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Abstract

Existing multiple kernel learning (MKL) algorithms indiscriminately
apply a same set of kernel combination weights to all samples. However,
the utility of base kernels could vary across samples and a base kernel
useful for one sample could become noisy for another. In this case, rigidly
applying a same set of kernel combination weights could adversely af-
fect the learning performance. To improve this situation, we propose a
sample-adaptive MKL algorithm, in which base kernels are allowed to
be adaptively switched on/off with respect to each sample. We achieve
this goal by assigning a latent binary variable to each base kernel when
it is applied to a sample. The kernel combination weights and the la-
tent variables are jointly optimized via margin maximization principle.
As demonstrated on five benchmark data sets, the proposed algorithm
consistently outperforms the comparable ones in the literature.

*This paper will be published at the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence (AAAI-14) held July 27-31, 2014 in Qubec City, Qubec, Canada.



1 Introduction

Kernel methods such as support vector machines (SVMs) have been an active
research topic in the past decade [17, 18, 5]. As well known, effectively learning
an optimal kernel is of great importance to the success of kernel methods. Along
this line of research, many pioneering kernel learning algorithms have been pro-
posed [3, 13, 2]. In particular, multiple kernel learning (MKL) has attracted
much attention [19, 16, 20, 8, 7, 11, 5, 21, 22, 10, 12, 6]. It not only provides an
efficient way to learn an optimal kernel, but also builds an elegant framework to
integrate multiple heterogeneous data sources. The existing research work on
MKL has made significant contributions in two aspects: speeding up computa-
tion [19, 16, 20, 15, 1] and improving classification performance [7, 5, 12, 8, 6].
The first contribution makes MKL applicable to large scale learning tasks, while
the second one helps MKL attain superior classification performance.

By pre-specifying a group of base kernels, existing MKL algorithms learn
the kernel combination weights based on a given training sample set. Usually,
a same set of combination weights is indiscriminately applied to all samples.
Since the weight can be viewed as an indicator of the utility of a base kernel for
classification, existing algorithms implicitly assume that this utility remains un-
changed in classifying all the samples. Nevertheless, the utility of a base kernel
could change with samples because i) In MKL, each base kernel represents an
evaluation of the pair-wise sample similarity. This evaluation is not necessarily
equally effective across all samples; ii) Some input features of a sample could be
contaminated by noise in practical applications. This can make a base kernel
computed with these input features unreliable for this specific sample; and iii) In
addition, when the kernel value (sample similarity) of a base kernel is collected
from human evaluation or laboratory test, unexpected errors in this process
could significantly corrupt the similarity of a sample to the others. All these
cases can turn a base kernel useful for one sample out to a noise for another.
Nevertheless, this issue has not been well addressed in the current literature of
MKL.

A straightforward solution to the above issue may be to learn an individual
set of kernel combination weights for every sample. However, this will lead to
an optimization problem with many (number of base kernels x number of sam-
ples) real-valued variables. Also, this will result in an over-flexible kernel learn-
ing model. A sufficiently strong regularization has to be imposed upon these
combination weights, which could further complicate the optimization process
(generally leading to a large scale quadratic-constrained quadratic programming
for SVMs-based MKL). A possible remedy to reduce the number of variables
and the model flexibility is to use a parametric model to predict the kernel
combination weights for a sample, as developed in the work of localized MKL
(LMKL) algorithm in [9], where a gating model is used to predict the kernel
combination weights locally. The framework of LMKL is elegant and it is able
to improve the performance of MKL. However, how to define an appropriate
parametric model remains an issue. For example, the linear gating model in [9)
assumes that kernel combination weights change smoothly in any local region.



Note that the assumption may not be true when base kernels are irregularly
corrupted across different samples. In addition, when the input features of a
sample are contaminated by noise, the kernel combination weights predicted via
a parametric model will not be accurate any more.

