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Abstract—This paper evaluates the performance of analog least
mean square (ALMS) loop employed to cancel self-interference in
orthogonal frequency division multiplexing (OFDM) in-band full-
duplex systems. Cyclostationary analysis is applied to investigate
the behavior of the ALMS filter. It is revealed that the perfor-
mance of the ALMS filter for OFDM system primarily depends
on windowing function rather than pulse shaping as in single
carrier system. It is also noticed that the ALMS loop in OFDM
systems gives much higher level of sel-interference suppression
because OFDM signals lead to reduce the error of the interference
channel modelling with the adaptive filter. Simulation is then
conducted to verify the theoretical findings.

Index Terms—Full-duplex, self-interference cancellation,
ALMS loop, OFDM.

I. INTRODUCTION

It is estimated that the number of mobile users will be 70
percent of global population in 2020 [1]. This huge demand
urges researchers to find out a better use of the frequency
resource. In-band full-duplex radio is a promising solution for
this problem because it can provide double spectral efficiency
by allowing terminals to transmit and receive at the same
time on the same frequency. However, it is very challenging
to realize this scheme due to self-interference (SI) caused
by the transmitter to its receiver. Because of the in-band
full-duplex operation, it is impossible to remove this SI by
just using a traditional filter. Therefore, canceling SI is the
most important task for enabling full-duplex radios.

Many different approaches have been proposed in literature
to tackle the problem of SI. They can be categorized into
three groups including propagation domain, analog (Radio
Frequency, RF) domain, and digital domain [2]. It was also
proved in [2] that cancellation in analog domain is the most
effective one because propagation approaches are limited
by the size of devices, while digital domain cancellation
cannot suppress interference more than the effective dynamic
range of the analog to digital converter. The idea of analog
cancellation is to produce a signal that mimics the SI in order
to subtract it at the input of the receiver. It was also suggested
that the cancellation signal should be captured at the output

of the power amplifier (PA) to include the non-linearity
components of the transmitter [3]–[5]. The amplitude and
phase of this signal is then modified by a mechanism in the
cancellation circuit. This mechanism can be a single tap [6],
[7] or multi-tap [3], [5], [8] analog filter. Kolodziej et. al.
[5] indicated that the single-tap mechanism is not effective
with wide band applications and cannot cancel the reflected
path components. The multi-tap mechanism, however, suffers
the difficulty of calculating weight coefficients to adaptively
adjust the phase and amplitude of the cancellation signal.
Specifically, an additional digital algorithm is required [3],
[5] or a down-conversion is applied to convert RF signals
to baseband for adaptive control [9], [10]. Obviously, these
approaches not only suffer problems of complexity and power
consumption, but, more importantly, also introduce more
noise and interference due to the additional local oscillators.
To avoid these problems, a novel approach was proposed by
utilising an analog least mean square (ALMS) loop which is
a multi-tap structure with a low-pass filter (LPF) to replace
the ideal integrator in the original ALMS loop [4]. However,
the analysis was only conducted for a single carrier system.

This paper aims to investigate the behavior of the
ALMS loop for multi-carrier system such as an OFDM
system by applying the same cyclostationary analysis and
stationary analysis. The cyclosationary analysis shows that
the performance of the ALMS loop in an OFDM in-band
full-duplex system is affected by the windowing function
applied rather than the pulse shaping function as in single
carrier counterpart. The convergence speed of the ALMS
loop is determined by the length of OFDM symbol period
such that the longer the OFDM symbol period, the slower
the convergence speed. It is also noticed that the ALMS loop
applied to OFDM signal is less sensitive to the tap delay used
in the adaptive filter for self-interference cancellation.

The rest of this paper is organised as follows. In section
II, the OFDM system model and the ALMS loop filter are
described. In Section III, we apply cyclosationary analysis
to evaluate the behavior of the ALMS loop. In Section IV,



simulations are conducted with two different scenarios of
the self-interference channel to verify the theoretical analysis.
Finally, conclusions are drawn in Section V.

