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Abstract Multi-label learning has become a significant learning paradigm
in the past few years due to its broad application scenarios and the ever-
increasing number of techniques developed by researchers in this area. Among
existing state-of-the-art works, generative statistical models are characterized
by their good data generalization and robustness on large number of labels
through learning a low-dimensional label embedding. However, one issue of
this branch of models is that the number of dimensions needs to be fixed
in advance, which is difficult and inappropriate in many real-world settings.
In this paper, we propose a Bayesian nonparametric model to resolve this
issue. More specifically, we extend a Gamma-negative binomial process to three
levels in order to capture the label-instance-feature structure. Furthermore, a
mixing strategy for Gamma processes is designed to account for the multiple
labels of an instance. The mixed process also leads to a difficulty in model
inference, so an efficient Gibbs sampling inference algorithm is then developed
to resolve this difficulty. Experiments on several real-world datasets show the
performance of the proposed model on multi-label learning tasks, comparing
with three state-of-the-art models from the literature.
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1 Introduction

Multi-label learning (Gibaja and Ventura 2015; Zhang and Zhou 2014; Gao
and Zhou 2013) is a significant learning paradigm in which each instance may
be assigned more than one label. It has attracted a lot of attentions of not
only scholars from research communities but also practitioners from industries
in the past few years due to its broad application scenarios (Madjarov et al
2012). For instance, each academic paper may have more than one author,
and learning from this data could help to identify the academic interests of
authors and recommend potential collaborators according to their interests
(Rosen-Zvi et al 2004; Xuan et al 2015b); a patent may be associated with
several categories, and automatically assigning large amount of new patents to
correct categories could save the costs in human resources and time (Cong and
Tong 2008); each gene may be associated with not one but a set of functional
classes, and detecting functional classes of new genes could benefit the medicine
design (Elisseeff and Weston 2001).

The existing algorithms and models for multi-label learning could be rough-
ly categorized into two types: discriminative ones and generative ones. The
generative models learn a joint distribution of data and the latent variables,
while discriminative models only learn a conditional distribution of latent vari-
ables given data. Comparing with discriminative models, generative ones are
characterized by the capability of handling the following situations: 1) the
number of labels is large (Rubin et al 2012); 2) the number of training data is
small. Current Generative models for multi-label learning are mainly based on
topic models (Rai et al 2015; Rubin et al 2012), which learn a low-dimensional
label embedding (Rai et al 2015). It means that the labels and instances could
be represented by a relatively low-dimensional vector and each dimension of
vectors is seen as a topic.

One problem of existing generative models for multi-label learning is that
the hidden topic number needs to be fixed in advance. This number is normal-
ly chosen with domain knowledge. After fixing the number of topics, Dirichlet,
Multinomial, and other distributions could be adopted as the building blocks
for generative models. However, discovering an appropriate number is very
difficult and sometimes unrealistic for many real-world applications. This may
also lead to overfitting when there are too many topics so that topics are rel-
atively specific and do not generalise well to unseen observations; underfitting
is the opposite case when there are too few topics so unrelated observations
are assigned together to the same topic (Dai and Storkey 2015). A number of
methods can be used to choose the number of topics, such as cross-validation
techniques (Griffiths and Steyvers 2004), but it is slow because the algorithm
has to be restarted a number of times and then choosing the best one (Griffiths
and Steyvers 2004; Dai and Storkey 2015). Bayesian nonparametric learning
(Hjort et al 2010; Gershman and Blei 2012) has emerged as an elegant way to
handle this problem.

In this paper, we propose a Bayesian nonparametric model for multi-label
learning without the requirement of fixing the topic number in advance. In-
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stead of using fixed-dimensional distributions, stochastic processes are used:
to be specific, Gamma-negative binomial process (Zhou and Carin 2015) is ex-
tended to three levels for capturing the hierarchical structure: label-instance-
feature. In this model, each instance is assigned with a Gamma process (Fer-
guson 1973) to express the mapping relation between this instance with the
hidden topics instead of a vector with a fixed dimension. This Gamma process
can be simply considered as an infinite discrete distribution, and is parameter-
ized by a base measure (another Gamma process) that denotes the mapping
relation between labels with hidden topics. However, an instance normally has
multiple labels in multi-label learning paradigm, so we assign an instance a
mixed Gamma process that is from all the Gamma processes of the labels
of this instance. Furthermore, introducing mixed Gamma process will lead to
intricacies in terms of model inference. Therefore, an efficient Gibbs sampler
with closed-form conditional distributions is developed for the proposed model.
Experiments on the three multi-label learning tasks with public datasets show
the performance of our model comparing existing comparative algorithms or
models from the state-of-the-art research literatures.

The main contributions of this paper are:

– a new Bayesian nonparametric model for multi-label learning without the
requirement of fixing topic number in advance that is needed by the tradi-
tional generative models for multi-label learning;

– theoretical and empirical expectation analysis of the topic number from
the proposed mixed Gamma-negative binomial process for understanding
the behavior and sensitivity of the process under different parameters;

– an efficient Gibbs sampling inference algorithm for getting the solution of
the proposed model which overcomes the inference difficulty brought by
the mixing operation in the proposed model.

The rest of this paper is organized as follows. Section 2 briefly reviews relat-
ed work. Section 3 describes some preliminary knowledge. The mixed Gamma-
negative binomial process model is proposed in Section 4 with its Gibbs sam-
pling inference algorithm and expectation analysis. Section 5 presents exper-
imental results on three multi-label learning tasks using real-world datasets.
Finally, Section 6 concludes this study with a discussion on future work.

2 Related work

This section reviews the related work of this study, which is composed by two
parts: The first part is about the multi-label learning based on the generative
models; and the second part is about Bayesian nonparametric learning.

2.1 Generative models for multi-label learning

It is commonly believed that the mixture model proposed in (Mccallum 1999)
is the first generative model for multi-label learning, which assigns each label
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a word distribution and a multi-label document is assumed to be generated
according to the word distributions of its labels. This idea is similar with
the subsequent topic models (Blei et al 2003; Xuan et al 2015a) that are
Bayesian models with fixed-dimensional probability distributions. They are
originally designed for unsupervised text mining task which aims to discover
hidden topics (i.e., word distributions) in the text corpus. Due to their powerful
representation and good extendibility, they have been successfully applied to
many research areas, including multi-label learning.

One category of using topic model idea for multi-label learning is to di-
rectly replace topics in Latent Dirichlet Allocation (LDA) (Blei et al 2003)
by labels, such as Labeled LDA (Ramage et al 2009) and Flat-LDA (Rubin
et al 2012). Prior-LDA (Rubin et al 2012) is further proposed to account for
the label frequency differences within a corpus through introducing a label
sampling step by multinomial distribution. However, the dependency between
the labels is not considered, which is resolved by the Dependency-LDA (Rubin
et al 2012) later. Parametric Mixture Models (Ueda and Saito 2002) are also
proposed to capture the pairwise label correlation. More intrinsic correlations
among multiple labels are exploited by a model: Labelled Four-level Pachinko
Allocation Model (Ma et al 2012), which is verified with better performance
than Labeled LDA (Ramage et al 2009).

