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Abstract

We consider the problem of embedding entities and re-
lations of knowledge bases into low-dimensional con-
tinuous vector spaces (distributed representations). Un-
like most existing approaches, which are primarily effi-
cient for modelling pairwise relations between entities,
we attempt to explicitly model both pairwise relations
and long-range interactions between entities, by inter-
preting them as linear operators on the low-dimensional
embeddings of the entities. Therefore, in this paper we
introduces path ranking to capture the long-range inter-
actions of knowledge graph and at the same time pre-
serve the pairwise relations of knowledge graph; we call
it structured embedding via pairwise relation and long-
range interactions (referred to as SePLi). Comparing
with the-state-of-the-art models, SePLi achieves better
performances of embeddings.

Introduction

A knowledge graph such as Freebase (Bollacker et al. 2008),
WordNet (Miller 1995), and Yago (Suchanek, Kasneci, and
Weikum 2007) is a multi-relational graph consisting of en-
tities as nodes and relations as different types of labelled
edges. An instance of the labelled edge is a triplet of one fact
(head entity, relation, tail entity) (abbreviated as (h,r,t))
which indicates that there exists a pairwise relation of name
relation between the entities head entity and tail entity (e.g.,
(Paris, capital_of, France)). In the past decade, great advance
is achieved to embed elements of a knowledge graph into a
continuous space (distributed representation) while preserv-
ing the intrinsic structures of the original graph.

The distributed representation of the words in a contin-
uous space has been used in Natural Language Process-
ing (NLP) via the framework of language models where
an embedding per word is learnt in an unsupervised learn-
ing fashion rather than merely one-hot representation of a
word (Xu and Rudnicky 2000; Bengio Y, P, and C 2003;
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Bengio et al. 2006; Bengio 2008). A similar algorithm is uti-
lized to represent concepts as vectors and relations as matri-
ces in Linear Relation Embedding (LRE) (Paccanaro 2000;
Paccanaro and Hinton 2001) which maps entities into a low-
dimensional space by imposing the constraint that relations
in this low-dimensional space are modeled by linear oper-
ations. In other words, entities are modeled by real-valued
vectors and relations by matrices. Parameters of both entities
and relations are learnt during training. It has been shown
that encoding knowledge graph in distributed embeddings
improves the performance.

For examples, Figure 1 illustrates a family tree via a
knowledge graph, where entities (family members) and their
pairwise relations (i.e., wife and daughter) are encoded. In
this paper, structured embedding is employed to map all of
entities in the knowledge graph to their continuous vectors,
and the pairwise relations are represented as matrixes.

Given a triplet (h,r,t), the embeddings of the entities
and the relations are denoted with the same letter in bold-
face characters in this paper (i.e., h,r.t). Structured Em-
beddings (SE) (Bordes et al. 2011) embeds entities h and
t into R% and relation 7 into two matrices Ly € R*?
and Ly € R such that the dissimilarly (measured by
{1 distance) between Lq - h and Lo - t is less than that of
the corrupted triples. The basic idea of structured embed-
dings (Bordes et al. 2011) is that when two entities belong
to one triplet, their individual embeddings should be close
to each other in a subspace that depends on their assigned
relation. A semantic matching energy function is devised
via a neural network and utilized in (Bordes et al. 2012;
2014) to map all of entities and relations into a same rela-
tively low-dimensional embedding vector space, where the
plausible triplets of a multi-relational graph are assigned
low energies (i.e. high probabilities). Since entities and re-
lations all share the same kind of representation, the usual
conceptual difference between entities and relation are di-
minished. Another more expressive embedding approach is
Neural Tensor Networks (NTN) proposed in (Socher et al.
2013). NTN replaces the traditional linear neural network
layer with a bilinear tensor layer that directly mediates the
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Figure 1: The embeddings of a knowledge graph. Two individual family trees are embedded into a common continuous vector
spaces. Persons are represented as different vectors and family relations are represented as matrixes.
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Figure 2: The intuitive illustration of the structured embedding of knowledge graph. In subfigure (a), the embeddings of the

entities e; and e; will be decided by both the pairwise relation R and the long-range interactions 15” and 1511 In subfigure (b),
there are in total 9 entities e;(1 < 7 < 9) and 3 relations 2; (1 < j < 3) in an incomplete knowledge graph. A long-range
interaction path P; is defined as a sequence of pairwise relations R; — Ro. Given one pair of source entity and target entity,

