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Abstract—Multicasting is emerging as an efficient method to
deliver the same data to a group of users thereby saving network
resources. The fairness between different multicast groups is
an important quality of service (QoS) indication, but it has
not been given significant attention. In this paper, we propose
a normalized signal to noise ratio-based fair scheduling for
multiple multicast groups in multicast systems. The system
fairness and capacity are then analyzed and compared for both
fair scheduling and greedy scheduling over independent but
non-identically distributed (i.n.d.) fading channels. Closed-form
expressions in terms of the system spectral efficiency, outage
probability, system fairness and average bit error rate are derived
in an uncoded/coded M-ary quadrature amplitude modulation-
based adaptive transmission multicast system over i.n.d. Rayleigh
fading channels. Numerical results show that compared with
greedy scheduling, fair scheduling achieves considerably high
fairness at the cost of slight system capacity loss regardless of
the number of multicast groups. Our focus is on the physical
layer without rate loss, but we also briefly discuss applications
of the proposed scheduling in a cross-layer design subject to the
loss rate QoS constraint.

Index Terms—Multicast systems, fair scheduling, greedy
scheduling, system capacity, system fairness, adaptive transmis-
sion, non-identically distributed fading channels.

I. INTRODUCTION

In recent years, overwhelming demands and requirements
for multimedia services such as mobile advertisements, stock
prices, weather updates and multimedia entertainments are
becoming urgent issues with the increasing data rate, power
consumption and the number of supported mobile stations
(MSs). Taking advantage of multicast to simultaneously trans-
mit the same message via a single point-to-multipoint link
instead of many point-to-point (unicast) links [1], [2], the
limited system resources in the networks can be efficiently
utilized. Meanwhile, the transmission power consumption at
the base station (BS) can be minimized. Therefore, wireless
multicast transmission has been widely adopted in 4G wireless
communications standards (e.g., 3GPP LTE [3] and IEEE
802.16 [4]) as Evolved Multimedia Broadcast and Multicast
Services (eMBMS) due to its higher spectral and power
efficiencies, where the same data transmission across groups
of adjacent cells is scheduled at the same carrier frequency
synchronously. It greatly saves the radio resources to provide
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service towards other in-demand MSs. Currently, multicast
scheduling has been investigated and considered as one at-
tractive solution in the emerging 5G wireless networks [5],
[6] to improve the network throughput, energy efficiency and
reliability.

There has been much research on unicast scheduling in
wireless networks [7], [8]. The basic idea for unicast is
that, before downlink data transmission, each MS feeds a
specified message indicating its maximum achievable rate back
to the BS. Based on the feedback messages from different
MSs, the BS determines the scheduled MS, and selects an
appropriate rate for data transmission, where it is a point-to-
point transmission. On the other hand, in multicast the BS
transmits to one multicast group of MSs instead of a specified
MS, where the transmit rate is chosen according to different
schedulings. The major problem for multicast scheduling is
the mismatch between the scheduling rate and the maximum
achievable rate for each MS within a multicast group. For
example, if the BS transmits at a higher rate than the maximum
rate that some MSs can support, these MSs are incapable
of decoding, thus leading to rate loss. Conversely, if the BS
transmits at a lower rate requested by some MSs with worse
channel condition, the data rate of other MSs with better
channel condition will be limited. Therefore, the intractable
problem of multicast is that, the BS schedules which group
and at what rate to transmit.

Traditionally, by exploiting the characteristics of the time-
varying channels in a wireless unicast system, the BS selects
the MS with the best channel quality for data transmission to
maximize system capacity, which is called greedy scheduling
[9]. In [10], the system capacity performance of adaptive
modulation with greedy scheduling was analyzed over in-
dependent but non-identically distributed (i.n.d.) Nakagami
fading channels. In [11], [12], the fairness issue was taken into
account, and capacity and fairness trade-off performance based
on greedy scheduling and proportional fair (PF) scheduling
was studied over i.n.d. Rayleigh fading channels. Greedy
scheduling maximizes system capacity without any fairness
consideration, whereas proportional fair scheduling [13], [14]
achieves fairness among all MSs at the expense of system
capacity loss. Recently, a proportional-fair resource allocation
problem for downlink coordinated multi-point transmission
systems is studied in [15], where multiple coordinated BSs
serve their own MSs simultaneously. A parallel successive
convex approximation-based algorithm is introduced in this
work, which enables the proportional-fair metric maximization
by updating optimization variables in parallel. However, this
algorithm needs to iteratively obtain power allocation and



2

transmitter precoder matrices to reduce the inter-cell interfer-
ence, leading to large computational complexity. The work in
[10]–[15] generally aims at the design of unicast systems.

Motivated by the greedy scheduling [9] applied in unicast
systems, a greedy scheduling based scheme [16] was proposed
for a wireless multicast system, where the BS needs to select
the multicast group with the best channel quality for data
transmission. The MSs in the same group are interested in
the same information stream from the BS, and the affordable
data rate is determined by the minimum received signal to
noise ratio (SNR) among the MSs in a group. Therefore, the
objective of greedy scheduling is to maximize the minimum
received SNR of the selected group. In [16], multicast system
capacity performance was evaluated only for greedy schedul-
ing, where all MSs’ channels were assumed to follow inde-
pendent and identically distributed (i.i.d.) fading. However,
in a practical wireless environment where the channels often
follow i.n.d. fading, fairness issue among different groups
should be appropriately treated since the groups close to the
BS (i.e., equivalently with large average received SNR) tend
to monopolize the system resource. An opportunistic multicast
scheduling with resource fairness constraints was proposed in
[17], where the system throughput was maximized by selecting
the optimum transmission rate for each group based on the
current channel condition and average received throughput of
each MS, thereby achieving tradeoff between throughput and
fairness.

