
Journal of Machine Learning Research 15 (2014) 1371-1429 Submitted 5/12; Revised 1/14; Published 4/14

Towards Ultrahigh Dimensional Feature Selection
for Big Data

Mingkui Tan tanmingkui@gmail.com
School of Computer Engineering
Nanyang Technological University
Blk N4, #B1a-02, Nanyang Avenue 639798, Singapore

Ivor W. Tsang ivor.tsang@gmail.com
Center for Quantum Computation & Intelligent Systems
University of Technology Sydney, Sydney P.O. Box 123,
Broadway, NSW 2007 Sydney, Australia

Li Wang liwangucsd@gmail.com

Department of Mathematics, University of California

San Diego 9500 Gilman Drive La Jolla, CA 92093, USA

Editor: Sathiya Keerthi

Abstract

In this paper, we present a new adaptive feature scaling scheme for ultrahigh-dimensional
feature selection on Big Data, and then reformulate it as a convex semi-infinite programming
(SIP) problem. To address the SIP, we propose an efficient feature generating paradigm.
Different from traditional gradient-based approaches that conduct optimization on all in-
put features, the proposed paradigm iteratively activates a group of features, and solves a
sequence of multiple kernel learning (MKL) subproblems. To further speed up the training,
we propose to solve the MKL subproblems in their primal forms through a modified accel-
erated proximal gradient approach. Due to such optimization scheme, some efficient cache
techniques are also developed. The feature generating paradigm is guaranteed to converge
globally under mild conditions, and can achieve lower feature selection bias. Moreover,
the proposed method can tackle two challenging tasks in feature selection: 1) group-based
feature selection with complex structures, and 2) nonlinear feature selection with explicit
feature mappings. Comprehensive experiments on a wide range of synthetic and real-world
data sets of tens of million data points with O(1014) features demonstrate the competi-
tive performance of the proposed method over state-of-the-art feature selection methods in
terms of generalization performance and training efficiency.

Keywords: big data, ultrahigh dimensionality, feature selection, nonlinear feature selec-
tion, multiple kernel learning, feature generation

1. Introduction

With the rapid development of the Internet, big data of large volume and ultrahigh di-
mensionality have emerged in various machine learning applications, such as text mining
and information retrieval (Deng et al., 2011; Li et al., 2011, 2012). For instance, Wein-
berger et al. (2009) have studied a collaborative email-spam filtering task with 16 trillion
(1013) unique features. The ultrahigh dimensionality not only incurs unbearable memory

c©2014 Mingkui Tan, Ivor W. Tsang and Li Wang.

Tan, Tsang and Wang

requirements and high computational cost in training, but also deteriorates the general-
ization ability because of the “curse of dimensionality” issue (Duda et al., 2000.; Guyon
and Elisseeff, 2003; Zhang and Lee, 2006; Dasgupta et al., 2007; Blum et al., 2007). For-
tunately, for many data sets with ultrahigh dimensions, most of the features are irrelevant
to the output. Accordingly, dropping the irrelevant features and selecting the most rele-
vant features can vastly improve the generalization performance (Ng, 1998). Moreover, in
many applications such as bioinformatics (Guyon and Elisseeff, 2003), a small number of
features (genes) are required to interpret the results for further biological analysis. Finally,
for ultrahigh-dimensional problems, a sparse classifier is important for faster predictions.

Ultrahigh dimensional data also widely appear in many nonlinear machine learning
tasks. For example, to tackle the intrinsic nonlinearity of data, researchers proposed to
achieve fast training and prediction through linear techniques using explicit feature map-
pings (Chang et al., 2010; Maji and Berg, 2009). However, most of the explicit feature
mappings will dramatically expand the data dimensionality. For instance, the commonly
used 2-degree polynomial kernel feature mapping has a dimensionality of O(m2), where m
denotes the number of input features (Chang et al., 2010). Even with a medium m, the
dimensionality of the induced feature space is very huge. Other typical feature mappings
include the spectrum-based feature mapping for string kernel (Sonnenburg et al., 2007;
Sculley et al., 2006), histogram intersection kernel feature expansion (Wu, 2012), and so on.

Numerous feature selection methods have been proposed for classification tasks in the
last decades (Guyon et al., 2002; Chapelle and Keerthi, 2008). In general, existing feature
selection methods can be classified into two categories, namely filter methods and wrapper
methods (Kohavi and John, 1997; Ng, 1998; Guyon et al., 2002). Filter methods, such as
the signal-to-noise ratio method (Golub et al., 1999) and the spectral feature filtering (Zhao
and Liu, 2007), own the advantages of low computational cost, but they are incapable of
finding an optimal feature subset w.r.t. a predictive model of interest. On the contrary,
by incorporating the inductive learning rules, wrapper methods can select more relevant
features (Xu et al., 2009a; Guyon and Elisseeff, 2003). However, in general, the wrapper
methods are more computationally expensive than the filter methods. Accordingly, how
to scale the wrapper methods to big data is an urgent and challenging issue, and is also a
major focus of this paper.

One of the most famous wrapper methods is the support vector machine (SVM) based
recursive feature elimination (SVM-RFE), which has shown promising performance in the
Microarray data analysis, such as gene selection task (Guyon et al., 2002). Specifically,
SVM-RFE applys a recursive feature elimination scheme, and obtains nested subsets of fea-
tures based on the weights of SVM classifiers. Unfortunately, the nested feature selection
strategy is “monotonic” and suboptimal in identifying the most informative feature sub-
set (Xu et al., 2009a; Tan et al., 2010). To address this drawback, non-monotonic feature
selection methods have gained great attention (Xu et al., 2009a; Chan et al., 2007). Basi-
cally, the non-monotonic feature selection requires the convexity of the objective in order
to easily find a global solution. To this end, Chan et al. (2007) proposed two convex relax-
ations to an `0-norm sparse SVM, namely QSSVM and SDP-SSVM. The resultant models
are convex, and can be solved by the convex quadratically constrained quadratic program-
ming (QCQP) and the semi-definite programming (SDP), respectively. These two methods
belong to the non-monotonic feature selection methods. However, they are very expen-

1372

Towards Ultrahigh Dimensional Feature Selection for Big Data

sive especially for high dimensional problems. Xu et al. proposed another non-monotonic
feature selection method, namely NMMKL (Xu et al., 2009a). Unfortunately, NMMKL is
computationally infeasible for high dimensional problems since it involves a QCQP problem
with many quadratic constraints.

Focusing on the logistic loss, recently, some researchers proposed to select features using
greedy strategies (Tewari et al., 2011; Lozano et al., 2011), which iteratively include one
feature into a feature subset. For example, Lozano et al. (2011) proposed a group orthogonal
matching pursuit. Tewari et al. (2011) further introduced a general greedy scheme to solve
more general sparsity constrained problems. Although promising performance has been
observed, the greedy methods have several drawbacks. For example, since only one feature
is involved in each iteration, these greedy methods are very expensive when there are a
large number of features to be selected. More critically, due to the absence of appropriate
regularizer in the objective function, the over-fitting problem may happen, which may
deteriorate the generalization performance (Lozano et al., 2011; Tewari et al., 2011).

Given a set of labeled patterns {xi, yi}ni=1, where xi ∈ Rm is an instance with m features,
and yi ∈ {±1} is the output label. To avoid the over-fitting problem or induce sparsity,
people usually introduce some regularizers to the loss function. For instance, to select
features that contribute the most to the margin, we can learn a sparse decision function
d(x) = w′x by solving:

min
w
‖w‖0 + C

n∑
i=1

l(−yiw′xi),

where l(·) is a convex loss function, w ∈ Rm is the weight vector, ‖w‖0 denotes the `0-norm
that counts the number of non-zeros in w, and C > 0 is a regularization parameter. Unfortu-
nately, this problem is NP-hard due to the `0-norm regularizer. Therefore, many researchers
resort to learning a sparse decision rule through an `1-convex relaxation instead (Bradley
and Mangasarian, 1998; Zhu et al., 2003; Fung and Mangasarian, 2004):

min
w
‖w‖1 + C

n∑
i=1

l(−yiw′xi), (1)

where ‖w‖1 =
∑m

j=1 |wj | is the `1-norm on w. The `1-regularized problem can be efficiently
solved, and many optimization methods have been proposed to solve this problem, including
Newton methods (Fung and Mangasarian, 2004), proximal gradient methods (Yuan et al.,
2011), coordinate descent methods (Yuan et al., 2010, 2011), and so on. Interested readers
can find more details of these methods in (Yuan et al., 2010, 2011) and references therein.
Beside these methods, recently, to address the big data challenge, great attention has been
paid on online learning methods and stochastic gradient descent (SGD) methods for dealing
with big data challenges (Xiao, 2009; Duchi and Singer, 2009; Langford et al., 2009; Shalev-
Shwartz and Zhang, 2013).

However, there are several deficiencies regarding these `1-norm regularized model and
existing `1-norm methods. Firstly, since the `1-norm regularization shrinks the regressors,
the feature selection bias inevitably exists in the `1-norm methods (Zhang and Huang,
2008; Zhang, 2010b; Lin et al., 2010; Zhang, 2010a). To demonstrate this, let L(w) =

1373

Tan, Tsang and Wang

∑n
i=1 l(−yiw′xi) be the empirical loss on the training data, then w∗ is an optimal solution

to (1) if and only if it satisfies the following optimality conditions (Yuan et al., 2010):
∇jL(w∗) = −1/C if w∗j > 0,

∇jL(w∗) = 1/C if w∗j < 0,

−1/C ≤ ∇jL(w∗) ≤ 1/C if w∗j = 0.

(2)

According to the above conditions, one can achieve different levels of sparsity by changing
the regularization parameter C. On one hand, using a small C, minimizing ‖w‖1 in (1)
would favor selecting only a few features. The sparser the solution is, the larger the predic-
tive risk (or empirical loss) will be (Lin et al., 2010). In other words, the solution bias will
happen (Figueiredo et al., 2007). In an extreme case, where C is chosen to be tiny or even
close to zero, none of the features will be selected according to the condition (2), which will
lead to a very poor prediction model. On the other hand, using a large C, one can learn
an more fitted prediction model to to reduce the empirical loss. However, according to (2),
more features will be included. In summary, the sparsity and the unbiased solutions cannot
be achieved simultaneously via solving (1) by changing the tradeoff parameter C. A possible
solution is to do de-biasing with the selected features using re-training. For example, we
can use a large C to train an unbiased model with the selected features (Figueiredo et al.,
2007; Zhang, 2010b). However, such de-biasing methods are not efficient.

Secondly, when tackling big data of ultrahigh dimensions, the `1-regularization would
be inefficient or infeasible for most of the existing methods. For example, when the di-
mensionality is around 1012, one needs about 1 TB memory to store the weight vector w,
which is intractable for existing `1-methods, including online learning methods and SGD
methods (Langford et al., 2009; Shalev-Shwartz and Zhang, 2013). Thirdly, due to the
scale variation of w, it is also non-trivial to control the number of features to be selected
meanwhile to regulate the decision function.

In the conference version of this paper, an `0-norm sparse SVM model is introduced (Tan
et al., 2010). Its nice optimization scheme has brought significant benefits to several appli-
cations, such as image retrieval (Rastegari et al., 2011), multi-label prediction (Gu et al.,
2011a), feature selection for multivariate performance measures (Mao and Tsang, 2013), fea-
ture selection for logistic regression (Tan et al., 2013), and graph-based feature selection (Gu
et al., 2011b). However, several issues remain to be solved. First of all, the tightness of the
convex relation remains unclear. Secondly, the adopted optimization strategy is incapable
of dealing with very large-scale problems with many training instances. Thirdly, the pre-
sented feature selection strategy was limited to linear features, but in many applications,
one indeed needs to tackle nonlinear features that are with complex structures.

Regarding the above issues, in this paper, we propose an adaptive feature scaling (AFS)
for feature selection by introducing a continuous feature scaling vector d ∈ [0, 1]m. To en-
force the sparsity, we impose an explicit `1-constraint ||d||1 ≤ B, where the scalar B repre-
sents the least number of features to be selected. The solution to the resultant optimization
problem is non-trivial due to the additional constraint. Fortunately, by transforming it as
a convex semi-infinite programming (SIP) problem, an efficient optimization scheme can be
developed. In summary, this paper makes the following extensions and improvements.

• A feature generating machine (FGM) is proposed to efficiently address the ultrahigh-
dimensional feature selection task through solving the proposed SIP problem. Instead

1374

Towards Ultrahigh Dimensional Feature Selection for Big Data

of performing the optimization on all input features, FGM iteratively infers the most
informative features, and then solves a reduced multiple kernel learning (MKL) sub-
problem, where each base kernel is defined on a set of features.1

• The proposed optimization scheme mimics the re-training strategy to reduce the fea-
ture selection bias with little effort. Specifically, the feature selection bias can be
effectively alleviated by separately controlling the complexity and sparsity of the de-
cision function, which is one of the major advantages of the proposed scheme.

• To speed up the training on big data, we propose to solve the primal form of the
MKL subproblem by a modified accelerated proximal gradient method. As a result,
the memory requirement and computational cost can be significantly reduced. The
convergence rate of the modified APG is also provided. Moreover, several cache
techniques are proposed to further enhance the efficiency.

• The feature generating paradigm is also extended to group feature selection with com-
plex group structures and nonlinear feature selection using explicit feature mappings.

The remainder of this paper is organized as follows. In Section 2, we start by presenting
the adaptive feature scalings (AFS) for linear feature selection and group feature selection,
and then present the convex SIP reformulations of the resultant optimization problems. Af-
ter that, to solve the SIP problems, in Section 3, we propose the feature generating machine
(FGM) which includes two core steps, namely the worst-case analysis step and the subprob-
lem optimization step. In Section 4, we illustrate the worst-case analysis for a number of
learning tasks, including the group feature selection with complex group structures and the
nonlinear feature selection with explicit feature mappings. We introduce the subproblem
optimization in Section 5 and extend FGM for multiple kernel learning w.r.t. many addi-
tive kernels in Section 6. Related studies are presented in Section 7. We conduct empirical
studies in Section 8, and conclude this work in Section 9.

2. Feature Selection Through Adaptive Feature Scaling

Throughout the paper, we denote the transpose of vector/matrix by the superscript ′, a
vector with all entries equal to one as 1 ∈ Rn, and the zero vector as 0 ∈ Rn. In addition,
we denote a data set by X = [x1, ...,xn]′ = [f1, ..., fm], where xi ∈ Rm represents the ith
instance and f j ∈ Rn denotes the jth feature vector. We use |G| to denote cardinality of an
index set G and |v| to denote the absolute value of a real number v. For simplicity, we denote
v � α if vi ≥ αi,∀i and v � α if vi ≤ αi,∀i. We also denote ‖v‖p as the `p-norm of a vector
and ‖v‖ as the `2-norm of a vector. Given a vector v = [v′1, ...,v

′
p]
′, where vi denotes a

sub-vector of v, we denote ‖v‖2,1 =
∑p

i=1 ‖vi‖ as the mixed `1/`2 norm (Bach et al., 2011)
and ‖v‖22,1 = (

∑p
i=1 ‖vi‖)2. Accordingly, we call ‖v‖22,1 as an `22,1 regularizer. Following

Rakotomamonjy et al. (2008), we define xi
0 = 0 if xi = 0 and ∞ otherwise. Finally, A�B

represents the element-wise product between two matrices A and B.

1. The C++ and MATLAB source codes of the proposed methods are publicly available at http://www.
tanmingkui.com/fgm.html.

1375

http://www.tanmingkui.com/fgm.html
http://www.tanmingkui.com/fgm.html

Tan, Tsang and Wang

2.1 A New AFS Scheme for Feature Selection

In the standard support vector machines (SVM), one learns a linear decision function d(x) =
w′x− b by solving the following `2-norm regularized problem:

min
w

1

2
‖w‖2 + C

n∑
i=1

l(−yi(w′xi − b)), (3)

where w = [w1, . . . , wm]′ ∈ Rm denotes the weight of the decision hyperplane, b denotes
the shift from the origin, C > 0 represents the regularization parameter and l(·) denotes a
convex loss function. In this paper, we concentrate on two kinds of loss functions, namely
the squared hinge loss

l(−yi(w′xi − b)) =
1

2
max(1− yi(w′xi − b), 0)2

and the logistic loss

l(−yi(w′xi − b)) = log(1 + exp(−yi(w′xi − b))).

For simplicity, herein we concentrate the squared hinge loss only.
In (3), the `2-regularizer ||w||2 is used to avoid the over-fitting problem (Hsieh et al.,

2008), which, however, cannot induce sparse solutions. To address this issue, we introduce a
feature scaling vector d ∈ [0, 1]m such that we can scale the importance of features. Specifi-
cally, given an instance xi, we impose

√
d = [

√
d1, . . . ,

√
dm]′ on its features (Vishwanathan

et al., 2010), resulting in a re-scaled instance

x̂i = (xi �
√

d). (4)

In this scaling scheme, the jth feature is selected if and only if dj > 0.
Note that, in many real-world applications, one may intend to select a desired number of

features with acceptable generalization performance. For example, in the Microarray data
analysis, due to expensive bio-diagnosis and limited resources, biologists prefer to select
less than 100 genes from hundreds of thousands of genes (Guyon et al., 2002; Golub et al.,
1999). To incorporate such prior knowledge, we explicitly impose an `1-norm constraint on
d to induce the sparsity:

m∑
j=1

dj = ||d||1 ≤ B, dj ∈ [0, 1], j = 1, · · · ,m,

where the integer B represents the least number of features to be selected. Similar feature
scaling scheme has been used by many works (e.g., Weston et al., 2000; Chapelle et al., 2002;
Grandvalet and Canu, 2002; Rakotomamonjy, 2003; Varma and Babu, 2009; Vishwanathan
et al., 2010). However, different from the proposed scaling scheme, in these scaling schemes,
d is not bounded in [0, 1]m.

Let D =
{
d ∈ Rm

∣∣∑m
j=1 dj ≤ B, dj ∈ [0, 1], j = 1, · · · ,m

}
be the domain of d, the

proposed AFS can be formulated as the following problem:

min
d∈D

min
w,ξ,b

1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i (5)

s.t. yi

(
w′(xi �

√
d)− b

)
≥ 1− ξi, i = 1, · · · , n,

1376

Towards Ultrahigh Dimensional Feature Selection for Big Data

where C is a regularization parameter that trades off between the model complexity and
the fitness of the decision function, and b/‖w‖ determines the offset of the hyperplane
from the origin along the normal vector w. This problem is non-convex w.r.t. w and d
simultaneously, and the compact domain D contains infinite number of elements. However,
for a fixed d, the inner minimization problem w.r.t. w and ξ is a standard SVM problem:

min
w,ξ,b

1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i (6)

s.t. yi

(
w′(xi �

√
d)− b

)
≥ 1− ξi, i = 1, · · · , n,

which can be solved in its dual form. By introducing the Lagrangian multiplier αi ≥ 0 to

each constraint yi

(
w′(xi �

√
d)− b

)
≥ 1− ξi, the Lagrangian function is:

L(w, ξ, b,α) =
1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i −

n∑
i=1

αi

(
yi

(
w′(xi �

√
d)− b

)
− 1 + ξi

)
. (7)

By setting the derivatives of L(w, ξ, b,α) w.r.t. w, ξ and b to 0, respectively, we get

w =
n∑
i=1

αiyi(xi �
√

d),α = Cξ, and
n∑
i=1

αiyi = 0. (8)

Substitute these results into (7), and we arrive at the dual form of problem (6) as:

max
α∈A

− 1

2

∥∥∥∥ n∑
i=1

αiyi(xi �
√

d)

∥∥∥∥2

− 1

2C
α′α+α′1,

where A = {α|
∑n

i=1 αiyi = 0,α � 0} is the domain of α. For convenience, let c(α) =∑n
i=1 αiyixi ∈ Rm, we have

∥∥∥∥∑n
i=1 αiyi(xi �

√
d)

∥∥∥∥2

=
∑m

j=1 dj [cj(α)]2, where the jth

coordinate of c(α), namely cj(α), is a function of α. For simplicity, let

f(α,d) =
1

2

m∑
j=1

dj [cj(α)]2 +
1

2C
α′α−α′1.

