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Abstract—A multi-tap adaptive filter with analog least mean
square (ALMS) loop is proposed in this paper for effective
and low complexity self-interference cancellation implemented
as part of the radio frequency (RF) frontend in a full duplex
transceiver. Comprehensive analyses of the ALMS loop’s be-
haviors at both micro and macro scales are presented for a
wireless communication system with single carrier signalling. It is
revealed that there is always an irreducible residual interference
due to the cyclostationary property of the transmitted signal.
The interference suppression ratio (ISR) lower bound is derived
accordingly, which can be used as a design rule for determining
the ALMS loop parameter. Stationary analysis shows that the
convergence speed and achievable ISR of the ALMS loop are
determined by the loop gain and the autocorrelation function of
the transmitted signal. The interference channel modelling error
with the adaptive filter also accounts for part of the residual
interference power. These theoretical findings are verified by
simulation and experimental results.

Index Terms—Full duplex, adaptive filter, analog least mean
square loop, and self-interference cancellation.

I. INTRODUCTION

Full duplex, i.e., transmission and reception at the same time
in the same frequency band and in the same spatial location,
has gained significant attention as a way to potentially dou-
ble the spectral efficiency of future wireless communication
systems [1-3]. It is also considered as a key technology for
the emerging fifth generation (5G) mobile broadband networks
[4,5]. Among the various challenging issues which need to be
solved before the full duplex radio becomes a reality [1,6],
self-interference from the transmitter to the co-located receiver
is the most serious and fundamental one.

A number of self-interference suppression and/or cancel-
lation techniques have been reported in the literature, which
can be divided into three categories: propagation (or antenna)
domain suppression, analog domain cancellation, and digital
domain cancellation [1]. A combination of them is often
required to achieve the required level of self-interference
suppression. Extensive research has also shown that the analog
domain cancellation at radio frequency (RF) frontend, i.e.,
using the RF signal immediately before the transmitter antenna
as the reference signal to cancel the self-interference received
immediately after the receiver antenna, is the most effective
approach. It can reduce the distortion due to practical impair-
ments (such as nonlinearity) and relax the requirements for
further downstream processing [1,7,18].

Xiaojing Huang and Y. Jay Guo are with the Global Big Data Technologies
Center, University of Technology Sydney, Australia (email: {Xiaojing.Huang;
Jay.Guo}@uts.edu.au).

Many existing RF self-interference cancellation techniques
can only cancel the direct path interference [2,7-11], whereas
the others can cancel both the direct and reflected path inter-
ference [12-14]. Obviously, cancellation of all self-interference
at RF frontend as much as possible is more desirable though
it is more difficult especially for wideband systems.

The analog cancellation circuit with tuning algorithm em-
ployed at the RF frontend of a full duplex WiFi radio proposed
in [12] is one of the notable full self-interference cancellation
schemes published. The circuit consists of several parallel
delay lines and tunable attenuators, each providing a copy
of the transmitted signal. Multiple copies are combined to
interpolate the self-interference which is then cancelled from
the received signal. However, direct interpolation of an RF
signal requires very finely determined delays (comparable to
the inverse of the RF carrier frequency) and the number of
delay lines may be quite large if the interference channel delay
is long. The tunable attenuators also need to be dynamically
determined by additional digitally implemented optimization
algorithms. These lead to implementation complexity and
hence limit its practical application.

The closed-loop self-interference cancellation circuit pro-
posed in [13] provides a low complexity solution that can
be implemented purely in analog domain. In this solution,
the tapped delay lines are used together with phase shifters
which provide orthogonal (quadrature) copies of the RF signal,
and hence the delay between taps is comparable to the
inverse of the transmitted signal bandwidth. The tap coeffi-
cients are determined by analog least mean square (ALMS)
circuits implemented at baseband. However, as required by
any conventional ALMS circuit [15-17], an ideal integrator is
necessary, which has to be implemented by an active circuit.
The baseband implementation for the tap weight control also
requires additional down-conversion circuits and more analog
multipliers. The experimental evaluations of similar canceller
architectures are reported in [19, 21], which confirms that
the ALMS based RF self-interference cancellation is very
promising.