Another category is to assign each label a topic distribution instead of a
word distribution, such as Author topic Model (Steyvers et al 2004; Rosen-Zvi
et al 2010) and Emotion Topic Model (Bao et al 2012). Each label is first
associated with a topic distribution, and each topic is further associated with
a word distribution. The generation of a document is split into two stages: 1)
generating a topic according to its labels; 2) generating a word according to
the drawn topic. CoL model (Wang et al 2008) also extends this idea with
additional label and word correlation learning ability.

To summarize, in spite of the verified success in the multi-label learning of
the above models, they all have an issue that the number of topics needs to be
fixed in advance. In this paper, we propose a Bayesian nonparametric model
to address this issue.

2.2 Bayesian nonparametric learning

Bayesian nonparametric learning (Nguyen and Wu 2015; Nguyen et al 2013)
is a key approach for learning the number of mixtures in a mixture model
(also known as model selection problem). Without predefining the number of
mixtures, this number is supposed to be inferred from the data, i.e., let the
data speak. The idea of Bayesian nonparametric learning is to use stochas-
tic processes to replace traditional fixed-dimensional probability distributions,
such as Multinomial, Poisson, and Dirichlet distributions. In order to avoid
the limitation associated with fixed dimensions, Multinomial Process (MP),
Poisson Process (PP) (Iwata et al 2013) and Dirichlet Process (DP) (Ferguson
1973) are used to replace former distributions because of their infinite property.
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The merit of these stochastic processes is that they let the data to determine
the number of factors (topics, in text mining). DP is a good alternative for
the models with Dirichlet distribution as the prior. Many probabilistic models
with fixed dimensions have been extended to the infinite ones by the help of
stochastic processes: Gaussian Mixture Model (GMM) is extended to Infinite
Gaussian Mixture Model (IGMM) (Rasmussen 1999; Ma et al 2014) using DP;
Hidden Markov Model is extended with infinite number of hidden states us-
ing Hierarchial Dirichlet Process (HDP) (Teh et al 2006; Wulsin et al 2014).
Through the posterior inference (i.e., Markov chain Monte Carlo (MCMC)
(Neal 2000)), the number of the mixtures can be inferred. Although HDP can
model the data with three or more levels, it cannot be directly adopted for
the multi-label learning task. The reason is that there is a mixing relationship
between authors and documents which cannot be modeled by HDP. Similar-
ly, Partially Labeled Topic Models (PLTM) (Ramage et al 2011) also cannot
be adopted for our problem. Other popular processes including beta process
(Hjort 1990), Gamma process, Poisson process, multinomial process, negative
binomial process (NBP) (Zhou and Carin 2015; Broderick et al 2015) have
also been successfully used in the machine learning communities recently.

To summarize, Bayesian nonparametric learning (Buntine and Mishra 2014)
has been successfully used to extend many finite models and applied to many
real-world applications. However, to the best of our knowledge, existing state-
of-the-art works cannot be used for multi-label learning. This paper addresses
this shortcoming by proposing a mixed Gamma negative binomial process.

3 Preliminary knowledge

This section briefly introduces related concepts which will be used as the build-
ing blocks for our proposed model in the following section. To help under-
standing these concepts, we take the author-document-word as an example of
multi-label learning throughout this paper where authors are seen as labels;
documents are seen as instances; words are seen as features. Several important
notations used throughout this paper are summarized in Table 1.

3.1 Gamma process

A Gamma process GaP (c,H) (Ferguson 1973; Roychowdhury and Kulis 2014)
is a stochastic process parameterized by a base (shape) measure H and con-
centration (scale) parameter c. Let Γ = {(rk, θk)}∞k=1 be a random realization
of a Gamma process in the product space R+ ×Θ. Then, we have

Γ ∼ GaP (c,H)

=

∞∑
k=1

rkδθk
(1)
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Table 1: Notations used in this paper

Notation Description
Θ a measurable space
R+ the set of positive real number
Z+ the set of positive integer number
D number of documents
A number of authors
V number of different words
K number of topics
AD author-document mapping matrix
DN document-word mapping matrix
Ad number of authors of document d
Nd number of words of document d
θk topic k
Γ0 a global random measure from a Gamma process
r0,k the global weight of topic k
Γd a random measure from a Gamma process for document d
rd,k the weight of topic k in document d (the interest of d on k)
Γa a random measure from a Gamma process for author a
ra,k the weight of topic k in author a (the interest of a on k)

Γ d
a the mixed measure of measures of all authors who write d

rda,k the average weight of topic k in all author a who write document d

X a random measure from a Negative binomial process
nk number of words assigned to topic k
Xd a random measure for document d from a negative binomial process
nd,k number of words assigned to topic k in document d
na,k number of words assigned to topic k and author a
na
d,k number of words assigned to topic k and author a in document d

zd,n the topic index assigned to word n in document d
id,n the author index assigned to word n in document d

$d
a the weight of author a in document d

where δθk is a Dirac measure parameterized by θk (i.e., δθk(θ̂) = 1 if θ̂ =
θk; 0, otherwise); rk satisfies an improper Gamma distribution Gamma(0, c);
and θk ∼ H. Γ also corresponds to a complete random measure (Kingman
1992; Zhou and Carin 2015). When Γ is assigned to a document, we can
understand θk as a topic (i.e., V -dimensional normalized vector) and rk is the
(unnormalized) weight of this topic in this document although the summation
of {rk}∞k may not be equal to one.

3.2 Negative binomial process

A negative binomial process NBP (p, Γ0) (Zhou and Carin 2015) is also a
stochastic process parameterized by a base measure Γ0 and p. Similar with the
Gamma process, a realization of negative binomial process X = {(nk, θk)}∞k=1



A Bayesian Nonparametric Model for Multi-label Learning 7

H

Γ

Xd

α

pd

H

Γ

Γd

Xd

α

pd

D

D

Fig. 1: Gamma-Negative binomial process model. The left subfigure is related
to Eq. (3) and the right hand part is related to Eq. (4).

is also a set of points in product space Z+ ×Θ. Then, we have

X ∼ NBP (p, Γ0)

=

∞∑
k=1

nkδθk
(2)

where {nk} are integers so negative binomial process is normally used as the
likelihood of counting models (Broderick et al 2015); and θk ∼ Γ0. Note that
if Γ0 is a continuous measure, the probability that two θk are equal is zero;
if Γ0 is a discrete measure, say Γ0 =

∑∞
k=1 δθ̃k , θk can only take the value

from {θ̃k}∞k=1. Compared with Poisson process which is another alternative
for the counting model, negative binomial process has a better variance-to-
mean ratio (VMR) and the overdispersion level (Simon 1960; Zhou and Carin
2015). When X is assigned to a document, θk can be understood as a topic
and nk can be understand as the number of words in this document assigned
to topic θk.

