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Abstract

Electrocardiogram (ECG) data analysis is of great significance to the diagnosis of cardiovas-

cular disease. ECG compression should be processed in real time, and the data should be

based on lossless compression and have high predictability. In terms of the real time aspect,

short-time Fourier transformation is applied to the processing of signal wave for reducing

computational time. For the lossless compression requirement, wavelet-transformation that

is a coding algorithm can be used to avoid loss of data. In practice, compression is required

to avoid storing redundant recording data that are not useful in the diagnosis platform. The

obtained data can be preprocessed to remove noise by using wavelet transform, and then a

multi-objective optimize neural network model is used to extract feature information. Com-

pared with the existing traditional methods such as direct data processing method and trans-

form method, our proposed compression model has self-learning ability to achieve high data

compression ratio at 1:19 without losing important ECG information and compromising qual-

ity. Upon testing, we demonstrated that the proposed ECG data compression method

based on multi-objective optimization neural network is effective and efficient in clinical

practice.

1. Introduction

Electrocardiogram (ECG) is widely used in modern medicine as a diagnostic parameter. How-

ever, medical experts has to record huge chunks of such clinical data, and if these data cannot

be compressed, it will increase storage cost due to large hard-disk space required. From the

technical aspect, ECG data compression has these characteristics: 1) real time, lossless com-

pression and high compression rate, and 2) the compression data can be used directly without

full decompression. At the same time, electrocardiogram (ECG) that is recorded by automatic

monitoring has significance to the diagnosis of cardiovascular disease. However, it usually

takes a long time to record ECG data. On the other side, a large amount of electrocardiogram

data is required to be analyzed and stored, while some of the meaningful feature information

in these data is useful to diagnose. Therefore, it is necessary to adopt data compression
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algorithm to conduct compression on electrocardiogram data, in order to improve the storage

and analysis efficiency of electrocardiogram.

The current ECG data compression algorithms [1, 2] can be divided into three classes: 1)

direct data processing; 2) transform; and 3) neural network approaches. Direct ECG data pro-

cessing method usually conducts data compression by eliminating redundant information in

ECG, by using methods such as Evolutionary Computation, Turning Point Scan-Along Polyg-

onal Approximation, and Differential-Pulse Coding Modulation (EC, TP, SAPA and DPCM)

algorithms [3–5]. Transform method usually conducts data compression by mathematical

function, such as Kanade Lucas Tomasi, Discrete Cosine Transform, Fast Fourier Transform

(KLT, DCT and FFT) algorithms. Based on other school of thoughts, the method that is based

on neural network [6–9] usually conducts data compression by extracting the feature informa-

tion implied in ECG through self-learning.

ECG data compression method that based on neural networks has gained growing atten-

tion for its characteristics, which pertains to strong adaptability, parallel processing, good qual-

ity of configurable waveform, and anti-interference. On one hand, the ECG data compression

should achieve a data compression ratio as high as possible; on the other hand, it is required

not to lose valid information or minimize losing electrocardiogram information. Hence, a suit-

ably designed multi-objective function can optimize ECG data compression. If the current

neural network based on one objective function is applied to achieve compression, we can

only get a local optimal solution due to the focus on the optimization of one objective in data

quality improvement. It is worthwhile noting that the neural network can easily fall into local

minimum and lose ECG data.

Therefore, this paper proposes a theory model of multi-objective optimization neural net-

work based on multi-objective constrained optimization theory [10–13], and then it studies

the ECG data compression method that based on the multi-objective optimization neural net-

work. Generally, this method is based on the changes of ECG characteristics so that neural net-

work can learn under the guidance of the multi-objective function and adjust its structural

parameters (i.e. coupling weight and offset value). With the purpose of extracting the feature

information that implied in the ECG, it can realize effective ECG data compression [14–16].

In our paper, we study the theoretical model and learning algorithm of multi-objective optimi-

zation neural networks, and then discusses ECG compression based on an optimizing neural

network. Finally, we confirm the feasibility and advancement of this method through various

carefully designed computational experiments in this paper.

2. Methodology

In this section, we present the mathematical formulations of the Discrete Wavelet Transform

approach and neural network approach, which are implemented in this paper.

2.1 Wavelet transform used in ECG data compression

ECG feature extraction [4, 17, 18] is required to remove noise signal before feature extract pro-

cessing due to vulnerability from noise in the environment. Then, a Pareto-optimal solution is

required to achieve the best data compression versus compromising high quality (Fig 1).