Apparently, f(α,d) is linear in d and concave in α, and bothA and D are compact domains.
Problem (5) can be equivalently reformulated as the following problem:

min
d∈D

max
α∈A

− f(α,d), (9)

However, this problem is still difficult to be addressed. Recall that both A and D are convex
compact sets, according to the minimax saddle-point theorem (Sion, 1958), we immediately
have the following relation.

Theorem 1 According to the minimax saddle-point theorem (Sion, 1958), the following
equality holds by interchanging the order of mind∈D and maxα∈A in (9),

min
d∈D

max
α∈A

− f(α,d) = max
α∈A

min
d∈D

− f(α,d).

1377

Tan, Tsang and Wang

Based on the above equivalence, rather than solving the original problem in (9), hereafter
we address the following minimax problem instead:

min
α∈A

max
d∈D

f(α,d). (10)

2.2 AFS for Group Feature Selection

The above AFS scheme for linear feature selection can be extended for group feature se-
lections, where the features are organized into groups defined by G = {G1, ...,Gp}, where
∪pj=1Gj = {1, ...,m}, p = |G| denotes the number of groups, and Gj ⊂ {1, ...,m}, j = 1, ..., p
denotes the index set of feature supports belonging to the jth group. In the group feature
selection, a feature in one group is selected if and only if this group is selected (Yuan and
Lin, 2006; Meier et al., 2008). Let wGj ∈ R|Gj | and xGj ∈ R|Gj | be the components of w and
x related to Gj , respectively. The group feature selection can be achieved by solving the
following non-smooth group lasso problem (Yuan and Lin, 2006; Meier et al., 2008):

min
w

λ

p∑
j=1

||wGj ||2 +

n∑
i=1

l(−yi
p∑
j=1

w′GjxiGj), (11)

where λ is a trade-off parameter. Many efficient algorithms have been proposed to solve
this problem, such as the accelerated proximal gradient descent methods (Liu and Ye, 2010;
Jenatton et al., 2011b; Bach et al., 2011), block coordinate descent methods (Qin et al.,
2010; Jenatton et al., 2011b) and active set methods (Bach, 2009; Roth and Fischer, 2008).
However, the issues of the `1-regularization, namely the scalability issue for big data and
the feature selection bias, will also happen when solving (11). More critically, when dealing
with feature groups with complex structures, the number of groups can be exponential in
the number of features m. As a result, solving (11) could be very expensive.

To extend AFS to group feature selection, we introduce a group scaling vector d̂ =
[d̂1, . . . , d̂p]

′ ∈ D̂ to scale the groups, where D̂ =
{
d̂ ∈ Rp

∣∣∑p
j=1 d̂j ≤ B, d̂j ∈ [0, 1], j =

1, · · · , p
}

. Here, without loss of generality, we first assume that there is no overlapping ele-
ment among groups, namely, Gi∩Gj = ∅, ∀i 6= j. Accordingly, we have w = [w′G1 , ...,w

′
Gp]
′ ∈

Rm. By taking the shift term b into consideration, the decision function is expressed as:

d(x) =

p∑
j=1

√
d̂jw

′
GjxGj − b,

By applying the squared hinge loss, the AFS based group feature selection task can be
formulated as the following optimization problem:

min
d̂∈D̂

min
w,ξ,b

1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i

s.t. yi

 p∑
j=1

√
d̂jw

′
GjxiGj − b

 ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , n.

1378

Towards Ultrahigh Dimensional Feature Selection for Big Data

With similar deductions in Section 2.1, this problem can be transformed into the following
minimax problem:

min
d̂∈D̂

max
α∈A

−1

2

p∑
j=1

d̂j

∥∥∥∥ n∑
i=1

αiyixiGj

∥∥∥∥2

− 1

2C
α′α+α′1.

This problem is reduced to the linear feature selection case if |Gj | = 1,∀j = 1, ..., p. For con-

venience, hereafter we drop the hat from d̂ and D̂. Let cGj (α) =
∑n

i=1 αiyixiGj . Moreover,
we define

f(α,d) =
1

2

p∑
j=1

dj
∥∥cGj (α)

∥∥2
+

1

2C
α′α−α′1.

Finally, we arrive at a unified minimax problem for both linear and group feature selections:

min
α∈A

max
d∈D

f(α,d), (12)

where D =
{
d ∈ Rp

∣∣∑p
j=1 dj ≤ B, dj ∈ [0, 1], j = 1, · · · , p

}
. When |Gj | = 1,∀j = 1, ..., p,

we have p = m, and problem (12) is reduced to problem (10).

2.3 Group Feature Selection with Complex Structures

Now we extend the above group AFS scheme to feature groups with overlapping features
or even more complex structures. When dealing with groups with overlapping features, a
heuristic way is to explicitly augment X = [f1, ..., fm] to make the overlapping groups non-
overlapping by repeating the overlapping features. For example, suppose X = [f1, f2, f3]
with groups G = {G1,G2}, where G1 = {1, 2} and G2 = {2, 3}, and f2 is an overlapping
feature. To avoid the overlapping feature issue, we can repeat f2 to construct an augmented
data set Xau = [f1, f2, f2, f3], where the group index sets become G1 = {1, 2} and G2 =
{3, 4}. This feature augmentation strategy can be extended to groups with even more
complex structures, such as tree structures or graph structures (Bach, 2009). For simplicity,
in this paper, we only study the tree-structured groups.

Definition 1 Tree-structured set of groups (Jenatton et al., 2011b; Kim and Xing, 2010,
2012). A super set of groups G , {Gh}Gh∈G with |G| = p is said to be tree-structured in
{1, ...,m}, if ∪Gh = {1, ...,m} and if for all Gg,Gh ∈ G, (Gg∩Gh 6= ∅)⇒ (Gg ⊆ Gh or Gh ⊆
Gg). For such a set of groups, there exists a (non-unique) total order relation � such that:

Gg � Gh ⇒ {Gg ⊆ Gh or Gg ∩ Gh = ∅}.

Similar to the overlapping case, we augment the overlapping elements of all groups along
the tree structures, resulting in the augmented data set Xau = [XG1 , ...,XGp], where XGi
represents the data columns indexed by Gi and p denotes the number of all possible groups.
However, this simple idea may bring great challenges for optimization, particularly when
there are huge number of overlapping groups (For instance, in graph-based group structures,
the number of groups p can be exponential in m (Bach, 2009)).

1379

Tan, Tsang and Wang

3. Feature Generating Machine

Under the proposed AFS scheme, both linear feature selection and group feature selection
can be cast as the minimax problem in (12). By bringing in an additional variable θ ∈ R, this
problem can be further formulated as a semi-infinite programming (SIP) problem (Kelley,
1960; Pee and Royset, 2010):

min
α∈A,θ∈R

θ, s.t. θ ≥ f(α,d), ∀ d ∈ D. (13)

In (13), each nonzero d ∈ D defines a quadratic constraint w.r.t. α. Since there are infinite
d’s in D, problem (13) involves infinite number of constraints, thus it is very difficult to be
solved.

3.1 Optimization Strategies by Feature Generation

Before solving (13), we first discuss its optimality condition. Specifically, let µh ≥ 0 be
the dual variable for each constraint θ ≥ f(α,d), the Lagrangian function of (13) can be
written as:

L(θ,α,µ) = θ −
∑
dh∈D

µh (θ − f(α,dh)) .

By setting its derivative w.r.t. θ to zero, we have
∑
µh = 1. Let M = {µ|

∑
µh = 1, µh ≥

0, h = 1, ..., |D|} be the domain of µ and define

fm(α) = max
dh∈D

f(α,dh).

The KKT conditions of (13) can be written as:∑
dh∈D

µh∇αf(α,dh) = 0, and
∑
dh∈D

µh = 1. (14)

µh(f(α,dh)− fm(α)) = 0, µh ≥ 0, h = 1, ..., |D|. (15)

In general, there are many constraints in problem (14). However, most of them are
nonactive at the optimality if the data contain only a small number of relevant features
w.r.t. the output y. Specifically, according to condition (15), we have µh = 0 if f(α,dh) <
fm(α), which will induce the sparsity among µh’s. Motivated by this observation, we
design an efficient optimization scheme which iteratively “finds” the active constraints, and
then solves a subproblem with the selected constraints only. By applying this scheme, the
computational burden brought by the infinite number of constraints can be avoided. The
details of the above procedure is presented in Algorithm 1, which is also known as the
cutting plane algorithm (Kelley, 1960; Mutapcic and Boyd, 2009).

Algorithm 1 involves two major steps: the feature inference step (also known as the
worst-case analysis) and the subproblem optimization step. Specifically, the worst-case
analysis is to infer the most-violated dt based on αt−1, and add it into the active constraint
set Ct. Once an active dt is identified, we update αt by solving the following subproblem
with the constraints defined in Ct:

min
α∈A,θ∈R

θ, s.t. f(α,dh)− θ ≤ 0, ∀ dh ∈ Ct. (16)

1380

Towards Ultrahigh Dimensional Feature Selection for Big Data

Algorithm 1 Cutting Plane Algorithm for Solving (13).

1: Initialize α0 = C1 and C0 = ∅. Set iteration index t = 1.
2: Feature Inference:

Do worst-case analysis to infer the most violated dt based on αt−1.
Set Ct = Ct−1

⋃
{dt}.

3: Subproblem Optimization:
Solve subproblem (16), obtaining the optimal solution αt and µt.

4: Let t = t+ 1. Repeat step 2-3 until convergence.

For feature selection tasks, the optimization complexity of (13) can be greatly reduced,
since there are only a small number of active constraints involved in problem (16).

The whole procedure iterates until some stopping conditions are achieved. As will be
shown later, in general, each active dt ∈ Ct involves at most B new features. In this
sense, we refer Algorithm 1 to as the feature generating machine (FGM). Recall that, at
the beginning, there is no feature being selected, thus we have the empirical loss ξ = 1.
According to (8), we can initialize α0 = C1. Finally, once the optimal solution d∗ to (16) is
obtained, the selected features (or feature groups) are associated with the nonzero entries in
d∗. Note that, each d ∈ Ct involves at most B features/groups, thus the number of selected
features/groups is no more than tB after t iterations, namely ||d∗||0 ≤ tB.

3.2 Convergence Analysis

Before the introduction of the worst-case analysis and the solution to the subproblem, we
first conduct the convergence analysis of Algorithm 1.

Without loss of generality, let A×D be the domain for problem (13). In the (t+ 1)th
iteration, we find a new constraint dt+1 based on αt and add it into Ct, i.e., f(αt,dt+1) =
maxd∈D f(αt,d). Apparently, we have Ct ⊆ Ct+1. For convenience, we define

βt = max
1≤i≤t

f(αt,di) = min
α∈A

max
1≤i≤t

f(α,di).

and

ϕt = min
1≤j≤t

f(αj ,dj+1) = min
1≤j≤t

(max
d∈D

f(αj ,d)),

First of all, we have the following lemma.

Lemma 1 Let (α∗, θ∗) be a globally optimal solution of (13), {θt} and {ϕt} as defined
above, then: θt ≤ θ∗ ≤ ϕt. With the number of iteration t increasing, {θt} is monotonically
increasing and the sequence {ϕt} is monotonically decreasing (Chen and Ye, 2008).

Proof According to the definition, we have θt = βt. Moreover, θ∗=minα∈Amaxd∈D f(α,d).
For a fixed feasible α, we have maxd∈Ct f(α,d) ≤ maxd∈D f(α,d), then

min
α∈A

max
d∈Ct

f(α,d) ≤ min
α∈A

max
d∈D

f(α,d),

1381

Tan, Tsang and Wang

that is, θt ≤ θ∗. On the other hand, for ∀j = 1, · · · , k, f(αj ,dj+1) = maxd∈D f(αj ,d), thus
(αj , f(αj ,dj+1)) is a feasible solution of (13). Then θ∗ ≤ f(αj ,dj+1) for j = 1, · · · , t, and
hence we have

θ∗ ≤ ϕt = min
1≤j≤t

f(αj ,dj+1).

With increasing iteration t, the subset Ct is monotonically increasing, so {θt} is monotoni-
cally increasing while {ϕt} is monotonically decreasing. The proof is completed.

The following theorem shows that FGM converges to a global solution of (13).

Theorem 2 Assume that in Algorithm 1, the subproblem (16) and the worst-case analysis
in step 2 can be solved. Let {(αt, θt)} be the sequence generated by Algorithm 1. If Algo-
rithm 1 terminates at iteration (t+ 1), then {(αt, θt)} is the global optimal solution of (13);
otherwise, (αt, θt) converges to a global optimal solution (α∗, θ∗) of (13).

Proof We can measure the convergence of FGM by the gap difference of series {θt} and
{ϕt}. Assume in tth iteration, there is no update of Ct, i.e. dt+1 = arg maxd∈D f(αt,d) ∈
Ct, then Ct = Ct+1. In this case, (αt, θt) is the globally optimal solution of (13). Actually,
since Ct = Ct+1, in Algorithm 1, there will be no update of α, i.e. αt+1 = αt. Then we have

f(αt,dt+1) = max
d∈D

f(αt,d) = max
d∈Ct

f(αt,d) = max
1≤i≤t

f(αt,di) = θt

ϕt = min
1≤j≤t

f(αj ,dj+1) ≤ θt.

According to Lemma 1, we have θt ≤ θ∗ ≤ ϕt, thus we have θt = θ∗ = ϕt, and (αt, θt)
is the global optimum of (13).

Suppose the algorithm does not terminate in finite steps. Let X = A× [θ1, θ
∗], a limit

point (ᾱ, θ̄) exists for (αt, θt), since X is compact. And we also have θ̄ ≤ θ∗. For each t, let
Xt be the feasible region of tth subproblem, which have Xt ⊆ X , and (ᾱ, θ̄) ∈ ∩∞t=1Xt ⊆ X .
Then we have f(ᾱ,dt)− θ̄ ≤ 0, dt ∈ Ct for each given t = 1, · · · .

To show (ᾱ, θ̄) is global optimal of problem (13), we only need to show (ᾱ, θ̄) is a feasible
point of problem (13), i.e., θ̄ ≥ f(ᾱ,d) for all d ∈ D, so θ̄ ≥ θ∗ and we must have θ̄ = θ∗.
Let v(α, θ) = mind∈D(θ−f(α,d)) = θ−maxd∈D f(α,d). Then v(α, θ) is continuous w.r.t.
(α, θ). By applying the continuity property of v(α, θ), we have

v(ᾱ, θ̄) = v(αt, θt) + (v(ᾱ, θ̄)− v(αt, θt))

= (θt − f(αt,dt+1)) + (v(ᾱ, θ̄)− v(αt, θt))

≥ (θt − f(αt,dt+1))− (θ̄ − f(ᾱ,dt)) + (v(ᾱ, θ̄)− v(αt, θt))→ 0 (when t→∞),

where we use the continuity of v(α, θ). The proof is completed.

4. Efficient Worst-Case Analysis

According to Theorem 2, the exact solution to the worst-case analysis is necessary for the
global convergence of FGM. Fortunately, for a number of feature selection tasks, the exact
worst-case analysis does exist. For simplicity, hereafter we drop the superscript t from αt.

1382

Towards Ultrahigh Dimensional Feature Selection for Big Data

4.1 Worst-Case Analysis for Linear Feature Selection

The worst-case analysis for the linear feature selection is to solve the following maximization
problem:

max
d

1

2

∥∥∥∥∥
n∑
i=1

αiyi(xi �
√

d)

∥∥∥∥∥
2

, s.t.

m∑
j=1

dj ≤ B,0 � d � 1. (17)

This problem in general is very hard to be solved. Recall that c(α) =
∑n

i=1 αiyixi ∈ Rm,
and we have ‖

∑n
i=1 αiyi(xi �

√
d)‖2 = ‖

∑n
i=1(αiyixi)�

√
d‖2 =

∑m
j=1 cj(α)2dj . Based on

this relation, we define a feature score sj to measure the importance of features as

sj = [cj(α)]2.

Accordingly, problem (17) can be further formulated as a linear programming problem:

max
d

1

2

m∑
j=1

sjdj , s.t.
m∑
j=1

di ≤ B, 0 � d � 1. (18)

The optimal solution to this problem can be obtained without any numeric optimization
solver. Specifically, we can construct a feasible solution by first finding the B features with
the largest feature score sj , and then setting the corresponding dj to 1 and the rests to 0.
It is easy to verify that such a d is also an optimal solution to (18). Note that, as long as
there are more than B features with sj > 0, we have ||d||0 = B. In other words, in general,
d will include B features into the optimization after each worst-case analysis.

4.2 Worst-Case Analysis for Group Feature Selection

The worst-case analysis for linear feature selection can be easily extended to group feature
selection. Suppose that the features are organized into groups by G = {G1, ...,Gp}, and
there is no overlapping features among groups, namely Gi ∩ Gj = ∅, ∀i 6= j. To find the
most-active groups, we just need to solve the following optimization problem:

max
d∈D

p∑
j=1

dj

∥∥∥∥ n∑
i=1

αiyixiGj

∥∥∥∥2

= max
d∈D

p∑
j=1

djc
′
GjcGj , (19)

where cGj =
∑n

i=1 αiyixiGj for group Gj . Let sj = c′GjcGj be the score for group Gj . The

optimal solution to (19) can be obtained by first finding the B groups with the largest sj ’s,
and then setting their dj ’s to 1 and the rests to 0. If |Gj | = 1, ∀j ∈ {1, ...,m}, problem (19)
is reduced to problem (18), where G = {{1}, ..., {p}} and sj = [cj(α)]2 for j ∈ G. In this
sense, we unify the worst-case analysis of the two feature selection tasks in Algorithm 2.

4.3 Worst-Case Analysis for Groups with Complex Structures

Algorithm 2 can be also extended to feature groups with overlapping features or with tree-
structures. Recall that p = |G|, the worst-case analysis in Algorithm 2 takes O(mn +
p log(B)) cost, where the O(mn) cost is for computing c, and the O(p log(B)) cost is for

1383

Tan, Tsang and Wang

Algorithm 2 Algorithm for Worst-Case Analysis.

Given α, B, the training set {xi, yi}ni=1 and the group index set G = {G1, ...,Gp}.
1: Calculate c =

∑n
i=1 αiyixi.

2: Calculate the feature score s, where sj = c′GjcGj .
3: Find the B largest sj ’s.
4: Set dj corresponding to the B largest sj ’s to 1 and the rests to 0.
5: Return d.

sorting sj ’s. The second term is negligible if p = O(m). However, if p is extremely large,
namely p � m, the computational cost for computing and sorting sj will be unbearable.
For instance, if the feature groups are organized into a graph or a tree structure, p can
become very huge, namely p� m (Jenatton et al., 2011b).

Since we just need to find the B groups with the largest sj ’s, we can address the above
computational difficulty by implementing Algorithm 2 in an incremental way. Specifically,
we can maintain a cache cB to store the indices and scores of the B feature groups with the
largest scores among those traversed groups, and then calculate the feature score sj for each
group one by one. After computing sj for a new group Gj , we update cB if sj > sminB , where
sminB denotes the smallest score in cB. By applying this technique, the whole computational
cost of the worst-case analysis can be greatly reduced to O(n log(m)+B log(p)) if the groups
follow the tree-structure defined in Definition 1.

Remark 2 Given a set of groups G = {G1, ...,Gp} that is organized as a tree structure in
Definition 1, suppose Gh ⊆ Gg, then sh < sg. Furthermore, Gg and all its decedent Gh ⊆ Gg
will not be selected if sg < sminB . Therefore, the computational cost of the worst-case analysis
can be reduced to O(n log(m) +B log(p)) for a balanced tree structure.

5. Efficient Subproblem Optimization

After updating Ct, now we tend to solve the subproblem (16). Recall that, any dh ∈ Ct
indexes a set of features. For convenience, we define Xh , [x1

h, ...,x
n
h]′ ∈ Rn×B, where xih

denotes the ith instance with the features indexed by dh.