3.3 Gamma-negative binomial process

Normally, negative binomial process is used as the likelihood part of a Bayesian
nonparametric model. Analogous to a negative binomial distribution x ∼
NB(r, p) which has two parameters: r > 0 and p ∈ [0, 1], there are two kinds
of priors for the parameters of a negative binomial process: one is Gamma pro-
cess for Γ0 as shown in Eq. (1) (Zhou and Carin 2015) ; the other is the Beta



8 Junyu Xuan et al.

process for p (Broderick et al 2015). In this paper, we use the Gamma process
prior. A Gamma-negative binomial process model is proposed in (Zhou and
Carin 2015) as shown in Fig. 1 and it can be represented as,

Γ0 ∼ GaP (c0, H)

Xd ∼ NBP (pd, Γ0)
(3)

where pd is a real-valued parameter within [0, 1] and the base measure of the
negative binomial process Γ0 is a random measure from a Gamma process.
Xd is for a document, and this hierarchial form makes the documents share
a same base measure Γ0. This Gamma-negative binomial process can be (in
distribution) equivalently augmented as Gamma-Gamma-Poisson process,

Γ0 ∼ GaP (c0, H)

Γd ∼ GaP
(

1− pd
pd

, Γ0

)
Xd ∼ PP (Γd)

(4)

where PP (Γd) is a Poisson process with parameter Γd. This augmentation is
useful for the closed-form model inference algorithm design.

4 Mixed Gamma-negative binomial processes

In this section, we first propose a mixed Gamma-negative binomial processes
model (MGNBP) while author-document-word is still taken as an example to
explain why this model could be used for multi-label learning in Section 4.1;
We then introduce a Gibbs sampler to inference the proposed model in Section
4.2; A significant property, i.e., expectation of topic number, is theoretically
and empirically analyzed in Section 4.3.

4.1 Model description

Consider the Gamma-negative binomial process model in Eqs. (3) and (4) a-
gain: despite its success, this model however is fundamentally the same as the
basic topic models, which are used for modeling the data of two level hier-
archy: instance-feature (i.e., document-word). Multi-label learning requires to
model the data with a three-level hierarchy: label-instance-feature (i.e., author-
document-word). So an intuitive idea is to add another Gamma process level to
capture the additional label (i.e, author) level based on the Gamma-negative
binomial process model in Eq. (4) analogues to the hierarchical mechanism of
Hierarchical Dirichlet Process (Teh et al 2006),

Γ0 ∼ GaP (c0, H)

Γa ∼ GaP (ca, Γ0)

Γd ∼ GaP ((1− pd)/pd, Γ da )

Xd ∼ PP (Γd)

(5)
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Fig. 2: Gamma-Gamma-Negative Binomial Process Model (left one) and
Mixed Gamma-Negative Binomial Process Model (right one).

where Γa is the new added level for the label (i.e, author). We call this mod-
el three-level Gamma-negative binomial process model (3GNBP), which is
graphically shown in the left subfigure of Fig. 2.

More specifically, the global measure in the 3GNBP model is

Γ0 =

∞∑
k=1

r0,kδθk (6)

where r0,k is the global weight of topic θk. This global measure defines a set
of global topics {θk}∞k=1 shared by all documents, and {r0,k}∞k=1 indicates the
overall “interests” of documents on topics. The number of topics can be poten-
tially infinite and therefore justifies the infinity in the summation. However,
since the data is limited, the learned topics will be also limited. Each author
a is then assigned a realization of Gamma process parameterized by Γ0,

Γa =

∞∑
k=1

ra,kδθk (7)

where ra,k is the weight of k-th topic θk which is inherited from the global
measure Γ0. {ra,k}∞k=1 can be viewed as the “interest” of author a on the topics
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{θk}∞k=1. Similarly to the author, each document is also assigned a realization
of Gamma process parameterized by Γa,

Γd =

∞∑
k=1

rd,kδθk (8)

where {rd,k}∞k=1 is the weight of “interests” of document d on the topics inher-
ited from the global measure Γ0 again. In the 3GNBP model, the base measure
Γa for Γd is from its author. It can be seen as the ‘interest inheritance’. Finally,
the likelihood is a realization of Poisson process,

Xd =

∞∑
k=1

nd,kδθk (9)

where nd,k is the number of words in document d assigned to topic k.

When applying 3GNBP to multi-label learning, there is a significant issue
that each Γd could only have one parent Γa as its base measure which means
that each instance is with one and only one label (i.e., a document could only
have one author). Therefore, the intuitive idea of 3GNBP cannot be used for
the multi-label learning. In order to resolve this issue, our innovative idea is
to combine all the Gamma processes of all authors of a document together by

Γ da = $d
a1Γa1 +$d

a2Γa2 + · · ·+$d
aAd

ΓaAd (10)

where Ad is the number of labels of an instance (i.e., authors of document
d); $d

a1 is the weight of label a1 on instance d and
∑
a$

d
a = 1 (i.e., the

contribution of author a1 to document d) which is given a Dirichlet prior
Dir(η); and Γ da is the mixed prior for Γd. Note that the plus here is element-
wise because each Γa is with countable infinite number of components. This
element-wise plus action is reasonable because the components of each Γa is
countable and they are all with same discrete base measure Γ0. We can see
the mixed Gamma process Γ da as the “mixed interest” of all the authors of a
document. This document is “inherited” the interests on the topics from the
“mixed interest” not from the interest of an author. Through this way, the
multiple labels of an instance could be modeled. To summarize, our proposed
Mixed Gamma-Negative Binomial Processes Model (MGNBP) is as follow

Γ0 ∼ GaP (c0, H)

Γa ∼ GaP (ca, Γ0)

Γ da = $d
a1Γa1 +$d

a2Γa2 + · · ·+$d
aAd

ΓaAd

Γd ∼ GaP ((1− pd)/pd, Γ da )

Xd ∼ PP (Γd)

and its graphical representation is shown in right subfigure of Fig. 2.
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4.2 Model inference

It is difficult to perform posterior inference under infinite mixtures, and a
commonly work-around solution in Bayesian nonparametric learning is to use
a truncation method (Fox et al 2011; Blei et al 2010). Truncation method is
widely accepted, which uses a relatively big K† as the (potential) maximum
number of topics. Under the truncation, the model can be expressed below as
a good approximation to the infinite model,

θ1:K† ∼ 1

γ0
H

γ0 ∼ Gamma(e0, 1/f0)

r0,k|γ0, c0 ∼ Gamma(γ0/K
†, 1/c0)

ra,k|r0, ca ∼ Gamma(r0,k, 1/ca)

pd ∼ Beta(a0, b0)

rda,k = $d
a1ra1,k +$d

a2ra2,k + · · ·$d
aAd

raAd ,K†

rd,k|ra, pd ∼ Gamma(rda,k, pd/(1− pd))
nd,k ∼ Pois(rd,k)

Nd =

K†∑
k=1

nd,k

and nd,k could also be equivalently (in distribution) generated as follow

zd,n ∼Multi(rd,1/
∑

rd, · · · , rd,K†/
∑

rd)

wd,n ∼ θzd,n
nd,k =

∑
n

δ(zd,n==k)

where Pois() denotes a Poisson distribution; Multi() denotes a multinomial
distribution; γ0 =

∫
dH is the total mass of measure H; and the parameters are

given the appropriate priors. Here, H is a V -dimensional Dirichlet distribution,
and each θ is a topic that is a V -dimensional vector.

The difficult part of the inference for this model is the mixed part Γ da or rda.
Since rda is the mixed value, it is hard to infer the posterior of ra through its
likelihood. In order to resolve this issue, we firstly introduce the Additive Prop-
erty of the negative binomial distribution: If Xi follows a negative binomial
distribution with parameters ri and p and if the various Xi are independent,
then

∑
Xi follows a negative binomial distribution with parameters

∑
ri and

p.
In MGNBP model, we have

rd,k|{ra}, pd ∼ Gamma(rda,k, pd/(1− pd))
nd,k ∼ Pois(rd,k)

(11)
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which are (in distribution) equal to

nd,k ∼ NB(rda,k, pd) (12)

and according to Additive Property of negative binomial distribution, it is
further (in distribution) equal to

nad,k ∼ NB
(
$d
a · ra,k, pd

)
nd,k =

∑
a

nad,k
(13)

where NB() denotes a negative binomial distribution and {nad,k} are indepen-
dent with each others.