In this paper, we propose to use a multi-tap adaptive filter
with simple ALMS loop all implemented at RF frontend
for effective and low complexity self-interference cancellation
in a full duplex radio. Instead of using active integrator
circuits, we use simple passive resistor-capacitor (RC) circuits
to reduce the hardware complexity. Unique to most existing RF
self-interference cancellation techniques, including the above
mentioned two typical ones by which the cancellation circuits
are standalone entities, our ALMS loop incorporates the high
power amplifier (HPA) and low noise amplifier (LNA) of
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the RF frontend to provide the necessary high loop gain.
The behaviors of the ALMS loop are analyzed at both the
micro scale, i.e., considering the cyclostationary property of
the transmitted signal to examine the loop behaviors in a time
scale of several data symbol durations, and the macro scale,
i.e., treating the transmitted signal as a stationary process
to assess the overall loop performance. The cyclostationary
analysis at the micro scale reveals that there is always an
irreducible residual interference due to the transmitted signal’s
cyclostational property, and hence a lower bound of the inter-
ference suppression ratio (ISR) is derived. This lower bound
can be used as a design rule for determining the RC circuit
parameters. Through stationary analysis at the macro scale,
we also show that the ALMS loop performance is ultimately
determined by the loop gain and the autocorrelation function of
the transmitted signal in relation to the adaptive filter tap delay
spacing. The residual interference power after cancellation is
also found to be affected by the interference channel modelling
error with the adaptive filter. The comprehensive analysis
of the proposed ALMS loop establishes a solid theoretical
foundation for RF self-interference cancellation research and
development. For example, it can be used as a benchmark to
study how to reduce the impact of in-phase/quadrature (I/Q)
imbalance [20] on the ALMS loop performance.

The rest of this paper is organized as follows. In Section
II, the RF self-interference cancellation structure with the
proposed ALMS loop is introduced. In Section III, the conver-
gence performance of the ALMS loop is analyzed for a single
carrier system assuming the ideal cyclostationary property. The
irreducible residual interference is revealed and an ISR lower
bound is derived. In Section IV, stationary analysis of the
ALMS loop with fractionally-spaced multi-tap filter for a gen-
eral interference channel is performed to analyze the impact of
the signal autocorrelation and interference channel modelling
error on the loop convergence and residual interference power.
Simulation and experimental results are given in Section V to
verify the theoretical analysis. Finally, conclusions are drawn
in Section VI.

II. CANCELLATION WITH ALMS LOOP

We first derive the RF self-interference cancellation struc-
ture with the proposed ALMS loop.

Consider a full duplex transceiver RF frontend as shown in
Fig. 1, which includes an HPA and a transmitter antenna at
the transmitting side, and a receiver antenna and an LNA at
the receiving side. In practice, a single antenna can be also
used for both transmitting and receiving with the transmitting
path and the receiving path separated by a circulator. Denoting
the RF signal at the input of the transmitter antenna as x (t)
and it’s lowpass equivalent baseband signal as X (t), we have
x (t) = Re

{
X (t) ej2πfct

}
where fc is the carrier frequency.

For a single carrier system, X (t) can be expressed as

X (t) =
∞∑

i=−∞
aip (t− iTs) (1)

where ai is the complex data symbol, Ts the symbol interval,
and p (t) the spectral shaping pulse. The complex data symbols

Fig. 1. RF frontend with multi-tap analog filter for self-interference
cancellation.

are assumed to be independent of each other, satisfying

E {a∗i ai′} =

{
1, for i = i′

0, for i ̸= i′
where E {·} denotes the

ensemble expectation. The root mean square (RMS) value of
X (t) is defined as VX =

√
1
Ts

∫ Ts

0
E {|X (t) |2} dt such that

the average power of X (t) with 1 Ω load is V 2
X .

In order to cancel the self-interference at the receiver,
a multi-tap analog filter is used to regenerate the self-
interference signal y (t) and it is then subtracted from the
received RF signal with transmitter self-interference at the
output of the receiver antenna r (t) = Re

{
R (t) ej2πfct

}
where R (t) is the lowpass equivalent baseband signal of the
received RF signal. The analog filter has L stage taps with
complex weighting coefficients wl (t), l = 0, 1, · · · , L − 1,
separated by a delay line with time delay T . Then the output
signal of the analog filter can be expressed as

y (t) = Re

{
L−1∑
l=0

w∗
l (t)X (t− lT ) ej2πfc(t−lT )

}
. (2)

The structure of this multi-tap analog filter is shown in Fig.
1, where the 90 degree phase shifter is used for providing the
quadrature component of x (t).