5.1 Subproblem Optimization via MKL

Regarding problem (16), let µh ≥ 0 be the dual variable for each constraint defined by dh,
the Lagrangian function can be written as:

L(θ,α,µ) = θ −
∑

dh∈Ct

µt (θ − f(α,dh)) .

By setting its derivative w.r.t. θ to zero, we have
∑
µt = 1. Let µ be the vector of all

µt’s, and M = {µ|
∑
µh = 1, µh ≥ 0} be the domain of µ. By applying the minimax

saddle-point theorem (Sion, 1958), L(θ,α,µ) can be rewritten as:

max
α∈A

min
µ∈M

−
∑

dh∈Ct

µhf(α,dh) = min
µ∈M

max
α∈A

− 1

2
(α� y)′

(∑
dh∈Ct

µhXhX
′

h +
1

C
I
)
(α� y), (20)

1384

Towards Ultrahigh Dimensional Feature Selection for Big Data

where the equality holds since the objective function is concave in α and convex in µ. Prob-
lem (20) is a multiple kernel learning (MKL) problem (Lanckriet et al., 2004; Rakotoma-
monjy et al., 2008) with |Ct| base kernel matrices XhX

′
h. Several existing MKL approaches

can be adopted to solve this problem, such as SimpleMKL (Rakotomamonjy et al., 2008).
Specifically, SimpleMKL solves the non-smooth optimization problem by applying a sub-
gradient method (Rakotomamonjy et al., 2008; Nedic and Ozdaglar, 2009). Unfortunately,
it is expensive to calculate the sub-gradient w.r.t. α for large-scale problems. Moreover, the
convergence speed of sub-gradient methods is limited. The minimax subproblem (20) can
be also solved by the proximal gradient methods (Nemirovski, 2005; Tseng, 2008) or SQP
methods (Pee and Royset, 2010) with faster convergence rates. However, these methods
involve expensive subproblems, and they are very inefficient when n is large.

Based on the definition of Xh, we have
∑

dh∈Ct µhXhX
′
h =

∑
dh∈Ct µhXdiag(dh)X

′
=

Xdiag(
∑

dh∈Ct µhdh)X
′

w.r.t. the linear feature selection task. Accordingly, we have

d∗ =
∑

dh∈Ct

µ∗hdh, (21)

where µ∗ = [µ∗1, ..., µ
∗
h]′ denotes the optimal solution to (20). It is easy to check that, the

relation in (21) also holds for the group feature selection tasks. Since
∑|Ct|

h=1 µ
∗
h = 1, we

have d∗ ∈ D =
{
d
∣∣∑m

j=1 dj ≤ B, dj ∈ [0, 1], j = 1, · · · ,m
}

, where the nonzero entries are
associated with selected features/groups.

5.2 Subproblem Optimization in the Primal

Solving the MKL problem in (20) is very expensive when n is very large. In other words, the
dimension of the optimization variable α in (20) is very large. Recall that, after t iterations,
Ct includes at most tB features, where tB � n. Motivated by this observation, we propose
to solve it in the primal form w.r.t. w. Apparently, the dimension of the optimization
variable w is much smaller than α, namely ||w||0 ≤ tB � n.

Without loss of generality, we assume that t = |Ct| after tth iterations. Let Xh ∈ Rn×B
denote the data with features indexed by dh ∈ Ct, ωh ∈ RB denote the weight vector w.r.t.
Xh, ω = [ω′1, ...,ω

′
t]
′ ∈ RtB be a supervector concatenating all ωh’s, where tB � n. For

convenience, we define

P (ω, b) =
C

2

n∑
i=1

ξ2
i

w.r.t. the squared hinge loss, where ξi = max(1− yi(
∑

hω
′
hxih − b), 0), and

P (ω, b) = C
n∑
i=1

log(1 + exp(ξi)),

w.r.t. the logistic loss, where ξi = −yi(
∑t

h=1ω
′
hxih − b).

Theorem 3 Let xih denote the ith instance of Xh, the MKL subproblem (20) can be equiv-
alently addressed by solving an `22,1-regularized problem:

min
ω

1

2

(
t∑

h=1

‖ωh‖

)2

+ P (ω, b). (22)

1385

Tan, Tsang and Wang

Furthermore, the dual optimal solution α∗ can be recovered from the optimal solution ξ∗.

To be more specific, α∗i = Cξ∗i holds for the square-hinge loss and αi =
C exp(ξ∗i)
1+exp(ξ∗i) holds for

the logistic loss.

The proof can be found in Appendix A.
According to Theorem 3, rather than directly solving (20), we can address its primal

form (22) instead, which brings great advantages for the efficient optimization. Moreover,

we can recover α∗ by α∗i = Cξ∗i and αi =
C exp(ξ∗i)
1+exp(ξ∗i) w.r.t. the squared hinge loss and logistic

loss, respectively.2 For convenience, we define

F (ω, b) = Ω(ω) + P (ω, b),

where Ω(ω) = 1
2(
∑t

h=1 ‖ωh‖)2. F (ω, b) is a non-smooth function w.r.t ω, and P (ω, b) has
block coordinate Lipschitz gradient w.r.t ω and b, where ω is deemed as a block variable.
Correspondingly, let ∇P (v) = ∂vP (v, vb) and ∇bP (v, vb) = ∂bP (v, vb). It is known that
F (ω, b) is at least Lipschitz continuous for both logistic loss and squared hinge loss (Yuan
et al., 2011):

P (ω, b) ≤ P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (vb), b− vb〉+
L

2
‖ω − v||2 +

Lb
2
‖b− vb||2,

where L and Lb denote the Lipschitz constants regarding ω and b, respectively.
Since F (ω, b) is separable w.r.t ω and b, we can minimize it regarding ω and b in a block

coordinate descent manner (Tseng, 2001). For each block variable, we update it through
an accelerated proximal gradient (APG) method (Beck and Teboulle, 2009; Toh and Yun,
2009), which iteratively minimizes a quadratic approximation to F (ω, b). Specifically, given
a point [v′, vb]

′, the quadratic approximation to F (ω, b) at this point w.r.t. ω is:

Qτ (ω,v, vb) = P (v, vb) + 〈∇P (v),ω − v〉+ Ω(ω) +
τ

2
‖ω − v||2

=
τ

2
‖ω − u‖2 + Ω(ω) + P (v, vb)−

1

2τ
‖∇P (v)‖2, (23)

where τ is a positive constant and u = v − 1
τ∇P (v). To minimize Qτ (ω,v, vb) w.r.t. ω, it

is reduced to solve the following Moreau projection problem (Martins et al., 2010):

min
ω

τ

2
‖ω − u‖2 + Ω(ω). (24)

For convenience, let uh be the corresponding component to ωh, namely u = [u′1, ...,u
′
t]
′.

Martins et al. (2010) has shown that, problem (24) has a unique closed-form solution, which
is summarized in the following proposition.

Proposition 1 Let Sτ (u,v) be the optimal solution to problem (24) at point v, then
Sτ (u,v) is unique and can be calculated as follows:

[Sτ (u,v)]h =

{ oh
‖uh‖uh, if oh > 0,

0, otherwise,
(25)

2. Here the optimal dual variable α∗ is required in the worst-case analysis.

1386

Towards Ultrahigh Dimensional Feature Selection for Big Data

where [Sτ (u,v)]h ∈ RB denote the corresponding component w.r.t. uh and o ∈ Rt be an
intermediate variable. Let ô = [‖u1‖, ..., ‖ut‖]′ ∈ Rt, the intermediate vector o can be

calculated via a soft-threshold operator: oh = [soft(ô, ς)]h =

{
ôh − ς, if ôh > ς,
0, Otherwise.

. Here

the threshold value ς can be calculated in Step 4 of Algorithm 3.

Proof The proof can be adapted from the results in Appendix F in (Martins et al., 2010).

Algorithm 3 Moreau Projection Sτ (u,v).

Given an point v, s = 1
τ and the number of kernels t.

1: Calculate ôh = ‖gh‖ for all h = 1, ..., t.
2: Sort ô to obtain ō such that ō(1) ≥ ... ≥ ō(t).

3: Find ρ = max
{
t
∣∣∣ōh − s

1+hs

h∑
i=1

ōi > 0, h = 1, ..., t
}

.

4: Calculate the threshold value ς = s
1+ρs

ρ∑
i=1

ōi.

5: Compute o = soft(ô, ς).
6: Compute and output Sτ (u,v) via equation (25).

Remark 3 For the Moreau projection in Algorithm 3, the sorting takes O(t) cost. In FGM
setting, t in general is very small, thus the Moreau projection can be efficiently computed.

Now we tend to minimize F (ω, b) regarding b. Since there is no regularizer on b, it is
equivalent to minimize P (ω, vb) w.r.t. b. The updating can be done by b = vb− 1

τb
∇bP (v, vb),

which is essentially the steepest descent update. We can use the Armijo line search (Nocedal
and Wright, 2006) to find a step size 1

τb
such that,

P (ω, b) ≤ P (ω, vb)−
1

2τb
|∇bP (v, vb)|2,

where ω is the minimizer to Qτ (ω,v, vb). This line search can be efficiently performed since
it is conducted on a single variable only.

With the calculation of Sτ (g) in Algorithm 3 and the updating rule of b above, we
propose to solve (22) through a modified APG method in a block coordinate manner in
Algorithm 4. In Algorithm 4, Lt and Lbt denote the Lipschitz constants of P (ω, b) w.r.t.
ω and b at the t iteration of Algorithm 1, respectively. In practice, we estimate L0 by
L0 = 0.01nC, which will be further adjusted by the line search. When t > 0, Lt is estimated
by Lt = ηLt−1. Finally, a sublinear convergence rate of Algorithm 4 is guaranteed.3

Theorem 4 Let Lt and Lbt be the Lipschitz constant of P (ω, b) w.r.t. ω and b respectively.

Let {(ωk ′, bk)′} be the sequences generated by Algorithm 4 and L = max(Lbt, Lt), for any
k ≥ 1, we have:

F (ωk, bk)− F (ω∗, b∗) ≤ 2Lt||ω0 − ω∗||2

η(k + 1)2
+

2Lbt(b
0 − b∗)2

η(k + 1)2
≤ 2L||ω0 − ω∗||2

η(k + 1)2
+

2L(b0 − b∗)2

η(k + 1)2
.

3. Regarding Algorithm 4, a linear convergence rate can be attained w.r.t. the logistic loss under mild
conditions. The details can be found in Appendix C.

1387

Tan, Tsang and Wang

The proof can be found in Appendix B. The internal variables Lk and Lkb in Algorithm 3
are useful in the proof of the convergence rate.

According to Theorem 4, if Lbt is very different from Lt, the block coordinate updating
scheme in Algorithm 4 can achieve an improved convergence speed over the batch updating
w.r.t. (ω′, b)′. Moreover, the warm-start for initialization of ω and b in Algorithm 4 is
useful to accelerate the convergence speed.

Algorithm 4 Accelerated Proximal Gradient for Solving Problem (22) (Inner Iterations).

Initialization: Initialize the Lipschitz constant Lt = Lt−1, set ω0 = v1 = [ω′t−1,0
′]′ and

b0 = v1
b = bt−1 by warm start, τ0 = Lt, η ∈ (0, 1), parameter %1 = 1 and k = 1.

1: Set τ = ητk−1.
For j = 0, 1, ...,

Set u = vk − 1
τ∇p(v

k), compute Sτ (u,vk).
If F (Sτ (u,vk), vkb) ≤ Q(Sτ (u,vk),vk, vkb),

Set τk = τ , stop;
Else

τ = min{η−1τ, Lt}.
End

End
2: Set ωk = Sτk(u,vk) and Lk = τk.
3: Set τb = ητk.

For j = 0, 1, ...
Set b = vkb −

1
τb
∇bP (v, vkb).

If P (ωk, b) ≤ P (ωk, vkb)− 1
2τb
|∇bP (v, vkb)|2,

Stop;
Else

τb = min{η−1τb, Lt}.
End

End
4: Set bk = b and Lkb = τb. Go to Step 8 if the stopping condition achieves.

5: Set %k+1 =
1+
√

1+4(%k)2

2 .

6: Set vk+1 = ωk + %k−1
%k+1 (ωk − ωk−1) and vk+1

b = bk + %k−1
%k+1 (bk − bk−1).

7: Let k = k + 1 and go to step 1.
8: Return and output ωt = ωk, bt = bk and Lt = ητk.

Warm Start: From Theorem 4, the number of iterations needed by APG to achieve

an ε-solution is O(||ω
0−ω∗||√
ε

). Since FGM incrementally includes a set of features into the

subproblem optimization, an warm start of ω0 can be very useful to improve its efficiency.
To be more specific, when a new active constraint is added, we can use the optimal solution
of the last iteration (denoted by [ω∗1

′, ...,ω∗t−1
′]) as an initial guess to the next iteration.

In other words, at the tth iteration, we use ω−1 = ω0 = [ω∗1
′, ...,ω∗t−1

′,0′]′ as the starting
point.

1388

Towards Ultrahigh Dimensional Feature Selection for Big Data

5.3 De-biasing of FGM

Based on Algorithm 4, we show that FGM resembles the re-training process and can
achieve de-biased solutions. For convenience, we first revisit the de-biasing process in the
`1-minimization (Figueiredo et al., 2007).

De-biasing for `1-methods. To reduce the solution bias, a de-biasing process is often
adopted in `1-methods. For example, in the sparse recovery problem (Figueiredo et al.,
2007), after solving the `1-regularized problem, a least-square problem (which drops the
`1-regularizer) is solved with the detected features (or supports). To reduce the feature
selection bias, one can also apply this de-biasing technique to the `1-SVM for classification
tasks. However, it is worth mentioning that, when dealing with classification tasks, due
to the label noises, such as the rounding errors of labels, a regularizer is necessary and
important to avoid the over-fitting issue. Alternatively, we can apply the standard SVM on
the selected features to do the de-biasing using a relative large C, which is also referred to
as the re-training. When C goes to infinity, it is equivalent to minimize the empirical loss
without any regularizer, which, however, may cause the over-fitting problem.

De-biasing effect of FGM. Recall that, in FGM, the parameters B and the trade-
off parameter C are adjusted separately. In the worst-case analysis, FGM includes B
features/groups that violate the optimality condition the most. When B is sufficiently
small, the selected B features/groups can be regarded as the most relevant features. After
that, FGM addresses the `22,1-regularized problem (22) w.r.t. the selected features only,
which mimics the above re-training strategy for de-biasing. Specifically, we can use a
relatively large C to penalize the empirical loss to reduce the solution bias. Accordingly,
with a suitable C, each outer iteration of FGM can be deemed as the de-biasing process, and
the de-biased solution will in turn help the worst-case analysis to select more discriminative
features.

5.4 Stopping Conditions

Suitable stopping conditions of FGM are important to reduce the risk of over-fitting and
improve the training efficiency. The stopping criteria of FGM include 1) the stopping
conditions for the outer cutting plane iterations in Algorithm 1; 2) the stopping conditions
for the inner APG iterations in Algorithm 4.

5.4.1 Stopping Conditions for Outer iterations

We first introduce the stopping conditions w.r.t. the outer iterations in Algorithm 1. Re-
call that the optimality condition for the SIP problem is

∑
dt∈D µt∇αf(α,dt) = 0 and

µt(f(α,dt)− fm(α)) = 0,∀dt ∈ D. A direct stopping condition can be written as:

f(α,d) ≤ fm(α) + ε, ∀d ∈ D, (26)

where fm(α) = maxdh∈Ct f(α,dh) and ε is a small tolerance value. To check this condition,
we just need to find a new dt+1 via the worst-case analysis. If f(α,dt+1) ≤ fm(α) +
ε, the stopping condition in (26) is achieved. In practice, due to the scale variation of
fm(α) for different problems, it is non-trivial to set the tolerance ε. Since we perform
the subproblem optimization in the primal, and the objective value F (ωt) monotonically

1389

Tan, Tsang and Wang

decreases. Therefore, in this paper, we propose to use the relative function value difference
as the stopping condition instead:

F (ωt−1, b)− F (ωt, b)

F (ω0, b)
≤ εc, (27)

where εc is a small tolerance value. In some applications, one may need to select a desired
number of features. In such cases, we can terminate Algorithm 1 after a maximum number
of T iterations with at most TB features being selected.

5.4.2 Stopping Conditions for Inner iterations

Exact and Inexact FGM: In each iteration of Algorithm 1, one needs to do the inner
master problem minimization in (22). The optimality condition of (22) is ∇ωF (ω) = 0.
In practice, to achieve a solution with high precision to meet this condition is expensive.
Therefore, we usually achieve an ε-accurate solution instead.

Nevertheless, an inaccurate solution may affect the convergence. To demonstrate this,
let ω̂ and ξ̂ be the exact solution to (22). According to Theorem 3, the exact solution of
α̂ to (20) can be obtained by α̂ = ξ̂. Now suppose ω is an ε-accurate solution to (22) and
ξ be the corresponding loss, then we have αi = α̂i + εi, where εi is the gap between α̂ and
α. When performing the worst-case analysis in Algorithm 2, we need to calculate

c =
n∑
i=1

αiyixi =
n∑
i=1

(α̂i + εi)yixi = ĉ +
n∑
i=1

εiyixi = ĉ + ∆ĉ,

where ĉ denotes the exact feature score w.r.t. α̂, and ∆ĉ denotes the error of c brought by
the inexact solution. Apparently, we have

|ĉj − cj | = |∆ĉj | = O(ε), ∀j = 1, ...,m.

Since we only need to find those significant features with the largest |cj |′s, a sufficiently small
ε is enough such that we can find the most-active constraint. Therefore, the convergence
of FGM will not be affected if ε is sufficiently small, but overall convergence speed of FGM
can be greatly improved. Let {ωk} be the inner iteration sequence, in this paper, we set
the stopping condition of the inner problem as

F (ωk−1)− F (ωk)

F (ωk−1)
≤ εin, (28)

where εin is a small tolerance value. In practice, we set εin = 0.001, which works well for
the problems that will be studied in this paper.

5.5 Cache for Efficient Implementations

The optimization scheme of FGM allows to use some cache techniques to improve the
optimization efficiency.

Cache for features. Different from the cache used in kernel SVM which caches kernel
entries (Fan et al., 2005), we directly cache the features in FGM. In gradient-based methods,

1390

Towards Ultrahigh Dimensional Feature Selection for Big Data

one needs to calculate w′xi for each instance to compute the gradient of the loss function,
which takes O(mn) cost in general. Unlike these methods, the gradient computation in the
modified APG algorithm of FGM is w.r.t. the selected features only. Therefore, we can use
a column-based database to store the data, and cache these features in the main memory
to accelerate the feature retrieval. To cache these features, we needs O(tBn) additional
memory. However, the operation complexity for feature retrieval can be significantly re-
duced from O(nm) to O(tBn), where tB � m for high dimensional problems. It is worth
mentioning that, the cache for features is particularly important for the nonlinear feature
selection with explicit feature mappings, where the data with expanded features can be too
large to be loaded into the main memory.

Cache for inner products. The cache technique can be also used to accelerate the
Algorithm 4. To make a sufficient decrease of the objective value, in Algorithm 4, a line
search is performed to find a suitable step size. When doing the line search, one may need
to calculate the loss function P (ω) many times, where ω = Sτ (g) = [ω′1, ...,ω

′
t]
′. The

computational cost will be very high if n is very large. However, according to equation
(25), we have

ω = Sτ (gh) =
oh
||gh||

gh =
oh
||gh||

(vh −
1

τ
∇P (vh)),

where only oh is affected by the step size. Then the calculation of
∑n

i=1ω
′xi follows

n∑
i=1

ω′xi =
n∑
i=1

(
t∑

h=1

ω′hxih

)
=

n∑
i=1

(
t∑

h=1

oh
||gh||

(
v′hxih −

1

τ
∇P (vh)′xih

))
.

According to the above calculation rule, we can make a fast computation of
∑n

i=1ω
′xi

by caching v′hxih and ∇P (vh)′xih for the hth group of each instance xi. Accordingly, the
complexity of computing

∑n
i=1ω

′xi can be reduced from O(ntB) to O(nt). That is to say,
no matter how many line search steps will be conducted, we only need to scan the selected
features once, which can greatly reduce the computational cost.