To handle the variation of the utility of base kernels across samples, we hope
that there is a latent mechanism in MKL that can dynamically choose an ap-
propriate subset of base kernels for each sample. Following this idea, we define
a latent binary vector to each individual sample to adaptively switch each base
kernel on/off. More specifically, by switching a base kernel off for a sample
we mean that this kernel will not take part in evaluating the similarity of this
sample to any other samples. This equals to filling a whole row and column of
the corresponding base kernel matrix with zeros. With this latent mechanism,
we can maintain to learn a same set of kernel combination weights for all sam-
ples as before. This avoids an over-flexible learning model and the smoothness
assumption required by a parametric model. Also, as will be seen, allocating a
latent variable to switch the base kernels allows the optimization of the latent
variables and the kernel combination weights to be well separated. This makes
the proposed algorithm still largely follow existing MKL framework and take
advantage of existing efficient optimization algorithms. Although the number
of latent variables is still as large as the number of base kernels multiplied by
the number of samples, their optimization can be decomposed in a sample-wise
way. Each sub-problem in this decomposition is a 0/1 linear integer program-
ming which can be solved via off-the-shelf packages. In addition, the proposed
algorithm completely works at the kernel level and thus can effectively handle
the corruption and noise at both the base kernel level and the input sample
level (since noise at the input sample level will be finally reflected at the base
kernel level). Experimental study is conducted on multiple MKL benchmark
data sets. Compared with existing MKL algorithms, the proposed algorithm
can consistently achieve higher classification performance.

2 Background and notations

In existing MKL literature, each sample is mapped onto a multiple-kernel-
induced feature space and a linear classifier is learned in this space. The feature
mapping used in MKL takes the form of ¢(+) = [¢1 (-), @9 (), -+ , &, (-)] T, which
are induced by m pre-defined base kernels {r,(-,-)};2;. MKL learns the classi-

fier by maximizing the margin between classes via solving the following problem
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where {(x;,y;)}", denotes a collection of n training samples and their labels,
w;, and H, represent the normal and the feature space corresponding to the
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p-th base kernel, £ and b are the slack variables and bias term, and C' is a
regularization parameter.

According to [14], the problem in Eq.(1) is proven to be equivalent to the
one in Eq.(2)

1 m | pHH
i +C
{wplye bE'veA 2 Lap=1 Zz 1

sty (3 @) ¢p(xi) +b) 2 1-6, 620V,

(2)

where 7y, is the combination weight of the p-th base kernel and A = {v :
Yope1 Yo = L, > 0, Vp}. Usually, {wy};,, b and € are obtained by solving
the dual problem of the inner minimization problem. This leads to a min-max
optimization problem in Eq.(3)
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where @ = [a, ag,- -+ ,a,] " are the Lagrange multipliers, y = [y1,%2, - ,¥n] |,

(acoy) denotes the component-wise multiplication between o and y, K, is the
p-th base kernel matrix and e is a column vector with all elements being one.
After obtaining the optimal «, b and -, the decision score of a test sample x is
calculated via

f(x) = Z:;l QY (Z:;l Vpr(XmX)) + 0. (4)

As can been seen in Eq.(3) and Eq.(4), a same set of kernel combination weights
~ is applied to all samples in existing MKL algorithms. Following our previous
analysis, we improve this situation by allowing different samples to use different
base kernel subsets.

3 Sample-adaptive MKL (SAMKL)

3.1 Problem formulation

Noting that a base kernel induces a feature mapping, switching off the base
kernel can be conceptually realized by switching off the mapping. Therefore, we
define the mapping of a sample x; by introducing a latent variable for each base-
kernel-induced feature mapping. Let h; = [hi1, hiz, -+, him] ' € {1,0}™ be
the latent binary vector with respect to x;. Specifically, h;yp =1(p=1,--- ,m)
means that the corresponding mapping is useful for the classification of x;, while
hip = 0 indicates it is not. Let 1 < 7r; < ry < --- < r; < m be the indexes of
the [ non-zero components of h;. The mapping of a sample x; is defined as

¢(xz7hz) = [Qs;rl (Xi)7 L(Xi)f" 7¢I(Xi)]T' (5)



With the above definition, different samples will be mapped onto different
sub-spaces of a common feature space, denoted by [¢] (x), ¢g (X), -+, ¢, (x)] .
This is different from existing MKL where all samples are mapped onto the
common feature space. We use the sample-based margin proposed in [4] to
measure the margin of each sample in the respective sub-space.

Let w = [w{, - ,w, ] denote the normal in a common feature space, where
wy, is the component of w corresponding to the mapping ¢,(-) induced by the
p-th base kernel. The sample-based margin of x; in multi-kernel-induced feature
space is defined as

Yi (Z;;n:1 hipw;¢p(xi))
e hipllwplla,

where only part of the components of w, namely those for which h;, = 1, are
involved in calculating the margin of x;. When all base kernel mappings are
useful, this definition reduces to the one used by the existing MKL algorithms.