The design of the analog circuitry required for obtain-
ing the weighting coefficients adaptively is discussed as
follows. Analogous to the LMS algorithm in digital adap-
tive filtering, we would expect that these weighting coeffi-
cients should be obtained such that the instantaneous resid-
ual interference power after cancellation is minimized, i.e.,
d2 (t) = [r (t)− y (t)]

2 → min, and this would result in the
continuous-time LMS algorithm for updating the weighting
coefficients [15]. Each weighting coefficient wl (t) would be
obtained by integration over − ∂d2(t)

∂wl(t)
and multiplying by a

constant which determines the speed of convergence, where

∂d2 (t)

∂wl (t)
=

∂d2 (t)

∂Re {wl (t)}
+ j

∂d2 (t)

∂Im {wl (t)}
= −2 [r (t)− y (t)]X (t− lT ) ej2πfc(t−lT ). (3)

However, since an ideal analog integration circuit is difficult
to implement in practice, we propose to use a more practical



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. X, NO. X, NOVEMBER 2016 3

analog LMS circuit described by the differential equation

dwl (t)

dt
+ αwl (t) = − µα

K1K2

∂d2 (t)

∂wl (t)
, l = 0, 1, · · · , L− 1,

(4)
where α, µ, K1, and K2 are constants which jointly determine
the adaptation performance.

Eq. (4) represents the first-order lowpass filter (LPF) with
transfer function α

s+α (or impulse response αe−αt for t > 0)

and input signal − µ
K1K2

∂d2(t)
∂wl(t)

. Such LPF is much easier to
implement than an ideal integrator. For example, it can be a
simple passive RC circuit. From (3) and (4), the weighting
coefficient can be finally expressed as the convolution of the
filter impulse response with the input signal, i.e.,

wl (t) =
2µα

K1K2

∫ t

0

e−α(t−τ) [r (τ)− y (τ)]

·X (τ − lT ) ej2πfc(τ−lT )dτ, (5)

and thus the complete adaptive filter with ALMS loop can
be implemented as shown in Fig. 2, where Fig. 2(a) is the
structure which directly implements the adaptive filter shown
in Fig. 1, Fig. 2(b) is an alternative structure which makes
use of the I/Q modulation/demodulation architectures with less
time delay elements, and Fig. 2(c) is the RC circuit for simple
LPF implementation.

Note that the constants K1 and K2 are absorbed into respec-
tive multipliers in the adaptive filter for practical implementa-
tion. This is because any practical analog multiplier with two
inputs vin1 and vin2 will produce an output vout = vin1vin2

K
where K is a dimensional constant. We assume that the
multipliers in the I/Q demodulators have the same dimensional
constant K1 and the multipliers in the I/Q modulators have the
same dimensional constant K2. Thus, the outputs after LPFs
in each I/Q demodulator will be wl (t)K2 and the output of
the adaptive filter will be scaled by 1

K1K2
in total. Also note

that the LNA is incorporated into the ALMS loop to provide
the feedback loop gain 2µ .

III. CYCLOSTATIONARY ANALYSIS

We then proceed to analyze the ALMS loop at micro scale,
derive the performance bound, and discuss how to select the
loop parameter for achieving the required performance.

To start with, let’s revisit an important property of the
transmitted signal X (t) in terms of its autocorrelation function
defined as ΦXX (t; τ) = E {X∗ (t)X (t− τ)}. From (1) we
have

ΦXX (t; τ)

=
∞∑

i=−∞

∞∑
i′=−∞

E {a∗i ai′} p∗ (t− iTs) p (t− τ − i′Ts)

=

∞∑
i=−∞

p∗ (t− iTs) p (t− τ − iTs) . (6)

It is seen that ΦXX (t; τ) satisfies the property

ΦXX (t; τ) = ΦXX (t+ Ts; τ) , for all t and τ (7)

Fig. 2. (a) Complete adaptive filter with ALMS loop; (b) Alternative adaptive
filter structure; and (c) RC lowpass filter.

which means that X (t) is wide-sense cyclostationary. This cy-
clostationary property has a fundamental impact on how much
the self-interference cancellation can be ultimately achieved.