We have split nd,k the number of words assigned to topic k in document
d into a number Ad of independent variables {nad,k}. Here, nad,k denotes the
number of words assigned to topic k from author a in document d. From Eq.
(13), we can see that we have obtained the likelihood part of the ra, so we can
update/inference the ra using nad. Introducing the auxiliary variables {nad,k}
helps us resolve the difficult inference problem brought by the mixed Gamma
process. Note that the independence between the elements of {nad,k} is very
important, which facilitates us update each nad,k independently.

According to the relationship between the negative binomial distribution
and the Gamma-Poisson distribution, for each nad,k, we have:

nad,k ∼ NB($d
a · ra,k, pd)

=⇒rad,k ∼ Gamma($d
a · ra,k, pd/(1− pd)), nad,k ∼ Pois(rad,k)

(14)

We want to highlight that rad,k is different from rda,k: rda,k is the mixed Gam-
ma process of multiple author Gamma processes Γa of Gamma process Γd of
document d and rad,k is the interest of document d on topic k inherited from
author a.

Due to the non-conjugacy of Gamma distribution and negative binomial
distribution, it is difficult to update ra with a Gamma prior. In order to
make the inference with only close-formed conditional distributions, we use
the following result on the negative binomial process,

Theorem 1 (Zhou and Carin 2015) If X follows a negative binomial distri-
bution X ∼ NB(r, p) with parameters r and p, then X can also be generated
from a compound Poisson distribution as

X =

l∑
t=1

ut, ut
i.i.d∼ Log(p), l ∼ poiss (−rln(1− p)) (15)

where Log() is a Logarithmic distribution. Furthermore, this Poisson-logarithmic
bivariate count distribution, p(X, l), can be expressed as

X ∼ NB(r, p), l ∼ CRT (X, r) (16)
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where CRT () denotes a Chinese Restaurant Table distribution, and its defi-
nition and sampling can be found in (Zhou and Carin 2015).

With Theorem 1, the Eq. (14) is also equal to

nad,k ∼ NB($d
a · ra,k, pd) =⇒ nad,k ∼

lad,k∑
1

log(pd), l
a
d,k ∼ Pois(−$d

ara,kln(1− pd))

=⇒ lad,k ∼ CRT (nad,k, $
d
ara,k), nad,k ∼ NB($d

ara,k, pd)
(17)

Finally, we can update all nad,k by,

(na1d,k1 , · · · , n
aA
d,K |Nd) ∼Mult(Nd,

$d
a1r

a1
d,k1

rd
, · · · ,

$d
aAd

raAd,K

rd
)

rd =
∑
a

∑
k

$d
a · rad,k

(18)

and for each word n in a document d, we can assign it to a topic k and author
a by

p(zd,n = k, id,n = a) ∝
$d
ar
a
d,k

rd

nd,k =
∑
n

δ(zd,n = k)

na,k =
∑
d

∑
n

δ(zd,n = k & id,n = a)

(19)

where zd,n is the topic index assigned to word n in document d.
With these changes of variables, the original model is re-formulated as,

γ0 ∼ Gamma(e0, 1/f0)

r0,k|γ0, c0 ∼ Gamma(γ0/K
†, 1/c0)

pd ∼ beta(ad,0, bd,0)

ra,k|r0, ca ∼ Gamma(r0,k, 1/ca)

rda,k = $d
a1ra1,k +$d

a2ra2,k + · · ·$d
aAd

raAd ,K†

rd,k|ra, pd ∼ Gamma(rda,k, pd/(1− pd))
rad,k ∼ Gamma($d

ara,k, pd/(1− pd)), a ∈ Ad

zad,n ∼ Category(
$d
ar
a
d,k

rd
, · · · )

nd,k =
∑
n

δ(zd,n = k) (20)

na,k =
∑
d

∑
n

δ(zd,n = k & id,n = a)

nad,k =
∑
n

δ(zd,n = k & id,n = a)
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Algorithm 1: Gibbs Sampler for MGNBP
Input: D, A, N , AD, DN
Output: Kreal, {θ}, {ra}, {rd}
initialization;
while iter ≤ maxiter do

for d = 1; d ≤ D do
for n = 1;n ≤ Nd do

Update zd,n and id,n by Eq. (32);

for a = 1; a ≤ Ad do
Update rad,k by Eq. (33);

Update lad,k by Eq. (34);

Update rd,k and pd by Eq. (35);

for a = 1; a ≤ A do
Update ra,k by Eq. (36);
Update la,k by Eq. (37);

Update r0,k by Eq. (38);
Update l′k by Eq. (40);
Update γ0 by Eq. (41);
Update θ by Eq. (43);
iter + +;

Identify Kreal;
Select the sample with largest likelihood and K = Kreal;
return {θ}, {ra}, {rd};

Nd =
∑
n

∑
a

zad,n

where Category() denotes a Category distribution; Ad is the set of associated
authors of document d; and |Ad| = Ad is the cardinality of Ad.

In the following, a Gibbs sampling algorithm (Andrieu et al 2003) is de-
signed for the posterior inference and all the conditional distributions are listed
in the Appendix. We can see from these conditional distributions that all of
them are closed-form which is very easy to update and implement. The whole
procedure is summarized in Algorithm 1. Note that after we obtain all the
samples of the posterior p(θ, ra, rd, r0, z

a
d,n, pd, γ0, n

a
d,k| · · · ) of latent variables

and remove the burn-in stage, we firstly identify the topic number with largest
frequency as the Kreal, and then find the sample with largest likelihood and
K = Kreal from these samples. The output of Gibbs sampler are the latent
variables θ, ra and rd in this sample.

4.3 Model analysis

A distinguishing characteristic of Bayesian nonparametric model is that the
number of the factors/topics to be learned is not specified in advance. Roughly
speaking, Bayesian nonparametric model could be simply seen as a prior for
the this number. Conditioned on the observed data, we could determine how
many factors/topics are needed. It would be interesting to investigate the prior
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expectation of the factors/topics number under our defined model. We give
the following result,

Theorem 2 Given D instances, A labels, and their mapping AD, the expected
factor number from the MGNBP is

∫
r0

(
1−

∏
a

[
ca

ca −
∑
d:AD[a,d]>0$

d
a ln(1− pd)

]r0)
· γ0 · exp(−c0 · r0)

r0
· dr0

(21)
and when a truncation level K† is applied, the expected factor number is

K†

1−

[
c0

c0 −
∑
a log ca

ca−
∑
d:AD[a,d]>0$

d
a ln(1−pd)

] γ0
K†
 (22)

where γ0, c0, ca and pd are four parameters of the MGNBP.

Proof We first introduce the following theorem of a completely random mea-
sure,

Theorem 3 (Kingman 1992) Campbell’s Theorem Let Π be a Poisson
process on Θ with mean measure µ, and let f : Θ → R be measurable. Then
the sum ∑

=
∑
Y ∈Π

f(Y ) (23)

is absolutely convergent with probability if and only if∫
Θ

min(|f(y)|, 1)µ(dy) <∞ (24)

If this condition holds, the expectation

E[
∑

] =

∫
Θ

f(y)µ(dy) (25)

exists if and only if the integral converges.