6. Nonlinear Feature Selection Through Kernels

By applying the kernel tricks, we can extend FGM to do nonlinear feature selections. Let
φ(x) be a nonlinear feature mapping that maps the input features with nonlinear relations
into a high-dimensional linear feature space. To select the features, we can also introduce a
scaling vector d ∈ D and obtain a new feature mapping φ(x�

√
d). By replacing (x�

√
d)

in (5) with φ(x �
√

d), the kernel version of FGM can be formulated as the following
semi-infinite kernel (SIK) learning problem:

min
α∈A,θ

θ : θ ≥ fK(α,d), ∀ d ∈ D,

where fK(α,d) = 1
2(α�y)′(Kd+ 1

C I)(α�y) and Kij
d is calculated as φ(xi�

√
d)′φ(xj�

√
d).

This problem can be solved by Algorithm 1. However, we need to solve the following
optimization problem in the worst-case analysis:

max
d∈D

1

2

∥∥∥ n∑
i=1

αiyiφ(xi �
√

d)
∥∥∥2

= max
d∈D

1

2
(α� y)′Kd(α� y), (29)

1391

Tan, Tsang and Wang

6.1 Worst Case Analysis for Additive Kernels

In general, solving problem (29) for general kernels (e.g., Gaussian kernels) is very challeng-
ing. However, for additive kernels, this problem can be exactly solved. A kernel Kd is an
additive kernel if it can be linearly represented by a set of base kernels {Kj}pj=1 (Maji and
Berg, 2009). If each base kernel Kj is constructed by one feature or a subset of features,
we can select the optimal subset features by choosing a small subset of kernels.

Proposition 2 The worst-case analysis w.r.t. additive kernels can be exactly solved.

Proof Suppose that each base kernel Kj in an additive kernel is constructed by one feature
or a subset of features. Let G = {G1, ...,Gp} be the index set of features that produce the
base kernel set {Kj}pj=1 and φj(xiGj) be the corresponding feature map to Gj . Similar to
the group feature selection, we introduce a feature scaling vector d ∈ D ⊂ Rp to scale
φj(xiGj). The resultant model becomes:

min
d∈D̂

min
w,ξ,b

1

2
‖w‖22 +

C

2

n∑
i=1

ξ2
i

s.t. yi

 p∑
j=1

√
djw

′
Gjφj(xiGj)− b

 ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , n,

where wGj has the same dimensionality with φj(xiGj). By transforming this problem to the
SIP problem in (13), we can solve the kernel learning (selection) problem via FGM. The
corresponding worst-case analysis is reduced to solve the following problem:

max
d∈D

p∑
j=1

dj(α� y)′Kj(α� y) = max
d∈D

p∑
j=1

djsj ,

where sj = (α� y)′Kj(α� y) and Ki,k
j = φj(xiGj)

′φj(xkGj). This problem can be exactly
solved by choosing the B kernels with the largest sj ’s.

In the past decades, many additive kernels have been proposed based on specific application
contexts, such as the general intersection kernel in computer vision (Maji and Berg, 2009),
string kernel in text mining and ANOVA kernels (Bach, 2009). Taking the general inter-
section kernel for example, it is defined as: k(x, z, a) =

∑p
j=1 min{|xj |a, |zj |a}, where a > 0

is a kernel parameter. When a = 1, it reduces to the well-known Histogram Intersection
Kernel (HIK), which has been widely used in computer vision and text classifications (Maji
and Berg, 2009; Wu, 2012).

It is worth mentioning that, even though we can exactly solve the worst-case analysis
for additive kernels, the subproblem optimization is still very challenging for large-scale
problems because of two reasons. Firstly, storing the kernel matrices takes O(n2) space
complexity, which is unbearable when n is very large. Secondly, solving the MKL problem
with many training points is still computationally expensive. To address these issues, we
propose to a group of approximated features, such as the random features (Vedaldi and
Zisserman, 2010) and the HIK expanded features (Wu, 2012), to approximate a base kernel.
As a result, the MKL problem is reduced to the group feature selection problem. There-
fore, it is scalable to big data by avoiding the storage the base kernel matrices. Moreover,
the subproblem optimization can be more efficiently solved in the primal form.

1392

Towards Ultrahigh Dimensional Feature Selection for Big Data

6.2 Worst-Case Analysis for Ultrahigh Dimensional Big Data

Ultrahigh dimensional big data widely exist in many application contexts. Particularly, in
the nonlinear classification tasks with explicit nonlinear feature mappings, the dimension-
ality of the feature space can be ultrahigh. If the explicit feature mapping is available, the
nontrivial nonlinear feature selection task can be cast as a linear feature selection problem
in the high-dimensional feature space.

Taking the polynomial kernel k(xi,xj) = (γx′ixj +r)υ for example, the dimension of the
feature mapping exponentially increases with υ (Chang et al., 2010), where υ is referred to
as the degree. When υ = 2, the 2-degree explicit feature mapping can be expressed as

φ(x) = [r,
√

2γrx1, ...,
√

2γrxm, γx
2
1, ..., γx

2
m,
√

2γx1x2, ...,
√

2γxm−1xm].

The second-order feature mapping can capture the feature pair dependencies, thus it has
been widely applied in many applications such as text mining and natural language pro-
cessing (Chang et al., 2010). Unfortunately, the dimensionality of the feature space is
(m + 2)(m + 1)/2 and can be ultrahigh for a median m. For example, if m = 106, the di-
mensionality of the feature space is O(1012), and around 1 TB memory is required to store
the weight vector w. As a result, most of the existing methods are not applicable (Chang
et al., 2010). Fortunately, this computational bottleneck can be effectively avoided by FGM
since only tB features are required to be stored in the main memory. For convenience, we
store the indices and scores of the selected tB features in a structured array cB.

Algorithm 5 Incremental Implementation of Algorithm 2 for Ultrahigh Dimensional Data.

Given α, B, number of data groups k, feature mapping φ(x) and a structured array cB.
1: Split X into k subgroups X = [X1, ...,Xk].
2: For j = 1, ..., k.

Calculate the feature score s w.r.t. Xj according to φ(xi).
Sort s and update cB.
For i = j + 1, ..., k. (Optional)

Calculate the cross feature score s w.r.t. Xj and Xi.
Sort s and update cB.

End
End

3: Return cB.

For ultrahigh dimensional big data, it can be too huge to be loaded into the main
memory, thus the worst-case analysis is still very challenging to be addressed. Motivated
by the incremental worst-case analysis for complex group feature selection in Section 4.3,
we propose to address the big data challenge in an incremental manner. The general scheme
for the incremental implementation is presented in Algorithm 5. Particularly, we partition
X into k small data subset of lower dimensionality as X = [X1, ...,Xk]. For each small
data subset, we can load it into memory and calculate the feature scores of the features. In
Algorithm 5, the inner loop w.r.t. the iteration index i is only used for the second-order
feature selection, where the calculation of feature score for the cross-features is required.
For instance, in the nonlinear feature selection using the 2-degree polynomial mapping, we
need to calculate the feature score of xixj .

1393

Tan, Tsang and Wang

7. Connections to Related Studies

In this section, we discuss the connections of proposed methods with related studies, such as
the `1-regularization (Jenatton et al., 2011a), active set methods (Roth and Fischer, 2008;
Bach, 2009), SimpleMKL (Rakotomamonjy et al., 2008), `q-MKL (Kloft et al., 2009, 2011;
Kloft and Blanchard, 2012), infinite kernel learning (IKL) (Gehler and Nowozin, 2008),
SMO-MKL (Vishwanathan et al., 2010), and so on.

7.1 Relation to `1-regularization

Recall that the `1-norm of a vector w can be expressed as a variational form (Jenatton
et al., 2011a):

‖w‖1 =

m∑
j=1

|wj | =
1

2
min
d�0

m∑
j=1

w2
j

dj
+ dj . (30)

It is not difficult to verify that, d∗j = |wj | holds at the optimum, which indicates that the
scale of d∗j is proportional to |wj |. Therefore, it is meaningless to impose an additional
`1-constraint ||d||1 ≤ B or ||w||1 ≤ B in (30) since both d and w are scale-sensitive. As
a result, it is not so easy for the `1-norm methods to control the number of features to be
selected as FGM does. On the contrary, in AFS, we bound d ∈ [0, 1]m.

To demonstrate the connections of AFS to the `1-norm regularization, we need to make
some transformations. Let ŵj = wj

√
dj and ŵ = [ŵ1, ..., ŵm]′, the variational form of the

problem (5) can be equivalently written as

min
d∈D

min
ŵ,ξ,b

1

2

m∑
j=1

ŵ2
j

dj
+
C

2

n∑
i=1

ξ2
i

s.t. yi(ŵ
′xi − b) ≥ 1− ξi, i = 1, · · · , n.

For simplicity, hereby we drop the hat from ŵ and define a new regularizer ‖w‖2B as

‖w‖2B = min
d�0

m∑
j=1

w2
j

dj
, s.t. ||d||1 ≤ B, d ∈ [0, 1]m. (31)

This new regularizer has the following properties.

Proposition 3 Given a vector w ∈ Rm with ‖w‖0 = κ > 0, where κ denotes the number
of nonzero entries in w. Let d∗ be the minimizer of (31), we have: (I) d∗j = 0 if |wj | = 0.

(II) If κ ≤ B, then d∗j = 1 for |wj | > 0; else if ‖w‖1
max{|wj |} ≥ B and κ > B, then we have

|wj |
d∗j

= ‖w‖1
B for all |wj | > 0. (III) If κ ≤ B, then ‖w‖B = ‖w‖2; else if ‖w‖1

max{|wj |} ≥ B and

κ > B, ‖w‖B = ‖w‖1√
B

.

The proof can be found in Appendix D.

According to Proposition 3, if B < κ, ‖w‖B is equivalent to the `1-norm regularizer.
However, no matter how large the magnitude of |wj | is, dj in ‖w‖2B is always upper bounded

1394

Towards Ultrahigh Dimensional Feature Selection for Big Data

by 1, which lead to two advantages of ‖w‖2B over the `1-norm regularizer. Firstly, by using
‖w‖2B, the sparsity and the over-fitting problem can be controlled separately by FGM.
Specifically, one can choose a proper C to reduce the feature selection bias, and a proper
stopping tolerance εc in (27) or a proper parameter B to adjust the number of features
to be selected. Conversely, in the `1-norm regularized problems, the number of features
is determined by the regularization parameter C, but the solution bias may happen if we
intend to select a small number of features with a small C. Secondly, by transforming the
resultant optimization problem into an SIP problem, a feature generating paradigm has been
developed. By iteratively infer the most informative features, this scheme is particularly
suitable for dealing with ultrahigh dimensional big data that are infeasible for the existing
`1-norm methods, as shown in Section 6.2.

Proposition 3 can be easily extended to the group feature selection cases and multiple
kernel learning cases. For instance, given a w ∈ Rm with p groups {G1, ...,Gp}, we have∑p

j=1 ||wGj ||2 = ‖v‖1, where v = [||wG1 ||, ..., ||wGp ||]′ ∈ Rp. Therefore, the above two
advantages are also applicable to FGM for group feature selection and multiple kernel
learning.

7.2 Connection to Existing AFS Schemes

The proposed AFS scheme is very different from the existing AFS schemes (e.g., Weston et
al., 2000; Chapelle et al., 2002; Grandvalet and Canu, 2002; Rakotomamonjy, 2003; Varma
and Babu, 2009; Vishwanathan et al., 2010). In existing works, the scaling vector d � 0 d
is not upper bounded. For instance, in the SMO-MKL method (Vishwanathan et al., 2010),
the AFS problem is reformulated as the following problem:

min
d�0

max
α∈A

1′α− 1

2

p∑
j=1

dj(α� y)′Kj(α� y) +
λ

2
(
∑
j

dqj)
2
q ,

where A = {α|0 � α � C1,y′α = 0} and Kj denote a sub-kernel. When 0 ≤ q ≤ 1, it
induces sparse solutions, but results in non-convex optimization problems. Moreover, the
sparsity of the solution is still determined by the regularization parameter λ. Consequently,
the solution bias inevitably exists in the SMO-MKL formulation.

A more related work is the `1-MKL (Bach et al., 2004; Sonnenburg et al., 2006) or the
SimpleMKL problem (Rakotomamonjy et al., 2008), which tries to learn a linear combina-
tion of kernels. The variational regularizer of SimpleMKL can be written as:

min
d�0

p∑
j=1

||wj ||2

dj
, s.t. ||d||1 ≤ 1,

where p denotes the number of kernels and wj represents the parameter vector of the
jth kernel in the context of MKL (Kloft et al., 2009, 2011; Kloft and Blanchard, 2012).
Correspondingly, the regularizer ||w||2B regarding kernels can be expressed as:

min
d�0

p∑
j=1

||wj ||2

dj
, s.t. ||d||1 ≤ B, d ∈ [0, 1]p. (32)

1395

Tan, Tsang and Wang

To illustrate the difference between (32) and the `1-MKL, we divide the two constraints in
(32) by B, and obtain

p∑
j=1

dj
B
≤ 1, 0 ≤ dj

B
≤ 1

B
,∀j ∈ {1, ..., p}.

Clearly, the box constraint
dj
B ≤

1
B makes (32) different from the variational regularizer in `1-

MKL. Actually, the `1-norm MKL is only a special case of ||w||2B when B = 1. Moreover, by
extending Proposition 3, we can obtain that if B > κ, we have ||w||2B =

∑p
j=1 ||wj ||2, which

becomes a non-sparse regularizer. Another similar work is the `q-MKL, which generalizes
the `1-MKL to `q-norm (q > 1) (Kloft et al., 2009, 2011; Kloft and Blanchard, 2012).
Specifically, the variational regularizer of `q-MKL can be written as

min
d�0

p∑
j=1

||wj ||2

dj
, s.t. ||d||2q ≤ 1.

We can see that, the box constraint 0 ≤ dj
B ≤

1
B ,∀j ∈ {1, ..., p} is missing in the `q-MKL.

However, when q > 1, the `q-MKL cannot induce sparse solutions, and thus cannot discard
non-important kernels or features. Therefore, the underlying assumption for `q-MKL is that,
most of the kernels are relevant for the classification tasks. Finally, it is worth mentioning
that, when doing multiple kernel learning, both `1-MKL and `q-MKL require to compute
and involve all the base kernels. Consequently the computational cost is unbearable for
large-scale problems with many kernels.

An infinite kernel learning method is introduced to deal with infinite number of ker-
nels (p = ∞) (Gehler and Nowozin, 2008). Specifically, IKL adopts the `1-MKL formu-
lation (Bach et al., 2004; Sonnenburg et al., 2006), thus it can be considered as a special
case of FGM when setting B = 1. Due to the infinite number of possible constraints, IKL
also adopts the cutting plane algorithm to address the resultant problem. However, it can
only include one kernel per iteration; while FGM can include B kernels per iteration. In
this sense, IKL is also analogous to the active set methods (Roth and Fischer, 2008; Bach,
2009). For both methods, the worst-case analysis for large-scale problems usually domi-
nates the overall training complexity. For FGM, since it is able to include B kernels per
iteration, it obviously reduces the number of worst-case analysis steps, and thus has great
computational advantages over IKL. Finally, it is worth mentioning that, based on the IKL
formulation, it is non-trivial for IKL to include B kernels per iteration.

7.3 Connection to Multiple Kernel Learning

In FGM, each subproblem is formulated as a SimpleMKL problem (Rakotomamonjy et al.,
2008), and any SimpleMKL solver can be used to solve it. For instance, an approximate solu-
tion can be also efficiently obtained by a sequential minimization optimization (SMO) (Bach
et al., 2004; Vishwanathan et al., 2010). Sonnenburg et al. (2006) proposed a semi-infinite
linear programming formulation for MKL which allows MKL to be iteratively solved with
SVM solver and linear programming. Xu et al. (2009b) proposed an extended level method
to improve the convergence of MKL. More recently, an online ultra-fast MKL algorithm,

1396

Towards Ultrahigh Dimensional Feature Selection for Big Data

called as the UFO-MKL, was proposed by Orabona and Jie (2011). However, its O(1/ε)
convergence rate is only guaranteed when a strongly convex regularizer Ω(w) is added to
the objective. Without the strongly convex regularizer, its convergence is unclear.

In summary, FGM is different from MKL in several aspects. At first, FGM iteratively
includes B new kernels through the worst-case analysis. Particularly, these B kernels will
be formed as a base kernel for the MKL subproblem of FGM. From the kernel learning
view, FGM provides a new way to construct base kernels. Secondly, since FGM tends to
select a subset of kernels, it is especially suitable for MKL with many kernels. Thirdly, to
scale MKL to big data, we propose to use the approximated features (or explicit feature
mappings) for kernels. As a result, the MKL problem is reduced to a group feature selection
problem, and we can solve the subproblem in its primal form.

7.4 Connection to Active Set Methods

Active set methods have been widely applied to address the challenges of large number of
features or kernels (Roth and Fischer, 2008; Bach, 2009). Basically, active set methods
iteratively include a variable that violates the optimality condition of the sparsity-induced
problems. In this sense, active methods can be considered as a special case of FGM with
B = 1. However, FGM is different from active set methods. Firstly, their motivations
are different: active set methods start from the Lagrangian duality of the sparsity-induced
problems; while FGM starts from the proposed AFS scheme, solves an SIP problem. Sec-
ondly, active set methods only include one active feature/group/kernel at each iteration.
Regarding this algorithm, when the desired number of kernels or groups becomes relatively
large, active set methods will be very computationally expensive. On the contrary, FGM
allows to add B new features/groups/kernels per iteration, which can greatly improve the
training efficiency by reducing the number of worst-case analysis. Thirdly, a sequence of
`22,1-regularized non-smooth problems are solved in FGM, which is very different from the
active set methods. Finally, the de-biasing of solutions is not investigated in the active set
methods (Bach, 2009; Roth and Fischer, 2008).

8. Experiments

We compare the performance of FGM with several state-of-the-art baseline methods on
three learning tasks, namely the linear feature selection, the ultrahigh dimensional nonlinear
feature selection and the group feature selection.4

The experiments are organized as follows. Firstly, in Section 8.1, we present the general
experimental settings. After that in Section 8.2, we conduct synthetic experiments to study
the performance of FGM on the linear feature selection. Moreover, in Section 8.3, we study

4. In the experiments, some aforementioned methods, such as NMMKL, QCQP-SSVM and SVM-RFE, are
not included for comparison due to the high computational cost for the optimization or sub-optimality
for the feature selection. Interested readers can refer to (Tan et al., 2010) for the detailed comparisons.
We also do not include the `q-MKL (Kloft et al., 2009, 2011; Kloft and Blanchard, 2012) for comparison
since it cannot induce sparse solutions. Instead, we include an `q-variant, i.e., UFO-MKL (Orabona
and Jie, 2011), for comparison. Finally, since IKL is a special case of FGM with B = 1, we study its
performance through FGM with B = 1 instead. Since it is analogous to the active set methods, its
performance can be also observed from the results of active set method.

1397

Tan, Tsang and Wang

the performance of FGM with the shift of hyperplane. In Section 8.4, we conduct real-world
experiments on linear feature selection. In Section 8.5, we conduct ultrahigh dimensional
nonlinear feature selection experiments with polynomial feature mappings. Finally, we
demonstrate the efficacy of FGM on the group feature selection in Section 8.6.

8.1 Data Sets and General Experimental Settings

Several large-scale and high dimensional real-world data sets are used to verify the per-
formance of different methods. General information of these data sets, such as the aver-
age nonzero features per instance, is listed in Table 1.5 Among them, epsilon, Arxiv
astro-ph, rcv1.binary and kddb data sets have been split into training set and testing
set. For real-sim, aut-avn and news20.binary, we randomly split them into training
and testing sets, as shown in Table 1.

