�∈V+ +

∑ ���� . �����∈� ≤ [, ∀< ∈ R, ∀2 ∈ 3. (19)

B. An FBRC-IP formulation

Multiple tasks are submitted to fog nodes at an original
region. These tasks will be allocated to appropriated fog nodes
at the current region, other regions and cloud servers based on
their requirements. If we allocate a task to high performance a
cloud server which is located far from the client, this task may
not be finalized in the expected time due to large transmission
time. The aim of the FBRC is to minimize the maximum average
task completion times. Let \ be the maximum time is
introduced in completing the task t. Thus, we have

 ���� . X���� + ������ Y < \ (20)
and

 ���� . X���� + ������ Y < \, (21)
and

 ���� . ���� < \. (22)
The problem is solved by minimizing \. In short, we can

formulate the task maximization completion time-minimization
with consideration of task scheduling as an Integer
Programming problem (Called FBRC-IP), as follow:

FBRC-IP:

)2T2)2]^ \,
subject to the following constraints:

• Service rate as (3), (6), (9)

• Computation resources as (13-17)

• Task completeness as (18), (19)

• Maximum completion time (20-22)

The objective function is to minimize the task completion
time when executing requests at regions and cloud servers.

C. Algorithm design

In this section, we present the design algorithm to find an
optimal resource scheduling algorithm for FBRC that minimizes
the completion time. The steps of the strategy are given as
follows:

1. Requests are sorted in ascending order of latency-
constrains.

2. Computation resources are allocated according to the
policy that aims to minimize the computation latency for each
request. This latency can be expressed as the ratio of the
computation throughput and the latency requirements.

3. Pending requests are sorted in ascending order of latency-
constrains.

4. Regions and cloud servers are allocated with the objective
of minimizing the overall FRBC latency.

IV. NUMERICAL RESULTS

Simulation results are presented in this section to validate the
task completion time by scheduling tasks to multiple regions and
cloud servers. Without loss of generality, the regions and cloud
servers throughout are assumed known. To evaluate the
efficiency of our proposed scheduling scheme, we simulate
requests, system capabilities, and scheduling strategies strictly
following the system model defined in section II. Especially, in
order to show the advantage of our proposed task scheduling
scheme, we introduce two competitors namely Cloud-based
(“Cloud”) and Region-based (“Region”) task scheduling
schemes. The former schedules all computation tasks onto cloud
servers until all the tasks are allocated or Cloud servers are fully
loaded, while the latter handles all tasks on all regions until all
of them are allocated or regions are fully loaded.

We select the parameter settings for the simulation as
follows: each cloud server is with a total computation rate of 30
which the computation on each region is set as 10. The current
resources of regions and cloud servers are set randomly in the
range of [0.7,1] as they are shared by tasks. The transmission
latency among regions are randomly set in the range of [0.01,
0.09] while the transmission latency between a region and a
cloud server are randomly set in the range of [0.4,0.7]. We
investigate how FBRC performs over a range of parameters..

A. On effects of task arrival rate

Fig. 3. Task arrival rate

We first compare the task completion time of Region, FBRC
and Cloud under different task arrival rates from 7 to 10 (Figure

3). When task arrival rate increases, more regions will involve
in the process to perform requests. This is because the longer
queue delay leads to larger computation time. However, the
benefit of our proposed scheme over “Region” and “Cloud” can
be observed when task arrival rate increases. Thus, it provides
the flexibility in selecting computation resources between
regions and Cloud servers.

B. On effects of computation service rate

Fig. 4. Region processing rate

Figure 4 and figure 5 present the task completion time of
region service rate and cloud server rate. To observe the effect
on region processing rate, we increase the service rates from 10
to 15. It can be seen from the figure 4 that the completion time
of Region and FBRC shows a decreasing trend of region service
rate. When the service rates increase, regions process more
requests to provide with a faster response. This results in the
shorter computation time. The increase of service rate, in fact,
leads to a significant impact on the computation time of Region.
Hence, for Region, the completion time decreases significantly.
For FBRC, requests shall be processed by computation
resources to obtain a faster response. Thus, more resource of
regions will be used in processing requests to reduce completion
time. For Cloud, as all requests are handled at cloud servers,
there are no benefits from increasing the region service rate.

The similar trend is also presented in figure 5. When
computation service rate on cloud servers is low, FBRC’s
response latency is 2.82 while that of Cloud is 3.73 at service
rate 18. It can be explained that FBRC assigns more task to
regions. However, when the service rate of cloud servers
increase, the difference of response latency between FBRC and
Cloud becomes small. For example, when service rate is 36, the
gap decreases to 0.11. Overall, FBRC can always schedule
resource optimally to obtain the low response latency.