Since the proposed MGNBP is a completely random measure, we can utilize
the above theorem to compute the expectation of sum of its variables. We
define a random variable,

Xk = 1(

D∑
d=1

∑
AD[a,d]=1

Cad,k > 0) (26)
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which equals to 1 if the factor k is used; 0, otherwise. So the expected factor
number is E[

∑
k Xk]. Then, according to the Theorem 3,

E[
∑
k

Xk]

= E

[
E

[∑
k

Xk|r0,k

]]

= E

[
E

[
E

[∑
k

Xk|{ra,k}

]
|r0,k

]]

= E

[
E

[∑
k

E [Xk|{ra,k}] |r0,k

]]

= E

E
∑

k

1−
D∏
d=1

∏
a:AD[a,d]>0

(1− pb)$
d
ara,k

 |r0,k


= E

∑
k

E

1−
D∏
d=1

∏
a:AD[a,d]>0

(1− pd)$
d
ara,k

 |r0,k


= E
[∑

k

∫
r1,k

· · ·
∫
rA,k

1−
D∏
d=1

∏
a:AD[a,d]>0

(1− pd)$
d
ara,k


·

{
A∏
a=1

ca
r0,k

Γ (r0,k)
ra,k

r0,k−1 exp(−ca · ra,k)

}
dr1,k · · · drA,k

]
= E

[∑
k

(
1−

∏
a

[
ca

ca −
∑
d:AD[a,d]>0$

d
a ln(1− pd)

]r0,k)]
=

∫
r0

(
1−

∏
a

[
ca

ca −
∑
d:AD[a,d]>0$

d
a ln(1− pd)

]r0)
· νGaP (r0) · dr0

=

∫
r0

(
1−

∏
a

[
ca

ca −
∑
d:AD[a,d]>0$

d
a ln(1− pd)

]r0)
· γ0 · exp(−c0 · r0)

r0
· dr0

This integral cannot be easily solved. An approximate method for this integral
computation is Monte Carlo. If we apply a truncation level K†, the expectation
is

E[

K†∑
k

Xk] =

∫
r0,1···r0,K†

K†∑
k

(
1−

∏
a

[
ca

ca −
∑
d:AD[a,d]>0$

d
a ln(1− pd)

]r0,k)

·
K†∏
k=1

c0
γ0/K

†

Γ (γ0/K†)
r0,k

γ0/K
†−1 exp(−c0r0,k)dr0,1 · · · dr0,K†
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Fig. 3: The comparisons between expected and empirical factor numbers of
MGNBP under different parameters: γ0, c0, ca and pd. Note that the x-axes
of c0 and ca are in negative (base-10) log space.

=
∑
k

1−

[
c0

c0 −
∑
a log ca

ca−
∑
d:AD[a,d]>0$

d
a ln(1−pd)

] γ0
K†


=K†

1−

[
c0

c0 −
∑
a log ca

ca−
∑
d:AD[a,d]>0$

d
a ln(1−pd)

] γ0
K†


The theorem is proved.

Our above theoretical result is also supported by simulation results, sum-
marized in Fig. 3. At first, we set A = 10, D = 20, and the mapping relations
between labels and instances are randomly generated. We simulate the model
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Table 2: Statistics of Datasets

Datasets label number instance number feature number
NIPS 2,037 1,740 13,649
DBLP 28,702 28,569 11,771
Clinical 45 978 1,449
Protein 27 662 1,185

with the above setting and different values of parameters, and then compare
the empirical factor number and the theoretical factor number from Theorem
2. The default values of them are: γ0 = 1, c0 = 1, ca = 1, pd = 0.5, and
$d
a of instances are equal for all labels. When investigating one parameter,

the other three will be fixed as the default values. Four subfigures in Fig. 3
denote the changing of factor number as the changing of four parameters of
the model, respectively. In each subfigure, Expectation-MC denotes the Monte
Carlo approximation of the expectation of the factor number from Eq. (21);
Expectation-trun denotes the truncation-based approximation of the expec-
tation of the factor number from Eq. (22) (Note that the implementation of
the MGNBP is based on the truncation K† = 1000); the x-axes of c0 and
ca are in negative (base-10) log space. From these results, we can see that
the theoretical factor number is very close to the empirical factor number, so
this verified our results on the expected factor number of the MGNBP. The
trends of the empirical and expected factor number with parameters γ0 and
pd are very close with each others. For the parameter ca, the trends are also
close; for the parameter c0, Expectation-MC is a little away from the others
as the increasing of the value of c0. These subfigures do not only verify the
above theoretical result, they also show the sensitivity of the model to the
parameters.

5 Experiments

In this section, we evaluate the performance of the proposed Mixed Gamma-
Negative Binomial Processes Model (MGNBP) on three multi-label learning
tasks: author topic modeling, and clinical free text labeling, and protein clas-
sification, and the proposed model is also compared with six state-of-the-art
models or algorithms using the public datasets of these tasks.

5.1 Datasets

The datasets used in the experiments are:

– NIPS papers1 This dataset contains papers from the NIPS conferences
between 1987 and 1999. This dataset is a structure: author-paper-word. It
contains 1,740 papers with 2,037 authors, a total of 2,301,375 word tokens

1 http://www.datalab.uci.edu/author-topic/NIPs.htm
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and a vocabulary size of 13,649 unique words. More descriptions can be
found in the (Steyvers et al 2004);

– DBLP papers2 The abstracts and authors of papers are extracted through
DBLP interface from four areas: database, data mining, information re-
trieval and artificial intelligence. More descriptions can be found in the
(Deng et al 2011);

– Clinical free texts3. This dataset is a structure: label-text-feature. There
are 45 labels (like ICD-9-CM codes) and 645 (training) / 333 (testing) data
with 1,449 features. More descriptions can be found in (Pestian et al 2007).

– Proteins3. This dataset is a structure: class-protein-feature. There are 27
categories for these protein sequences, e.g., PDOC50007 (a class of hydro-
lases), and 463 (training) / 199 (testing) data with 1,185 features, i.e.,
Prosite access numbers. More descriptions can be found in (Diplaris et al
2005).

The statistics of datasets are shown in Table 2.

5.2 Author-topic modeling task

Since the proposed model is motivated to resolve the multi-label learning prob-
lem in Introduction, the author-paper data as a kind of multi-label data is ap-
propriate to evaluation of the efficiency of the proposed model on multi-label
learning. We use an author’s distribution over topics to characterize this au-
thor (i.e., the author research interest), and the dimension of this distribution
is not fixed in advance but learned from the data owing to the Bayesian non-
parametric learning technique. Based on the distribution over topics of each
author, there are a number of practical applications, for example, 1) Collab-
orator Recommendation. People with similar research interest may have the
potential to be collaborators. We can recommend researcher A to researcher
B by simply evaluate the similarity of their interest vectors. 2) Author Disam-
biguation. Some researchers may have exactly same name on their scientific
papers, so it is hard to distinguish them through name. Based on the learned
interests of researchers with the same name, we can identify the real author of
a paper through comparing/differencing the content of this paper with the two
authors’ research interests. Since these practical applications are both based
on the output of the proposed model: author interests, we only evaluate the
proposed model on the author interest learning in the manuscript. If the au-
thor interests are more accurately learned, the performance of the model on
the above practical applications will apparently be better as well.