A. Weighting Coefficient Estimation Error Modelling

Suppose that the received RF signal can be expressed as

r (t) = z (t) + s (t) + n (t) (8)

where z (t) is the self-interference from the local transmitter,
s (t) the received information bearing RF signal from the
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remote transmitter, and n (t) the additive Gaussian noise at
the receiver. Their lowpass equivalent baseband versions are
denoted as Z (t), S (t), and N (t), respectively. For simplicity,
we assume that the the interference channel can be modelled
as a tapped delay line filter so that Z (t) can be expressed as

Z (t) =

L−1∑
l=0

h∗
lX (t− lTs) (9)

where h∗
l , l = 0, 1, · · · , L− 1, are the tap coefficients and L

is the number of taps. A general interference channel will be
considered in the next section and the modelling error will be
discussed accordingly.

We also assume that the time delay for each delay element
in the adaptive filter is the same as the data symbol interval
Ts and the number of taps is known, which is the same as that
in the interference model (9).

Substituting (2), (8), and (9) into (5), we obtain wl (t) as
shown in (10) on top of next page. In deriving (10), we
have assumed that the bandwidth of the LPF is very narrow
relative to fc so that the signal components centred about
frequency 2fc are all eliminated after lowpass filtering. After
some further manipulation, Eq. (10) can be expressed as

ul (t) = hl −
µα

K1K2

∫ t

0

e−α(t−τ)[

L−1∑
l′=0

ul′ (τ)X
∗ (τ − l′Ts)+

S∗ (τ) +N∗ (τ)]X (τ − lTs) dτ
(11)

where
ul (t) = hl − wl (t) e

j2πfcTsl (12)

is the error between the l-th modelled tap coefficient of the
interference channel and the weight of the l-th tap of the
adaptive filter with a phase shift 2πfcTsl.

Taking the expectation over (11) and assuming that ul (t),
S (t), N (t), and X (t) are independent of each other, we have

ūl (t)

= hl −
µα

K1K2

∫ t

0

e−α(t−τ)
L−1∑
l′=0

ūl′ (τ)ΦXX (τ ; (l − l′)Ts) dτ

l = 0, 1, · · · , L− 1, (13)

where ūl (t) = E {ul (t)} is the expected value of ul (t). Note
that the independence assumption between ul (t) and X (t)
is made to simplify the mathematical manipulation though
they are, strictly speaking, correlated. Nevertheless, the set of
first order integral equations expressed in Eq. (13) still well
describes the micro scale behaviours of the average weight
estimation error in the ALMS loop when the transmitted signal
is cyclostationary, as will be seen from the following analysis
and the numerical simulation results.

B. Solution under Ideal Autocorrelation Model

Solving the above set of integral equations is extremely
difficult if it is not impossible. To simplify the analysis and
derive a useful performance bound, let’s have a close look
of ΦXX (t; τ) for the popular baseband transmission system
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Fig. 3. (a) Normalized autocorrelation function ΦXX (t;τ)

V 2
X

with roll-off factor

β = 0.25; (b) Normalized autocorrelation function ΦXX (t;0)

V 2
X

with roll-off
factor β from 0.1 to 1.

with root raised cosine (RRC) pulse shaping. Fig. 3 (a) shows
the normalized autocorrelation function ΦXX (t; τ)

/
V 2
X cal-

culated by (6) using RRC with roll-off factor β = 0.25.
Since the autocorrelation function is periodic with respect to
time variable t, only one period is shown. With respect to
the time offset τ , it is symmetric and decays rapidly. Fig.
3(b) shows the normalized autocorrelation function with time
offset τ = 0 under various roll-off factor values. From this
figure, we see that ΦXX (t; 0) can be well approximated as
V 2
X

(
2β
π cos 2π

Ts
t+ 1

)
.

Based on the autocorrelation approximation at zero time
offset and further assuming that it is zero at any time offset
which is an integer multiple of Ts, we can model the ideal
autocorrelation function as

ΦXX (t; (l − l′)Ts) =

{
V 2
X

(
2β
π cos 2π

Ts
t+ 1

)
, for l = l′

0, for l ̸= l′
.