_ . . . Rs Py Rs P,
there are one pairwise relation and long-range interaction path (such as e, — eg and ey — eg, 61 —> e3 and e; — e3).
The proposed SePLi can utilize the relevance between the pairwise relation R3 and the long-range interaction P;. As a result, ,
SePLi is able to predict the fact (e7, R3, eg) by the minimizations of both pairwise loss and long-range loss. Here the long-range
interaction path P) could be regarded as the composition, transitivity or inheritance of the pairwise relation Rs.

interactions between the two entity vectors across multiple
dimensions (aspects).

In general, the embeddings of entities are learnt via a
multi-tasking setting in the aforementioned approaches and
the embedding of an entity contains factorized information
coming from all the relations in which the entity is remarked.
On the other hand, the embedding of a relation also contains
factorized information from all the triplets in which the re-
lation is involved. The interactions between entities and re-
lations are the useful information to obtain appropriate em-
beddings of a knowledge graph. However, only pairwise re-
lations are exploited during the learning of distributed repre-
sentations in the aforementioned approaches. Although pair-
wise relations are essential to preserve the local structures
in a multi-relational graph, the long-range interactions (e.g.,
transitivity or composition or inheritance relations encoded
by a sequence of pairwise relations) are beneficial to uncover
the underlying structures beyond pairwise relations.

We argue that both pairwise relations and long-range in-
teractions between entities can boost the performance of em-
beddings of a knowledge graph. Therefore, this paper intro-
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duces path ranking (Lao and Cohen 2010b; Lao, Mitchell,
and Cohen 2011) to capture the underlying long-range in-
teractions of the knowledge graph and at the same time to
preserve the pairwise relations of the knowledge graph, we
call it structured embedding via pairwise relations and long-
range interactions (referred to as SePLi). SePLi not only uti-
lizes the pairwise relations, but also captures the intrinsic
long-range dependent interactions between entities. Since
the embeddings in SePLi is employed by the linear oper-
ators, SePLi provides a scalable way for large numbers of
entities and relation types.

Our Approach
For a knowledge graph K =< &, R, F >, £ = {e'}1< is
a set of all entities, R = {Rj};szl is a set of all pairwise
relations and F = {xk}kNZF 1 contains all the facts (denoted
as triplets) that can be observed in K. z* is the ¢-th fact, and
' = (ein,Ri,eit),ein, it € E,R; € R.Lete;p, et €
R4 be the vector representations of the two entities e; 5, and
e, and W; € R%*? and b; € R are the embedding matrix



and the bias vector corresponding to the relation R; in fact
x*, respectively.

Pairwise relations and long-range interactions

Given one fact z* in the term of (e; , R;, e; 1), we attempt
to learn a linear function g(-) so that the embedding of e; 5,
is expected to be similar to that of e; ;. The linear function
g(-) is defined in equation (1) as follows:

9(Ri,ein) = Wi - €in+b; 1
In this paper, we argue that the appropriate utilization of
both pairwise relations and long-range interactions are vital
to improve the learning of the parameters of the linear func-
tion g(-) as well as the embedding vectors of the entities.

e Pairwise relation: In a multi-relational graph, the pairwise
relation is a direct labelled edge between the two entities
defined by a triplet of one fact (h,r,t). Here we call the
entities h and ¢ as a pairwise relation r. Since we expect
that the result of a linear operation with the embedding
vector of h is approximately the same as the embedding
vector of ¢, the pairwise loss is therefore defined as the
difference between g(r, h) and t. The less the pairwise
loss is, the better the linear function g(-) is.

e Long-range interaction: given one fact (h,r,t), we can
probably find some long-range paths {P;}¥ ; from the
source vertex h to the target vertex ¢. k denotes the num-
ber of the path to be found. These paths {P;}¥_; indi-
cate the long-range interactions between h and t¢. Since
the long-range interactions { P; }*_; and the pairwise rela-
tion r, respectively, describe the relation between the enti-
ties h and ¢ from different aspects (direct versus implicit),
the long-range interactions {P;}¥_; and the pairwise re-
lation 7 should be relevant. Therefore, the long-range loss
is defined as the difference of the pairwise relation r and
long-range paths with the same source entity and target
entity.