Data set m ntrain ntest
nonzeros Parameter Range
per instance l1-SVM (C) l1-LR(C) SGD-SLR(λ1)

epsilon 2,000 400,000 100,000 2,000 [5e-4, 1e-2] [2e-3, 1e-1] [1e-4, 8e-3]

aut-avn 20,707 40,000 22,581 50 – – –

real-sim 20,958 32,309 40,000 52 [5e-3, 3e-1] [5e-3, 6e-2] [1e-4, 8e-3]

rcv1 47,236 677,399 20,242 74 [1e-4, 4e-3] [5e-5, 2e-3] [1e-4, 8e-3]

astro-ph 99,757 62,369 32,487 77 [5e-3, 6e-2] [2e-2, 3e-1] [1e-4, 8e-3]

news20 1,355,191 9,996 10,000 359 [5e-3, 3e-1] [5e-2, 2e1] [1e-4, 8e-3]

kddb 29,890,095 19,264,097 748,401 29 [5e-6, 3e-4] [3e-6, 1e-4] [1e-4, 8e-3]

Table 1: Statistics of the data sets used in the experiments. Parameter Range lists the
ranges of the parameters for various `1-methods to select different number of fea-
tures. The data sets rcv1 and aut-avn will be used in group feature selection
tasks.

On the linear feature selection task, comparisons are conducted between FGM and
the `1-regularized methods, including `1-SVM and `1-LR. For FGM, we study FGM with
SimpleMKL solver (denoted by MKL-FGM)6 (Tan et al., 2010), FGM with APG method
for the squared hinge loss (denoted by PROX-FGM) and the logistic loss (denoted by
PROX-SLR), respectively.

Many efficient batch training algorithms have been developed to solve `1-SVM and `1-
LR, such as the interior point method, fast iterative shrinkage-threshold algorithm (FISTA),
block coordinate descent (BCD), Lassplore method (Liu and Ye, 2010), generalized linear
model with elastic net (GLMNET) and so on (Yuan et al., 2010, 2011). Among them, LIB-
Linear, which adopts the coordinate descent to solve the non-smooth optimization problem,
has demonstrated state-of-the-art performance in terms of training efficiency (Yuan et al.,

5. Among these data sets, epsilon, real-sim, rcv1.binary, news20.binary and kddb can be
downloaded at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/, aut-avn can
be downloaded at http://vikas.sindhwani.org/svmlin.html and Arxiv astro-ph is from
Joachims (2006).

6. For the fair comparison, we adopt the LIBLinear (e.g., CD-SVM) as the SVM solver in SimpleMKL
when performing linear feature selections. The source codes of MKL-FGM are available at http:
//www.tanmingkui.com/fgm.html.

1398

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://vikas.sindhwani.org/svmlin.html
http://www.tanmingkui.com/fgm.html
http://www.tanmingkui.com/fgm.html

Towards Ultrahigh Dimensional Feature Selection for Big Data

2010). In LIBLinear, by taking the advantages of data sparsity, it achieves very fast con-
vergence speed for sparse data sets (Yuan et al., 2010, 2011). In this sense, we include the
LIBLinear solver for comparison7. Besides, we take the standard SVM and LR classifier of
LIBLinear with all features as the baselines, denoted by CD-SVM and CD-LR, respectively.
We use the default stopping criteria of LIBLinear for `1-SVM, `1-LR, CD-SVM and CD-LR.

SGD methods have gained great attention for solving large-scale problems (Langford
et al., 2009; Shalev-Shwartz and Zhang, 2013). In this experiment, we include the proxi-
mal stochastic dual coordinate ascent with logistic loss for comparison (which is denoted
by SGD-SLR). SGD-SLR has shown the state-of-the-art performance among various SGD
methods (Shalev-Shwartz and Zhang, 2013).8 In SGD-SLR, there are three important pa-
rameters, namely λ1 to penalize ||w||1, λ2 to penalize ||w||22, and the stopping criterion
min.dgap. Suggested by the package, in the following experiment, we fix λ2 = 1e-4 and
min.dgap=1e-5, and change λ1 to obtain different levels of sparsity. All the methods are
implemented in C++.

On group feature selection tasks, we compare FGM with four recently developed group
lasso solvers: FISTA (Liu and Ye, 2010; Jenatton et al., 2011b; Bach et al., 2011), block
coordinate descent method (denoted by BCD) (Qin et al., 2010), active set method (denoted
by ACTIVE) (Bach, 2009; Roth and Fischer, 2008) and UFO-MKL (Orabona and Jie, 2011).
Among them, FISTA has been thoroughly studied by several researchers (Liu and Ye, 2010;
Jenatton et al., 2011b; Bach et al., 2011), and we adopt the implementation of SLEP
package9, where an improved line search is used (Liu and Ye, 2010). We implement the
block coordinate descent method proposed by Qin et al. (2010), where each subproblem is
formulated as a trust-region problem and solved by a Newton’s root-finding method (Qin
et al., 2010). For UFO-MKL, it is an online optimization method,10 and we stop the training
after 20 epochs. Finally, we implement ACTIVE method based on the SLEP solver. All
the methods for group feature selection are implemented in MATLAB for fair comparison.

All the comparisons are performed on a 2.27GHZ Intel(R)Core(TM) 4 DUO CPU run-
ning windows sever 2003 with 24.0GB main memory.

8.2 Synthetic Experiments on Linear Feature Selection

In this section, we compare the performance of different methods on two toy data sets of
different scales, namely X ∈ R4,096×4,096 and X ∈ R8,192×65,536. Here each X is a Gaussian
random matrix with each entry sampled from the i.i.d. Gaussian distribution N (0, 1). To
produce the output y, we first generate a sparse vector w with 300 nonzero entries, with
each nonzero entry sampled from the i.i.d. Uniform distribution U(0, 1). After that, we
produce the output by y = sign(Xw). Since only the nonzero wi contributes to the output
y, we consider the corresponding feature as a relevant feature regarding y. Similarly, we
generate the testing data set Xtest with output labels ytest = sign(Xtestw). The number of
testing points for both cases is set to 4,096.

7. Sources are available at http://www.csie.ntu.edu.tw/˜cjlin/liblinear/.
8. Sources are available at http://stat.rutgers.edu/home/tzhang/software.html.
9. Sources are available at http://www.public.asu.edu/˜jye02/Software/SLEP/index.htm.

10. Sources are available at http://dogma.sourceforge.net/.

1399

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://stat.rutgers.edu/home/tzhang/software.html
http://www.public.asu.edu/~jye02/Software/SLEP/index.htm
http://dogma.sourceforge.net/

Tan, Tsang and Wang

200 400 600 800 1000 1200

10
−2

10
−1

10
0

APG Iterations

R
e
la

ti
v
e
 O

b
je

c
ti
v
e
 V

a
lu

e

Exact (B = 10)

Exact (B = 30)

Exact (B = 50)
Inexact(B = 10)

Inexact(B = 30)

Inexact(B = 50)

(a) Relative objective values w.r.t. APG
iterations.

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

CCP Iterations

R
e
la

ti
v
e
 O

b
je

c
ti
v
e
 V

a
lu

e

Exact (B = 10)

Exact (B = 30)

Exact (B = 50)
Inexact(B = 10)

Inexact(B = 30)

Inexact(B = 50)

(b) Relative objective values w.r.t. outer
iterations.

Figure 1: Convergence of Inexact FGM and Exact FGM on the synthetic data set.

8.2.1 Convergence Comparison of Exact and Inexact FGM

In this experiment, we study the convergence of the Exact and Inexact FGM on the small
scale data set. To study the Exact FGM, for simplicity, we set the stopping tolerance
εin = 1.0 × 10−6 in equation (28) for APG algorithm; while for Inexact FGM, we set
εin = 1.0×10−3. We set C = 10 and test different B’s from {10, 30, 50}. In this experiment,
only the squared hinge loss is studied. In Figure 1(a), we report the relative objective
values w.r.t. all the APG iterations for both methods; In Figure 1(b), we report the
relative objective values w.r.t. the outer iterations. We have the following observations
from Figures 1(a) and 1(b).

Firstly, from Figure 1(a), for each comparison method, the function value sharply de-
creases at some iterations, where an active constraint is added. For the Exact FGM, it
requires more APG iterations under the tolerance εin = 1.0× 10−6, but the function value
does not show significant decrease after several APG iterations. On the contrary, from
Figure 1(a), the Inexact FGM, which uses a relatively larger tolerance εin = 1.0 × 10−3,
requires much fewer APG iterations to achieve the similar objective values to Exact FGM
under the same parameter B. Particularly, from Figure 1(b), the Inexact FGM achieves
the similar objective values to Exact FGM after each outer iteration. According to these
observations, on one hand, εin should be small enough such that the subproblem can be
sufficiently optimized. On the other hand, a relatively large tolerance (e.g. εin = 1.0×10−3)
can greatly accelerate the convergence speed without degrading the performance.

Moreover, according to Figure 1(b), PROX-FGM with a large B in general converges
faster than that with a small B. Generally speaking, by using a large B, less number of
outer iterations and worst-case analysis are required, which is critical when dealing with
big data. However, if B is too large, some non-informative features may be mistakenly
included, and the solution may not be exactly sparse.

8.2.2 Experiments on Small-Scale Synthetic Dataset

In this experiment, we evaluate the performance of different methods in terms of testing ac-
curacies w.r.t. different number of selected features. Specifically, to obtain sparse solutions

1400

Towards Ultrahigh Dimensional Feature Selection for Big Data

of different sparsities, we vary C ∈ [0.001, 0.007] for l1-SVM, C ∈ [5e-3, 4e-2] for l1-LR and
λ1 ∈ [7.2e-4, 2.5e-3] for SGD-SLR.11 On contrary to these methods, we fix C = 10 and
choose even numbers in {2, 4, ..., 60} for B to obtain different number of features. It can
be seen that, it is much easier for FGM to control the number of features to be selected.
Specifically, the testing accuracies and the number of recovered ground-truth features w.r.t.
the number of selected features are reported in Figure 2(a) and Figure 2(b), respectively.
The training time of different methods is listed in Figure 2(d).

50 100 150 200 250 300

T
e

s
ti
n

g
 A

c
c
u

ra
c
c
y
 (

in
 %

)

l1−SVM l1−LR CD−SVM CD−LR SGD−SLR PROX−FGM PROX−SLR

100 200 300 400 500 600
70

75

80

85

90

95

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

(a) Testing accuracy

200 300 400 500 600
140

160

180

200

220

240

260

Selected Features

#
 R

e
c
o
v
e
re

d
 F

e
a
tu

re
s

(b) Number of recovered features

100 200 300 400 500 600
75

80

85

90

95

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

l1−SVM

l1−SVM−debias
PROX−FGM

PROX−FGM−debias

(c) De-biased results

0 100 200 300 400 500 600

10
0

10
1

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

(d) Training time

Figure 2: Experimental results on the small data set, where CD-SVM and CD-LR denote
the results of standard SVM and LR with all features, respectively. The training
time of MKL-FGM is about 1,500 seconds, which is up to 1,000 times slower than
APG solver. We did not report it in the figures due to presentation issues.

For convenience of presentation, let ms and mg be the number of selected features and
the number of ground-truth features, respectively. From Figure 2(a) and Figure 2(b), FGM

11. Here, we carefully choose C or λ1 for these three `1-methods such that the numbers of selected features
uniformly spread over the range [0, 600]. Since the values of C and λ1 change a lot for different problems,
hereafter we only give their ranges. Under this experimental setting, the results of `1-methods cannot
be further improved through parameter tunings.

1401

Tan, Tsang and Wang

based methods demonstrate better testing accuracy than all `1-methods when ms > 100.
Correspondingly, from Figure 2(b), under the same number of selected features, FGM based
methods include more ground-truth features than `1-methods whenms≥100. For SGD-SLR,
it shows the worst testing accuracy among the comparison methods, and also recovers the
least number of ground-truth features.

One of the possible reasons for the inferior performance of the `1-methods, as men-
tioned in the Introduction section, is the solution bias brought by the `1-regularization.
To demonstrate this, we do re-training to reduce the bias using CD-SVM with C = 20
with the selected features, and then do the prediction using the de-biased models. The re-
sults are reported in Figure 2(c), where l1-SVM-debias and PROX-FGM-debias denote the
de-biased counterparts for l1-SVM and PROX-FGM, respectively. In general, if there was
no feature selection bias, both FGM and l1-SVM should have the similar testing accuracy
to their de-biased counterparts. However, from Figure 2(c), l1-SVM-debias in general has
much better testing accuracy than l1-SVM; while PROX-FGM has similar or even better
testing accuracy than PROX-FGM-debias and l1-SVM-debias. These observations indicate
that: 1) the solution bias indeed exists in the `1-methods and affects the feature selection
performance; 2) FGM can reduce the feature selection bias.

From Figure 2(d), on this small-scale data set, PROX-FGM and PROX-SLR achieve
comparable efficiency with the LIBlinear solver. On the contrary, SGD-SLR, which is a
typical stochastic gradient method, spends the longest training time. This observation
indicates that SGD-SLR method may not be suitable for small-scale problems. Finally, as
reported in the caption of Figure 2(d), PROX-FGM and PROX-SLR are up to 1,000 times
faster than MKL-FGM using SimpleMKl solver. The reason is that, SimpleMKl uses the
subgradient methods to address the non-smooth optimization problem with n variables;
While in PROX-FGM and PROX-SLR, the subproblem is solved in the primal problem
w.r.t. a small number of selected variables.

Finally, from Figure 2, if the number of selected features is small (ms < 100), the testing
accuracy is worse than CD-SVM and CD-LR with all features. However, if sufficient number
(ms > 200) of features are selected, the testing accuracy is much better than CD-SVM and
CD-LR with all features, which verifies the importance of the feature selection.

8.2.3 Experiments on Large-scale Synthetic Dataset

To demonstrate the scalability of FGM, we conduct an experiment on a large-scale synthetic
data set, namely X ∈ R8,192×65,536. Here, we do not include the comparisons with MKL-
FGM due to its high computational cost. For PROX-FGM and PROX-SLR, we follow
their experimental settings above. For l1-SVM and l1-LR, we vary C ∈ [0.001, 0.004] and
C ∈ [0.005, 0.015] to determine the number of features to be selected, respectively. The
testing accuracy, the number of recovered ground-truth features, the de-biased results and
the training time of the compared methods are reported in Figure 3(a), 3(b), 3(c) and 3(d),
respectively.

From Figure 3(a) and 3(b) and 3(c), both PROX-FGM and PROX-SLR outperform
l1-SVM, l1-LR and SGD-SLR in terms of both testing accuracy and the number of recov-
ered ground-truth features. From Figure 3(d), PROX-FGM and PROX-SLR show better
training efficiency than the coordinate based methods (namely, LIBlinear) and the SGD

1402

Towards Ultrahigh Dimensional Feature Selection for Big Data

100 200 300 400 500 600
Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

l1−SVM l1−LR SGD−SLR PROX−FGM PROX−SLR

100 200 300 400 500 600
65

70

75

80

85

90

95

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

(a) Testing accuracy

100 200 300 400 500 600
120

140

160

180

200

220

240

Selected Features

#
 R

e
c
o
v
e
re

d
 F

e
a
tu

re
s

(b) Number of recovered features

100 200 300 400 500 600
78

80

82

84

86

88

90

92

94

96

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

l1−SVM

l1−SVM−debias
PROX−FGM

PROX−FGM−debias

(c) De-biased results

0 100 200 300 400 500 600

10
2

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

(d) Training time

Figure 3: Performance comparison on the large-scale synthetic data set.

based method (namely SGD-SLR). Basically, FGM solves a sequence of small optimization
problems of O(ntB) cost, and spends only a small number of iterations to do the worst-case
analysis of O(mn) cost. On the contrary, the `1-methods may take many iterations to con-
verge, and each iteration takes O(mn) cost. On this large-scale data set, SGD-SLR shows
faster training speed than LIBlinear, but it has much inferior testing accuracy over other
methods.

In LIBlinear, the efficiency has been improved by taking the advantage of the data
sparsity. Considering this, we investigate the sensitivity of the referred methods to the data
density. To this end, we generate data sets of different data densities by sampling the entries
from X8,192×65,656 with different data densities in {0.08, 0.1, 0.3, 0.5, 0.8, 1}, and study the
influence of the data density on different learning algorithms. For FGM, only the logistic
loss is studied (e.g. PROX-SLR). We use the default experimental settings for PROX-SLR,
and watchfully vary C ∈ [0.008, 5] for l1-LR and λ1 ∈ [9.0e-4, 3e-3] for SGD-SLR. For the
sake of brevity, we only report the best accuracy obtained over all parameters, and the
corresponding training time of l1-LR, SGD-SLR and PROX-SLR in Figure 4.

From Figure 4(a), under different data densities, PROX-SLR always outperforms l1-
SVM and SGD-SLR in terms of the best accuracy. From Figure 4(b), l1-SVM shows

1403

Tan, Tsang and Wang

10
−1

10
0

80

82

84

86

88

90

92

94

96

Data Density

T
e
s
ti
n
g

 A
c
c
u
ra

c
c
y
 (

in
 %

)

l1−LR

SGD−SLR

PROX−SLR

(a) Testing accuracy

10
−1

10
0

50

100

150

200

250

300

350

400

Data Density

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n

d
s
)

l1−LR

SGD−SLR

PROX−SLR

(b) Training time

Figure 4: Performance comparison on the synthetic data set (n = 8, 192, m = 65, 536) with
different data densities in {0.08, 0.1, 0.3, 0.5, 0.8, 1}.

0 50 100 150
10

−2

10
−1

10
0

APG iterations (b = 4)

R
e
la

ti
v
e
 O

b
je

c
ti
v
e
 V

a
lu

e

FGM

FGM−SHIFT

(a) Synthetic data set (b = 4)

0 50 100 150 200
10

−1

10
0

APG iterations

R
e
la

ti
v
e
 O

b
je

c
ti
v
e
 V

a
lu

e

FGM

FGM−SHIFT

(b) astro-ph

0 50 100 150
10

−1

10
0

APG iterations

R
e
la

ti
v
e
 O

b
je

c
ti
v
e
 V

a
lu

e

FGM

FGM−SHIFT

(c) real-sim

Figure 5: Relative objective values regarding each APG iteration, where b = 4 in the caption
of Figure 5(a) denotes the ground-truth shift of the hyperplane from the origin.

comparable efficiency with PROX-SLR on data sets of low data density. However, on
relative denser data sets, PROX-SLR is much more efficient than l1-SVM, which indicates
that FGM has a better scalability than l1-SVM on dense data.

0 100 200 300 400 500 600

70

75

80

85

90

95

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
y

l1−SVM

l1−SVM−SHIFT
FGM

FGM−SHIFT

(a) Synthetic data set (b = 4)

100 200 300 400 500 600
92

92.5

93

93.5

94

94.5

95

95.5

96

96.5

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
y

l1−SVM

l1−SVM−SHIFT
FGM

FGM−SHIFT

(b) astro-ph

100 200 300 400 500 600
88

89

90

91

92

93

94

95

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
y

l1−SVM

l1−SVM−SHIFT
FGM

FGM−SHIFT

(c) real-sim

Figure 6: Testing accuracy of different methods on the three data data sets.

1404

Towards Ultrahigh Dimensional Feature Selection for Big Data

8.3 Feature Selection with Shift of Hyperplane

In this section, we study the effectiveness of the shift version of FGM (denoted by FGM-
SHIFT) on a synthetic data set and two real-world data sets, namely real-sim and
astro-ph. We follow the data generation in Section 7.1 to generate the synthetic data
set except that we include a shift term b for the hyperplane when generating the output
y. Specifically, we produce y by y = sign(Xw − b1), where b = 4. The shift version of
`1-SVM by LIBlinear (denoted by l1-SVM-SHIFT) is adopted as the baseline. In Figure 5,
we report the relative objective values of FGM and FGM-SHIFT w.r.t. the APG iterations
on three data sets. In Figure 6, we report the testing accuracy versus different number of
selected features.

From Figure 5, FGM-SHIFT indeed achieves much lower objective values than FGM
on the synthetic data set and astro-ph data set, which demonstrates the effectiveness of
FGM-SHIFT. On the real-sim data set, FGM and FGM-SHIFT achieve similar objective
values, which indicates that the shift term on real-sim is not significant. As a result,
FGM-SHIFT may not significantly improve the testing accuracy.