Wavelet transform is greatly effective for the instantaneous and time variant signal, which can

help to eliminate baseline drift noise. A wavelet transform module has an input signal, which

is defined as an integration of smaller version of the mother wavelet signal. Here, we present
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the integral equations of our wavelet functions:

Wsf ðtÞ ¼
1

s

Z 1

1

f ðtÞ s
t t

s

� �
dt: ð1Þ

Wavelet scale parameters generally select a value of 2 as the form of exponent that results in

the expression s = 2j, where j = 1,2,. . .,m. Note that φ is the parameter of the mother wave func-

tion. Eq (1) can hence be expressed as:

φsðtÞ ¼
1

s
φ

t
s

� �
: ð2Þ

Following the previous formulation, the wavelet transform can be expressed in Eq (3) as:

W2j f ðtÞ ¼
1
ffiffiffiffi
2j
p

Z þ1

1

f ðtÞ
ffiffiffiffi
2j
p t t

ffiffiffiffi
2j
p

� �

dt: ð3Þ

Discrete signal requires the use of Discrete Wavelet Transform (DWT). Now, binarization

of digital signals based on the DWT algorithm can be performed to give Eqs (4) and (5) as

Fig 1. Multi-objective optimization leading to s Pareto-front of all solutions as the main objective.

https://doi.org/10.1371/journal.pone.0182500.g001
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follows:

W2j f ðnÞ ¼
X

k2Z

gkS2j� 1 f ðn � 2j� 1kÞ; ð4Þ

S2j f ðnÞ ¼
X

k2Z

hkS2j� 1f ðn � 2j� 1kÞ; ð5Þ

where S2j is a smooth function, S2j f ðnÞ is the original signal (low frequency coefficients) that

serves as the approximation function, and W2j f ðnÞ is the original signal (high frequency

coefficients). It is worthwhile noting that hk and gk pertain to a low-pass and high-pass filter

coefficients respectively. Details of ECG signal can be observed after the DWT process.

Selection of wavelet functions in the decomposition process is the key to analysis ECG sig-

nals, and hence a scale through short-time Fourier transformation and wavelet-transforma-

tion is to be used (Fig 2).

In a baseline breathing exercise, the frequency ranges from 0.15Hz to 0.3Hz. Wavelet trans-

formation can eliminate baseline drift of signals noise disturbance, because there is no latency

and reduced distortion. Wavelet ECG signal degradation for approximate signal (high ampli-

tude and low frequency signals) and the detail signal (low amplitude of high frequency signals)

can help to distinguish the desired signal and noise signal.

2.2 ECG testing and selection of feature

Electrocardiographic signal, which is based on the electrical activity from the heart, is made up

of a series of waves including the R wave, QRS-wave, P wave, T wave, and U wave. The QRS

wave represents ventricular depolarization process two potential changes and the first down-

ward wave of QRS wave is the Q waves. Due to the R-wave arrived amplitude maximum, it is

easy to detect the QRS wave after locating the position of R. QRS complex detection algorithm

based on wavelet transform, the core is in a scale or search within a certain scale wavelet trans-

form modulus maxima-minima between zero R-wave locations. [19–21] Scale wavelet trans-

form can be achieved following these steps:

1. The f(n) of ECG can transform toW2j f ðnÞ; ðj 2 zþÞ, which is based on small wavelets coeffi-

cients. This process utilizes the secondary wavelets and multi-scale decomposition of

samples.

2. When j = 3, the positive threshold s1 and negative threshold s2 can detect the maximal and

minimal wavelets.

3. Locate the value that is over zero point, between the maximum value and minimum value.

4. The modified point of R-wave location can be acquired by 23� 1

2
¼ 4.

After locating R, we can be certain that every beat will contain the P-QRS-T waves. Note

that our ECG database is based on 251 points in a heartbeat cluster, such that we have R before

90 points, and R behind 160 points as two groups. The QRS-wave signal frequency content

concentrate on details with a scale of 3, 4, and 5. Next, the T and P waves mainly concentrate

details with a scale of 3, while other levels that do not contain noise are discarded. Notably, the

time domain characteristics in ECG and RR intervals constitute a feature vector, which forms

the foundation of signal classification.