5.2.1 Experiment setting

For the first two datasets, we randomly select some documents as training data
and test data. The number of selected training documents is around 1000, and

2 http://www.cs.uiuc.edu/ hbdeng/data/kdd2011.htm
3 http //mulan.sourceforge.net/datasets-mlc.html
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the number of test documents is about 30 percent of the number of training
documents. The requirement of selections is: the training and test documents
must share some authors and words. This requirement makes sure the learned
topics and authors’ interests can be used to predict the test documents. We
compare the proposed model with Author-Topic Model (ATM)(Steyvers
et al 2004)4 which could be seen as a generative model for multi-label learning
using fixed dimensional distributions. Another comparative model is Disjoin-
t Author-Document Topic model (DADT)(Seroussi et al 2014) which
models documents and authors using two separate sets of topics.

The first evaluation metric is Perplexity which is widely used in language
modeling to assess the predictive power of a model (Steyvers et al 2004; Blei
et al 2003). The perplexity is a measure of how surprising the words in the
test documents are from the model’s perspective and can be calculated by

Perplexity = exp

(
−
∑
d

∑
k

p(wd|θk)p(θk|ad)

)
(27)

where ad is the authors of test document d. The smaller the value of perplexity
is, the better the predictive ability of a model has. Since we use the same test
documents for different models, the normalization is not considered because
it does not influence the model comparisons.

The second evaluation metric is logLikelihood of training data,

logLikelihood =
∑
d

log p(wd|θ, ra, rd) (28)

This is a measure of the probability of the training documents under the
learned latent variables θ, ra and rd. It can be understood as ‘how the model
fits the training data’. The larger the value of likelihood is, the better a model
fits the training data. Likelihood in Eq. (28) is to show the ability to model the
training data and Perplexity in Eq. (27) is to show the ability to predict the
test data. We think these two commonly-adopted and complementary metrics
are sufficient for the model comparison.

Another evaluation metric AuthorP is designed for evaluating the author
prediction based on learned topics.

AuthorP =
1

N t
d

Ntd∑
d

< wa,d, wd >, wa,d =

Ad∑
a

$a
draθ (29)

where N t
d is the number of test documents, wd is the word-vector of document

d, wa,d is the average word-vector of all authors of document d, and raθ is
the word-vector of author a. The word-vector of an author, in fact, indicates
the probability of this author writing different words, so we use the similarity
between average word-vector of all authors of a document and the word-vector

4 http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
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of this document to evaluate the possibility of these authors writing this doc-
ument. It appears that the larger AuthorP is, the better the model is. Note
that Perplexity is designed for evaluating the document prediction based on
learned topics, so they are different.

5.2.2 Result analysis

For the DBLP dataset, the comparative results between MGNBP and ATM
are shown in Fig. 4. Each row of the Fig. 4 denotes a group of DBLP dataset.
The left subfigures show the comparison on the data log-likelihood. Here, we
adjust different active topic numbers for the ATM, including K = 100, K =
200, K = 300, K = 400 and K = 500. From these subfigures, the proposed
MGNBP model (The hyper-parameters are set as following by experiences
for the rest of this section: a0 = 1, b0 = 1, e0 = 1, f0 = 1, c0 = 1 and
ca = 1) outperforms the ATM on different preset topic numbers. It means
that MGNBP fits the training documents better than the ATM, and, more
importantly, MGNBP does not depend on the domain knowledge to predefine
the active topic number, making the method widely applicable. The middle
subfigures in Fig. 4 indicate the changing of active topics during the iteration
of the MGNBP (The number of active topics is set as the number of training
documents at the initialization step of the model). These curves show that
the number of active topics dramatically drops down at the burn-in stage
of the sampling, and begins to stabilize after about 200 iterations. Since the
documents are different in content but similar in numbers amongst the groups,
the learned topic number differs slightly amongst each others. These numbers
are: group 1: K = 519; group 2: K = 332; group 3: K = 493; group 4:
K = 465; group 5: K = 504. We also compare the performances of two models
(MGNBP and ATM) on the test documents prediction using perplexity in
Eq. (27). Since the training and test documents share some authors, we can
compute the perplexity of the test documents according to the learned topics
and authors’ interests on them. At each step of iterations, the perplexity of
test documents is computed using the latent variables, i.e., {θ}, {ra} and {rd},
at this iteration. The results are shown in right subfigures of Fig. 4. In each
subfigure, the first bar denotes the mean of perplexities of all iterations except
the burn-in stage (1 ∼ 200 iterations) of the proposed model MGNBP and the
others denote ATM with different (predefined) topic numbers. The standard
deviations are also shown in the subfigures. The proposed model gets the
best performance (smallest perplexity). The standard deviation of MGNBP is
relatively bigger than ATM. The reason is because the number of active topics
will change during the iteration but it will not change in ATM, so in theory,
the random-walk space of Gibbs sampler of MGNBP should be larger than
that of ATM. Even with this relatively larger standard deviation, the mean of
perplexity of MGNBP is smaller than ATM.

For the NIPS dataset, the comparative results between MGNBP and ATM
are shown in Fig. 5. Same with the DBLP dataset, the log likelihoods of
MGNBP and ATM with different predefined active topic numbers are shown
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Fig. 4: Results from MGNBP and ATM with different (predefined) topic num-
bers on five groups of DBLP dataset. Each row denotes a group. In each row,
the left subfigure shows the Log-likelihoods comparison; The middle subfigure
shows the change of active topic number of MGNBP during the iteration; the
right subfigure shows the perplexity comparison.



A Bayesian Nonparametric Model for Multi-label Learning 23

0 200 400 600 800 1000
−9

−8.5

−8

−7.5

−7
x 10

6

Iteration

Lo
g 

Li
ke

lih
oo

d

group 1

 

 

0 200 400 600 800 1000

500

1000

1500

2000

Iteration

A
ct

iv
e 

T
op

ic
 N

um
be

r

group 1

MGNBPA2 A10 A100A200A300A400A500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

pl
ex

ity

group 1

0 200 400 600 800 1000
−9

−8.5

−8

−7.5

−7
x 10

6

Iteration

Lo
g 

Li
ke

lih
oo

d

group 2

 

 

0 200 400 600 800 1000

400

600

800

1000

1200

1400

Iteration

A
ct

iv
e 

T
op

ic
 N

um
be

r

group 2

MGNBPA2 A10 A100A200A300A400A500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

pl
ex

ity

group 2

0 200 400 600 800 1000
−9

−8.5

−8

−7.5

−7
x 10

6

Iteration

Lo
g 

Li
ke

lih
oo

d

group 3

 

 

0 200 400 600 800 1000

500

1000

1500

2000

Iteration

A
ct

iv
e 

T
op

ic
 N

um
be

r

group 3

MGNBPA2 A10 A100A200A300A400A500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
er

pl
ex

ity

group 3

MGNBP
ATMK500
ATMK400
ATMK300
ATMK2
ATMK200
ATMK10
ATMK100

MGNBP
ATMK100
ATMK10
ATMK200
ATMK2
ATMK300
ATMK400
ATMK500

MGNBP
ATMK500
ATMK400
ATMK300
ATMK2
ATMK200
ATMK10
ATMK100

Fig. 5: Results from MGNBP and ATM with different (predefined) topic num-
bers on three groups of NIPS dataset. Each row denotes a group. In each row,
the left subfigure shows the Log-likelihoods comparison; The middle subfigure
shows the change of active topic number of MGNBP during the iteration of
Gibbs sampler; the right subfigure shows the perplexity comparison.