(14)
Then, by defining

A2 =
V 2
X

K1K2
, (15)
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wl (t)

=
2µα

K1K2

∫ t

0

e−α(t−τ)Re

{[
L−1∑
l′=0

[
hl′ − wl′ (τ) e

j2πfcTsl
′
]∗

X (τ − l′Ts) + S (τ) +N (τ)

]
ej2πfcτ

}
X (τ − lTs) e

j2πfc(τ−lTs)dτ

=
µα

K1K2

∫ t

0

e−α(t−τ)

{[
L−1∑
l′=0

[
hl′ − wl′ (τ) e

j2πfcTsl
′
]∗

X (τ − l′Ts) + S (τ) +N (τ)

]
ej2πfcτ+[

L−1∑
l′=0

[
hl′ − wl′ (τ) e

j2πfcTsl
′
]
X∗ (τ − l′Ts) + S∗ (τ) +N∗ (τ)

]
e−j2πfcτ

}
X (τ − lTs) e

j2πfc(τ−lTs)dτ

=
µα

K1K2

∫ t

0

e−α(t−τ)

[
L−1∑
l′=0

[
hl′ − wl′ (τ) e

j2πfcTsl
′
]
X∗ (τ − l′Ts) + S∗ (τ) +N∗ (τ)

]
X (τ − lTs) e

−j2πfcTsldτ (10)

Eq. (13) can be simplified as

ūl (t) = hl−µA2α

∫ t

0

e−α(t−τ)

(
2β

π
cos

2π

Ts
τ + 1

)
ūl (τ) dτ

(16)
which is a Volterra integral equation of the second kind.
A closed-form approximate solution is then found as (see
Appendix A)

ūl (t) ≈ hl
1 + µA2e−(1+µA2)αt

1 + µA2
e−µA2αTs

β

π2 sin 2π
Ts

t. (17)

The term e−µA2αTs
β

π2 sin 2π
Ts

t is a periodic multiplicative func-
tion which represents the impact of the cyclostationary prop-
erty. That is, each tap weighting coefficient in the ALMS loop
never converges to a steady value but always changes with
time. The variation between ūl (t) and the expected weight er-

ror without cyclostationary behavior, i.e., hl
1+µA2e

−(1+µA2)αt

1+µA2 ,
can be expressed as

ũl (t) = hl
1 + µA2e−(1+µA2)αt

1 + µA2

(
e−µA2αTs

β

π2 sin 2π
Ts

t − 1
)
.

(18)
Some plots of the normalized ūl (t), i.e., ūl(t)

hl
, for β = 0.25

are shown in Fig. 4(a) with different parameters α, µ and A.
The corresponding plots of the normalized variation, i.e., ũl(t)

hl
,

are also shown in Fig. 4(b).

C. Discussions

From (17), (18), and Fig. 4, we can make the following
observations:

1) When t → ∞, ūl (t) and ũl (t) will
converge to hl

1
1+µA2 e

−µA2αTs
β

π2 sin 2π
Ts

t and

hl
1

1+µA2

(
e−µA2αTs

β

π2 sin 2π
Ts

t − 1
)

respectively. Both
become periodic functions of t;

2) The speed of convergence is jointly determined by the
parameters α, µ and A, i.e., the factor

(
1 + µA2

)
α as

it appears in the exponential function e−(1+µA2)αt ;
3) Ignoring the cyclostationary effect, the weight error

is hl
1

1+µA2 which is determined by the loop gain
µA2. This error means that the interference can not
be completely cancelled by the ALMS loop and some
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Fig. 4. (a) Normalized weight error; and (b) Normalized weight error
variation.

residual interference remains. The average residual inter-
ference power (normalized by K1K2) can be evaluated
as PRI = 1

(1+µA2)2
A2

2

∑L−1
l=0 |hl|2. Since the average

normalized interference power is PI = A2

2

∑L−1
l=0 |hl|2,

we obtain the interference suppression ratio as ISR =
PRI

PI
= 1

(1+µA2)2
;

4) Further cancellation can be achieved by digital domain
methods to be performed at digital baseband. However,
due to the weight variation caused by the cyclostation-
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Fig. 5. Relationship between ISRLB and αTs for various RRC roll-off
factors.

ary property, the residual interference cannot be totally
cancelled. If µA2 is sufficiently large, the power of this
irreducible interference can be evaluated as

PII =
A2

2

L−1∑
l=0

1

Ts

∫ Ts

0

|ũl (t)|2 dt

=
A2

2

L−1∑
l=0

|hl|2

· 1

Ts

∫ Ts

0

[
1

1 + µA2

(
e−µA2αTs

β

π2 sin 2π
Ts

t − 1
)]2

dt

≈ PI
1

Ts

∫ Ts

0

(
µA2

1 + µA2
αTs

β

π2
sin

2π

Ts
t

)2

dt

≈ PI

(
αTs

β

π2

)2
1

Ts

∫ Ts

0

sin2
2π

Ts
tdt

=
1

2
PI

(
αTs

β

π2

)2

(19)

and thus an ISR lower bound is

ISRLB =
PII

PI
=

1

2

(
αTs

β

π2

)2

(20)

which is determined by the lowpass filter RC constant
(or the bandwidth) since α = 1

RC . The ISRLB repre-
sents the lowest possible interference suppression ratio
achieved by both analog and digital means. From (20),
the relationship between ISRLB and αTs is also shown
in Fig. 5 for various RRC roll-off factors.