Multi-objective optimization neural network for ECG compression
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2.3 Model of multi-objective optimization neural network

Neural network has appeared in increasing applications in the field of optimal computation,

pattern recognition, intelligent control, and signal processing. However, multi-objective func-

tion [22, 23] is an index in a large number of engineering applications. Generally speaking, the

feature of ECG can be reserved in this pattern, and it has high access ability without losing any

useful information through the NN hidden layers (Fig 3). Therefore, the simultaneous optimi-

zation of multi-objective function shall be described through the following mathematical

Fig 2. Determination of sinusoidal frequency and phase content of local sections of ECG signal versus time based on (A) short-

time-Fourier-transformation; and (B) wavelet-transformation.

https://doi.org/10.1371/journal.pone.0182500.g002
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problem, and the integral in Eq (6) can be expressed as:

min~y ¼~f ð~xÞ
~x2D

;

min~y ¼ ðf1ð~xÞ; f2ð~xÞ; . . . ; fmð~xÞÞ; ð6Þ

Where f ðx*Þ ¼ ðf1ðx
*
Þ; f2ðx

*
Þ; � � � ; fmðx

*
ÞÞ is the multi-objective vector criterion function, x* is an

Euclidean space vector of n-dimensional, X is a set of constraints,~y is the objective vector, and

D is search space.

In a multi-objective optimization problem, the non-inferior solution concept is usually

adopted to describe the solution of vector function optimization. This means that a feasible

decision vector x’ 2 X is non-inferior solution, and x’ 2X does not exist, and therefore Eq (7)

becomes:

f ðxÞ � f ðx0Þ: ð7Þ

The non-inferior solution of multi-objective optimization problem can be obtained by the

following, and then Eq (8) can be expressed as:

min
x*2X

Xm

i¼1

oi � fiðxÞ; ð8Þ

where ωi > 0 and
Xm

i¼1

oi ¼ 1.

In the case of a convex objective function and convex constraint, x is completely deter-

mined by the changes of ~o i ¼ ðoi1;oi2; � � �oimÞ, so that a multi-objective convex optimization

can be solved by weighting and secularization optimization. If a feed forward neural network

is used to solve the multi-objective optimization problem, then this neural network can mini-

mize the energy function in the following form, and the integral in Eq (9) can be expressed as:

E ¼
Xm

i¼1

oi � fiðxÞ: ð9Þ

Fig 3. Flowchart of multi-objective optimization neural network for reconstruction of ECG data.

https://doi.org/10.1371/journal.pone.0182500.g003
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According to Eq (9), the learning equation for multi-objective optimization is derived as

follows, and then Eq (10) becomes:

doij

dt
¼ � a

Xm

k¼1

ok
@fkðxÞ
@oij

; ð10Þ

where ωij is a weight between neurons i and neurons j, α is the neural network learning rate,

and fk(x), (k = 1,2,� � �m) is the objective function that is to be determined by the existing prob-

lem. Finally, Eq (11) becomes:

oi > 0 and
Xm

i¼1

o ¼ 1: ð11Þ

2.4 ECG data compression based on multi-objective optimization

The structure of the multi-objective optimization neural network of ECG data compression is

shown in Fig 4. It is a three-layer feed forward neural network, including input layer, implica-

tion layer and output layer. The input of neurons in input layer is the sampling point data of

ECG. The neurons in hidden layer change according to the characteristics of ECG by learning

to adjust the weight and bias value between it and input layer neurons. It is possible to extract

the feature information implied in ECG (expressed as the output information of implied neu-

ron). [15, 24, 25] ECG waveform after data compression can be reconstructed by output layer

neurons based on the ECG feature information that is extracted by hidden neurons, based on

its weight and offset value with hidden layer neurons. If the general back propagation (BP)

Fig 4. Neural network connections with the input, hidden and output layers of nodes representing a connection from a neural

output to the input of a neuron.

https://doi.org/10.1371/journal.pone.0182500.g004
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algorithm is applied to train the above-mentioned neural network, then the following prob-

lems exist: 1) there is a long processing time during network training; 2) the solution easily

falls into a local minimum; and 3) the weights of the hidden layer neurons is difficult to

determine.

The hidden layer decides the compression ratio. Note that if there are too many hidden

layer neurons, the data compression ratio will decrease. On the other hand, if the hidden

layer neurons are too few, the data compression performance will reduce, and resulting in

significant distortion of reconstructed ECG. Nevertheless, an effective and practical ECG

data compression algorithm requires not only a high data compression ratio but also, the

reconstructed ECG shall retain or minimize loss of the effective ECG information as much

as possible. Meanwhile, the real-time performance of algorithm is also required in practice

[10, 26–29]. Therefore, ECG data compression can be expressed as a multi-objective optimi-

zation problem mathematically, which means to seek for the optimal data compression effect

under the constraints of following multi-objective functions: 1) data compression ratio; 2)

valid information loss after data compression; and 3) the real-time performance of data

compression.