Besides, the authors in [18] proposed a cross-layer design
based modelling for QoS-driven multimedia multicast service
to efficiently satisfy the diverse QoS requirement. The basic
idea is to achieve high system throughput subject to QoS
constraint from upper layer protocol. Particularly at the phys-
ical layer, a dynamic rate adaptation scheme was presented
to optimize the average throughput subject to the loss rate,
and the scenarios with i.i.d and i.n.d fading channels were
investigated, respectively. However, this scheduling is only
applicable for single multicast group, and hence multiple-
multicast-group diversity and fairness among different groups
are not considered.

Our main contributions in this paper are summarized as
follows.

• We propose a normalized SNR-based fair scheduling for
multiple multicast groups in multicast systems, where
the BS selects the group with the best “normalized”
channel (i.e., the channel with the largest received SNR
compared with the group’s average received SNR), rather
than selecting the group with the “absolute” best channel
quality.

• We evaluate and compare the system capacity and fair-
ness performance of the multicast system with fair and
greedy schedulings respectively over i.n.d. fading chan-
nels, and particularly present closed-form system capac-
ity and fairness expressions over i.n.d. Rayleigh fading
channels, which are verified by numerical results.

• By applying the adaptive transmission in multicast sys-
tems with fair and greedy schedulings, we study the per-
formance of constant-power variable-rate uncoded/coded

M-ary quadrature amplitude modulation (M-QAM) in
terms of the system spectral efficiency, outage probability,
system fairness and average bit error rate (BER). Numer-
ical and simulation results show that the proposed fair
scheduling maintains the fairness at the expense of some
performance loss in comparison with greedy scheduling,
which provides a tradeoff between system capacity and
fairness.

• Inspired by [18] that only considers multicast systems
with single multicast group, we further present a general
framework based on the proposed scheduling for mul-
ticast systems with multiple multicast groups, where a
cross-layer design subject to the loss rate QoS constraint
specified from upper-layer protocol is considered. Two
rate selection schedulings (fixed scheduling and dynamic
scheduling) provide effective approaches to improve the
system fairness, but also maximize the system capacity
with each MS’s loss rate constraint.

The remainder of this paper is organized as follows. Section
II describes the fair and greedy schedulings-based multicast
system models and assumptions. Section III presents the per-
formance analysis of the proposed scheduling in terms of sys-
tem capacity and fairness under i.n.d. fading channels. Section
IV applies the proposed scheduling in an adaptive transmission
based multicast system, then gives closed-form expressions
for some performance measures over i.n.d. Rayleigh fading
channels. Section V applies the proposed scheduling in a
cross-layer design subject to the loss rate QoS constraint and
presents two feasible schedulings. In Section VI, numerical
and simulation results demonstrating the performance of the
proposed scheduling are given, before concluding the paper in
Section VII.

II. SYSTEM MODEL

A. Downlink Transmission and Channel Models

We consider a downlink single-cell interference-free multi-
cast network consisting of a BS and K active MSs subdivided
into M multicast groups. Let Km be the number of MSs in
group m, m = 1, . . . ,M , and we have

∑M
m=1Km = K. In

each scheduling, the BS only serves one selected multicast
group for data transmission during any given slot. We make
the following assumptions [16], [19]:

(1) All active MSs are ideally synchronized to the BS, and
the feedback channel state information (CSI) can be always
received without delay and error.

(2) The data for each multicast group are infinitely back-
logged, therefore the queueing dynamics is not considered.

(3) The channel is frequency flat fading, blockwise time
invariant for each slot, and changes independently from slot
to slot. This allows adaptive modulation and coding (AMC)
to adjust on a frame-by-frame basis.

(4) The average transmit powers of the transmitted signals
{xm,k} from the BS to MS k in group m are normalized
(i.e., E

{
|xm,k|2

}
= 1). The noise at the receiver is an i.i.d.

complex Gaussian noise with zero mean and σ2 variance.
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(5) The fading channel gains
{
|hm,k|2

}
from the BS to MS

k in group m are i.n.d.. Therefore, the instantaneous received
SNRs {γm,k} are also i.n.d..

In this paper, we adopt the Rayleigh fading model to
statistically characterize small scale fading channels for the
simplicity in the performance analysis, but it can be extended
to practical wireless fading channel models including path
loss and shadowing effects [10]. As a result, the instantaneous
received SNRs {γm,k} follow exponential distribution with the
probability density function (pdf) and cumulative distribution
function (cdf) given by

fγm,k(x) =
1

γ̄m,k
exp

(
− x

γ̄m,k

)
, x ≥ 0 (1)

and

Fγm,k(x) = 1− exp

(
− x

γ̄m,k

)
, x ≥ 0 (2)

where γ̄m,k is the average received SNR of MS k in group
m.