Following the principle of margin maximization, we maximize the minimum
of all sample-based margins to seek the optimal normal w1, -+ ,w,, and all the
latent variables hy, - - -, h,. Mathematically, the objective of our proposed MKL
is expressed as in Eq.(7),

p(p(xi:hy)) =

(6)
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The optimization problem in Eq.(7) is more difficult than the traditional margin-
maximization problem in SVMs due to the facts that: (1) Both the numerator
and denominator in the inner minimization vary across samples, while the de-
nominator in the traditional SVMs problem is shared by all samples; and (2)
Compared with the traditional problem, a group of additional latent binary
variables are required to be optimized in Eq.(7). In the following part, we pro-
pose an efficient alternate optimization algorithm to solve this problem. It is
worth pointing out that Eq.(7) is a prototype used to show the essential idea of
our approach. We will further refine this model step by step by incorporating
the slack variables, bias term and the prior on latent variables in the following
part.

3.2 Optimization
Z;YLZI hip”"’p”?ip
2 e lwpllng,

T =[r1,T2, -+ ,7a] " into Eq.(7), we obtain

We define an auxiliary variable 7; = (1 <i < n). By substituting
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Following the way in deriving the SVMs objective in [4], Eq.(8) can be further
rewritten as a constrained optimization problem in Eq.(9)
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Similar to the derivation in SVMs and according to [14], the problem in
Eq.(9) is equivalent to the one in Eq.(10),
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After adding the slack variables & = [¢1,&2,---,&,] " and the bias term b, we
arrive at the following problem
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Besides maximizing the margin and minimizing the training errors, an ¢;-
norm regularization term should be imposed on h; (1 < ¢ < n), making it
effectively eliminate the base kernels that are not helpful for the classification
of x;. Moreover, in order to avoid over-fitting, a prior has to be imposed on h;.
In this work we enforce h; not to be far from a pre-specified hy. In doing so,
we obtain the optimization problem of the proposed SAMKL as follows,
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where hg is an initial estimate, which is also a binary vector. hy can be either
empirically set or obtained by solving an ¢;-norm MKL (for example, Sim-
pleMKL [16]) and then setting hy according to the non-zero kernel weights. mg
is a pre-defined parameter controlling the deviation of each h; from hg, and it
is the number of bits that they can differ from each other.

As can be seen, jointly optimizing {h;};_; and {w, };;, §, b, v via Eq.(12) is
difficult since it is a mixed integer optimization problem Instead, we propose an
alternate optimization procedure to solve it. Specifically, at the ¢-th iteration, we
first optimize {w,}7";, &, b,y with fixed {h}~ 11 and 7t~ by solving Eq. (11)



whose dual problem is
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This optimization problem can be efficiently solved via existing MKL packages.
Let (af,~%,b") denote the solution at the ¢-th iteration, which is obtained based
on the value of h and 7 at the (¢ — 1)-th iteration. After that, we update h at
the ¢-th iteration by solving the following integer linear programming problem,

min Y [
{hikin i (14)

st—(hT +b") >1—¢&,h (e —2hg) + h e < my,

where gf = h/i Z;L E ]1 (va Xl) o afon Z?:l

o yj htfle(Xj,xz)]T, e is a column vector with all elements being one, and

{ht 1} *_, are the latent variables obtained at the (¢ —1)-th iteration. Note that
the second linear constraint on h is due to the identity that ||h; —hg||; = h; (e—
2hy) + hg e for binary variables. Directly solving the optimization problem in
Eq.(14) appears to be computationally intractable because its complexity is
O(2™™). However, since the constraints are separately defined on each h; and
the objective function is a sum over each h;, the problem in Eq.(14) can be
equivalently solved via solving n independent sub-problems, as stated in Eq.(15),

min |[hg|;

h;
(15)
st 2 (Wl gt +b') >1—¢&,h) (e — 2h) + h] e < my.

Ti

This reduces the total computational complexity to O(n-2™). The optimization
problem in Eq.(15) is a linear integer programming, which can be solved via off-
the-shelf packages such as MOSEK!. After obtaining a?, 4 and hf, the value
of 7t is obtained as

P%’\/Zl] euet y’y7 ht 1ht 'K »(Xi,%5)
T = ; (16)
D e 1’yp\/2” et y”” ht 1ht YK, (xi, %)

where /7 (1 < i < n) is optimized in the last iteration. Our algorithm for
solving SAMKL is presented in Algorithm 1, where obj’~* and obj’ denote the
objective values at the (t — 1)-th and ¢-th iterations, respectively.

Thttp://www.mosek.com/



Algorithm 1 Proposed Sample-adaptive MKL Algorithm

: Input: {K,}7",,y, C and mo.