in the left side of the Fig. 5. Unsurprisingly, the subfigures in the middle
column show the convergence of MGNBP (group 1: 367; group 2: 529; group
3: 354). Specially, we found that the log-likelihoods of ATM increases when
topic number decreases. Therefore, we have compared with ATM with only
two (the minimum number) topics as shown in the left subfigures in Fig. 5. It
can be seen that the proposed MGNBP model also gets larger log likelihood
and smaller perplexity when compared with ATM except the case where ATM
is set to have 10 topics in group 2. Even so, the ATM in group 2 with 10
topics has almost same performance with MGNBP on the Log-likelihood of
training documents. Moreover, we can see that it takes 800 iterations to reach
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Table 3: Comparisons on Author prediction with NIPS dataset

Models DADT ATM MGNBP

Dimensionality

K=10 0.8436 0.5749

0.8431

K=20 0.8434 0.5704
K=30 0.8430 0.5733
K=40 0.8430 0.5694
K=50 0.8430 0.5688
K=60 0.8430 0.5713
K=70 0.8413 0.5709
K=80 0.8413 0.5685
K=90 0.8359 0.5741
K=100 0.8352 0.5685

this stability for the ATM with 10 topics, but MGNBP only takes less than
50 iterations to reach the same stability. It is worth mentioning that ATM
achieves its best Perplexity when only two topics are involved. The reason
is that the Perplexity in Eq. (27) inherently prefers smaller K due to its
definition/equation in this paper. This is not only unique to our work which
uses Gamma-Nonnegative Binomial Processes to obtain an optimal K. The
comparisons made in the previous topic model which uses fixed K also has
this phenomenon.

We also compare the proposed model with DADT and ATM on the author
prediction using NIPS dataset. Since DADT and ATM are fixed-dimensional
probabilistic models, we feed them the following dimensionality candidates:
< 10, 20, 30, ..., 100 >. The results are listed in Table 3. It can be seen from the
table that the author prediction results from DADT and ATM will fluctuate
with the change of dimensionality but the result from MGNBP does not. We
can draw the conclusion that MGNBP could achieve better performance than
ATM and comparative performance with DADT but MGNBP is not with
additional prerequisite.

5.3 Clinical free text labeling task

Clinical free texts are primary data about patients. Manually labeling these
clinical free texts is a challenge due to the expensive cost of labor. For example,
the cost of adding labels like ICD-9-CM to clinical free texts and repairing
associated errors is approximately 25 billion per year in the US (Pestian et al
2007). Since each text may be associated with more than one code, multi-
label learning could be adopted to accomplish this task, i.e, automatically
label clinical free texts at an very low cost.

5.3.1 Experiment setting

The comparative models for this task are LEAD (Zhang and Zhang 2010)
and LIFT (Zhang and Wu 2015)5, which are both deterministic models based

5 Implementations are both from: http://cse.seu.edu.cn/people/zhangml/Resources.htm
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Fig. 6: The comparisons between LIFT, LEAD, and MGNBP on Clinical free
text labeling task on Oneerror (The smaller the value, the better the per-
formance). ‘XX-L’, ‘XX-P’ and ‘XX-R’ denotes XX model with Linear kernel
function, Polynomial kernel function and Radial basis function (RBF) kernel
function.
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Fig. 7: The comparisons between LIFT, LEAD, and MGNBP on Clinical free
text labeling task on Coverage (The smaller the value, the better the per-
formance). ‘XX-L’, ‘XX-P’ and ‘XX-R’ denotes XX model with Linear kernel
function, Polynomial kernel function and Radial basis function (RBF) kernel
function.

on Support Vector Machine. Comparing with LEAD and LIFT, the proposed
model is a generative model, a class models which normally have better gen-
eralizing ability on the unseen data compared with deterministic models, es-
pecially with small datasets.

In multi-label learning area, it is commonly accepted that ranking label-
s for the test data is as valuable as predicting labels, so many multi-label
classification models or algorithms return a probability vector for a test dat-
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Fig. 8: The comparisons between LIFT, LEAD, and MGNBP on Clinical free
text labeling task on Rankingloss (The smaller the value, the better the per-
formance). ‘XX-L’, ‘XX-P’ and ‘XX-R’ denotes XX model with Linear kernel
function, Polynomial kernel function and Radial basis function (RBF) kernel
function.
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Fig. 9: The comparisons between LIFT, LEAD, and MGNBP on Clinical free
text labeling task on Avgprecision (The larger the value, the better the per-
formance). ‘XX-L’, ‘XX-P’ and ‘XX-R’ denotes XX model with Linear kernel
function, Polynomial kernel function and Radial basis function (RBF) kernel
function.

apoint (with each dimension representing a label) rather than predicting the
labels for a test datapoint (Zhang and Zhou 2014). In order to evaluate the
returned label probability vector, ranking-based evaluation metrics have been
proposed in the literature, including Oneerror, Coverage, Rankingloss, Avgpre-
cision (Gibaja and Ventura 2015). For Avgprecision, the larger the value, the
better the performance; For Oneerror, Coverage and Rankingloss, the smaller
the value, the better the performance. The core of these metrics is to compute
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the probability of a test datapoint xi with a specific label l, i.e., R(l, xi). Next,
we will introduce how to compute this probability using the trained proposed
model.

From the proposed model, we could obtain new representations for all
labels and (training) instances, i.e., ra and rd, which are both K-dimensional
vectors. Given a test document, we can obtain its interest ri as the expectation
of its posterior distribution,

p(ri| · · · ) ∝
∫
pd

∫
$d

∏
n

∑
zi,n

σi,vp(wi,n|{θ}, zi,n)p(zi,n|ri)


p(ri|{ra}, pd, $d, · · · )p(pd)p($d|η)d(pd)d($d)

(30)

where σi,v ∈ [0, 1] is the weight of a test datapoint xi on feature v and V is
the total number of features of test datapoint xi. With the interest of labels
(i.e., {ra}) and a test datapoint (i.e., ri), their similarity is computed as the
probability of xi with l by

R(l, xi) =< −→rl ,−→ri > (31)

where <,> denotes the cosine similarity function. This metric is reasonable
because the datapoint is with a label when they have similar interest on the
hidden topics, which is consistent with the assumption of the proposed model.