B. Fair and Greedy Schedulings
The total scheduling process for multicast systems can be

described as follows. The BS first sends a multicast message1

to all multicast group MSs. Then, all active MSs synchronize
with the BS and estimate their channel gains using the
multicast message. The MSs feed back their CSI (e.g., the
received SNR or alternative channel quality indicator (CQI))
to the BS. We define γm = min

k=1,...,Km
{γm,k} as the received

SNR of group m. The achievable capacity Cm for group m is
subject to the minimum capacity link between the BS and the
MSs in that group, i.e., Cm = log2(1+γm). Based on different
schedulings, the BS selects the group with the maximum
scheduling metrics among all groups (i.e., max

m=1,...,M
{Γm}) to

schedule data transmission. The scheduler selects the multicast
group with the largest value of

Γm =

{
γm/γ̄m, fair scheduling
γm, greedy scheduling (3)

where γ̄m is the short-term average received SNR of group m.
It is worth noting that γ̄m for multicast systems defined later is
different from that in unicast systems [13]. In unicast systems,
the short-term average received SNR is directed against each
individual MS, but in multicast systems, it is related to the
received SNR distributions of all MSs in a group.

Greedy scheduling is used to maximize system capacity
by exploiting the multicast groups’ diversity gain. However,
some multicast groups that are closer to the BS in average
than the others (or equivalently, some multicast groups have
relatively higher average received SNRs.) will dominate the
channel access with the greedy scheduling, thereby biasing
against the groups with lower average received SNRs. To solve
the unfairness issue, fair scheduling is taken into account to
potentially achieve fairness among all multicast groups at the
expense of system capacity loss.

1The multicast message carries system configuration information (e.g., the
multicast groups’ identities).

C. Fairness Measure

In a similar manner, we apply the average system fairness
[20] to measure fairness in wireless multicast systems ex-
ploiting multicast groups’ diversity. This fairness measure has
extensively been used in [11], [12] to describe the fairness
characteristics in wireless unicast systems exploiting multi-
user diversity.

It is assumed that all groups are equally important and have
the same quality of service requirements. The self-fairness of
group m is defined as [12], [20]

ζm =
− log(Pm)

log(M)
, (4)

where Pm is the proportion of resources allocated to group m,
or equivalently the probability of group m being selected, and
log(M) is a normalization factor. The average system fairness
is then defined as [12], [20]

ζ =
M∑
m=1

Pmζm = −
M∑
m=1

Pm
log(Pm)

log(M)
. (5)

Note that a system is strictly fair if Pm = 1/M,∀ m ∈
{1, 2, . . . ,M}, regardless of their average SNRs, and the
average system fairness is 1.

The fairness measure is closely related to the distribution
of each MS’s CSI in each group. It is shown from (3) that if
all MSs’ channels follow i.i.d. fading, the fair scheduling is
equivalent to greedy scheduling and the system maintains strict
fairness. On the other hand, if all MSs’ channels follow i.n.d.
fading, the unfairness with greedy scheduling that is induced
by different MSs with different cdfs will be serious compared
with fair scheduling. It is therefore necessary to analyze the
fairness and capacity performances over i.n.d. fading channels
in multicast systems with fair and greedy schedulings.

D. Adaptive Transmission Scheme

We consider the constant-power variable-rate uncoded [21]
and coded [22] M-QAM as two alternative adaptive discrete
rate modulation schemes. In the schemes, the whole SNR
range is split into J + 1 regions, and the constellation size
Mj is assigned to the jth region (j = 0, 1, ..., J). While
maintaining a prescribed BER (BER0), the corresponding
switching thresholds γthj are given as follows.

For uncoded M-QAM:

γthj =


[erfc−1(2BER0)]2, j = 1

K0(Mj − 1), j = 0, 2, ..., J

+∞, j = J + 1

(6)

and for coded M-QAM:

γthj =

{
KjMj , j = 1, 2, ..., J

+∞, j = J + 1
(7)

where erfc−1(·) is the inverse complementary error function,
and Kj = −1/bj ln(BER0/aj), where aj and bj are given in
Table I [22]. These parameters are obtained by curve fitting
with the least squares method, which makes the approximated
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BER curves in (8) very close to the simulated BER points for
all codes. Mj = 2j for uncoded M-QAM, and Mj = 2j+1 for
coded M-QAM. The corresponding coded M-QAM BER over
AWGN channel is approximated as [22]

BERj ' aj exp

(
−bjγ
Mj

)
. (8)

For uncoded M-QAM, a similar BER approximation [10] can
be obtained by replacing aj , bj and Mj in (8) with a0 = 1/5,
b0 = 3/2 and Mj − 1, respectively.

III. PERFORMANCE ANALYSIS WITHOUT AMC

In this section, the capacity and fairness performance of the
multicast system with fair and greedy schedulings is firstly
analyzed without considering adaptive transmission scheme.
The BS first selects the MS with the minimum γm,k in group
m, whose received SNR is defined as the received SNR of
group m (i.e., γm), and then picks the group with the largest
Γm among all groups. In the first step, the cdf of γm, Fγm(x)
is given by

Fγm(x) = Pr {γm ≤ x} = 1− Pr {γm > x}

=1−
Km∏
k=1

Pr {γm,k > x}

=1−
Km∏
k=1

(
1− Fγm,k(x)

)
. (9)

Taking the derivative of (9) with respect to x, we can obtain
the pdf of γm, fγm(x) as,

fγm(x) =

Km∑
j=1

fγm,j (x)

Km∏
k=1,k 6=j

(
1− Fγm,k(x)

)
. (10)

The short-term average received SNR of group m, γ̄m can be
obtained by

γ̄m =

∫ +∞

0

xfγm(x)dx. (11)

Let ? = argmax
m

{Γm}, and fγ?(x) be the pdf of γ?.