From Figure 6, on the synthetic data set and astro-ph data set, FGM-SHIFT shows
significant better testing accuracy than the baseline methods, which coincides with the
better objective values of FGM-SHIFT in Figure 5. l1-SVM-SHIFT also shows better
testing accuracy than l1-SVM, which verifies the importance of shift consideration for l1-
SVM. However, on the real-sim data set, the methods with shift show similar or even
inferior performances over the methods without shift consideration, which indicates that
the shift of the hyperplane from the origin is not significant on the real-sim data set.
Finally, FGM and FGM-SHIFT are always better than the counterparts of l1-SVM.

8.4 Performance Comparison on Real-World Data Sets

In this section, we conduct three experiments to compare the performance of FGM with
the referred baseline methods on real-world data sets. In Section 8.4.1, we compare the
performance of different methods on six real-world data sets. In Section 8.4.2, we study
the feature selection bias issue. Finally, in Section 8.4.3, we conduct the sensitivity study
of parameters for FGM.

8.4.1 Experimental Results on Real-World Data Sets

On real-world data sets, the number of ground-truth features is unknown. We only report
the testing accuracy versus different number of selected features. For FGM, we fix C = 10,
and vary B ∈ {2, 4, ..., 60} to select different number of features. For the `1-methods, we
watchfully vary the regularization parameter to select different number of features. The
ranges of C and λ1 for `1-methods are listed in Table 1.

The testing accuracy and training time of different methods against the number of
selected features are reported in Figure 7 and Figure 8, respectively. From Figure 7, on all
data sets, FGM (including PROX-FGM, PROX-SLR and MKL-FGM) obtains comparable
or better performance than the `1-methods in terms of testing accuracy within 300 features.
Particularly, FGM shows much better testing accuracy than `1-methods on five of the
studied data sets, namely epsilon, real-sim, rcv1.binary, Arxiv astro-ph and
news20.

1405

Tan, Tsang and Wang

50 100 150 200 250 300

T
e

s
ti
n

g
 A

c
c
u

ra
c
c
y
 (

in
 %

)

l1−SVM l1−LR CD−SVM CD−LR SGD−SLR PROX−FGM PROX−SLR

50 100 150 200 250 300
81

82

83

84

85

86

87

88

89

90

Selected Features

T
e

st
in

g
 A

cc
u

ra
cc

y
(i
n

 %
)

(a) epsilon

50 100 150 200 250 300
80

82

84

86

88

90

92

94

96

Selected Features

T
e

st
in

g
 A

cc
u

ra
cc

y
(i
n

 %
)

(b) real-sim

50 100 150 200 250 300
80

82

84

86

88

90

92

94

96

98

Selected Features

T
e

st
in

g
 A

cc
u

ra
cc

y
(i
n

 %
)

(c) rcv1

50 100 150 200 250 300

66

68

70

72

74

76

Selected Features

T
e

st
in

g
 A

cc
u

ra
cc

y
(i
n

 %
)

(d) news20

0 50 100 150 200 250 300
86

88

90

92

94

96

Selected Features

T
e

st
in

g
 A

cc
u

ra
cc

y
(i
n

 %
)

(e) astro-ph

50 100 150 200 250 300
83

84

85

86

87

88

89

Selected Features

T
e

st
in

g
 A

cc
u

ra
cc

y
(i
n

 %
)

(f) kddb

Figure 7: Testing accuracy on various data sets.

From Figure 8, PROX-FGM and PROX-SLR show competitive training efficiency with
the `1-methods. Particularly, on the large-scale dense epsilon data set, PROX-FGM and
PROX-SLR are much efficient than the LIBlinear `1-solvers. For SGD-SLR, although it
demonstrates comparable training efficiency with PROX-FGM and PROX-SLR, it attains
much worse testing accuracy. In summary, FGM based methods in general obtain better

1406

Towards Ultrahigh Dimensional Feature Selection for Big Data

50 100 150 200 250 300

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

l1−SVM l1−LR CD−SVM CD−LR SGD−SLR PROX−FGM PROX−SLR

0 100 200 300

10
2

10
3

10
4

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

(a) epsilon

0 50 100 150 200 250 300
10

−1

10
0

10
1

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

(b) real-sim

0 50 100 150 200 250 300

10
2

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

(c) rcv1

0 50 100 150 200 250 300

10
0

10
1

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

(d) news20

0 50 100 150 200 250 300

10
0

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

(e) physic

0 50 100 150 200 250 300

10
3

10
4

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

(f) kddb

Figure 8: Training time on various data sets.

50 100 150 200 250 300
84

85

86

87

88

89

90

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

l1−SVM

l1−SVM−debias
PROX−FGM

PROX−FGM−debias

(a) epsilon

50 100 150 200 250 300
85

90

95

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

l1−SVM

l1−SVM−debias
PROX−FGM

PROX−FGM−debias

(b) real-sim

50 100 150 200 250 300
78

80

82

84

86

88

90

92

94

96

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

l1−SVM

l1−SVM−debias
PROX−FGM

PROX−FGM−debias

(c) rcv1

Figure 9: De-biased results on real-world data sets.

feature subsets with competitive training efficiency with the considered baselines on real-
world data sets.

8.4.2 De-biasing Effect of FGM

In this experiment, we demonstrate the de-biasing effect of FGM on three real-world data
sets, namely epsilon, real-sim and rcv1. Here, only the squared hinge loss (namely
PFOX-FGM) is studied. The de-biased results are reported in Figure 9, where PROX-

1407

Tan, Tsang and Wang

FGM-debias and l1-SVM-debias denote the de-biased results of PROX-FGM and l1-SVM,
respectively.

From Figure 9, l1-SVM-debias shows much better results than l1-SVM, indicating that
the feature selection bias issue exists in l1-SVM on these real-world data sets. On the
contrary, PROX-FGM achieves close or even better results compared with its de-biased
counterparts, which verifies that PROX-FGM itself can reduce the feature selection bias.
Moreover, on these data sets, FGM shows better testing accuracy than the de-biased l1-
SVM, namely l1-SVM-debias, which indicates that the features selected by FGM are more
relevant than those obtained by l1-SVM due to the reduction of feature selection bias.

8.4.3 Sensitivity Study of Parameters

In this section, we conduct the sensitivity study of parameters for PROX-FGM. There are
two parameters in FGM, namely the sparsity parameter B and the regularization parameter
C. In this experiments, we study the sensitivity of these two parameters on real-sim and
astro-ph data sets. l1-SVM is adopted as the baseline.

In the first experiment, we study the sensitivity of C. FGM with suitable C can reduce
the feature selection bias. However, C is too large, the over-fitting problem may happen.
To demonstrate this, we test C ∈ {0.5, 5, 50, 500}. The testing accuracy of FGM under
different C’s is reported in Figure 10. From Figure 10, the testing accuracy with small a C
in general is worse than that with a large C. The reason is that, when C is small, feature
selection bias may happen due to the under-fitting problem. However, when C is sufficient
large, increasing C may not necessarily improve the performance. More critically, if C is
too large, the over-fitting problem may happen. For example, on the astro-ph data set,
FGM with C = 500 in general performs much worse than FGM with C = 5 and C = 50.
Another important observation is that, on both data sets, FGM with different C’s generally
performs better than the l1-SVM.

100 200 300 400 500
82

84

86

88

90

92

94

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

l1−SVM

C =0.5
C = 5
C = 50

C = 500

(a) real-sim

100 200 300 400 500
90

91

92

93

94

95

96

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

l1−SVM

C =0.5
C = 5
C = 50

C = 500

(b) astro-ph

Figure 10: Sensitivity of the parameter C for FGM on real-sim and astro-ph data
sets.

Recall that, a large C may lead to slower convergence speed due to the increasing
of the Lipschitz constant of F (ω, b). In practice, we suggest choosing C in the range of

1408

Towards Ultrahigh Dimensional Feature Selection for Big Data

[1, 100]. In Section 8.4, we have set C = 10 for all data sets. Under this setting, FGM has
demonstrated superb performance over the competing methods. On the contrary, choosing
the regularization parameter for `1-methods is more difficult. In other words, FGM is more
convenient to do model selections.

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

B

#
 S

e
le

c
te

d
 F

e
a
tu

re
s

ε
c
 = 0.001

ε
c
 = 0.005

T=10

(a) # Selected Features Versus B

0 200 400 600 800 1000
94

94.5

95

95.5

96

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
y

l1−SVM

ε
c
 = 0.001

ε
c
 = 0.005

T=10

(b) Testing Accuracy Versus B

0 20 40 60 80 100 120
0

5

10

15

20

25

B

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

ε
c
 = 0.001

ε
c
 = 0.005

T=10

(c) Training Time (in seconds)

Figure 11: Sensitivity of the parameter B for FGM on astro-ph data set, where FGM is
stopped once (F (ωt−1, b)− F (ωt, b))/F (ω0, b) ≤ εc.

In the second experiment, we study the sensitivity of parameter B for FGM under two
stopping conditions: (1) the condition (F (ωt−1, b)−F (ωt, b))/F (ω0, b) ≤ εc is achieved; (2)
a maximum T iterations is achieved, where T = 10. Here, we test two values of εc, namely
εc = 0.005 and εc = 0.001. The number of selected features, the testing accuracy and the
training time versus different B are reported in Figure 11(a), 11(b) and 11(c), respectively.

In Figure 11(a), given the number of selected feature # features, the number of required
iterations is about d# features

B e under the first stopping criterion. In this sense, FGM with
εc = 0.001 takes more than 10 iterations to terminate, thus will choose more features. As a
result, it needs more time for the optimization with the same B, as shown in Figure 11(c).
On the contrary, FGM with εc = 0.005 requires fewer number of iterations (smaller than 10
when B > 20). Surprisingly, as shown in Figure 11(b), FGM with fewer iterations (where
εc = 0.005 or T = 10) obtain similar testing accuracy with FGM using εc = 0.001, but has
much better training efficiency. This observation indicates that, we can set a small number

1409

Tan, Tsang and Wang

outer iterations (for example 5 ≤ T ≤ 20) to trade-off the training efficiency and the feature
selection performance.

2 5 10 20 40 80 100 200 400
10

0

10
1

10
2

10
3

B

T
ra

in
in

g
 T

im
e

 (
in

 s
e

c
o

n
d

s
 o

f
lo

g
 s

c
a

le
)

(a) Training Time (in seconds) Versus B

2 5 10 20 40 80 100 200 400
91

92

93

94

95

96

B

T
e

s
ti
n

g
 A

c
c
u

ra
c
c
y
 (

in
 %

)

(b) Testing Accuracy Versus B

Figure 12: Sensitivity of the parameter B for FGM on astro-ph data set. Given a pa-
rameter B, we stop FGM once 400 features are selected.

In the third experiment, we study the influence of the parameter B on the performance
of FGM on the astro-ph data set. For convenience of comparison, we stop FGM once
400 features are selected w.r.t. different B’s.

The training time and testing accuracy w.r.t. different B’s are shown in Figure 12(a)
and 12(b), respectively. From Figure 12(a), choosing a large B in general leads to better
training efficiency. Particularly, FGM with B = 40 is about 200 times faster than FGM
with B = 2. Recall that, active set methods can be considered as special cases of FGM
with B = 1 (Roth and Fischer, 2008; Bach, 2009). Accordingly, we can conclude that, FGM
with a properly selected B can be much faster than active set methods. However, it should
be pointed that, if B is too large, the performance may degrade. For instance, if we choose
B = 400, the testing accuracy dramatically degrades, which indicates that the selected 400
features are not the optimal ones. In summary, choosing a suitable B (e.g. B ≤ 100) can
much improve the efficiency while maintaining promising generalization performance.

8.5 Ultrahigh Dimensional Feature Selection via Nonlinear Feature Mapping

In this experiment, we compare the efficiency of FGM and `1-SVM on nonlinear feature
selections using polynomial feature mappings on two medium dimensional data sets and
a high dimensional data set. The comparison methods are denoted by PROX-PFGM,
PROX-PSLR and l1-PSVM, respectively.12 The details of the studied data sets are shown
in Table 2, where mPoly denotes the dimension of the polynomial mappings and γ is the
polynomial kernel parameter used in this experiment. The mnist38 data set consists of
the digital images of 3 and 8 from the mnist data set.13 For the kddb data set, we only use
the first 106 instances. Finally, we change the parameter C for l1-PSVM to obtain different
number of features.

12. The codes of l1-PSVM are available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
#fast_training_testing_for_degree_2_polynomial_mappings_of_data.

13. The data set is available from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

1410

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#fast_training_ testing_for_degree_2_polynomial_mappings_of_data
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/#fast_training_ testing_for_degree_2_polynomial_mappings_of_data
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Towards Ultrahigh Dimensional Feature Selection for Big Data

Data set m mPoly ntrain ntest γ
mnist38 784 O(105) 40,000 22,581 4.0
real-sim 20,958 O(108) 32,309 40,000 8.0

kddb 4,590,807 O(1014) 1000, 000 748,401 4.0

Table 2: Details of data sets using polynomial feature mappings.

0 50 100 150 200 250 300
10

1

10
2

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

l1−PSVM

PROX−PFGM

(a) mnist38

50 100 150 200 250 300
10

2

10
3

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

l1−PSVM

PROX−PFGM

(b) real-sim

0 50 100 150

10
3

Selected Features

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

PROX−PFGM

PROX−PSLR

(c) kddb

Figure 13: Training time of different methods on nonlinear feature selection using polyno-
mial mappings.

The training time and testing accuracy on different data sets are reported in Figure 13
and 14, respectively. Both PROX-PFGM and l1-PSVM can address the two medium di-
mensional problems. However, PROX-PFGM shows much better efficiency than l1-PSVM.
Moreover, l1-PSVM is infeasible on the kddb data set due to the ultrahigh dimensionality.
Particularly, in l1-PSVM, it needs more than 1TB memory to store a dense w, which is
infeasible for a common PC. Conversely, this difficulty can be effectively addressed by FGM.
Specifically, PROX-PFGM completes the training within 1000 seconds.

50 100 150 200 250 300
94

95

96

97

98

99

100

Selected Features

T
e

s
ti
n

g
 A

c
c
u

ra
c
c
y
 (

in
 %

)

l1−SVM

PROX−FGM
l1−PSVM

PROX−PFGM

(a) mnist38

50 100 150 200 250 300
82

84

86

88

90

92

94

96

Selected Features

T
e

s
ti
n

g
 A

c
c
u

ra
c
c
y
 (

in
 %

)

l1−SVM

PROX−FGM
l1−PSVM

PROX−PFGM

(b) real-sim

20 40 60 80 100 120 140
70

72

74

76

78

80

Selected Features

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

PROX−PFGM

PROX−PSLR

(c) kddb

Figure 14: Testing accuracy of different methods on nonlinear feature selection using poly-
nomial mappings.

From the figures, the testing accuracy on mnist38 data set with polynomial mapping is
much better than that of linear methods, which demonstrate the usefulness of the nonlinear

1411

Tan, Tsang and Wang

feature expansions. On the real-sim and kddb data sets, however, the performance with
polynomial mapping does not show significant improvements. A possible reason is that
these two data sets are linearly separable.

8.6 Experiments for Group Feature Selection

In this section, we study the performance of FGM for group feature selection on a synthetic
data set and two real-world data sets. Here only the logistic loss is studied since it has been
widely used for group feature selections on classification tasks (Roth and Fischer, 2008; Liu
and Ye, 2010). To demonstrate the sensitivity of the parameter C to FGM, we vary C to
select different number of groups under the stopping tolerance εc = 0.001. For each C,
we test B ∈ {2, 5, 8, 10}. The tradeoff parameter λ in SLEP is chosen from [0, 1], where a
larger lambda leads to more sparse solutions (Liu and Ye, 2010). Specifically, we set λ in
[0.002, 0.700] for FISTA and ACTIVE, and set λ in [0.003, 0.1] for BCD.

8.6.1 Synthetic Experiments on Group Feature Selection

In the synthetic experiment, we generate a random matrix X ∈ R4,096×400,000 with each
entry sampled from the i.i.d. Gaussian distribution N (0, 1). After that, we directly group
the 400,000 features into 40,000 groups of equal size (Jenatton et al., 2011b), namely each
feature group contains 10 features. We randomly choose 100 groups of them as the ground-
truth informative groups. To this end, we generate a sparse vector w, where only the entries
of the selected groups are nonzero values sampled from the i.i.d. Gaussian distribution
N (0, 1). Finally, we produce the output labels by y = sign(Xw). We generate 2,000 testing
points in the same manner.

0 20 40 60 80 100 120 140 160

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

ACTIVE FISTA BCD UFO−MKL B = 10 B = 8 B = 5 B = 2

0 50 100 150
60

65

70

75

80

85

90

Selected Groups

T
e
s
ti
n
g
 A

c
c
u
ra

c
c
y
 (

in
 %

)

(a) Testing accuracy

40 60 80 100 120 140 160
40

50

60

70

80

90

100

Selected Groups

#
 R

e
c
o
v
e
re

d
 G

ro
u
p
s

(b) Recovered features

0 50 100 150

10
2

10
3

Selected Groups

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

(c) Training time

Figure 15: Results of group feature selection on the synthetic data set.

The testing accuracy, training time and number of recovered ground-truth groups are
reported in Figure 15(a), 15(b) and 15(c), respectively. Here only the results within 150
groups are included since we only have 100 informative ground-truth groups. From Fig-
ure 15(a), FGM achieves better testing accuracy than FISTA, BCD and UFO-MKL. The
reason is that, FGM can reduce the group feature selection bias. From Figure 15(c), in
general, FGM is much more efficient than FISTA and BCD. Interestingly, the active set
method (denoted by ACTIVE) also shows good testing accuracy compared with FISTA

1412

Towards Ultrahigh Dimensional Feature Selection for Big Data

and BCD, but from Figure 15(c), its efficiency is limited since it only includes one element
per iteration. Accordingly, when selecting a large number of groups on big data, its com-
putational cost becomes unbearable. For UFO-MKL, although its training speed is fast,
its testing accuracy is generally worse than others. Finally, with a fixed B for FGM, the
number of selected groups will increase when C becomes large. This is because, with a
larger C, one imposes more importance on the training errors, more groups are required to
achieve lower empirical errors.

Data set m ntrain
Size of training set (GB)

ntest
Size of testing set(GB)

Linear ADD HIK Linear ADD HIK

aut 20,707 40, 000 0.027 0.320 0.408 22,581 0.016 0.191 0.269
rcv1 47,236 677,399 0.727 8.29 9.700 20,242 0.022 0.256 0.455

Table 3: Details of data sets used for HIK kernel feature expansion and Additive kernel
feature expansion. For HIK kernel feature expansion, each original feature is
represented by a group of 100 features; while for Additive kernel feature expansion,
each original feature is represented by a group of 11 features.

8.6.2 Experiments on Real-World Data Sets

In this section, we study the effectiveness of FGM for group feature selection on two real-
world data sets, namely aut-avn and rcv1. In real-world applications, the group prior
of features comes in different ways. In this paper, we produce the feature groups using
the explicit kernel feature expansions (Wu, 2012; Vedaldi and Zisserman, 2010), where each
original feature is represented by a group of approximated features. Such expansion can
vastly improve the training efficiency of kernel methods while keeping good approximation
performance in many applications, such as in computer vision (Wu, 2012). For simplicity,
we only study the HIK kernel expansion (Wu, 2012) and the additive Gaussian kernel
expansion (Vedaldi and Zisserman, 2010). In the experiments, for fair comparisons, we
pre-generate the explicit features for two data sets. The details of the original data sets
and the expanded data sets are listed in Table 3. We can observe that, after the feature
expansion, the storage requirements dramatically increase.

Figure 16 and 17 report the testing accuracy and training time of different methods,
respectively. From Figure 16, FGM and the active set method achieve superior performance
over FISTA, BCD and UFO-MKL in terms of testing accuracy. Moreover, from Figure 17,
FGM gains much better efficiency than the active set method. It is worth mentioning that,
due to the unbearable storage requirement, the feature expansion cannot be explicitly stored
when dealing with ultrahigh dimensional big data. Accordingly, FISTA and BCD, which
require the explicit presentation of data, cannot work in such cases. On the contrary, the
proposed feature generating paradigm can effectively address this computational issue since
it only involves a sequence of small-scale optimization problems.