The model of multi-objective neural network that is discussed in the previous section is pre-

sented here to solve multi-objective optimization problem. Following that, it can be used to

achieve multi-objective compression of ECG data. Currently, the key question is how to sum-

marize the multi-objective optimization function of ECG data compression. [30, 31]

At present, the percentage root-mean-squared difference (PRD) and correlation coefficient

(CC) are widely adopted as indicators to evaluate the loss of effective information after data

compression, then Eqs (12) and (13) becomes:

PRD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ððri � �rÞ � ðoi � �oÞ2Þ

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðoi � �oÞ2
s ; ð12Þ

CC ¼

1

N

XN

i¼1

ððoi � �oÞ � ðri � �rÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðoi � �oÞ

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðri � �rÞ2
s ; ð13Þ

Where oi indicates the value of sampling point i in the original waveform, ri is the value of sam-

pling point i in the restored waveform, to restore the value of the sampling point of the wave-

form of i, �o is the average value of all sampling points in the original waveform, and �r is the

average value of all sampling points in the restored waveform. [32] From Eqs (12) and (13), it

can be seen that PRD represents the error magnitude contained in the waveform; and CC rep-

resents the correctness of restored waveform. Therefore, multi-objective optimization function

of ECG data compression can be summarized as follows in Eq (14):

E ¼W1 � Nd þW2 � PRDþW3 � ð1 � CCÞ; ð14Þ

where Nd represents the number of neurons in hidden layer, PRD represents normalized RMS

error, and CC represents the correlation coefficient. In addition, the W1, W2 and W3 represent

the following indicators: 1) the weight of compression ratio, 2) normalized RMS error, and 3)

correlation coefficient in the multi-objective ECG data compression, respectively.

Multi-objective optimization neural network for ECG compression
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The implication is as follows: solving the minimum value of Eq (14) requires seeking the

optimal compromise solution between the effective ECG information and the data compres-

sion ratio to be as high as possible. The main purpose of the first term in Eq (14) is to improve

the data compression ratio while the second term mainly reflects the error magnitude con-

tained in ECG waveform, with the purpose to reduce the total amount of error in the restored

electrocardiogram [1, 5, 20, 33]. The third term mainly reflects the correctness of ECG wave-

form restoration, with the purpose to reduce the recovery error of all sampling points in ECG

waveform. According to [32–34], we can derive the learning equation of neural network for

ECG data compression in Eq (15) as:

doij

dt
¼ a

@E
@oij

; ð15Þ

which then leads to Eq (16) as

doij

dt
¼ a o1

@Nd

@oij
þ o2

@PRD
@oij

þ o3

@CC
@oij

 ! !

; ð16Þ

Where α is the neural network learning rate. Note that ω1, ω2 and ω3 are positive numbers less

than 1, and that their sum of weights is such that ω1+ω2+ω3 = 1.

3. Results and discussion

3.1 Experimental verification

In order to verify the effectiveness and advancement of theoretical model and learning algo-

rithm of multi-objective optimization neural network in the applications of ECG data com-

pression, we conduct ECG data compression study based on neural network with partial ECG

waveform T100, T105, T106, T108, T111, T112, T217, T219, T220 and T221 from MIT / BIH

ECG database [2, 3, 14].

In our experiment, all parameters are set as follows. For the ECG waveform of data com-

pression, each heart beat consists of 105 points before the R-wave peak, and165 points after the

R-wave peak. Then, we conduct samples in the 270 points data such that all 15 points are used

around the R point. For the other sections, samples are carried out every 6 points, so that each

heart beat has 70 data points.

3.2 Reconstructed waveform based on other ECG data compression

algorithms

The neurons number in both input layer and output layer is 70, and the neurons number in

hidden layer can be obtained by a multi-objective optimization function. The inputs neurons

in the neural network correspond to the sampling data of ECG waveform. The outputs of hid-

den neurons correspond to the implicit feature information of each ECG waveform. Next,

after compression, the ECG waveform data is acquired through the weight between input neu-

rons and hidden neurons. The sampling data of input ECG waveform and output neurons cor-

responds to the data of reconstructed ECG waveform, which is acquired using the weight

between hidden neurons, output neurons, and the output of hidden neuron. At this time, the

weight between input neurons and hidden neurons, the weight between hidden neurons and

output neurons, and the offset value between hidden neurons and output neurons are obtained

by neural network through learning in regards of ECG data compression. (Fig 4) First of all, 14

neurons are selected as hidden neurons, and we select 40 waveforms from the T100 ~ T221

series in order to train the neural network for 10,000 cycles. Here, the E value in multi-

Multi-objective optimization neural network for ECG compression
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objective compression function of ECG data is 3.557, (parameters in the learning algorithm of

multi-objective optimization neural network are set as: ω1 = 0.25, ω2 = 0.45, ω3 = 0.3, and α =

0.4). Then, we implemented 16 neurons as hidden neurons, where parameters of neural net-

work training data and training time are the same as above. Here, the E value in multi-objec-

tive compression function of ECG data is 3.975. Finally, 12 neurons are selected as hidden

neurons, whose training data, training time and learning algorithm parameters are the same as

above. Then, the E value in multi-objective compression function of ECG data is 3.764.