II. SYSTEM DESCRIPTION

A. OFDM System Model

In an OFDM system, the transmitted signal x(t) is defined
as

x(t) = Re{X(t)ej2πfct} (1)

where X(t) is the complex envelope of the OFDM signal
with a cyclic prefix and fc is the carrier frequency. X(t) is
represented by

X(t) =

∞∑
n=−∞

∞∑
m=−∞

Nst/2∑
k=−Nst/2,k 6=0

ak,me
j2π k

N (n−m T
Ts

)

× w(n−m T

Ts
)p(t− nTs)

(2)

where k is the k-th sub-carrier; m is the m-th OFDM
symbol; n is the sample index; t is continuous time; Ts is
the sampling period of the baseband signal; T is the OFDM
symbol period; Nst is the total number of data subcarriers;
N is the number of samples in one OFDM symbol excluding
cyclic prefix; w(n) is the windowing function; and p(t) is the
pulse shaping function.The root mean squared amplitude of

transmitted signal is defined as VX =
√

1
T

∫ T
0
E{|X(t)|2}dt,

where E{.} stands for expectation. The load is normalized to
1Ω so that the average power of X(t) is V 2

X . The complex
data symbols ak,m are assumed to be independent to each
other such that the ensemble expectation

E{a∗k,mak′,m′} =

{
1, for k = k′,m = m′

0, for k 6= k′,m 6= m′.
(3)

B. ALMS Loop

The architecture of the ALMS loop proposed in [4] is shown
in Fig. 1. This is a multi-tap mechanism in which each tap has
a fixed delay Td. The cancellation circuit works as follows.
The transmitted signal x(t) is passed into the ALMS filter
which includes L-stage taps. At the l-th tap, the transmitted
signal x(t) is delayed by (l − 1)Td before multiplied by the
amplified residual signal d(t). This product is filtered by a
LPF to generate weight coefficient wl(t) which will modify
another version of the delayed signal x(t). The outputs of all
the taps are added together to obtain the cancellation signal
y(t). This cancellation signal is then used to subtract the SI
z(t) from the received signal r(t). The involvement of the
residual signal d(t) to adaptively change weights coefficients
forms a closed loop of the ALMS filter. As expressed in [4],
the weighting coefficients wl(t) of l-th tap can be derived from

wl(t) =
2µα

K1K2

∫ t

0

e−(α−τ)[r(τ)− y(τ)]

.X(τ − lTd)ej2πfc(τ−lTd)dτ

(4)
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Fig. 1. The ALMS loop structure

where K1 and K2 are the dimensional constants of the first
and second multipliers in the loop; α = 1

RC is the parameter
of the LPF; and 2µ is the gain of the low noise amplifier
(LNA).

III. CYCLOSTATIONARY ANALYSIS

Cyclostationary analysis is applied to evaluate the perfor-
mance of the ALMS loop under the impact of several factors
including the properties of the transmitted signal, loop gain,
and the parameter of the LPF. This analysis is important to
derive the lower bound of the ALMS loop.

A. Auto-Correlation Function

The auto-correlation function of an OFDM signal is defined
as ΦXX(t, τ) = E{X∗(t)X(t − τ)}. Let l = n −mT/Ts in
(3) and define g(t, τ) =

∑∞
m=−∞ p∗(t−mT )p(t−mT − τ).

Using the property expressed in (3), the auto-correlation
function can be rewritten as

ΦXX(t, τ) =

∞∑
l=−∞

∞∑
l′=−∞

Nst/2∑
k=−Nst/2,k 6=0

e−j2π
k
N (l′−l)

× w(l)w(l′)g(t− lTs, (l
′
− l)Ts + τ).

(5)

With a Raised Cosine pulse shaping function p(t), g(t) is
shown in Fig. 2. We can see that g(t, τ) ≈ 0 when τ is
any integer multiple of Ts. Therefore, the auto-correlation
function at τ = 0 can be approximate as ΦXX(t, 0) =
Nst

∑∞
l=−∞ w2(l)g(t − lTs, 0). For simplicity, we can fur-

ther approximate the convolution of w2(l) with g(t, 0) as a
continuous function w2(t) such that ΦXX(t, 0) ≈ Nstw2(t).

B. Solution for Weight Error Function

The interference channel is modeled as a multi-tap filter so
that the equivalent baseband Z(t) of the SI can be expressed
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as Z(t) =
∑L−1
l=0 h∗lX(t − lTs) where L is the number

of taps, and tap delay is equal to the sampling rate Ts for
simplicity. The performance of ALMS loop therefore can be
represented by the error ul(t) between the l-th tap coefficient
of interference channel model and the corresponding weight
of the adaptive filter. The expected value of ul(t) is derived in

[4] as ūl(t) = hl− µα
K1K2

t∫
0

e−α(t−τ)ūl(τ)Φ̃XX(τ, 0)dτ where

Φ̃XX(τ, 0) = 1
V 2
X

Φ(t, 0) is the normalized autocorrelation
function. Solving this equation, we get the final expression of
ūl(t) as