Observation 3) and 4) provide us useful guidelines for the
designing process of the ALMS loop for RF self-interference
cancelation with predicted performance. The process can be
summarized as: 1. determining the loop gain µA2 according to
the desired ISR at RF stage; and 2. selecting the lowpass filter
RC constant according to the overall interference cancellation
performance requirement to be achieved by both analog and
digital cancellations.

IV. STATIONARY ANALYSIS

When the LPF parameter is appropriately selected such that
the ISRLB is significantly lower than the ISR achieved by

the RF ALMS loop, the impact of the cyclostationary property
can be ignored, that is, the transmitted signal can be treated as
a stationary process. The convergence behaviors of the weight
and the residual interference power can then be analyzed at
macro scale using stationary analysis. The non-ideal signal
autocorrelation, fractionally-spaced tap delay in the analog
adaptive filter, and a general interference channel can all be
incorporated in this analysis.

For stationary analysis, both ensemble expectation and time
averaging are used, and the combined operation is denoted by
the operator Ē {·}. The normalized autocorrelation function is
then expressed as

Φ(τ) =
1

K1K2
Ē {X∗ (t)X (t− τ)}

=
1

K1K2Ts

∫ Ts

0

E {X∗ (t)X (t− τ)} dt

=
1

K1K2Ts

∫ Ts

0

ΦXX (t; τ) dt

=
1

K1K2Ts

∫ ∞

−∞
p∗ (t) p (t− τ) dt. (21)

A. Interference Channel Modelling
Let’s model a general interference channel h (t) as an

L-stage tapped delay line filter with any fractionally-spaced
tap delay T , i.e., Z (t) =

∫∞
−∞ h∗ (τ)X (t− τ) dτ ≈∑L−1

l=0 h∗
lX (t− lT ). The modelled tap coefficients

hl, l = 0, 1, · · · , L − 1, can be obtained through
minimizing the normalized modelling error, i.e.,

ε2 = 1
K1K2

Ē

{∣∣∣Z (t)−
∑L−1

l=0 h∗
lX (t− lT )

∣∣∣2} = 1
K1K2

Ē

{∣∣∣∫∞
−∞ h∗ (τ)X (t− τ) dτ −

∑L−1
l=0 h∗

lX (t− lT )
∣∣∣2} →

min. Applying the principal of orthogonality, i.e.,

Ē

{[
Z∗ (t)−

L−1∑
l′=0

hl′X
∗ (t− l′T )

]
X (t− lT )

}
= 0,

l = 0, 1, · · · , L− 1, (22)

we obtain the modelled tap coefficients

h =


h0

h1

...
hL−1



= Φ−1


∫∞
−∞ h (τ)Φ (−τ) dτ∫∞

−∞ h (τ)Φ (T − τ) dτ
...∫∞

−∞ h (τ)Φ ((L− 1)T − τ) dτ

 (23)

and the modelling error as shown in (24) on top of
next page where (·)H denotes conjugation and trans-
position,

∫∞
−∞

∫∞
−∞ h∗ (τ)h (τ ′)Φ (τ − τ ′) dτ ′dτ is the to-

tal normalized interference power at baseband, and Φ =
Φ(0) Φ (−T ) · · · Φ(− (L− 1)T )
Φ (T ) Φ (0) · · · Φ(− (L− 2)T )

...
...

. . .
...