Fig. 5. Computation cloud server processing rate

1

3

5

7 7.5 8 8.5 9 9.5 9.5

Region FBRC Cloud

2

3

4

10 11 12 13 14 15

Region FBRC Cloud

2

3

4

18 20 22 24 26 28 30 32 34 36

Region FBRC Cloud

Cloud server processing rate

Region processing rate

Task request arrival rate

Response time
Response time

Response time

V. RELATED WORK

Hassan [1] proposed an offloading mechanism using fog
computing to provide nearby computing resources for mobile
applications and mobile storage. It processed mobile
computation tasks faster with including mobile devices and
servers. In fact, mobile storage was also expanded by leveraging
clients’ devices nearby-access. Pu [4] proposed Device-to-
Device Fogging framework that schedules mobile tasks to
available resources of mobile devices. An online
computationally-efficient algorithm for mobile task offloading
was also introduced that minimizes the energy consumption for
task execution of all users. A task scheduling approach in a
cloud-fog computing system was presented in [5]. It used virtual
machines at cloud as extended resources when fog nodes did not
have sufficient resource to fulfill clients’ requests. However, it
did not consider the locality of resources nearby-access. The
optimization approach focused on cost for cloud services instead
of latency-sensitive responses to clients. Furthermore, the costs
for fog resources should have been compared to cloud resources
as these resources were also shared by multiple clients. Zeng [2]
proposed a joint optimization of task scheduling and image
placement in fog computing supported software-defined
network embedded system. Computational resources were
provided from two sources: embedded clients and fog nodes
represented by computation servers. Storage servers could be
shared by both clients and computation servers. This approach
only structured resources locally from fog devices and
embedded clients. It was, however, unavoidable to employ more
resources from cloud since there could be large-scale tasks or
intensive requests submitted from clients. Cardellini [9]
introduced a distributed and self-adaptive QoS-aware scheduler
for the extended Storm which is an open source Data Streaming
Processing (DSP) system. The schedulers ran at local clusters to
schedule resources for clients. The Storm was added modules
that could scale the number of DSP application and network
resources over fog infrastructure. Furthermore, the self-adaptive
scheduler enabled reconfiguring the operator placement
automatically when there were changes in fog environment.
Oueis [3] proposed a low complexity small cell clusters
establishment and resources management customizable
algorithm to address the load balancing in fog computing. The
proposed mechanism allowed small cell (SCC) to minimize the
computation resource and power consumption while still
satisfying users’ requests. It first put the resources at small cells
(SCs) to perform the requests using scheduling rules.
Computation clusters were then structured to serve unsatisfied
requests. Wang [10] proposed CloudFog which was a
lightweight system and allocated nearby users to provide
computation resources. Fog nodes played roles of supernodes to
render video games and stream them. Cloud servers served
heavy computation tasks and updated computation results to
supernodes. In addition, the Receiver-driven encoding rate
adaptation strategy and Deadline-driven sender buffer
scheduling were also introduced to enhance the reliability and
the latency requirement of the proposed system. Our work
employs computing resources from both regions and clouds to
handle requests with sensitive latency demands. In fact, these
resources are scheduled optimally to allocate to each request and
thus provide a better performance trade-off compared to use fog
resources or cloud resources alone.

VI. CONCLUSION

This paper introduced a new concept of “Region” in fog
computing in providing nearby access for clients. A task
scheduling for region-based cloud algorithm was proposed to
satisfy resource and sensitive latency requirements and yet
utilize appropriate cloud resources for heavy computation tasks.
The scheduling problem was formulated as an Integer program
and solved by a heuristic algorithm. The numeric results
demonstrated the efficiency of the proposed model in term of
latency response and resource utilization compared to Region-
based and Cloud-based resource managements.

REFERENCES

[1] M. A. Hassan, M. Xiao, Q. Wei, and S. Chen, "Help your

mobile applications with fog computing," in 2015 12th Annual

IEEE International Conference on Sensing, Communication,

and Networking - Workshops (SECON Workshops), 2015, pp.

1-6.

[2] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, "Joint

Optimization of Task Scheduling and Image Placement in Fog

Computing Supported Software-Defined Embedded System,"

IEEE Transactions on Computers, vol. 65, pp. 3702-3712,

2016.

[3] J. Oueis, E. C. Strinati, S. Sardellitti, and S. Barbarossa,

"Small Cell Clustering for Efficient Distributed Fog

Computing: A Multi-User Case," in 2015 IEEE 82nd Vehicular

Technology Conference (VTC2015-Fall), 2015, pp. 1-5.

[4] L. Pu, X. Chen, J. Xu, and X. Fu, "D2D Fogging: An

Energy-Efficient and Incentive-Aware Task Offloading

Framework via Network-Assisted D2D Collaboration," IEEE

Journal on Selected Areas in Communications, vol. PP, pp. 1-

1, 2016.

[5] P. Xuan-Qui and H. Eui-Nam, "Towards task scheduling in

a cloud-fog computing system," in 2016 18th Asia-Pacific

Network Operations and Management Symposium (APNOMS),

2016, pp. 1-4.

[6] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker,

"Fog Computing May Help to Save Energy in Cloud

Computing," IEEE Journal on Selected Areas in

Communications, vol. 34, pp. 1728-1739, 2016.

[7] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, "Optimal

Workload Allocation in Fog-Cloud Computing Towards

Balanced Delay and Power Consumption," IEEE Internet of

Things Journal, vol. PP, pp. 1-1, 2016.

[8] G. Liu, H. Shen, and L. Ward, "An Efficient and

Trustworthy P2P and Social Network Integrated File Sharing

System," IEEE Transactions on Computers, vol. 64, pp. 54-70,

2015.

[9] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli,

"Distributed QoS-aware scheduling in storm," presented at the

Proceedings of the 9th ACM International Conference on

Distributed Event-Based Systems, Oslo, Norway, 2015.

[10] Y. Wang and W. Shi, "Budget-Driven Scheduling

Algorithms for Batches of MapReduce Jobs in Heterogeneous

Clouds," IEEE Transactions on Cloud Computing, vol. 2, pp.

306-319, 2014.