1413

Tan, Tsang and Wang

0 20 40 60 80 100 120 140 160

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

ACTIVE FISTA BCD UFO−MKL B = 10 B = 8 B = 5 B = 2

10 20 40 60 80 100
70

75

80

85

90

Selected Groups (in log scale)

T
e

s
ti
n
g

 A
c
c
u
ra

c
c
y
 (

in
 %

)

(a) aut-ADD

10 20 40 60 80 100
78

80

82

84

86

88

90

92

Selected Groups (in log scale)

T
e

s
ti
n
g

 A
c
c
u
ra

c
c
y
 (

in
 %

)

(b) rcv1-ADD

10 20 40 60 80 100
70

75

80

85

90

Selected Groups (in log scale)

T
e

s
ti
n

g
 A

c
c
u

ra
c
c
y
 (

in
 %

)

(c) aut-HIK

10 20 40 60 80 100 140
80

82

84

86

88

90

92

94

Selected Groups (in log scale)

T
e

s
ti
n

g
 A

c
c
u

ra
c
c
y
 (

in
 %

)

(d) rcv1-HIK

Figure 16: Testing accuracy on group feature selection tasks. The groups are generated
by HIK or additive feature mappings. The results of BCD on aut-HIK is not
reported due to the heavy computational cost.

9. Conclusions

In this paper, an adaptive feature scaling (AFS) scheme has been proposed to conduct
feature selection tasks. Specifically, to explicitly control the number features to be selected,
we first introduce a vector d ∈ [0, 1]m to scale the input features, and then impose an `1-
norm constraint ||d||1 ≤ B, where B represents the least number of features to be selected.
Although the resultant problem is non-convex, we can transform it into an equivalent convex
SIP problem. After that, a feature generating machine (FGM) is proposed to solve the
SIP problem, which essentially includes B informative features per iteration and solves a
sequence of much reduced MKL subproblems. The global convergence of FGM has been
verified. Moreover, to make FGM scalable to big data, we propose to solve the primal form of
the MKL subproblem through a modified APG method. Some efficient cache techniques are
also developed to further improve the training efficiency. Finally, FGM has been extended
to perform group feature selection and multiple kernel learning w.r.t. additive kernels.

FGM has two major advantages over the `1-norm methods and other existing feature
selection methods. Firstly, with a separate control of the model complexity and sparsity,

1414

Towards Ultrahigh Dimensional Feature Selection for Big Data

0 20 40 60 80 100 120 140 160

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

ACTIVE FISTA BCD UFO−MKL B = 10 B = 8 B = 5 B = 2

0 20 40 60 80 100 120

10
1

10
2

10
3

Selected Groups

T
ra

in
in

g
 T

im
e

 (
in

 s
e

c
o

n
d
s
)

(a) aut-ADD

0 50 100 150

10
1

10
2

10
3

Selected Groups

T
ra

in
in

g
 T

im
e

 (
in

 s
e

c
o

n
d
s
)

(b) rcv1-ADD

0 20 40 60 80 100

10
2

Selected Groups

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o

n
d

s
)

(c) aut-HIK

0 50 100 150 200

10
2

10
3

Selected Groups

T
ra

in
in

g
 T

im
e
 (

in
 s

e
c
o

n
d

s
)

(d) rcv1-HIK

Figure 17: Training time on group feature selections.

FGM can effectively handle the feature selection bias issue. Secondly, since only a small sub-
set of features or kernels are involved in the subproblem optimization, FGM is particularly
suitable for the ultrahigh dimensional feature selection task on big data, for which most of
the existing methods are infeasible. It is worth mentioning that, unlike most of the existing
methods, FGM avoids the storing of all base kernels or the full explicit feature mappings.
Therefore, it can vastly reduce the unbearable memory demands of MKL with many base
kernels or the nonlinear feature selection with ultrahigh-dimensional feature mappings.

Comprehensive experiments have been conducted to study the performance of the pro-
posed methods on both linear feature selection and group feature selection tasks. Extensive
experiments on synthetic data sets and real-world data sets have demonstrated the superior
performance of FGM over the baseline methods in terms of both training efficiency and
testing accuracy.

In this paper, the proposed methods have tackled big data problems with million training
examples (O(107)) and 100 trillion features (O(1014)). Recall that the subproblems of FGM
can be possibly addressed through SGD methods, we will explore SGD methods in the future
to further improve the training efficiency over bigger data with ultra-large sample size.

1415

Tan, Tsang and Wang

Acknowledgments

We would like to acknowledge the valuable comments and useful suggestions by the Action
Editor and the four anonymous reviewers. We would like to express our gratitude to Dr.
Xinxing Xu and Dr. Shijie Xiao for the proofreading and comments. This research was par-
tially supported by the Nanyang Technological University, the ASTAR Thematic Strategic
Research Programme (TSRP) Grant No. 1121720013, and the Australian Research Council
Future Fellowship FT130100746.

Appendix A. Proof of Theorem 3

Proof The proof parallels the results of Bach et al. (2004), and is based on the conic
duality theory. Let Ω(ω) = 1

2 (‖ωh‖)2 and define the cone QB = {(u, v) ∈ RB+1, ‖u‖2 ≤ v}.
Furthermore, let zh = ‖ωh‖, we have Ω(ω) = 1

2

(∑t
h=1 ‖ωt‖

)2
= 1

2z
2 with z =

∑t
h=1 zh.

Apparently, we have zh ≥ 0 and z ≥ 0. Finally, problem (22) can be transformed to the
following problem:

min
z,ω

1

2
z2 + P (ω, b), s.t.

t∑
h=1

zh ≤ z, (ωt, zh) ∈ QB, (33)

where ω = [ω′1, ...,ω
′
t]
′. The Lagrangian function of (33) regarding the squared hinge loss

can be written as:

L(z,ω, ξ, b,α, γ, ζ,$)

=
1

2
z2 +

C

2

n∑
i=1

ξ2i −
n∑
i=1

αi

(
yi(
∑

ω′hxih − b)− 1 + ξi

)
+ γ(

t∑
h=1

zh − z)−
t∑

h=1

(ζ′hωh +$hzh),

where α, γ, ζt and $t are the Lagrangian dual variables to the corresponding constraints.
The KKT condition can be expressed as

∇zL = z − γ = 0 ⇒ z = γ;
∇zhL = γ −$h = 0 ⇒ $h = γ;
∇ωh

L = −
∑n

i=1 αiyixih − ζh = 0 ⇒ ζh = −
∑n

i=1 αiyixih;
∇ξiL = Cξi − αi = 0 ⇒ ξi = αi

C ;
‖ζh‖ ≤ $h ⇒ ‖ζh‖ ≤ γ;
∇bL = 0 ⇒

∑n
i=1 αiyi = 0.

By substituting the above equations into the Lagrangian function, we have

L(z,ω,α, γ, ζ,$) = −1

2
γ2 − 1

2C
α′α+ 1′α.

1416

Towards Ultrahigh Dimensional Feature Selection for Big Data

Hence the dual problem of the `22,1-regularized problem regarding squared hinge loss can be
written as:

max
γ,α

−1

2
γ2 − 1

2C
α′α+ 1′α

s.t
∥∥∥ n∑
i=1

αiyixih

∥∥∥ ≤ γ, h = 1, · · · , t,

n∑
i=1

αiyi = 0, αi ≥ 0, i = 1, · · · , n.

Let θ = 1
2γ

2 + 1
2Cα

′α − α′1, ωh =
∑n

i=1 αiyixih and f(α,dh) = 1
2‖ωh‖

2 + 1
2Cα

′α − α′1,
we have

max
θ,α

−θ,

s.t f(α,dh) ≤ θ, h = 1, · · · , t,
n∑
i=1

αiyi = 0, αi ≥ 0, i = 1, · · · , n.

which indeed is in the form of problem (16) by letting A be the domain of α. This completes
the proof and brings the connection between the primal and dual formulation.

By defining 0 log(0) = 0, with the similar derivation above, we can obtain the dual form
of (33) regarding the logistic loss. Specifically, the Lagrangian function of (33) w.r.t. the
logistic loss is:

L(z,ω, ξ, b,α, γ, ζ,$)

=
1

2
z2 + C

n∑
i=1

log(1 + exp(ξi))−
n∑
i=1

αi

(
yi(
∑

ω′hxih − b) + ξi

)
+ γ(

t∑
h=1

zh − z)−
t∑

h=1

(ζ′hωh +$hzh),

where α, γ, ζt and $t are the Lagrangian dual variables to the corresponding constraints.
The KKT condition can be expressed as

∇zL = z − γ = 0 ⇒ z = γ;
∇zhL = γ −$h = 0 ⇒ $h = γ;
∇ωh

L = −
∑n

i=1 αiyixih − ζh = 0 ⇒ ζh = −
∑n

i=1 αiyixih;

∇ξiL = C exp(ξi)
1+exp(ξi)

− αi = 0 ⇒ exp(ξi) = αi
C−αi ;

‖ζh‖ ≤ $h ⇒ ‖ζh‖ ≤ γ;
∇bL = 0 ⇒

∑n
i=1 αiyi = 0.

By substituting all the above results into the Lagrangian function, we have

L(z,ω,α, γ, ζ,$) = −1

2
γ2 −

n∑
i=1

(C − αi) log(C − αi)−
n∑
i=1

αi log(αi).

1417

Tan, Tsang and Wang

The dual form of the `22,1-regularized problem regarding logistic loss can be written as:

max
γ,α

−1

2
γ2 −

n∑
i=1

(C − αi) log(C − αi)−
n∑
i=1

αi log(αi)

s.t.
∥∥∥ n∑
i=1

αiyixih

∥∥∥ ≤ γ, h = 1, · · · , t,

n∑
i=1

αiyi = 0, αi ≥ 0, i = 1, · · · , n.

Let θ = 1
2γ

2 +
∑n

i=1(C −αi) log(C − αi) +
∑n

i=1 αi log(αi), ωh =
∑n

i=1 αiyixih, f(α,dh) =
1
2‖ωh‖

2 +
∑n

i=1(C − αi) log(C − αi) +
∑n

i=1 αi log(αi), then we have

max
θ,α

−θ,

s.t. f(α,dh) ≤ θ, h = 1, · · · , t,
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, · · · , n.

Finally, according to the KKT condition, we can easily recover the dual variable α by
αi = C exp(ξi)

1+exp(ξi)
. This completes the proof.

Appendix B. Proof of Theorem 4

The proof parallels the results of Beck and Teboulle (2009), and includes several lemmas.
First of all, we define a one variable function Qτb(v, b, vb) w.r.t. b as

Qτb(v, b, vb) = P (v, vb) + 〈∇bP (v, vb), b− vb〉+
τb
2
‖b− vb‖2, (34)

where we abuse the operators 〈·, ·〉 and ‖ · ‖ for convenience.

Lemma 4 Sτ (u,v) = arg minω Qτ (ω,v, vb) is the minimizer of problem (23) at point v,
if and only if there exists g(Sτ (u,v)) ∈ ∂Ω(Sτ (u,v)), the subgradient of Ω(ω) at Sτ (u,v),
such that

g(Sτ (u,v)) + τ(Sτ (u,v)− v) +∇P (v) = 0.

Proof The proof can be completed by the optimality condition of Qτ (ω,v, vb) w.r.t. ω.

Lemma 5 Let Sτ (u,v) = arg minω Qτ (ω,v, vb) be the minimizer of problem (23) at point
v, and Sτb(b) = arg minbQτb(v, b, vb) be the minimizer of problem (34) at point vb. Due to
the line search in Algorithm 4, we have

F (Sτ (u,v), vb) ≤ Qτ (Sτ (u,v),v, vb).

P (v, Sτb(vb)) ≤ Qτb(v, Sτb(vb), vb).

1418

Towards Ultrahigh Dimensional Feature Selection for Big Data

and

F (Sτ (u,v), Sτb(b)) ≤ Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+
τb
2
‖Sτb(b)− vb||

2.(35)

Furthermore, for any (ω′, b)′ we have

F (ω, b)− F (Sτ (u,v), Sτb(b)) ≥ τb〈Sτb(b)− vb, vb − b〉+
τb
2
‖Sτb(b)− vb||

2

+τ〈Sτ (u,v)− v,v − ω〉+
τ

2
‖Sτ (u,v)− v||2. (36)

Proof We only prove the inequality (35) and (36). First of all, recall that in Algorithm 4,
we update ω and b separately. It follows that

F (Sτ (u,v), Sτb(b))

= Ω(Sτ (u,v)) + P (Sτ (u,v), Sτb(vb))

≤ Ω(Sτ (u,v)) +Qτb(Sτ (u,v), Sτb(b), vb)

= Ω(Sτ (u,v)) + P (Sτ (u,v), vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+
τb
2
‖Sτb(b)− vb||

2

= F (Sτ (u,v), vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+
τb
2
‖Sτb(b)− vb||

2

≤ Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+
τb
2
‖Sτb(b)− vb||

2.

This proves the inequality in (35).
Now we prove the inequality (36). First of all, since both P (ω, b) and Ω(ω) are convex

functions, we have

P (ω, b) ≥ P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (v, vb), b− vb〉,
Ω(ω) ≥ Ω(Sτ (u,v)) + 〈ω − Sτ (u,v), g(Sτ (g,v))〉,

where g(Sτ (u,v)) be the subgradient of Ω(ω) at point Sτ (u,v). Summing up the above
inequalities, we obtain

F (ω, b)

≥ P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (v, vb), b− vb〉+ Ω(Sτ (u,v)) + 〈ω − Sτ (u,v), g(Sτ (g,v))〉,

In addition, we have

F (ω, b)−
(
Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb (b)− vb〉+

τb

2
‖Sτb (b)− vb||2

)
= P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (v, vb), b− vb〉+ Ω(Sτ (u,v)) + 〈ω − Sτ (u,v), g(Sτ (g,v))〉,

−
(
Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb (b)− vb〉+

τb

2
‖Sτb (b)− vb||2

)
= P (v, vb) + 〈∇P (v),ω − v〉+ 〈∇bP (v, vb), b− vb〉+ Ω(Sτ (u,v)) + 〈ω − Sτ (u,v), g(Sτ (g,v))〉,

−
(
P (v, vb) + 〈∇P (v), Sτ (u,v)− v〉+ Ω(Sτ (u,v)) +

τ

2
‖Sτ (u,v)− v||2 + 〈∇bP (v, vb), Sτb (b)− vb〉

+
τb

2
‖Sτb (b)− vb||2

)
= 〈∇P (v) + g(Sτ (g,v)),ω − Sτ (u,v)〉 −

τ

2
‖Sτ (u,v)− v||2

+〈∇bP (v, vb), b− Sτb (b)〉 −
τb

2
‖Sτb (b)− vb||2.

1419

Tan, Tsang and Wang

With the relation Sτb(b) = b− ∇bP (v,vb)
τb

and Lemma 4, we obtain

F (ω, b)− F (Sτ (u,v), Sτb(b))

≥ F (ω, b)−
(
Qτ (Sτ (u,v),v, vb) + 〈∇bP (v, vb), Sτb(b)− vb〉+

τb
2
‖Sτb(b)− vb||

2
)
.

≥ 〈∇P (v) + g(Sτ (g,v)),ω − Sτ (u,v)〉 − τ

2
‖Sτ (u,v)− v||2

+〈∇bP (v, vb), b− Sτb(b)〉 −
τb
2
‖Sτb(b)− vb||

2.

= τ〈v − Sτ (u,v),ω − Sτ (u,v)〉 − τ

2
‖Sτ (u,v)− v||2

+τb〈vb − Sτb(b), b− Sτb(b)〉 −
τb
2
‖Sτb(b)− vb||

2.

= τ〈Sτ (u,v)− v,v − ω〉+
τ

2
‖Sτ (u,v)− v||2

+τb〈Sτb(b)− vb, vb − b〉+
τb
2
‖Sτb(b)− vb||

2.

This completes the proof.

Lemma 6 Let Lbt = σLt, where σ > 0. Furthermore, let us define

µk = F (ωk, bk)− F (ω∗, b∗),

νk = ρkωk − (ρk − 1)ωk−1 − ω∗,
υk = ρkbk − (ρk − 1)bk−1 − b∗,

and then the following relation holds:

2(ρk)2µk

Lk
− (ρk+1)2µk+1

Lk+1
≥
(
||νk+1||2 − ||νk||2

)
+ σ

(
(υk+1)2 − (υk)2

)
.

Proof Note that we have ωk+1 = Sτ (u,vk+1) and bk+1 = Sτb(v
k+1
b). By applying Lemma 5,

let ω = ωk, v = vk+1, τ = Lk+1, b = bk, vb = vk+1
b , τb = Lk+1

b , we have

2(µk − µk+1) ≥ Lk+1
(
||ωk+1 − vk+1||2 + 2〈ωk+1 − vk+1,vk+1 − ωk〉

)
+Lk+1

b

(
||bk+1 − vk+1

b ||2 + 2〈bk+1 − vk+1
b , vk+1

b − bk〉
)
.

Multiplying both sides by (ρk+1 − 1), we obtain

2(ρk+1 − 1)(µk − µk+1) ≥ Lk+1(ρk+1 − 1)
(
||ωk+1 − vk+1||2 + 2〈ωk+1 − vk+1,vk+1 − ωk〉

)
+Lk+1

b (ρk+1 − 1)
(
||bk+1 − vk+1

b ||2 + 2〈bk+1 − vk+1
b , vk+1

b − bk〉
)
.

Also, let ω = ω∗, v = vk+1, τ = Lk+1, b = bk, vb = vk+1
b , and τb = Lk+1

b , we have

−2µk+1 ≥ Lk+1
(
||ωk+1 − vk+1||2 + 2〈ωk+1 − vk+1,vk+1 − ω∗〉

)
+Lk+1

b

(
||bk+1 − vk+1

b ||2 + 2〈bk+1 − vk+1
b , vk+1

b − b∗〉
)
.

Summing up the above two inequalities, we get

2
(
(ρk+1 − 1)µk − ρk+1µk+1

)
≥ Lk+1

(
ρk+1||ωk+1 − vk+1||2 + 2〈ωk+1 − vk+1, ρk+1vk+1 − (ρk+1 − 1)ωk − ω∗〉

)
+Lk+1

b

(
ρk+1||bk+1 − vk+1

b ||2 + 2〈bk+1 − vk+1
b , ρk+1vk+1

b − (ρk+1 − 1)bk − b∗〉
)
.

1420

Towards Ultrahigh Dimensional Feature Selection for Big Data

Multiplying both sides by ρk+1, we obtain

2
(
ρk+1(ρk+1 − 1)µk − (ρk+1)2µk+1

)
≥ Lk+1

(
(ρk+1)2||ωk+1 − vk+1||2 + 2ρk+1〈ωk+1 − vk+1, ρk+1vk+1 − (ρk+1 − 1)ωk − ω∗〉

)
+Lk+1

b

(
(ρk+1)2||bk+1 − vk+1

b ||2 + 2ρk+1〈bk+1 − vk+1
b , ρk+1vk+1

b − (ρk+1 − 1)bk − b∗〉
)
.

Since (ρk)2 = (ρk+1)2 − ρk+1, it follows that

2
(
(ρk)2µk − (ρk+1)2µk+1

)
≥ Lk+1

(
(ρk+1)2||ωk+1 − vk+1||2 + 2ρk+1〈ωk+1 − vk+1, ρk+1vk+1 − (ρk+1 − 1)ωk − ω∗〉

)
+Lk+1

b

(
(ρk+1)2||bk+1 − vk+1

b ||2 + 2ρk+1〈bk+1 − vk+1
b , ρk+1vk+1

b − (ρk+1 − 1)bk − b∗〉
)
.