Φ((L− 1)T ) Φ ((L− 2)T ) · · · Φ(0)

 is the

normalized autocorrelation matrix.
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ε2 =
1

K1K2
Ē

{[∫ ∞

−∞
h∗ (τ ′)X (t− τ ′) dτ ′ −

L−1∑
l′=0

h∗
l′X (t− l′T )

]∗ [∫ ∞

−∞
h∗ (τ)X (t− τ) dτ −

L−1∑
l=0

h∗
lX (t− lT )

]}

=
1

K1K2
Ē

{[∫ ∞

−∞
h (τ ′)X∗ (t− τ ′) dτ ′ −

L−1∑
l′=0

hl′X
∗ (t− l′T )

]∗ ∫ ∞

−∞
h∗ (τ)X (t− τ) dτ

}

=

∫ ∞

−∞

∫ ∞

−∞
h∗ (τ)h (τ ′)Φ (τ − τ ′) dτ ′dτ −

L−1∑
l′=0

hl′

∫ ∞

−∞
h∗ (τ)Φ (τ − l′T ) dτ

=

∫ ∞

−∞

∫ ∞

−∞
h∗ (τ)h (τ ′)Φ (τ − τ ′) dτ ′dτ −


∫∞
−∞ h (τ) Φ (−τ) dτ∫∞

−∞ h (τ)Φ (T − τ) dτ
...∫∞

−∞ h (τ) Φ ((L− 1)T − τ) dτ


H

h

=

∫ ∞

−∞

∫ ∞

−∞
h∗ (τ)h (τ ′)Φ (τ − τ ′) dτ ′dτ − hHΦh (24)

B. Convergence of Weighting Coefficients

Following a similar process as shown in (10) and (11) but
with a general interference channel and any fractionally-spaced
time delay T between taps of the analog adaptive filter, we
have

ul (t) =

hl −
µα

K1K2

∫ t

0

e−α(t−τ)

[
Z∗ (τ)−

L−1∑
l′=0

hl′X
∗ (τ − l′T )+

L−1∑
l′=0

ul′ (τ)X
∗ (τ − l′T ) + S∗ (τ) +N∗ (τ)

]
X (τ − lT ) dτ.

(25)

Performing both ensemble expectation and time averaging,
applying the principal of orthogonality (22), and making the
same independence assumption as before, the stationary form
of the integral equation (13) becomes

¯̄ul (t) = hl − µα

∫ t

0

e−α(t−τ)
L−1∑
l′=0

¯̄ul′ (τ)Φ ((l − l′)T ) dτ,

or, in matrix form

¯̄u (t) = h− µα

∫ t

0

e−α(t−τ)Φ¯̄u (t) dτ (26)

where ¯̄u (t) =


¯̄u0 (t)
¯̄u1 (t)

...
¯̄uL−1 (t)

 and ¯̄ul (t) = Ē {ul (t)}.

Solving the above set of integral equations directly is
still difficult. However, since Φ can be decomposed as
Φ = QΛQ−1 where Q is the orthonormal modal matrix
whose columns are the L eigenvectors of Φ and Λ =

λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λL−1

is the spectral matrix whose main

diagonal elements are the L eigenvalues of Φ, Eq. (26) can
be rewritten as

¯̄v (t) = g − µα

∫ t

0

e−α(t−τ)Λ¯̄v (τ) dτ (27)

where ¯̄v (t) = Q−1¯̄u (t) and g = Q−1h.
Note that Q satisfies the property QH = Q−1. Also,

Φ(0) can be expressed as the average eigenvalue Φ(0) =
1
L

∑L−1
l=0 λl = λ̄ since trace {Φ} = LΦ(0) =

∑L−1
l=0 λl.

From (27), each element of ¯̄v (t), i.e., ¯̄vl (t), satisfies the
integral equation

¯̄vl (t) = gl − µλlα

∫ t

0

e−α(t−τ) ¯̄vl (τ) dτ, l = 0, 1, · · · , L− 1,

(28)
where gl is the l-th element of g.

The solution of ¯̄vl (t) can be easily obtained through Laplace
transform. That is, by performing Laplace transform on both
sides of (28) and applying Laplace transform’s convolution
property, we have ¯̄Vl (s) = gl

1
s − µλl

α
s+α

¯̄Vl (s), from which
¯̄Vl (s), the Laplace transform of ¯̄vl (t), is solved as ¯̄Vl (s) =

gl
1
s

1+µλl
α

s+α
= (s+α)gl

s2+(1+µλl)αs
= gl

1+µλl

1
s + µλl

1+µλl

gl
s+(1+µλl)α

.