5.3.2 Results analysis

Since the LEAD and LIFT are SVM-based models, we have compared their
different implementations using different kernel functions. ‘LIFT-L’ denotes
LIFT with Linear kernel function; ‘LIFT-P’ denotes LIFT with Polynomial
kernel function (the degree is set as 3); ‘LIFT-R’ denotes LIFT with radial
basis function (RBF) kernel function. The results have been shown in Figs.
6, 7, 8, and 9, which show the results on four evaluation metrics respectively.
From these Figures, we can see that MGNBP achieves good performances on
Oneerror and Rankingloss, and it also obtains the comparative performance
on Avgprecision. For the Coverage, LEAD achieves the best performances, and
MGNBP is only better than the worst LIFT-R. Four metrics have their own
preferences on the classification evaluation. Among the four metrics, Oneerror
and Coverage are like ‘variance’, and Rankingloss and Avgprecision are like
‘mean’. So the proposed model has better performance on the ‘mean’ (on av-
erage), and at the same time the ‘variance’ is not very larger than LIFT and
LEAD. The reason may be that the proposed model is based on MCMC, so
each run is a sample from the real model distribution and there will be vari-
ance during the sampling although the variance has already been decreased
by the incorporating of the data. To summarize, MGNBP has better perfor-
mance than LIFT and LEAD on the labeling task, especially considering the
generative model nature of MGNBP.
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Table 4: Protein classification results by three models

Models
Evaluation metrics

Avgprecision Coverage Oneerror Rankingloss
BCS 0.5255±0.4941 10.7774±10.9242 0.0015±0.0024 0.5015±0.5254

BMLPL 0.4668±0.3693 9.2055±10.2758 0.6920±0.3437 0.0188±0.0191
MGNBP 0.9045 1.3719 0.1206 0.0225

5.4 Protein classification task

The number of proteins stored in protein databases keeps growing all over
the world. These Proteins could be grouped into several families according
their functions from structures, which is valuable for a number of biology
applications, e.g., new medicine design. However, not all the proteins have been
correctly classified by the researchers because the laboratory experiments are
often expensive. Fortunately, the multi-label learning model could be trained
to predict the categories of the unlabeled proteins at a low cost.

5.4.1 Experiment setting

The comparative state-of-the-art models for this task are Bayesian Com-
pressed Sensing (BCS) (Kapoor et al 2012) and Bayesian Multi-label
Learning via Positive Labels (BMLPL) (Rai et al 2015). Different from
LEAD and LIFT in Section 5.3, BCS and BMLPL are both based on Bayesian
framework so they belong to generative models same with the proposed MGNBP.
Unfortunately, two models are both with a low-dimensional embedding, so it
needs to predefine the dimensionality for them. In contrast, the proposed mod-
el, i.e., MGNBP, does not have this prerequisite. The evaluation metrics, i.e.,
Oneerror, Coverage, Rankingloss, and Avgprecision, used in Section 5.3.1 are
still adopted in this experiment.

5.4.2 Results analysis

The classification results on Protein dataset of three models, i.e., BCS, BMLPL,
and MGNBP, are listed in Table 4. This table records the predictions result-
s from three models on four evaluation metrics. As stated before, BCS and
BMLPL are two fixed-dimensional Bayesian models, so there will be fluctua-
tions in their results according to different prefixed dimensionality. In this ex-
periment, we run the two models with dimensionality: {10, 20, 30, ..., 90, 100}.
Each cell in Table 4 from BCS and BMLPL is composed by two numbers:
mean and standard deviation of the results on 10 different dimensionality.
In contrast, MGNBP does not need the dimensionality as input, so the cell
in Table 4 from MGNBP only contains one number. It appears that avoid-
ing the result fluctuation is one advantage of MGNBP compared to BCS and
BMLPL. We can see from the numbers in the table that the fluctuations of
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BCS and BMLPL on four metrics are all significant. It means that the dimen-
sionality setting can significantly affect the classification results of BCS and
BMLPL. When facing a new data without any prior knowledge, selecting an
appropriate dimensionality would be very difficult. MGNBP achieves the best
performance on Avgprecision and Coverage. On Oneerror, BCS is the best one,
and MGNBP is much better than BMLPL. On Rankingloss, MGNBP achieves
a little worse but comparable performance with BMLPL, and it is much better
than BCS. To sum up, we conclude that without the prerequisite of setting
dimensionality, MGNBP can still achieve good performance on this task.

6 Conclusions and further study

We have developed a Bayesian nonparametric model for multi-label learning
that can automatically learn a latent factor/topic embedding for both labels
and instances without the need of fixing factor/topic number that is a common
issue for most existing generative models for multi-label learning. In the pro-
posed model, we have extended Gamma-negative binomial process into three
layers with additional Gamma process layer to capture the three-layer hierar-
chy: label-instance-feature. Furthermore, a mixing strategy has been designed
to combine the information of different labels for an instance which accounts
for the multi-label setting. The expected topic number has been theoretical-
ly and empirically analyzed. The comparative experiments with three state-
of-the-art algorithms and models in literature on two real-world multi-label
learning tasks have demonstrated the effectiveness of the proposed model.

Another further study is to design a variational inference algorithm for the
proposed model because current Gibbs sampling-based inference cannot scale
well to the big data.
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Appendix: Conditional distributions for MCMC

Sampling z

p(zd,n = k, id,n = a| · · · ) ∝ θk,n ·$d
ar
a
d,k (32)

Sampling rad

p(rad,k| · · · ) ∝ Gamma($d
ara,k + nad,k, pd) (33)

Sampling lad

p(lad,k| · · · ) ∝ CRT
(
nad,k, $

d
ara,k

)
(34)
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Sampling pd

rda,k = $d
a1ra1,k +$d

a2ra2,k + · · ·

p(pd| · · · ) ∝ Beta

(
a0 +

∑
k

nd,k, b0 +
∑
k

rda,k

)
p(rd,k| · · · ) ∝ Gamma(rda,k + nd,k, pd)

(35)

Sampling ra

p(ra,k| · · · ) ∝ Gamma

(
r0,k +

∑
d with a

lad,k,
1

ca −
∑
d with a$

d
a · ln(1− pd)

)
(36)

Sampling la

p(la,k| · · · ) ∝ CRT

( ∑
d with a

lad,k, r0,k

)
(37)

Sampling r0,k

p(r0,k| · · · ) ∝ Gamma

(
γ0/K

† +
∑
a

la,k,
1

c0 −
∑
a ln(1− pa)

)
(38)

where

pa =
−
∑
d with a$

d
aln(1− pd)

ca −
∑
d with a$

d
aln(1− pd)

(39)

Sampling l′k

p(l′k| · · · ) ∝ CRT

(∑
a

la,k, γ0/K
†

)
(40)

Sampling γ0

p(γ0| · · · ) ∝ Gamma

(
e0 +

∑
k

l′k,
1

f0 − ln(1− p′)

)
(41)

where

p′ =
−
∑
a ln(1− pa)

c0 −
∑
a ln(1− pa)

(42)

Sampling θk
p(θk| · · · ) ∝ H(θk)

∏
d

θzd,n=k,n (43)

Sampling $d

p($d| · · · ) ∝ Dir($d; η)

K∏
k=1

Gamma(rd,k|ra, pd, {ra}, $d) (44)
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The weights $d in each document, which could be seen as additional output
of the model, could be learned from data. Note that the parameter η will be
also updated during the inference, which represents the overall weight of each
label in documents. For a test document, we set it as the expectation of its
conditional posterior distribution:

p($d| · · · ) ∝Dir($d; η)

∫
rd

∏
n

∑
zd,n

Category(wd,n|{θ}, zd,n)Multi(zd,n|rd)∫
pd

∏
k

Gamma(rd,k|{ra}, pd, $d)Beta(pd)d(pd)d(rd)

where wd,n is the nth word of a test document d, {θ} are the learned topics,
and {ra} are learned authors’ interests on topics.
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