2: Output: «, b, v and {h;}" ;.

3. Initialize hy and set t = 1 and 7% = e.

4: repeat

5. Update (af,~%,bt, &) by Eq.(13) with (h*~!,7t—1).

6: fori=1tondo

7: Update h! with (af,~*,b%, &8, 777" h!™") by Eq.(15).
8: end for

9:  Update 7" with (af,~*,h’, 771 h'~!) by Eq.(16).

10 t=t+1.

—
[

: until (obj'~" — obj') /obj’ < le — 4

4 Discussion

4.1 Number of switching patterns h

We analyze the number of possible patterns of h on a given training data set. It
appears that this number could reach the value as high as > ;" C? . However,
considering that each training sample can only contribute one unique pattern,
the number of possible patterns will be actually capped by n, the number of
training samples. Moreover, in practice this number is usually even less than
n because different samples often share a same pattern h, as can be observed
from Figures 1(a), 1(b) and 1(c) in the experiments.

4.2 Inference

The classification procedure with the proposed SAMKL is slightly different from
existing MKL algorithms, since the subset of base kernels that is useful for clas-
sification has to be inferred for a given test sample. By following the strategy in
structure SVMs with latent variables [23], we enumerate all possible configura-
tions (label and switching pattern) and select the pair maximizing the margin.
Specifically, the class label of a sample in a binary classification case is inferred
by
(v ) = arg max y- (@760 hi) +)
h;EH

(17)

ye{£1}
h;eH
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where H = |J;_{h;} is the set of all the unique h patterns learned from the
training stage. In the case of multi-class classification, a set of normal vectors
w1, -+ ,wr, can be obtained when the one-versus-rest strategy is used, where L
is the number of classes. We can work out the decision score for the I-th class



as

fik) = max (®7¢(X;hi)+ﬁz)
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The class label is predicted as [ which corresponds to the largest f;(x).

4.3 Computational efficiency

At each iteration, SAMKL alternately solves an MKL problem (line 5 in Algo-
rithm 1) and n 0/1 programming problem (line 6 — 8 in Algorithm 1). The size
of each 0/1 programming problems is m, the number of base kernels. Note that
m is usually not large in practical applications, for example, the largest m is
69 among all MKL benchmark data sets, which allows each 0/1 programming
problem to be efficiently solved. In our experiments, Algorithm 1 converges in
a small (usually less than ten) number of iterations. Also, the computation in
the test stage is proportional to the size of H, which is smaller than the number
of training samples as analyzed previously. We will report the training and test
time in the experiments.

5 Experimental result

Our experiment consists of two parts. The first part compares the proposed
SAMKL with localized MKL (LMKL) in [9]. Both approaches assume that the
base kernel weights vary across samples. Note that LMKL requires to access the
original input data and only focuses on binary classification tasks. In the second
part, the proposed SAMKL is compared with SimpleMKL [16], non-sparse MKL
algorithm [20] and the unweighted MKL algorithm. All MKL algorithms are
compared in terms of both classification performance and computational cost.
Also, the adaptivity of the learned latent variables with respect to each training
sample will be shown.

5.1 Results on protein fold prediction data set

We compare the proposed SAMKL with LMKL [9] on the protein fold predic-
tion data set http://mkl.ucsd.edu/dataset/. SimpleMKL is also included as
a reference. This data set has 27 classes and 12 base kernels, and its original
input data are available. Besides, the training/test partition of this data set has
been pre-specified. The code of LMKL is downloaded from the authors’ web-
site?, which focuses on binary classification. To construct binary classification
tasks, we select five classes from 27 classes with the largest number of training
samples. Specifically, they are the 1st, 7th, 9th, 12th and 16th classes. Every
two classes are selected to construct a binary classification task. By this way,

2http://users.ics.aalto.fi/gonen/icml08.php/



we generate ten binary classification tasks in total. For the proposed SAMKL,
we empirically set hg = (1,1,---,1)T and my = 3. To ensure fair comparison,
the regularization parameter C for all the three MKL algorithms is chosen from
[1071, 10°,--- | 10%] by five-fold cross-validation on training data sets. Each
base kernel matrix is normalized to have a unit trace.

Table 1: Classification accuracy and traing/test time comparison among the
proposed SAMKL, LMKL [9] and SimpleMKL [16] on the protein fold prediction
data sets.