Therefore, the multicast system capacity C is given by

C =

∫ +∞

0

log2(1 + x)fγ?(x)dx. (12)

Substituting (1) and (2) into (9) and (10), we have Fγm(x)
and fγm(x) in Rayleigh fading channels as Fγm(x) = 1 −

exp

(
− x

γ̄m

)
and fγm(x) =

1

γ̄m
exp

(
− x

γ̄m

)
respectively,

where
1

γ̄m
=

Km∑
k=1

1

γ̄m,k
. Interestingly, it is shown that the

{γm} ∀m = 1, . . . ,M also follow exponential distribution,
and the reciprocal of its average received SNR is the sum of
the reciprocal of all MSs’ average received SNRs in group m.

A. Fair Scheduling
1) System Capacity
For fair scheduling, ? = argmax

m
{γm/γ̄m}, and fγ?(x) can

be given by (See Appendix A)

fγ?(x) =

M∑
m=1

fγm(x)

M∏
n=1,n6=m

Fγn

(
γ̄n
γ̄m

x

)

=

M∑
m=1

1

γ̄m
exp

(
− x

γ̄m

)[
1− exp

(
− x

γ̄m

)]M−1

.

(13)

By substituting (13) into (12) and using the binomial
expansion, the system capacity C is derived as

C = log2 e

M∑
m=1

M−1∑
n=0

(
M − 1

n

)
(−1)n

γ̄m

×
∫ +∞

0

ln(1 + x) exp

(
− (n+ 1)x

γ̄m

)
dx

=
log2 e

M

M∑
m=1

M∑
n=1

(
M

n

)
(−1)n exp

(
n

γ̄m

)
Ei
(
− n

γ̄m

)
,

(14)

where the Eq. (4.337.2) in [23] is used as follows:
For Re {µ} ≥ 0 and | arg β| < π,∫ +∞

0

e−µx ln(1 + βx) = − 1

µ
e
µ
β Ei

(
−µ
β

)
and Ei(·) is the exponential integral function defined by

Ei(x) =

∫ x

−∞
et/tdt.

2) System Fairness
The probability of group m being selected, Pm, can be

shown (see Appendix B)

Pm =

∫ +∞

0

fγm(x)

M∏
n=1,n6=m

Fγn

(
γ̄n
γ̄m

x

)
dx. (15)

Substituting fγm(x) and Fγm(x) over Rayleigh fading chan-
nels into (15), we have Pm = 1/M,∀m = 1, . . . ,M .
Therefore, strict fairness (i.e., ζ = 1) is achieved by fair
scheduling, even though all MSs experience i.n.d. Rayleigh
fadings.

B. Greedy Scheduling
1) System Capacity
For greedy scheduling, ? = argmax

m
{γm}. Following the

similar derivation in Appendix A, fγ?(x) is given by

fγ?(x) =

M∑
m=1

fγm(x)

M∏
n=1,n6=m

Fγn(x)

=

M∑
m=1

1

γ̄m
exp

(
− x

γ̄m

) M∏
n=1,n6=m

[
1− exp

(
− x

γ̄n

)]

=

M∑
m=1

1

γ̄m

∑
τ∈TMm

sign(τ) exp

(
− x

γ̄m
− τx

)
, (16)
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where by adopting the notations of [24], [25], the
set TMm is obtained by expanding the product of∏M
n=1,n6=m

[
1− exp

(
− x
γ̄n

)]
, and then taking the natural

logarithm of each term. Sign(·) corresponds to the sign of
each term in the expansion. To understand the meaning of
the above notations, an example (M = 4,m = 2) is given by

4∏
n=1,n6=2

[
1− exp

(
− x

γ̄n

)]
=

[
1− exp

(
− x

γ̄1

)][
1− exp

(
− x

γ̄3

)][
1− exp

(
− x

γ̄4

)]
=1− exp

(
− x

γ̄1

)
− exp

(
− x

γ̄3

)
− exp

(
− x

γ̄4

)
+ exp

(
− x

γ̄1
− x

γ̄3

)
+ exp

(
− x

γ̄1
− x

γ̄4

)
+ exp

(
− x

γ̄3
− x

γ̄4

)
− exp

(
− x

γ̄1
− x

γ̄3
− x

γ̄4

)
, (17)

and

T 4
2 =

{
0,

1

γ̄1
,

1

γ̄3
,

1

γ̄4
,

(
1

γ̄1
+

1

γ̄3

)
,

(
1

γ̄1
+

1

γ̄4

)
,(

1

γ̄3
+

1

γ̄4

)
,

(
1

γ̄1
+

1

γ̄3
+

1

γ̄4

)}
.

Taking the sign of each term in (17), we get sign(τ) =
{1,−1,−1,−1, 1, 1, 1,−1}.

By substituting (16) into (12), the system capacity C is
given by

C =− log2 e

M∑
m=1

∑
τ∈TMm

sign(τ)

1 + γ̄mτ

× exp

(
1

γ̄m
+ τ

)
Ei
[
−
(

1

γ̄m
+ τ

)]
. (18)

2) System Fairness
Following the similar derivation in Appendix B, the proba-

bility of group m being selected for greedy scheduling is given
by

Pm =

∫ +∞

0

fγm(x)

M∏
n=1,n6=m

Fγn (x) dx

=
1

γ̄m

∑
τ∈TMm

sign(τ)

∫ +∞

0

exp

[
−
(

1

γ̄m
+ τ

)]
xdx

=
∑
τ∈TMm

sign(τ)

1 + γ̄mτ
. (19)

Therefore, the average system fairness ζ can be obtained by
substituting (19) into (4) and (5). Especially, when γ̄1 = γ̄2 =
... = γ̄M , Pm = 1/M,∀m = 1, . . . ,M and strict fairness is
achieved by greedy scheduling.