Since the proposed SePLi attempts to utilize both pair-
wise relations and long-range interactions to learn the linear
function g(-) and the embeddings, the objective function of
the proposed SePLi is defined as follows:

0(0) = J71(0) + M J=(0) +220| 2
N N——

pairwise loss

(@)

long-range loss

where © is the collection of all the model parameters. A bet-
ter embedding tends to minimize the objective function in
the training phase. Here, 71 (©) and J2(©) are the terms to
encode the pairwise loss and long-range loss, respectively.
A1 is the weighting parameter of long-range loss. The last
component with the hyper-parameter A5 is the standard Lo
regularization on all the model parameters. They will be de-
scribed in more details in the next sections.

Minimizing the pairwise loss

As aforementioned, given (e; 5, R;,€; ), in order to mini-
mize the pairwise loss, the linear operation of the embedding
of e; j, with g(-) is expected to be the same as that of e; 4, and
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we adopt the squared distance to measure the confidence of
each fact 2* when ¢(-) is implied to z*:

|
s(z") = §\|9(Rz'aei,h) —eiqll 3)

Like Structured embeddings (SE) (Bordes et al. 2011) and
Neural Tensor Networks (NTN) (Socher et al. 2013), the op-
timal g(-) and the embeddings can be achieved in term of the
contrastive max-margin learning. The main idea here is to
ensure the positive facts which can be observed in the knowl-
edge graph have a higher confidence score (less squared dis-
tance by equation (3)) than negative (false) facts which are
constructed by replacing the head entity or the fail entity into
a random entity from the set of all the entities. As a result,
the pairwise relation of one given fact ! is constrained by
the following two constraints:

s(ein, Riyeir) < s(ejn, Riseir),Vj: (ejr, Riseir) & F

“)

s(€in, Riyeir) < s(ein, Risejt),Vi: (€in, Rieje) € F

®)

The value of s(e; 5, R;, e;+) is calculated according to equa-
tion (3).

Towards guaranteeing the constraints of all the observable
facts, the pairwise loss of knowledge graph is defined as fol-
lows in equation (6):

N'" Gy
J1(©) =Y “max(0,s(x') + 1 — s(z))
i=1 c=1
While N*" denotes the number of the positive facts. Cj is the
number of the negative facts that are generated from positive

fact %, and z° is the c-th negative fact. We set the margin
between positive facts and negative facts to 1.

(6)

Minimizing the long-range loss

In a knowledge graph, the underlying long-range interac-
tions are usually important. For examples, the pairwise re-
lation ‘grandfather’ is relevant to the consequent combina-
tion of two pairwise relation ‘father’ in term of inheritance;
or the pairwise relation ‘place_of birth’ is a compositional
concept of the concatenation of pairwise relation ‘parents’
and ‘nationality’.

Taking the fact ' = (e;, R;,€; ) as an example, al-
though the entities e; 5, and e; ¢ are labelled as the pairwise
relation R;, we also find a long-range path relation P from
e;,n to e; ;. Here P can be denoted as a sequence of pair-
wise relations between entities identified for the path P. The
long-range interaction P is relevant to the pairwise relation
R, because they share the same source and target entities.

For each pairwise relation R;, assume that we find the top
K paths P} with weights p} (1 < j < K ). In order to
find the top K paths P;, a walker samples uniformly from
the neighbours of the last visited vertex until the maximum
length is reached. While we set the maximum length of our
random walks in the experiments to be fixed, there is no re-
striction for the random walks to be of the same length. For
the j-th path PJ? which is a sequence of M, pairwise re-

. P; P; . .
lations R, -, R A/}j, when starting from entity e; 5, the



1,z

embedding vector of next entlty v, »J is approximately ob-

tained by equation (7). R is the m-th palrwme relation in

the pairwise relation sequence Pi. Wm and bm denote the
embedding matrix and bias vector of the pairwise relation

P! .
R, , respectively.