TASK SAMKL LMKL SiMPLEMKL

o7 vs. C16 88.0 80.4 86.9
32.7/0.04 12.1/0.01 2.9/0.01

o7 Vs, 9 91.2 89.5 87.7
33.7/0.02 | 4.4/0.02 5.9/0.00

o7 vs. ol 98.0 96.0 98.0
21.1/0.02 | 4.3/0.02 2.7/0.00

o7 Vs, C12 85.7 77.8 79.4
103.1/0.05 | 4.9/0.01 9.1/0.00

o16 vs. €9 95.1 83.6 95.1
89.5/0.02 5.3/0.01 13.9/0.00

c16 vs. ol 98.2 96.3 98.2
11.1/0.02 9.7/0.01 1.3/0.00

o16 vs. 012 86.6 80.6 86.6
39.5/0.02 | 17.5/0.01 3.1/0.00

o9 vs. 1 94.7 89.5 94.7
24.4/0.01 | 12.9/0.01 2.6/0.00

9 vs. ¢12 84.4 68.8 84.4
’ 25.3/0.01 4.2/0.01 5.8/0.00

ol vs. o12 92.0 72.0 88.0
7.8/0.01 3.9/0.01 1.3/0.00

The classification accuracy on the ten tasks is reported in Table 1, where
the highest values are shown in bold. As can be seen, the proposed SAMKL
obtains better overall classification performance than LMKL and SimpleMKL,
and its improvement over LMKL is significant. We attribute the superiority of
SAMKL to its latent mechanism designed to adaptively switch off less useful
base kernels for each individual sample during MKL. At the same time, the less
satisfying performance of LMKL indicates that more appropriate parametric
models for kernel weight prediction need to be sought and the appropriateness
of the smoothness assumption may need to be reviewed.

The training and test time are reported in the second row of each cell in
Table 1. Compared with SimpleMKL and LMKL, SAMKL leads to a mildly
increased computational time due to the use of the proposed latent mechanism.
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The learned latent variable h is shown in Figure 1(a), where one binary
classification task (Class 7 vs. Class 9) is selected for demonstration. The
h on each classification task is shown as an n x m matrix, where n and m
are the number of training samples and base kernels, respectively. The red
color indicates “1” while the blue and green colors indicate “0”. The difference
between blue and green color is clarified as follows. The blue color indicates
those latent variables which switch off the base kernels whose weights are non-
zeros. We call them “active” latent variables. The green color indicates those
latent variables which switch off the base kernels whose weights are zeros. We
call them “inactive” latent variables. As shown, h switches on/off the base
kernels differently across training samples. Looking into these matrices shows
that each row has exactly three “0”s. This is due to the constraint ||h; — hgl| <
mg, Vi. This experiment preliminarily demonstrates the effectiveness and the
properties of the proposed SAMKL.

5.2 Results on benchmark data sets

Table 2: Experimental comprison of the proposed SAMKL, SimpleMKL [16], £,-
MKL [20] and UMKL on three protein and Caltech-101 data sets. The two rows
of each cell represent mean accuracy + standard deviation and training/test
time (in seconds). Boldface means the best one.

DATASET SAMKL SIMPLEMKL b MRL UMKL
PROPOSED p=2 p=4 p=2_8

90.6 =1.5 87.7£2.3 86.4+18 | 84.6+2.0 | 83.8+22 | 84.3+£1.9

PSORTPOS 343.0/5.8 157.0/0.8 9.2/0.1 5.1/0.1 3.5/0.1 0.6/0.1
92.5+1.0 89.9+1.1 889+1.1 | 87.7+£1.3 | 86.9+1.2 | 84.0£1.5

PSORTNEG 4666.8/54.1 1184.3/2.0 121.1/0.8 60.7/0.8 43.0/0.7 5.5/0.1
89.5+1.7 88.0£1.70 86.4+£15 | 8.0£19 | 84.1+£21 | 83.1+£2.2

PLANT 864.7/18.4 515.1/0.4 34.7/0.3 | 17.7/0.3 | 13.7/0.3 | 2.0/0.1
67.2+1.0 63.7£1.3 65.3+£15 | 656.1£1.5 | 65.1+1.5 | 65.0£1.8
CALTECH-101 | 157480/1591.7 | 30079/15.1 2906.8/1.5 | 1505.1/1.5 | 1007.3/1.5 | 165.7/0.2

Four benchmark data sets are used, including psortPos, psortNeg, plant and

Caltech-101 data sets. All of them can be downloaded from http://mkl.ucsd.edu/dataset/.