IV. PERFORMANCE ANALYSIS WITH AMC
In this section, we apply fair scheduling and greedy schedul-

ing in an adaptive transmission based multicast system, and
derive closed-form expressions for the system spectral effi-
ciency, outage probability, system fairness and average BER

performance. For multicast transmission, the BS adjusts the
modulation and coding rate according to the instantaneous
channel condition, and schedules data transmission to the
group with the maximum scheduling metrics among all groups,
only if this group’s received SNR is greater than the switching
threshold γth1 . Otherwise, the outage happens and no data
transmission is scheduled.

A. System Spectral Efficiency

The system spectral efficiency in terms of bps/Hz is defined
as [10] 〈

R

W

〉
=

J∑
j=1

pj log2Mj , (20)

where log2Mj is the data rate in region j, and pj =∫ γthj+1

γthj

fγ?(x)dx is the probability of the selected group’s

received SNR falling in region j. For fair scheduling, substitut-
ing (13) into (20), the system spectral efficiency over Rayleigh
fading channels is given by〈

R

W

〉
=

1

M

J∑
j=1

log2Mj


M∑
m=1

[
1− exp

(
−
γthj+1

γ̄m

)]M

−

[
1− exp

(
−
γthj
γ̄m

)]M .

For greedy scheduling, substituting (16) into (20), the system
spectral efficiency is given by〈

R

W

〉
=

J∑
j=1

log2Mj

{
M∏
m=1

[
1− exp

(
−
γthj+1

γ̄m

)]

−
M∏
m=1

[
1− exp

(
−
γthj
γ̄m

)]}
.

B. Outage Probability

The outage occurs when the selected group’s received
SNR is lower than the switching threshold γth1 . The outage
probability Op is defined as the probability of the selected
group’s received SNR falling below γth1 , and it is given by
[26]

Op =

∫ γth1

0

fγ?(x)dx. (21)

Substituting (13) and (16) into (21), the outage probability
Op for fair and greedy schedulings over Rayleigh fading
channels is given by

Op =
1

M

M∑
m=1

[
1− exp

(
−γ

th
1

γ̄m

)]M
,

and

Op =

M∏
m=1

[
1− exp

(
−γ

th
1

γ̄m

)]
.
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C. System Fairness

For fair scheduling in an adaptive transmission system, the
necessary condition of one group being selected is its received
SNR greater than the switching threshold γth1 . Therefore, the
probability of group m being selected, Pm, is given by

Pm =

∫ +∞

γth1

fγm(x)

M∏
n=1,n6=m

Fγn

(
γ̄n
γ̄m

x

)
dx

=

∫ +∞

γth1

1

γ̄m
exp

(
− x

γ̄m

)[
1− exp

(
− x

γ̄m

)]M−1

dx

=
1

M

[
1−

(
1− exp

(
−γ

th
1

γ̄m

))M]
. (22)

It is easily shown from (22) that Pm < 1/M , and Pm increases
with the increase of γ̄m when M is fixed. As M →∞, Pm →
1/M and the average system fairness ζ → 1. Fair scheduling
can not make an adaptive transmission based multicast system
with strict fairness due to the outage.

For greedy scheduling, Pm is given by

Pm =

∫ +∞

γth1

fγm(x)

M∏
n=1,n6=m

Fγn (x) dx

=
1

γ̄m

∑
τ∈TMm

sign(τ)

∫ +∞

γth1

exp

[
−
(

1

γ̄m
+ τ

)]
xdx

=
∑
τ∈TMm

sign(τ) exp
[
−
(

1
γ̄m

+ τ
)
γth1

]
1 + γ̄mτ

. (23)

Therefore, the average system fairness ζ can be obtained by
substituting (23) into (4) and (5).

D. System Average BER

The system average BER (BER) in an adaptive transmission
system is defined as the ratio of the average number of bits in
error to the system spectral efficiency, and it is given by [10]

BER =

∑J
j=1 BERj log2Mj∑J
j=1 pj log2Mj

, (24)

where BERj is the average BER of the selected group’s
received SNR falling in region j, which is expressed as

BERj =

∫ γthj+1

γthj

BERjfγ?(x)dx. By substituting (8) and (13)

into BERj , we have BERj for fair scheduling as

BERj =

M∑
m=1

M−1∑
n=0

(
M − 1

n

)
(−1)naj
γ̄m

×
∫ γthj+1

γthj

exp

[
−
(
bj
Mj

+
n+ 1

γ̄m

)
x

]
dx

=
ajMj

M

M∑
m=1

M∑
n=1

(
M

n

)
(−1)nn

γ̄mbj +Mjn{
exp

[
−
(
bj
Mj

+
n

γ̄m

)
γthj+1

]
− exp

[
−
(
bj
Mj

+
n

γ̄m

)
γthj

]}
. (25)

For greedy scheduling, substituting (8) and (16) into BERj ,
we have

BERj =

M∑
m=1

∑
τ∈TMm

ajsign(τ)

γ̄m

×
∫ γthj+1

γthj

exp

[
−
(
bj
Mj

+
1

γ̄m
+ τ

)
x

]
dx

=

M∑
m=1

∑
τ∈TMm

ajMjsign(τ)

γ̄mbj +Mj(γ̄mτ + 1){
exp

[
−
(
bj
Mj

+
1

γ̄m
+ τ

)
γthj

]
− exp

[
−
(
bj
Mj

+
1

γ̄m
+ τ

)
γthj+1

]}
. (26)

Substituting (25) and (26) into (24), the system BER with fair
and greedy schedulings can be easily obtained respectively.