P! P} P
1,2
T =g(R) ein) =W, -ein+by’

v
€i,h

)

Then at the second step, we obtain the embedding vector of
v2:%3 by equation (8).

P! .
v = g(Ry vg)) ®)
=W, - (Wy? -eint+by))+by0 (9

After M steps, the embedding vector of the target en-
tity €; 4, v MJ’W is recursively obtained. Combining all the

weighted K paths we have found before, we have equation
(10).

1717.7
e ,h

f(R'uez h (10)

Zp;

1pyg 1

Therefore, for (e; 1, R;, €;,¢), the embedding vector of the
target entity e;; either can be approximated by one lin-
ear operation g(R;,e;p) via the pairwise relation, or by
a sequence of linear operations f(R;,e; ) via long-range
interactions. As a result, we expect that the difference of
g(R;,e;n) and f(R;, e; p) is the minimum. We propose to
minimize the following objective function:

V(R = (Wi = W2+ 16 — 272 (D)
Here W}°™ and b.°™ are defined as follows:
M;
Wi = Zp] [Iwe a2
Z] 1P j=1 m=1
bers _ LS, pp (13
’ Z =105 j=1
where B(P}) is defined by equation (14).
M; M i
BP)=>_( [ wa") (14)

m=1 g=m+1

Then the long-range loss is defined as follows in (15).
1 &

D) Z Y(R')
i=1

Therefore, the optimization of those linear functions and
embeddings of entities are obtained by minimizing the ob-

15)

1666

jective function as follows:

N‘f’!‘ 'i

ZZIH&X 0,s(x

=1 c=1

N1 —s(ah))

pairwise loss
A &
1 § : i
+ ? o ’Y(R ) +

long-range loss

(16)
210|2

Algorithm 1 summarizes the procedure of our proposed
SePLi .

Algorithm 1: structured embedding in SePLi

Input: The set of training facts F*"
1 initialization;
2 finding long-range paths for each pairwise relation;
3 while maximum number of iterations not exceeded do
4 | foreach ' in F'" do

5 generate negative facts set {z2}" | ;

6 minimizing pairwise loss relevant to z¢;

7 end

8 | foreach R’ inR do

9 ‘ minimizing long-range loss relevant to R’
10 end

11 end

Output: structured embeddings of entities and relations

Finding long-range interaction

Given a set of pairs of entities that are directly pairwise rela-
tion R, Path Ranking Algorithm (PRA) (Lao, Mitchell, and
Cohen 2011; Lao and Cohen 2010b) then performs a ran-
dom walk on the knowledge graph to identify the long-range
paths starting at all the source entities (nodes). The paths that
reach the target entities (nodes) are considered successful.

While we set the largest path length of our random walks
in the experiments to be fixed as L , there is no restriction
for the random walks to be of the same length. Taking one
long-range path P = Ry, Ry, - , Ry, (I < L) for example,
the distribution h._ p is recursively defines by (17).

he,,p(€) Z he,,pr(€) -

e’€range(P’)

Plele; Ry)  (17)

The distribution h., p(e) indicates the probability such
that e is in the path connecting the source entity e,.

Ri(e,e
Plele’s Ry) = fiee)

is connected to the entity ¢’ with one step distance as de-
fined by the relation R;. R;(¢’, e) is the indicator that equals
to 1 when entity ¢’ can be connected to the entity e via rela-
tion R;, otherwise 0. | R;(€’, -)| is the number of entities that
entity e’ can connect to via relation R;. The set of entities
that can be reached from the source entity though path P’ is
denoted as range(P").

is the probability that the entity e



Given a set of paths Py,---, P,, each {he, p, ()}’
could be treated as the path features for certain fact
(es, R, €). Thus, we conduct Logistic Regression to train the
appropriate weights of paths Py, --- , P,. We find negative
training samples in the same way as (Lao and Cohen 2010a)
does.