The first three are for protein subcellular localization and have been widely used
by MKL algorithms [24]. Their class numbers are four, five and four, respec-
tively. The 69 base kernel matrices have been pre-computed and provided on
the above website. Caltech-101 contains 25 base kernel matrices based on a set
of visual features extracted from the Caltech-101 object recognition data set. 15
training and 15 test examples are used for each class. The base kernel matrices
of five random splits of training and test sets are pre-computed and provided.
We compare the proposed SAMKL with the state-of-the-art MKL algorithms,

11
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Figure 1: The latent variable h learned for each sample of a training group (red—
“1”, blue-“0 (active latent variables)”, green—“0 (inactive latent variables)”)
on different data sets. (a): Class7 vs. Class9 (protein fold prediction); (b):
psortPos; (c): Caltech-101.



including SimpleMKL [16] and £,-norm MKL [20] with p = 2, 4, 8, respectively.
The uniformly weighted MKL (UMKL) is also included as a baseline. Note
that LMKL in [9] is not included in comparison because it needs to access orig-
inal input data, which are not available for all the above benchmark data sets.
Furthermore, it focuses on binary classification tasks only.

Following [24], Fl-score is used to measure classification performance on the
psortPos and psortNeg data sets, while matthew correlation coefficient (MCC) is
used for the plant data set. For Caltech-101, classification accuracy is used as in
the literature. For the psortPos, psortNeg and plant data sets, we randomly split
the data into 20 groups, with 50% : 50% for training and test. For Caltech-101,
we use the five pre-defined training and test partitions. To conduct a rigorous
comparison, the paired Student’s t-test is performed. For the three protein data
sets, C for each MKL algorithm is chosen from [1071, 10°,--- | 10%] by five-fold
cross-validation. For the Caltech-101, C is set to 10* experimentally. C’ is
not needed in our alternate optimization method. Each base kernel matrix is
normalized to have a unit trace. For our proposed SAMKL, hy is again set as
(1,1,---,1)T and my is empirically set as 20 and 10 on three protein data sets
and Caltech-101, respectively.

5.2.1 Results on three protein and Caltech-101 data sets

As seen in Table 2, SAMKL consistently achieves superior performance to Sim-
pleMKL [16], ¢,-norm MKL [20] and UMKL on all the three protein data sets.
In the literature, SimpleMKL [16] is the one that achieves the best performance
on these data sets [11]. However, SAMKL further improves its performance
by 3.0%, 2.5% and 1.5%, respectively and these improvements are tested to be
statistically significant. The above results indicate that introducing the latent
variables allows each sample to effectively focus on more useful base kernels and
avoid being affected by less useful ones, leading to better performance.

The latent variable h learned on the psortPos is plotted in Figure 1(b). As
seen, h dynamically switches off many base kernels such as the 1st ~ 5th, 18th
and 20th, to name just a few. Cross-referencing the learned kernel combination
weights, we can find that many base kernels switched off by h have non-zero
combination weights (in blue color). Switching them allows different samples
to effectively utilize an appropriate subset of base kernels. This confirms the
sample-based adaptivity of the SAMKL.

The averaged result on Caltechl101 is reported in the last row of Table 2.
Again, we observe that SAMKIL achieves the highest classification accuracy.
Specifically, SAMKL gains 1.9% improvement over the second best one, i.e., fo-
norm MKL. Also, the learned latent variables on a training group are plotted in
Figure 1(c). In this figure, it is worth noting that all latent variables are “active”
because we find that the optimal combination weights of all base kernels are non-
zeros. All base kernels across samples are actively switched off by the latent
variables. Together with the results on the protein subcellular localization,
the result on Caltech-101 data set validates the effectiveness of the proposed
SAMKL algorithm.
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Note that the above training/test timing results are based on a relatively
straightforward implementation of the Algorithm 1, where no specific tuning is
conducted to speed up the training/test process. However, the n 0/1 program-
ming problems at each iteration can be solved in a parallel way. Also, the test
of each sample against different switching patterns can be performed parallelly.
These properties will be exploited in future work to improve the computational
efficiency of our algorithm.

6 Conclusion

This work proposes the SAMKL—a novel MKL algorithm which jointly per-
forms MKL and infers the base kernel subsets that are useful for the classification
of each sample. By allowing each sample to adaptively switch on/off each base
kernel, SAMKL achieves clear improvement over the comparable MKIL algo-
rithms in the recent literature. Further improving the computational efficiency
of the proposed SAMKL is another piece of our future work.
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