ūl(t) = hl[
1 + µA2e−α(1+µA2)t

1 + µA2
]e−αµA

2
∫ t
0

(Φ̃XX(τ,0)−1)dτ

(6)
where A = VX/

√
K1K2. Applying the windowing function

recommended in IEEE802.11a

w(t) =


sin2(π2 ( t

T1
)) 0 ≤ t < T1

1 T1 ≤ t < T2

sin2(π2 (T−tT1
)) T2 ≤ m < T

(7)

where T1 = βT/(1 + β) and T2 = T/(1 + β) with β as the
roll-off factor of the windowing function, we have

ūl(t) = hl
1 + µA2e−α(1+µA2)t

1 + µA2
e−αµA

2q(t) (8)

with q(t) in period [0, T ] derived as

q(t) =



5(β−1)
2(4−β) t−

2βT
(4−β)π sin( πtT1

)+
βT

4π(4−β)sin( 2πt
T1

) 0 ≤ t < T1

5β
4−β (t− T/2) T1 ≤ t < T2
5(β−1)
2(4−β) (t− T ) + 2βT

(4−β)π sin(π(T−t)
T1

)−
βT

4π(4−β)sin( 2π(T−t)
T1

) T2 ≤ t < T.

(9)

Since q(t) is a periodic function with a period of T , the
error function ūl(t) has cyclosationary property, i.e., it does
not converge to a stable value but varies accordingly. The
normalized ūl(t) and its variation with the error without
cyclostationary behavior ũl(t) are presented in Fig.3(a) and
Fig.3(b) respectively.

C. Discussion

1) When applied to a multi-carrier system, the ALMS loop
behaves similarly as in single carrier counterpart. One
difference is that the weight error function ūl(t) and
ũl(t) are both periodical of OFDM symbol period T
and respectively converge to hl

1
1+µA2 e

−µA2αq(t) and
hl

1
1+µA2 (e−µA

2αq(t) − 1) when t → ∞. The conver-
gence speed is driven by the loop gain µA2 and the LPF
parameter α. However, with the same parameters of the
ALMS loop, since one OFDM symbol includes N data
samples, the convergence speed of the weighting error
function in OFDM system is slower than that in single
carrier system.

2) The residual interference power and interference sup-
pression ratio (ISR) can be calculated as in [4] PRI =

1
1+µA2

A2

2

∑L−1
l=0 |hl|2 and ISR = PRI

PI
= 1

(1+µA2)2

respectively.
3) The irreducible interference power is calculated by

PII = PI
1

T

∫ T

0

[
1

1 + µA2
(e−αµA

2q(t) − 1)]2dt

≈ PI
1

T

∫ T

0

[αq(t)]2dt.

(10)

Therefore, irreducible ISR lower bound is:

ISRLB =
α2T 2β2

(4− β)2(1 + β)2
{25

12
(1− β)2

+
5β

16π2
(81− 55β)}.

(11)

From (11), we can see that the ISRLB of OFDM
system is determined by the low-pass filter constant
α and the roll-off factor of windowing function. This
relationship is presented in Fig.4.

Fig.4 shows that windowing function plays an important
role in the performance of ALMS filter. The ISRLB becomes
smaller if the windowing function has closer form of the
rectangular one.

From the ISRLB expression, we can determine the LPF
parameter in order that the ISRLB is much smaller than ISR.
In this case, stationary analysis can be applied to evaluate the
behavior of the ALMS loop. Under this macro-scale analysis,
the weight error function and interference residual power
are solved with non-ideal signal autocorrelation, fractionally-
spaced taps ALMS filter and general interference channel.
Since the transmitted signal is treated as a stationary process,
both ensemble expectation and time average is applied for the
auto-correlation function of OFDM signal. It means that the
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ū
l(
t)
/
h
l

αT = 0.0003,µA2 = 10000
αT = 0.003,µA2 = 1000
αT = 0.01,µA2 = 100

(a)

0 5 10 15 20 25 30 35 40
t/T

-0.01

-0.005

0

0.005

0.01

ũ
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Fig. 3. (a) Normalized weight error; and (b) Normalized weight error variations

solutions for the time and ensemble averaged weight function
¯̄w(t) and the residual interference power PRI are not different
from those of single carrier case. Therefore, we can apply the
results derived in [4] for this case. Specifically, the matrix of
weight function ¯̄w(t) = [ ¯̄w0(t) ¯̄w1(t).. ¯̄wL−1(t)]T is found as