Finally, the long-range paths which are relevant to the
pairwise relation R as well as their weights are used in equa-
tion (15) to minimize the long-range loss.

Experiments and Results

We compare our SePLi with several state-of-the-art knowl-

edge embedding methods as follows:

e NTN(Socher et al. 2013): The Neural Tensor Network
(NTN) replaces a standard linear neural network layer
with a bilinear tensor layer that directly relates the two
entity vectors across multiple dimensions.

e SE(Bordes et al. 2011): Structured Embeddings (SE)
(Bordes et al. 2011) obtains the embedding vectors of
head entity and tail entity by corresponding left and right
hand relation matrices respectively for the given pairwise
relation.

e SME(linear) or SME(bilinear) (Bordes et al. 2012;
2014): In Semantic Matching Energy (SME), all the el-
ements of a knowledge graph are represented into the rel-
atively low-dimensional embedding vector space. If the
relation-dependent embedding function is simply a linear
layer, it is called SME (linear). If the relation-dependent
embedding function is using 3-modes tensors as the core
weights, it is called SME (bilinear).

e SePLi(local): SePLi(local) only utilizes the pairwise re-
lations and disregards the long-range interactions.

Datasets

Four benchmark datasets are used for the perfor-
mance evaluation. We divide each dataset into three
distinct parts: observed, wunobserved_entities, and
unobserved_relations. For each dataset, some of the
entities and all the facts that contain these entities are
randomly collected and removed from each database to
be as unobserved_entities. Several pairwise relations
and all the facts that denote these relations are also ran-
domly collected and removed from each database to be as
unobserved_relations. The remaining facts which do not
belong to unobserved_entities and unobserved_relations
are collected as observed. Statistics of the datasets are
shown in Table 1. In the optimization of entities (or
relations) embeddings from wnobserved_entities (or
unobserved_relations), it is noted that we have employed
the entities and relations from observed, which is very
useful for the incremental knowledge learning because we
do not need to re-train all of the entities/relations when new
(unobserved) entities or relations are added into a growing
knowledge graph like NELL (Betteridge et al. 2009;
Carlson et al. 2010) or KV (Dong et al. 2014). The detailed
information of each dataset used in this paper is summarized
below.
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Kinship Alyawarra Kinship data (Denham 1973) records
the family relations of Alyawarra, which includes more than
10 thousand relationships of 26 relation types among 104
tribe members.

UMLS Unified Medical Language System (UMLS) is an
upper-level ontology dataset created by McCray (McCray
2003).

WordNet WordNet (Miller 1995) is an online lexical
dataset. We obtain a subset of this data base, which has been
used in (Socher et al. 2013).

Freebase Following (Socher et al. 2013), we obtained a
subset of Freebase from the People domain.

Parameter settings

In the experiments, hyper-parameters are set using grid
search: (i) entity vectors, relation matrixes, and biases are all
initialized by a uniform distribution on [—0.001, 0.001]; (ii)
for datasets Kinship (Denham 1973) and UMLS (McCray
2003), the dimensionality of the embedding space is set to
d = 10; for datasets WordNet (Miller 1995) and FreeBase
(Bollacker et al. 2008), the dimensionality of the embedding
space is set to d = 100; (iii) the weighting parameter of
long-range loss is A; = 0.01, and the regularization param-
eter is A, = 0.0001; (iv) the length of each path is no longer
than 4 (L = 4) and the maximum number of long-range
interactions for each pairwise relation is K = 10; (v) mini-
batched Limited-memory BFGS (L-BFGS) (Malouf 2002;
Andrew and Gao 2007) is used for optimizing non-convex
object function and the number of training iterations is set to
500.

Pairwise relations and long-range interactions

Given a pairwise relation, SePLi can discover several appro-
priate long-range interactions relevant to this pairwise rela-
tion. Table 2 shows some top weighted long-range interac-
tion paths from different datasets, which are compatible with
our rational knowledge.

Entity Retrieval

Our first goal is to retrieve the unknown facts. It is like to
answer the question “Who is Alice’s father?” by retrieving
the tail entity, taking “Alice” as the head entity and “father”
as the pairwise relation. For each test fact, the tail entity is
removed and replaced by each of the entities in the dataset
in turn. The results are ranked according to the confidence
of each triplet.