V. GENERAL FRAMEWORK FOR CROSS-LAYER DESIGN

So far, to guarantee the reliability at the physical layer,
the proposed scheduling schedules data transmission at the
rate that the MS with the minimum received SNR in the
selected group can support, leading to low system capacity
and long delay. However, for practical multimedia multicast
services, the system is able to tolerate an acceptable level of
data loss to achieve high system capacity or low delay. Here
we present a general framework on how to apply the proposed
scheduling in a cross-layer design subject to the loss rate QoS
constraint specified from upper-layer protocol. We consider a
time division multiplexing system, where different time slot
proportions are allocated to the MSs sorted in order of SNRs.

Without loss of generality, we consider that the approach
to selecting the scheduled multicast group is the same as
in the Section II. B (i.e., the BS selects the group with the
maximum scheduling metrics among all groups to schedule
data transmission.). However, the scheduling rate selection is
different from the proposed one which selects the rate that the
MS with the minimum received SNR in the selected group
can achieve. The BS firstly picks up a received SNR from
K? MSs’ received SNRs as the dominating SNR, denoted by
γ?,dom, and begins transmission at the rate of log2(1+γ?,dom),
where we have K? optional γ?,dom. If γ?,k ≥ γ?,dom, MS k
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can receive the signal correctly without any rate loss. On the
other hand, MS k can not decode the received signal correctly
given γ?,k < γ?,dom, thus resulting in complete rate loss.
Averaging over all time slots, a certain level of data loss that
depends on the upper-layer protocol can be usually tolerable
for multimedia services. Let qcons denote the loss rate QoS
constraint, and qm,k denote the loss rate of MS k in group m,
which is defined as the ratio of the total amount of data that
has to be dropped due to decoding incorrectly for MS k in
group m to that of the data received by group m. Generally,
qm,k ≤ qcons should be satisfied for any MS.

Let the subscript π(k) denote the permutation of γm,k, k =
1, 2, ...,Km such that γm,π(k) decreases as k increases from 1
to Km. Further, let λm,k denote time slot proportion allocated

to MS k of group m, where 0 ≤ λm,k ≤ 1 and
Km∑
k=1

λm,k = 1.

According to different λm,ks, we consider the following two
schedulings.

A. Fixed scheduling

Let λm,π(k) = 1 over all time slots for a fixed k provided
that group m is selected, i.e., the position of the dominating
SNR is fixed as π(k). In this case, we call it fixed scheduling.
Specifically, if λm,π(Km) = 1 for any m (i.e., γm,dom =
γm,π(Km)), the capacity of group m is determined by the
minimum received SNR among all MSs in group m, thus
guaranteeing no rate loss for any MS, which shows that the
proposed normalized SNR-based fair scheduling in the Section
II. B is a special case of fixed scheduling. On the other hand,
If λm,π(1) = 1 for any m, the highest system capacity without
loss rate constraint can be obtained. Particularly, when all MSs
in group m experience i.i.d fading channels, qm,k for a fixed
k under fixed scheduling equals 1 − k/Km. To satisfy the
constraint of qm,k ≤ qcons, let k = dKm(1 − qcons)e, where
d(·)e is the smallest integer greater than or equal to (·).

B. Dynamic scheduling

λm,π(k) may vary in accordance with different qcons to
maximize the system capacity, i.e., the position of the dom-
inating SNR can be dynamically adjusted. In this case, we
call it dynamic scheduling, which can be used by solving the
following system capacity optimization problem,

argmax
λm,π(k)

{
M∑
m=1

Cm

}
s.t. qm,k ≤ qcons,

0 ≤ λm,π(k) ≤ 1,

Km∑
k=1

λm,π(k) = 1,

m = 1, 2, ...,M, k = 1, 2, ...,Km,

where qm,k = 1 − Rm,k/Cm, and Rm,k denotes the average
data rate of MS k of group m.

Fixed scheduling provides a simple approach to guarantee
the loss rate, although it can not flexibly control the loss
rate. By adaptively controlling the position of dominating
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and 9, respectively.
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SNR, dynamic scheduling can efficiently maximize the system
capacity, while at the same time, flexibly satisfy the rate loss
constraint variation. The implementation of dynamic schedul-
ing needs to solve more complicated optimization problem,
leading to great complexity.

VI. NUMERICAL RESULTS

A. Numerical Results without AMC

Fig. 1 and 2 show the average system fairness and the
system capacity in bps/Hz versus the total number of MSs
with fair and greedy schedulings by changing the values of the
number of multicast groups M , and the number of each group
Km under an i.n.d. Rayleigh fading channel environment. The
setup in the figures is as follows. We adopt M = 3, 6, 9
and Km = 3, 6, 9, 12, respectively, where the same value
of Km, ∀m = 1, . . . ,M is used when M is fixed. When



8

M = 3, the average received SNR of each MS in all groups
is generated from uniform distribution between 0dB and 3dB
[i.e., uniform(0,3)]. When M increases from 3 to 6, the
average received SNRs of the MSs in three new groups are
generated from uniform(3,6). When M increases from 6 to
9, the average received SNRs of the MSs in three increased
groups are generated from uniform(6,9). The same sets of
random average received SNRs are used for Fig. 1 and 2
to demonstrate the tradeoff with fair and greedy schedulings
between system capacity and average system fairness. As
shown in Figs. 1 and 2, the numerical results with solid lines
obtained using the derived expressions match the simulation
results with markers.