¯̄w(t) =diag{e−j2πfcTdl}

.Qdiag{ µλl
1 + µλl

(1− e−(1+µλl)αt}Q−1h
(12)

and the PRI(t) is calculated by

PRI(t) =
1

2
ε2 +

1

2
hHQdiag{ λl

(1 + µλl)2
}Q−1h (13)

where ε is the error between the real SI Z(t) and the
modeled one; h is the one-column matrix of the modelled
tap coefficients h = [h0 h1 ... hL−1]T ; Q and λl are the or-
thonormal modal matrix and the eigenvalues of the normalized
autocorrelation matrix Φ with each element defined by

Φ̄XX(τ) =
1

K1K2T

∫ T

0

ΦXX(t, τ)dt. (14)
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It is shown in [4] that the ISR can be calculated from PRI(t)
and PI(t) as

ISR =
ε2 + hHQdiag{ λl

(1+µλl)2
}Q−1h

ε2 + hHΦh
(15)

Using these formulas, we can determine the weight error
functions, the normalized residual interference power, and
ISR.

IV. SIMULATION RESULTS

Simulation is performed with an OFDM system specified
in IEEE802.11 standard. Transmitted data is generated with
sampling period of Ts = 5nS and modulated using BPSK
before going through a 64-point IFFT block. Cyclic prefix is
then added which occupies one fourth of an OFDM symbol.
IEEE 802.11 windowing function and RC pulse shaping func-
tion are utilized with roll-off factors of β = 0.25. The power
of the transmitted signal is set at 0 dBm, and the multiplier
dimensional constants are set to be K1K2 = 0.001V 2 so that
A = 10. Another loop gain parameter µ is selected as µ = 10.
α is determined using the expression of ISRLB = 10−10.
Simulations are conducted under two scenarios of interference
channel which are set as the same as in [4]. Specifically, the
first scenario assumes that the reflected paths of interference
channel have the delays of multiple Ts so that the interference
channel is chosen as h(t) = 10

−25
20 {[

√
2

2 −0.5j]δ(t)−0.4δ(t−
Ts)+0.4δ(t−3Ts)}. The second scenario considers the general
case of interference channel in which the reflected paths have
arbitrary delays, i.e., h(t) = 10

−25
20 {[

√
2

2 −0.5j]δ(t)−0.4δ(t−
0.9Ts)+0.4δ(t−3.3Ts)}. We also investigate the performance
of ALMS loop filter with 8 taps spaced at Ts and 16 taps
spaced at Ts/2.

The convergence curves of the first tap coefficients w̄0(t)
under the first scenario with Ts spaced is presented in Fig.5.
At macro scale, the simulated weights coefficients converge
to almost the same values calculated from (12). At micro
scale shown in the inset, the simulated w̄0(t) varies with
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period of OFDM symbol T . This figure shows both cyclo-
stationary effect and the expectation in stationary analysis for
the weighting error function. The convergence curves of the
residual interference power for two cases of tap spacing in the
first interference channel scenario are presented in Fig.6. We
can see that the simulated curves in both cases coincide with
those calculated from (13). The self-interference is canceled
at higher level when Ts spacing was utilized. The reason is
that modelling error for Ts spacing was zero whereas it is
7.508× 10−11 for the Ts/2 case.

To compare the performance of the ALMS loop in an
OFDM system with that in a single carrier one, we use ISR as
the performance measure. From (15), ISR can be calculated
for different scenarios. The results for both scenarios with
different tap delays are presented in Table I. We can see that
with the same loop gain, the ALMS filter in OFDM systems
can provide a much higher level of suppression to SI. More

TABLE I
ISR OF THE ALMS LOOP

ISR(dB)
Scenario 1 Scenario 2

Ts spaced Ts
2

spaced Ts spaced Ts
2

spaced

Single Carrier -59.58 -49.17 -17.58 -49.52

OFDM -76.17 -62.99 -50.85 -59.338

importantly, in case of Ts spaced under the scenario 2, ISR
given by ALMS loop in the OFDM system is up to -50.85
dB which is almost three times higher (in dB) than that in
the single carrier system. It means that the performance of the
ALMS loop in a multi-carrier system is less sensitive to its
tap delay spacing. The reason is that the OFDM signal has
a superior auto-correlation function such that the modelling
error is very small. Specifically, under the general interference
channel scenario, the modelling errors (ε) of the ALMS loop
in OFDM system and single carrier one are 2.0397 × 10−6

and 0.005 respectively.

V. CONCLUSION

Cyclostationary analysis shows that the performance of the
ALMS loop for OFDM system depends on the windowing
function used. The loop gain and LPF parameter determine
the convergence speed and level of cancellation. Simulation
results confirm the theoretical analysis and prove that the
ALMS loop in OFDM system has much smaller modelling
error and achieve a better level of interference cancellation.
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