By applying the equality ||u− v||2 + 2〈u− v,v −w〉 = ||u−w||2 − ||v −w||2, we have

2
(
(ρk)2µk − (ρk+1)2µk+1

)
≥ Lk+1

(
||ρk+1ωk+1 − (ρk+1 − 1)ωk − ω∗||2 − ||ρk+1vk+1 − (ρk+1 − 1)ωk − ω∗||2

)
+Lk+1

b

(
||ρk+1bk+1 − (ρk+1 − 1)bk − b∗||2 − ||ρk+1vk+1

b − (ρk+1 − 1)bk − b∗||2
)
.

With ρk+1vk+1 = ρk+1ωk + (ρk − 1)(ωk −ωk−1), ρk+1vk+1
b = ρk+1bk + (ρk − 1)(bk − bk−1)

and the definition of νk, it follows that

2
(
(ρk)2µk − (ρk+1)2µk+1

)
≥ Lk+1

(
||νk+1||2 − ||νk||2

)
+ Lk+1

b

(
(υk+1)2 − (υk)2

)
.

Assuming that there exists a σ > 0 such that Lk+1
b = σLk+1, we get

2
(
(ρk)2µk − (ρk+1)2µk+1

)
Lk+1

≥
(
||νk+1||2 − ||νk||2

)
+ σ

(
(υk+1)2 − (υk)2

)
.

Since Lk+1 ≥ Lk and Lk+1
b ≥ Lkb , we have

2(ρk)2µk

Lk
− (ρk+1)2µk+1

Lk+1
≥
(
||νk+1||2 − ||νk||2

)
+ σ

(
(υk+1)2 − (υk)2

)
.

This completes the proof.

Finally, with Lemma 6, following the proof of Theorem 4.4 in (Beck and Teboulle, 2009),
we have

F (ωk, bk)− F (ω∗, b∗) ≤ 2Lk||ω0 − ω∗||2

(k + 1)2
+

2σLk(b0 − b∗)2

(k + 1)2
≤ 2Lt||ω0 − ω∗||2

η(k + 1)2
+

2Lbt(b
0 − b∗)2

η(k + 1)2
.

This completes the proof.

Appendix C: Linear Convergence of Algorithm 4 for the Logistic Loss

In Algorithm 4, by fixing %k = 1, it is reduced to the proximal gradient method (Nesterov,
2007), and it attains a linear convergence rate for the logistic loss, if X satisfies the following
Restricted Eigenvalue Condition (Zhang, 2010b):

1421

Tan, Tsang and Wang

Definition 2 (Zhang, 2010b) Given an integer κ > 0, a design matrix X is said to satisfy
the Restricted Eigenvalue Condition at sparsity level κ, if there exists positive constants
γ−(X, κ) and γ+(X, κ) such that

γ−(X, κ) = inf

{
ω>X>Xω

ω>ω
,ω 6= 0, ||ω||0 ≤ κ

}
,

γ+(X, κ) = sup

{
ω>X>Xω

ω>ω
,ω 6= 0, ||ω||0 ≤ κ

}
.

Remark 7 For the logistic loss, if γ−(X, tB) ≥ τ > 0, Algorithm 4 with %k = 1 attains a
linear convergence rate.

Proof Let ξi = −yi(
∑t

h=1ω
′
hxih − b), the Hessian matrix for the logistic loss can be

calculated by (Yuan et al., 2011):

∇2P (ω) = CX′∆X,

where ∆ is a diagonal matrix with diagonal element ∆i,i = 1
1+exp(ξi)

(1 − 1
1+exp(ξi)

) > 0.

Apparently, ∇2P (ω, b) is upper bounded on a compact set due to the existence of γ+(X, κ).
Let
√

∆ be the square root of ∆. Then if γ−(X, tB) ≥ τ > 0, we have γ−(
√

∆X, tB) > 0
due to ∆i,i > 0. In other words, the logistic loss is strongly convex if γ−(X, tB) > 0.
Accordingly, the linear convergence rate can be achieved (Nesterov, 2007).

Appendix D: Proof of Proposition 3

Proof Proof of argument (I): We prove it by contradiction. Firstly, suppose d∗ is a
minimizer and there exists an l ∈ {1 . . .m}, such that wl = 0 but d∗l > 0. Let 0 < ε < d∗l ,

and choose one j ∈ {1 . . .m} where j 6= l, such that |wj | > 0. Define new solution d̂ in the
following way:

d̂j = d∗j + d∗l − ε, d̂l = ε, and,

d̂k = d∗k, ∀k ∈ {1 . . .m}\{j, l}.

Then it is easy to check that
m∑
j=1

d̂j =
m∑
j=1

d∗j ≤ B.

In other words, d̂ is also a feasible point. However, since d̂j = d∗j + d∗l − ε ≥ d∗j , it follows
that

w2
j

d̂j
<
w2
j

d∗j
.

Therefore, we have
m∑
j=1

w2
j

d̂j
<

m∑
j=1

w2
j

d∗j
,

which contradict the assumption that d∗ is the minimizer.

1422

Towards Ultrahigh Dimensional Feature Selection for Big Data

On the other hand, if |wj | > 0 and d∗j = 0, by the definition,
x2j
0 =∞. As we expect to

get the finite minimum, so if |wj | > 0, we have d∗j > 0.
(II): First of all, the argument holds trivially when ‖w‖0 = κ ≤ B.
If ‖w‖0 = κ > B, without loss of generality, we assume |wj | > 0 for the first κ elements.

From the argument (I), we have 1 ≥ dj > 0 for j ∈ {1 . . . κ} and
∑κ

j=1 dj ≤ B. Note that∑κ
j=1

w2
j

dj
is convex regarding d. The minimization problem can be written as:

min
d

κ∑
j=1

w2
j

dj
, s.t.

κ∑
j=1

dj ≤ B, dj > 0, 1− dj ≥ 0. (37)

The KKT condition of this problem can be written as:

−w2
j/d

2
j + γ − ζj + νj = 0,

ζjdj = 0,

νj(1− dj) = 0, (38)

γ(B −
κ∑
j=1

dj) = 0, (39)

γ ≥ 0, ζj ≥ 0, νj ≥ 0,∀ j ∈ {1 . . . κ},

where γ, ζj and νj are the dual variables for the constraints
∑κ

j=1 dj ≤ B, dj > 0 and
1− dj ≥ 0 respectively. For those dj > 0, we have ζj = 0 for ∀j ∈ {1 . . . κ} due to the KKT
condition. Accordingly, by the first equality in KKT condition, we must have

dj = |wj |/
√
γ + νj , ∀j ∈ {1 . . . κ}.

Moreover, since
∑κ

j=1 dj ≤ B < κ, there must exist some dj < 1 with νj = 0 (otherwise∑κ
j=1 dj will be greater than B). Here νj = 0 because of the condition (38). This observation

implies that γ 6= 0 since each dj is bounded. Since dj ≤ 1, the condition
√
γ + νj ≥

max{|wj |} must hold for ∀j ∈ {1 . . . κ}. Furthermore, by the complementary condition
(39), we must have

κ∑
j=1

dj = B.

By substituting dj = |wj |/
√
γ + νj back to the objective function of (37), it becomes

κ∑
j=1

|wj |
√
γ + νj .

To get the minimum of the above function, we are required to set the nonnegative νj as
small as possible.

Now we complete the proof with the assumption ‖w‖1/max{|wj |} ≥ B. When setting

νj = 0, we get dj =
|wj |√
γ and

∑κ
j=1

|wj |√
γ = B. It is easy to check that

√
γ = ‖w‖1/B ≥

max{|wj |} and dj = B|wj |/‖w‖1 ≤ 1, which satisfy the KKT condition. Therefore, the
above d is an optimal solution. This completes the proof of the argument (II).

1423

Tan, Tsang and Wang

(III): With the results of (II), if κ ≤ B, we have
∑m

j=1

w2
j

dj
=
∑κ

j=1w
2
j . Accordingly, we

have ‖w‖B = ‖w‖2. And if κ > B and ‖w‖1/max{wj} ≥ B, we have

∑ w2
j

dj
=
∑ |wj |

dj
|wj | =

‖w‖1
B

∑
|wj | =

(‖w‖1)2

B
.

Hence we have ‖w‖B =

√∑ w2
j

dj
= ‖w‖1√

B
. This completes the proof.

References

F. R. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsity-
inducing norms. In Optimization for Machine Learning. S. Sra, S. Nowozin, S. J. Wright.,
2011.

F. R. Bach. High-dimensional non-linear variable selection through hierarchical kernel learn-
ing. Technical report, 2009.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality,
and the SMO algorithm. In ICML, 2004.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. on Imaging Sciences, 2(1):183–202, 2009.

B . Blum, M. I. Jordan, D. E. Kim, R. Das, P. Bradley, and D. Baker. Feature selection
methods for improving protein structure prediction with rosetta. In NIPS, 2007.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and
support vector machines. In ICML, 1998.

A. B. Chan, N. Vasconcelos, and G. R. G. Lanckriet. Direct convex relaxations of sparse
SVM. In ICML, 2007.

Y. W. Chang, C. J. Hsieh, K. W. Chang, M. Ringgaard, and C. J. Lin. Training and testing
low-degree polynomial data mappings via linear SVM. JMLR, 11:1471–1490, 2010.

O. Chapelle and S. S. Keerthi. Multi-class feature selection with support vector machines.
In Proceedings of the American Statistical Association, 2008.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Mach. Learn., 46(1):131–159, 2002.

J. Chen and J. Ye. Training SVM with indefinite kernels. In ICML, 2008.

A. Dasgupta, P. Drineas, and B. Harb. Feature selection methods for text classification. In
KDD, 2007.

J. Deng, A. C. Berg, and F. Li. Hierarchical semantic indexing for large scale image retrieval.
In CVPR, pages 785–792. IEEE, 2011.

1424

Towards Ultrahigh Dimensional Feature Selection for Big Data

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting.
JMLR, 10:2899–2934, 2009.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd ed.). Hoboken, NJ:
Wiley-Interscience, 2000.

R. Fan, P. Chen, and C.-J. Lin. Working set selection using second order information for
training SVM. JMLR, 6:1889–1918, 2005.

M Figueiredo, R. Nowak, and S. Wright. Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign.
Proces.: Special Issue on Convex Optimization Methods for Signal Processing, 1(4):586–
597, 2007.

G. M. Fung and O. L. Mangasarian. A feature selection newton method for support vector
machine classification. Comput. Optim. Appl., 28:185–202, 2004.

P. Gehler and S. Nowozin. Infinite kernel learning. Technical report, 2008.

T. R. Golub, D. K. Slonim, and P. Tamayo. Molecular classification of cancer: class dis-
covery and class prediction by gene expression monitoring. Science, 7:286–531, 1999.

Y. Grandvalet and S. Canu. Adaptive scaling for feature selection in svms. In NIPS, 2002.

Q. Gu, Z. Li, and J. Han. Correlated multi-label feature selection. In CIKM, 2011a.

Q. Gu, Z. Li, and J. Han. Generalized fisher score for feature selection. In UAI, 2011b.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. JMLR, 3:
1157–1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification
using support vector machines. Mach. Learn., 46:389–422, 2002.

C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear svm. In ICML, 2008.

A. Jain, S.V.N. Vishwanathan, and M. Varma. SPF-GMKL: generalized multiple kernel
learning with a million kernels. In KDD, 2012.

R. Jenatton, J. Audibert, and F. Bach. Structured variable selection with sparsity-inducing
norms. Technical report, 2011a.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical
sparse coding. JMLR, 12:2297–2334, 2011b.

T. Joachims. Training linear SVMs in linear time. In KDD, 2006.

J. E. Kelley. The cutting plane method for solving convex programs. J. Soc. Ind. Appl.
Math., 8(4):703 –712, 1960.

1425

Tan, Tsang and Wang

S. Kim and E. P. Xing. Tree-guided group lasso for multi-response regression with structured
sparsity, with applications to eQTL mapping. Ann. Statist., Forthcoming, 2012.

S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with structured
sparsity. In ICML 2010, 2010.

S. Kim and S. Boyd. On general minimax theorems. Pacific J. Math., 1958, 8(1):171–176,
1958.

M. Kloft and G. Blanchard. On the convergence rate of `p-norm multiple kernel learning.
JMLR, 13:2465–2501, 2012.

M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K. Müller, and A. Zien. Efficient and
accurate `p-norm multiple kernel learning. NIPS, 22(22):997–1005, 2009.

M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. Lp-norm multiple kernel learning. JMLR,
12:953–997, 2011.

R. Kohavi and G. John. Wrappers for feature subset selection. Artif. Intell., 97:273–324,
1997.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning
the kernel matrix with semidefinite programming. JMLR, 5:27–72, 2004.

J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. JMLR,
10:777–801, 2009.

P. Li, A. Shrivastava, J. Moore, and A. C. Konig. Hashing algorithms for large-scale learning.
In NIPS, 2011.

P. Li, A. Owen, and C. H. Zhang. One permutation hashing. In NIPS, 2012.

D. Lin, D. P. Foster, and L. H. Ungar. A risk ratio comparison of `0 and `1 penalized
regressions. Technical report, University of Pennsylvania, 2010.

J. Liu and J. Ye. Efficient l1/lq norm regularization. Technical report, 2010.

A. C. Lozano, G. Swirszcz, and N. Abe. Group orthogonal matching pursuit for logistic
regression. In AISTATS, 2011.

S. Maji and A. C. Berg. Max-margin additive classifiers for detection. In ICCV, 2009.

Q. Mao and I. W. Tsang. A feature selection method for multivariate performance measures.
IEEE Trans. Pattern Anal. Mach., 35(9):2051–2063, 2013.

A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing.
Online multiple kernel learning for structured prediction. Technical report, 2010.

L. Meier, S. Van De Geer, and P. Bühlmann. The group lasso for logistic regression. J.
Roy. Stat. Soc. B., 70(1):53–71, 2008.

1426

Towards Ultrahigh Dimensional Feature Selection for Big Data

A. Mutapcic and S. Boyd. Cutting-set methods for robust convex optimization with pes-
simizing oracles. Optim. Method Softw., 24(3):381?06, 2009.

A. Nedic and A. Ozdaglar. Subgradient methods for saddle-point problems. J. Optimiz.
Theory App., 142(1):205–228, 2009.

A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM J. Opt., 15:229–251, 2005.

Y. Nesterov. Gradient methods for minimizing composite objective function. Technical
report, 2007.

A. Y. Ng. On feature selection: Learning with exponentially many irrelevant features as
training examples. In ICML, 1998.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition,
2006.

F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning.
In ICML, 2011.

E. Y. Pee and J. O. Royset. On solving large-scale finite minimax problems using exponential
smoothing. J. Optimiz. Theory App., online, 2010.

Z. Qin, K. Scheinberg, and D. Goldfarb. Efficient block-coordinate descent algorithms for
the group lasso. Technical report, 2010.

A. Rakotomamonjy. Variable selection using svm-based criteria. JMLR, 3:1357–1370, 2003.

A. Rakotomamonjy, F. R. Bach, Y. Grandvalet, and S. Canu SimpleMKL. JMLR, 9:
2491–2521, 2008.

M. Rastegari, C. Fang, and L. Torresani. Scalable object-class retrieval with approximate
and top-ranking. In ICCV, 2011.

V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of
solutions and efficient algorithms. In ICML, 2008.

D. Sculley, G. M. Wachman, and C. E. Brodley. Spam filtering using inexact string matching
in explicit feature space with on-line linear classifiers. In The Fifteenth Text REtrieval
Conference (TREC) Proceedings, 2006.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. JMLR, 14:567–599, 2013.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large Scale Multiple Kernel
Learning. JMLR, 7:1531–1565, 2006.

S. Sonnenburg, G. Rätsch, and K. Rieck. Large scale learning with string kernels. MIT
Press, 2007.

1427

Tan, Tsang and Wang

M. Tan, I. W. Tsang, and L. Wang. Learning sparse svm for feature selection on very high
dimensional data sets. In ICML, 2010.

M. Tan, I. W. Tsang, and L. Wang. Minimax sparse logistic regression for very high-
dimensional feature selection. IEEE Trans. Neural Netw. Learning Syst., 24(10):1609–
1622, 2013.

A. Tewari, P. Ravikumar, and I. S. Dhillon. Greedy algorithms for structurally constrained
high dimensional problems. In NIPS, 2011.

K. C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm
regularized least squares problems. Technical report, 2009.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimization.
Technical report, University of Washington, 2008.

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable mini-
mization. J. Optimiz. Theory App., 109(3):475–494, 2001.

M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In ICML,
2009.

A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In CVPR,
2010.

S. V. N. Vishwanathan, Z. Sun, N. Theera-Ampornpunt, and M. Varma. Multiple kernel
learning and the SMO algorithm. In NIPS, December 2010.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for
large scale multitask learning. In ICML, 2009.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature
selection for svms. In NIPS, 2000.

J. Wu. Efficient hik svm learning for image classification. IEEE Trans. Image Process,
21(10):4442–4453, 2012.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
In NIPS, 2009.

Z. Xu, R. Jin, Ye J., Michael R. Lyu, and King I. Non-monotonic feature selection. In
ICML, 2009a.

Z. Xu, R. Jin, I. King, and M.R. Lyu. An extended level method for efficient multiple kernel
learning. In NIPS. 2009b.

Z. Xu, R. Jin, H. Yang, I. King, and M. R. Lyu. Simple and efficient multiple kernel learning
by group lasso. In ICML, 2010.

G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin. A comparison of optimization
methods and software for large-scale l1-regularized linear classification. JMLR, 11:3183–
3236, 2010.

1428

Towards Ultrahigh Dimensional Feature Selection for Big Data

G. X. Yuan, C. H. Ho, and C. J. Lin. An improved GLMNET for l1-regularized logistic
regression and support vector machines. JMLR, 13:1999–2030, 2012.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
J. Roy. Stat. Soc. B., 68(1):49–67, 2006.

C. H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Ann.
Statist., 38(2):894–942, 2010a.

C. H. Zhang and J. Huang. The sparsity and bias of the lasso selection in high-dimensional
linear regression. Ann. Statist., 36(4):1567–1594, 2008.

D. Zhang and W. S. Lee. Extracting key-substring-group features for text classification. In
KDD, 2006.

T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. JMLR, 11:
1081–1107, 2010b.

Z. Zhao and H. Liu. Spectral feature selection for supervised and unsupervised learning. In
ICML, 2007.

J. Zhu, S. Rossett, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In NIPS,
2003.

1429

	Introduction
	Feature Selection Through Adaptive Feature Scaling
	A New AFS Scheme for Feature Selection
	AFS for Group Feature Selection
	Group Feature Selection with Complex Structures

	Feature Generating Machine
	Optimization Strategies by Feature Generation
	Convergence Analysis

	Efficient Worst-Case Analysis
	Worst-Case Analysis for Linear Feature Selection
	Worst-Case Analysis for Group Feature Selection
	Worst-Case Analysis for Groups with Complex Structures

	Efficient Subproblem Optimization
	Subproblem Optimization via MKL
	Subproblem Optimization in the Primal
	De-biasing of FGM
	Stopping Conditions
	Stopping Conditions for Outer iterations
	Stopping Conditions for Inner iterations

	Cache for Efficient Implementations

	Nonlinear Feature Selection Through Kernels
	Worst Case Analysis for Additive Kernels
	Worst-Case Analysis for Ultrahigh Dimensional Big Data

	Connections to Related Studies
	Relation to 1-regularization
	Connection to Existing AFS Schemes
	Connection to Multiple Kernel Learning
	Connection to Active Set Methods

	Experiments
	Data Sets and General Experimental Settings
	Synthetic Experiments on Linear Feature Selection
	Convergence Comparison of Exact and Inexact FGM
	Experiments on Small-Scale Synthetic Dataset
	Experiments on Large-scale Synthetic Dataset

	Feature Selection with Shift of Hyperplane
	Performance Comparison on Real-World Data Sets
	Experimental Results on Real-World Data Sets
	De-biasing Effect of FGM
	Sensitivity Study of Parameters

	Ultrahigh Dimensional Feature Selection via Nonlinear Feature Mapping
	Experiments for Group Feature Selection
	Synthetic Experiments on Group Feature Selection
	Experiments on Real-World Data Sets

	Conclusions