As expected from Fig. 1, the fair scheduling achieves strict
fairness since all groups have the same opportunities to access
the channel, whereas the greedy scheduling demonstrates
lower fairness as M increases since the groups with higher
average received SNRs have greater opportunities to access the
channel. When M = 3, fair scheduling and greedy scheduling
have almost the same performance in terms of the system
capacity and average system fairness, respectively. The reason
is that all groups have the close average received SNRs due
to the average received SNR of each MS with the same
distribution. It is shown from Fig. 2 that the system capacity is
degraded with the increase of Km when M is fixed, because
the achievable capacity for a multicast group is dominated by
the MS with the lowest received SNR among all MSs. On
the other hand, the capacity performance is improved with
the increase of M when Km is fixed, which is due to the
multicast groups’ diversity gain and the increased average
received SNRs of the MSs in new groups. The fair scheduling
achieves strict fairness at the cost of a small loss of system
capacity compared with greedy scheduling.

B. Numerical Results with AMC

We present the numerical results with lines using the derived
expressions in Figs. 3-6 in terms of system spectral efficiency,
outage probability, system fairness and average BER for fair
scheduling and greedy scheduling in an adaptive transmis-
sion based multicast system over Rayleigh fading channels
with different average received SNR distributions, which are
verified through Matlab simulation results with markers. We
assume that there are eight MSs in each multicast group, and
observe the performance variation as the number of groups
M increases from 3 to 15 with step size 3. To compare the
performance in the adaptive discrete rate modulation schemes,
we generate the average received SNR of each MS following
the distribution uniform(12,15) when M = 3. As the number
of groups increases, the average received SNR distributions
for three new groups follow uniform(15,18) when M = 6,
uniform(18,21) when M = 9, uniform(21,24) when M = 12
and uniform(24,27) when M = 15, respectively.

In simulations with coded M-QAM adaptive transmission
scheme, we use aj , bj and Mj as Table 1 in [22]. For
convenience, part of this table is reproduced in this paper as
Table 1. These parameters are actually applied in an AWGN
channel, whereas for a frequency-selective fading channel, we

TABLE I
PARAMETERS aj AND bj VERSUS Mj

j Mj aj bj
1 4 896.0704 10.7367
2 8 404.4353 6.8043
3 16 996.5492 8.7345
4 32 443.1272 8.2282
5 64 296.6007 7.9270

4 6 8 10 12 14
The Number of Groups

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ys

te
m

 S
pe

ct
ra

l E
ffi

ci
en

cy
 (

B
ps

/H
z)

Greedy Scheduling, J=5
Fair Scheduling, J=5
Greedy Scheduling, J=3
Fair Scheduling, J=3

Uncoded M-QAM

Coded M-QAM
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groups M (BER0 = 10−3).

can exploit efficient equalization and detection approaches to
approach the performance of the corresponding system over
an AWGN channel [27].

Fig. 3 shows system spectral efficiency
〈
R
W

〉
in bps/Hz

versus the number of groups M for uncoded and coded M-
QAM adaptive transmission schemes with BER0 = 10−3. As

4 6 8 10 12 14
The Number of Groups

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

O
ut

ag
e 

P
ro

ba
bi

lit
y

Coded M-QAM, BER
0
=10-3

Uncoded M-QAM, BER
0
=10-3

Coded M-QAM, BER
0
=10-5

uncoded M-QAM, BER
0
=10-5

Fair Scheduling

Greedy Scheduling

Fig. 4. Outage probability Op versus the number of groups M (J = 3).



9

4 6 8 10 12 14
The Number of Groups

0.4

0.5

0.6

0.7

0.8

0.9

1
A

ve
ra

ge
 S

ys
te

m
 F

ai
rn

es
s

Uncoded M-QAM, BER
0
=10-3

Coded M-QAM, BER
0
=10-3

Uncoded M-QAM, BER
0
=10-5

Coded M-QAM, BER
0
=10-5

Fair Scheduling

Greedy Scheduling

Fig. 5. Average system fairness ζ versus the number of groups M (J = 3).

the number of groups increases and accordingly the average
received SNR increases with the above defined uniform dis-
tribution, there is a system spectral efficiency improvement.
Meanwhile, the performance in J = 5 outperforms that of
J = 3 with the increase of M due to the adoption of a larger
constellation size. In addition, the coded M-QAM exploits
higher system spectral efficiency than the uncoded M-QAM
due to the coding gain, and the greedy scheduling performs
better than that of fair scheduling by exploiting the multicast
groups diversity gain as expected.

Fig. 4 shows outage probability Op versus the number of
groups M for uncoded and coded M-QAM adaptive transmis-
sion schemes with J = 3. As shown in Fig. 4, the outage
probability of greedy scheduling drops more quickly than
that of fair scheduling as the number of groups increases.
Particularly, when the number of groups is large, the outage
(i.e., no transmission) happens less likely. As the prescribed
BER0 increases, the outage probability decreases, which can
be verified by (6) and (7). The season is that the outage
probability is an increasing function of γth1 shown in (21),
while γth1 is a decreasing function of BER0.