As can be seen from the above results, selecting 14 neurons as hidden neuron is appropriate.

Moreover, in order to check the learning outcomes of neural network, the studied and non-

studied ECG waveforms (based on selection of 40 waveforms from T100 ~ T221 ECG wave-

form, from which 67% are studied) are regarded as the input of neural network, then the hidden

layer neurons record the compressed data of each ECG waveform. In the following modules,

the output layer neuron can reconstruct the ECG waveform based on the output information of

hidden neurons, and the weight between hidden neurons and output neurons that obtained

through neural network learning. At this time, the evaluation indexes values of ECG compres-

sion are: data compression ratio is 1:19, PRD = 12%, and CC = 99%, as shown in Fig 5.

The hidden neurons match the output neurons based on Dynamic Time Warping (DTW).

Notably, the DTW can recognize the all ECG waves, and then classify different ECG waves

into output layers. The frequency of the wave can be detected by trained waves, and the trained

wave can predict the income waves according to an Euclidean metric. There are M frames in

hidden neuron and N frames in input neuron, where d represents the distance between the

hidden neuron and input neuron. Each frames based on M and N has a certain distance

(Fig 6). Therefore, the output data can be screened by this distance. The defined distance is set

as 0.3 in order to raise the accurate of output data.

Fig 5. Reconstructed signal output after ECG compression for a longer period of 6000 seconds.

https://doi.org/10.1371/journal.pone.0182500.g005
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Fig 6. Comparison of waveform by the hidden neuron and input data models using a match distance

approach.

https://doi.org/10.1371/journal.pone.0182500.g006
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Fig 7. Reconstructed ECG signal waveform based on the wavelet compression and neural network

methods in comparison with the original signal.

https://doi.org/10.1371/journal.pone.0182500.g007
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Fig 8. Average percentage root-mean-squared difference (PRD) results based on different ECG data

compression ratios using transform and neural network approaches (A); Average encoding time

versus ECG compression ratio using transform and neural network approaches (B).

https://doi.org/10.1371/journal.pone.0182500.g008

Multi-objective optimization neural network for ECG compression

PLOS ONE | https://doi.org/10.1371/journal.pone.0182500 October 3, 2017 13 / 16

https://doi.org/10.1371/journal.pone.0182500.g008
https://doi.org/10.1371/journal.pone.0182500


Using the above analysis, it can be seen that multi-objective optimization neural network

that used for ECG data compression is significantly better than several other data compression

algorithms. Neural networks can adjust the parameters of network structure by learning the

ECG data compression that comes with different characteristics. In addition, it can carry out

learning under the guidance of multi-objective function in order to achieve the best result of

data compression. This means that we are able to achieve a data compression ratio to be as

high as possible without losing useful ECG information or losing as few information as much

as possible.

Fig 7 demonstrates the reconstructed ECG signals after undergoing the data compression

process. Our method based on neural network can achieve fewer probe average values in dif-

ferent compression ratio in comparison to other methods such as Embedded Zerotree Wavelet

(EZW), Set Partitioning Embedded Block Coder (SPECK), and Set Partitioning Hierarchical

Trees (SPIHT) as demonstrated by Fig 8(A). At same time, our method requires less computa-

tional time as compared to these methods based on the same compression ratio. (Fig 8(B))

4. Conclusion

In this paper, we put forward our mathematical model and learning algorithm for a neural net-

work that is based on multi-objective optimization. This approach is then successfully applied

onto ECG data compression. In our computational experiments, a satisfactory ECG data com-

pression result is achieved, and we compared our neural network approach with the wavelet

transform approaches to demonstrate its superiority. For future implementation, it may be of

interest to compare this type of technique with direct data processing methods. Our model can

process the useful data adaptively and efficiently, which comes at a lower cost in comparison

with the traditional ECG compression techniques already in practice. Furthermore, the effec-

tiveness and advancement of ECG data compression method that based on multi-objective

optimization neural network are confirmed through comparison with these existing

techniques.
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