We use first-rank, mean-rank, and MAP as the evaluation
criteria. The first-rank indicates the average of the ranking
position of the first correct answer of each test fact. The
mean-rank is the average of the mean ranking position of
all the correct answers of each test fact. Mean Average Pre-
cision (MAP) is defined as follows:

Ne
AP = Nia ;prec(r)é(r) (18)

where IV, is the number of the correct answers for the cur-
rent test fact, N, is the number of all the entities, prec(r)



Table 1: Statistics of datasets used in our experiments

Dataset Kinship UMLS WordNet Freebase
No. of entites/unobserved entities 104/9 135/12 38698/3868 75043/7503
No. of relations/unobserved relations 26/3 49/4 11/3 13/3

No. of observed facts(train/test) 4006/4006 2407/2407 42121/42121 106832/106832
No. of unobserved_entities facts(train/test) 155/1451 134/1339 1848/17706 2899/36719
No. of unobserved_relations facts(train/test) 197/790 77/311 3575/14303 15104/60416

Table 2: The examples of top weighted long-range interaction paths relevant to a given pairwise relation over different datasets.

The weights of each long-range path are shown in italic.

pairwise relation

top weighted long-range interaction paths

mother(Kinship)
cause(UMLS)
_similar_to(WordNet)
place_of birth(Freebase)

father — son — mother (0.258); nephew — mother — mother (0.0977)

isa — affects — affects (0.100); isa — affects — co-occurs_with (0.100)

_similar_to — has_instance — _type_of (0.143); _similar_to — _type_of — has_instance (0.143)
parents — nationality (0.100); parents — place_of_death (0.100)

represents the precision of the r-th retrieved entity. 6(r) = 1
if the r-th retrieved entity is a correct answer of the current
query, and 6(r) = 0 otherwise. MAP is defined as the average
AP of all the queries.

Table 3 and Table 4 shows the results of each compared
model over Kinship and UMLS. From Table 3 and Table 4,
we see that our proposed method achieves the best average
performance.

Knowledge Prediction

In this section, we compare different models by predicting
correct facts in the test data of WordNet and Freebase. The
negative facts are generated by replacing the head or tail
entity of each test fact with randomly selected entities. Fol-
lowing (Socher et al. 2013), we use accuracy as the crite-
rion according to how many triplets are correctly predicted.
For the large scale dataset such as WordNet dataset and the
Freebase dataset, this criterion is more appropriate than the
others to evaluate the performance of embedding.

The results are shown in Table 5. Our model achieves
the best or a comparable performance. For observed of
these two datasets, models like NTN which have much more
parameters always have a better performance because the
entities and relations in the observed are all well stud-
ied with more parameters. For unobserved_entities and
unobserved_relations in which only a few facts are avail-
able, our model always has a better performance than the
others due to the ability of SePLi to utilize the rich struc-
tures in knowledge graph.

Knowledge Embedding

In this section, we illustrate the interpretable embeddings by
SePLi . “religion” is a relation with which the correspond-
ing facts have the form ‘(entity, religion, religion_name)’
in Freebase. Taking different religion_name’s as different
categories, and entities as instances, we select five cat-
egories with the most instances from Freebase such as
“jew”, “african american”, “germans”, “scottish people” and
“poles”. For each category, we randomly select no more than

100 instances from the Freebase. This results in a small
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dataset containing more than 400 entities. After learning
the embedding of each entity using SePLi , we use t-SNE
(Van der Maaten and Hinton 2008) to project the embed-
dings into a 2-dimensional space. The results are shown in
Figure 3 (a). The data points with the same colors and shapes
indicate that they come from the same category.

The family tree dataset is used in (Paccanaro and Hinton
2001) which contains 24 family members and 12 relations
like “father”,“mother” and “husband”. The embeddings of
each entity are learnt using SePLi in a 2-dimensional space.
The embeddings of entities are plotted in red points in Figure
3 (b). We show only two pairwise relations (i.e., ‘husband”
and “brother” ) between entities for the ease of visualiza-
tion: the entities that have the pairwise relation “husband”
are connected by blue chain lines and the entities having re-
lation “brother” are connected by green lines. We find that
the same pairwise relations are arranged nearly in parallel.