Fig. 5 shows average system fairness ζ versus the number
of groups M for uncoded and coded M-QAM adaptive trans-
mission schemes with J = 3. As shown in Fig. 5, the average
system fairness of fair scheduling is far better than that of
greedy scheduling at the expense of system spectral efficiency
loss as the number of groups increases. The average system
fairness ζ approaches to 1 as M increase to a large number
as expected. However, the average system fairness of greedy
scheduling becomes worse when M is larger than six, because
the average received SNR differences between the groups with
low average SNR and the groups with high average SNR
become greater as M increases. The average system fairness
increases with the increase of the prescribed BER0, as the
average system fairness is an increasing function of BER0 as
shown in (6), (7), (22) and (23).

Fig. 6 shows system average BER versus the number
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of groups M for uncoded M-QAM adaptive transmission
schemes. For different schedulings with J = 3 and J = 5,
the system average BER is always lower than the prescribed
BER0, which is due to the fact that the instantaneous BER is
always below the prescribed BER0 according to the switching
thresholds. The system average BER of fair scheduling is very
close to that of greedy scheduling with J = 5, because the
system average BER is determined by the ratio of the average
number of bits in error to the system spectral efficiency in (24).
Although the greedy scheduling has higher system spectral
efficiency than fair scheduling, its average BER is also higher
for higher order modulation which is more frequently used.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a normalized SNR-based fair
scheduling for multiple multicast groups in multicast systems.
Compared with greedy scheduling, we analyze the system
capacity and fairness performances of the multicast system
with fair scheduling over i.n.d. fading channels, and present
closed-form system capacity and fairness expressions over
i.n.d. Rayleigh fading channels. By employing the adap-
tive transmission in multicast systems with fair and greedy
schedulings, we investigate the performances based on both
uncoded and coded M-QAM schemes in terms of the system
spectral efficiency, outage probability, system fairness and
average BER. Numerical and simulation results show that the
proposed fair scheduling improves the fairness between the
groups with different average SNR distributions at the expense
of slight capacity loss compared with greedy scheduling.

Our focus in this paper has been on the case that strict
rate loss constraint is required. How to develop efficient
low-complexity scheduling algorithms in a cross-layer de-
sign subject to flexible QoS constraints with the proposed
scheduling will be interesting future research topics. In addi-
tion, taking advantage of dynamic single frequency networks,
the Multicast-Broadcast Single-Frequency Network (MBSFN)
transmission mode can greatly improve the spectral efficiency,
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where groups of adjacent BSs send the same signal simultane-
ously over the same frequency. The work in [28] has consid-
ered joint beamforming among cooperating BSs to improve the
received SNR of the MS with the worst channel condition in a
multicast group. It exploits the macrodiversity and effectively
eliminates the inter-cell interference to dramatically increase
the system capacity, and the fairness has not been considered
yet. As shown in Section VI, our proposed scheduling outper-
forms the existing scheme in terms of fairness for multicast
systems with single BS, but the work is also possible to be
extended to the MBSFN with multiple cooperating BSs subject
to fairness constraint.

APPENDIX A
DERIVATION OF (13)

The cdf of γ?, Fγ?(x), is given by

Fγ?(x) = Pr {γ? ≤ x}
= Pr {γ1 ≤ x, γ2 ≤ x, ..., γM ≤ x}
= Pr {Γ1γ̄1 ≤ x,Γ2γ̄2 ≤ x, ...,ΓM γ̄M ≤ x}

=

M∏
m=1

FΓm

(
x

γ̄m

)
. (27)

By taking the derivative of (27) with respect to x, we can
obtain the pdf of fγ?(x) as follows,

fγ?(x) =

M∑
m=1

1

γ̄m
fΓm

(
x

γ̄m

) M∏
n=1,n6=m

FΓn

(
x

γ̄m

)
, (28)

where fΓm(x) and FΓm(x) are the pdf and cdf of Γm (i.e.,
γm/γ̄m), respectively. By applying the Jacobian transforma-
tion, we have

fΓm(x) = γ̄mfγm(γ̄mx), (29)

and

FΓm(x) = Fγm(γ̄mx). (30)

Therefore, (13) can be obtained by substituting (29) and (30)
into (28).

APPENDIX B
DERIVATION OF (15)

For fair scheduling, the probability of group m being
selected is the probability of Γm > Γn (i.e., γm/γ̄m >
γn/γ̄n),∀n ∈ {1, 2, . . . ,M} and n 6= m. Therefore, Pm is
derived as

Pm = Pr

{
γ1

γ̄1
<
γm
γ̄m

,
γ2

γ̄2
<
γm
γ̄m

, ...,
γM
γ̄M

<
γm
γ̄m

}
=

M∏
n=1,n6=m

Pr

{
γn <

γ̄n
γ̄m

γm

}

=

M∏
n=1,n6=m

∫ +∞

0

fγm(x)

∫ γ̄n
γ̄m

x

0

fγn(y)dydx

=

∫ +∞

0

fγm(x)

M∏
n=1,n6=m

Fγn

(
γ̄n
γ̄m

x

)
dx. (31)

By substituting fγm(x) and Fγm(x) over i.n.d. Rayleigh fading
channels into (31), Pm is given by

Pm =

∫ +∞

0

1

γ̄m
exp

(
− x

γ̄m

)[
1− exp

(
− x

γ̄m

)]M−1

dx

=

M∑
m=1

(
M

m− 1

)
(−1)m−1

m

=
1

M
.
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