Complexity

The convergence of the objective function in our experiment
indeed is the most time-consuming process. Figure 4 shows
the time needed for training of the proposed SePLi in terms
of the different embedding dimensions over Kinship dataset
when the training iterations are set to 500. This experiment
is conducted on a Intel Core 17-4790 CPU @ 3.6GHz. The
time needed for find the long-rang interactions on Kinship
is about 147 seconds and we find in total 3545 long-range
interactions from 26 different observed pairwise relations.

Conclusions
We propose SePLi for knowledge graph embedding. In
SePLi , both pairwise relations and long-range interactions
between entities are encoded to boost the structured embed-
dings of the entities and relations. SePLi obtains almost the
best performance in terms of entity retrieval and knowledge
prediction.
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Table 3: The comparisons of entity retrieval over Kinship(Denham 1973) in terms of first-rank, mean-rank, and MAP. The

results shown in boldface are the best results.

Method observed out_entities out_relations
first-rank mean-rank MAP | first-rank mean-rank MAP | first-rank mean-rank MAP
SePLi 1.475 8.032 0.797 4.045 9.358 0.556 1.856 6.044 0.672
SePLi(local) 1.376 10.735 0.771 36.673 43.981 0.413 6.437 22.689 0.289
NTN 1.795 10.014 0.761 5.936 13.236 0.514 5.327 16.848 0.354
SE 3.392 11.505 0.467 14.770 22.986 0.225 2.737 9.342 0.482
SME-lin 13.244 37.596 0.169 35.330 54.505 0.130 12.459 32.716 0.163
SME-bil 24.149 37.310 0.206 25911 36.860 0.179 5.899 15.033 0.288

Table 4: The comparisons of entity retrieval over UMLS (McCray 2003) in terms of first-rank, mean-rank, and MAP. The results

shown in boldface are the best results.

Method observed unobserved_entities unobserved_relations
first-rank  mean-rank MAP | first-rank mean-rank MAP | first-rank mean-rank MAP
SePLi 1.378 11.427 0.922 4.364 15.971 0.750 1.736 7.989 0.748
SePLi(local) 1.403 11.982 0.910 5.419 19.633 0.613 4.180 19.736 0.491
NTN 5.741 24.175 0.511 20.253 37.572 0.306 2.637 18.576 0.490
SE 3.802 15.212 0.631 20.527 37.532 0.308 7.579 17.116 0.451
SME(linear) 3.900 17.021 0.545 11.388 28.213 0.358 3.370 25.557 0.426
SME(bilinear) 3.362 14.121 0.673 9.416 22.367 0.493 3.698 13.733 0.653

Table 5: Knowledge prediction task on WordNet (Miller 1995) and Freebase (Bollacker et al. 2008). Comparisons among six
different models. The results shown in boldface are the best results. (unob is short for unobserved)

Method WordNet . Ficcbase _
observed wunob_entities unob_relations | observed unob_entities unob_relations
SePLi 0.671 0.683 0.703 0.704 0.722 0.675
SePLi(local) 0.676 0.671 0.693 0.670 0.695 0.665
NTN 0.666 0.664 0.667 0.717 0.686 0.667
SE 0.667 0.666 0.672 0.667 0.667 0.667
SME(linear) 0.682 0.667 0.671 0.677 0.669 0.667
SME(bilinear) 0.667 0.667 0.667 0.676 0.667 0.673
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Figure 3: The illustration of embeddings of entities and relations learnt by SePLi in 2-dimensional space. (a) The data points
with the same colors and shapes indicate that they come from the same category. We observe that the embeddings of entities
learnt by SePLi have implicit margins according to their belonging categories (b) The embedding plot of each entity in toy
family tree dataset in 2-dimensional space. Data points in red represent 24 entities. Here we observe that two pairwise relations
(i.e., “husband” and “brother”’) between entities are arranged nearly in parallel respectively.
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