Taking the inverse Laplace transform on ¯̄Vl (s), ¯̄vl (t) is solved
as

¯̄vl (t) =
gl

1 + µλl
+

µλlgl
1 + µλl

e−(1+µλl)αt, t > 0. (29)

Consequently, ¯̄u (t) is solved as

¯̄u (t) = Q¯̄v (t)

= Qdiag

{
1

1 + µλl
+

µλl

1 + µλl
e−(1+µλl)αt

}
g

= Qdiag

{
1

1 + µλl
+

µλl

1 + µλl
e−(1+µλl)αt

}
Q−1h

(30)

where diag {·} denotes the diagonal matrix with the l-th
diagonal element specified as a function of l.
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From (12) and (30), the expectation and time averaging of
wl (t) can be finally expressed as

¯̄w (t) = Ē {w (t)}
= diag

{
e−j2πfcTl

}
·Qdiag

{
µλl

1 + µλl

[
1− e−(1+µλl)αt

]}
Q−1h. (31)

We see that, as t → ∞, ¯̄w (t) converges to
diag

{
e−j2πfcTl

}
Qdiag

{
µλl

1+µλl

}
Q−1h.

C. Convergence of Residual Interference Power

Furthermore, the normalized residual interference power can
be evaluated as shown in (32) on top of next page. In deriving
(32), the principle of orthogonality (22) is applied.

Assuming that ul (t), l = 0, 1, · · · , L − 1, are independent
to each other, (32) can be further expressed as

PRI (t)

=
1

2
ε2 +

1

2
Ē


L−1∑
l=0

L−1∑
l′=0,l′ ̸=l

u∗
l (t)Φ ((l − l′)T )ul′ (t)

+Φ (0)

L−1∑
l=0

|ul (t)|2
}

=
1

2
ε2 +

1

2

L−1∑
l=0

L−1∑
l′=0,l′ ̸=l

¯̄u∗
l (t) Φ ((l − l′)T ) ¯̄ul′ (t)

+
1

2
Φ (0)

L−1∑
l=0

¯̄u2
l (t)

=
1

2
ε2 +

1

2
¯̄u
H
(t)

(
Φ− λ̄IL

)
¯̄u (t) +

1

2
λ̄

L−1∑
l=0

¯̄u2
l (t) (33)

where ¯̄u2
l (t) = Ē

{
|ul (t)|2

}
is the mean squared value of

ul (t) and IL stands for the identity matrix of order L.
Since ¯̄u2

l (t) ̸= |¯̄ul (t)|2, we cannot obtain ¯̄u2
l (t) from

(30) directly. However, from (25), a differential equation that∑L−1
l=0

¯̄u2
l (t) satisfies can be obtained as

d
∑L−1

l=0
¯̄u2
l (t)

dt
+ 2

(
1 + µλ̄

)
α

L−1∑
l=0

¯̄u2
l (t)

= 2αRe
{
¯̄u
H
(t)h

}
− 2µα¯̄u

H
(t)

(
Φ− λ̄IL

)
¯̄u (t) (34)

and the solution can be derived accordingly as shown in (35)
on next page (see Appendix B).

Substituting (30) and (35) into (33), we obtain PRI (t) as
shown in (36) on next page. As t → ∞, the normalized
residual interference power converges to

PRI =
1

2
ε2 +

1

2
hHQdiag

{
λl

(1 + µλl)
2

}
Q−1h. (37)

We see that the steady normalized residual interference
power is determined by the normalized modelling error, the
LNA gain and the autocorrelation function of the transmitted
signal.

Finally, from (24) the normalized interference power at RF
can be expressed as

PI =
1

2
ε2 +

1

2
hHΦh (38)

and hence the interference suppression ratio is obtain as

ISR =
ε2 + hHQdiag

{
λl

(1+µλl)
2

}
Q−1h

ε2 + hHΦh
. (39)

It is easily seen that if there is no modelling error and the
autocorrelation matrix has the same eigenvalue λ0 = λ1 =
...λL−1 = λ̄ = A2 as in the ideal autocorrelation case,
the ISR approaches 1

(1+µA2)2
, which is consistent with the

cyclostationary analysis performed in Section III.

V. SIMULATION AND EXPERIMENTAL RESULTS

To verify the analytical results presented in Sections III
and IV, numerical simulation and experimental validation are
performed and the results are provided as follows.

A. ALMS Loop Gain Calibration

Given the multiplier dimensional constant product K1K2,
the ALMS loop gain is determined by the LNA gain and the
transmitted signal power as µA2 = µ

V 2
X

K1K2
. The RMS voltage

VX of the baseband signal X(t) can be calculated through the
RF signal power Pt measured at the output of the HPA with
load R, i.e., VX =

√
2RPt. Also note that the LNA gain is 2µ

and the loop gain can be also expressed as µA2 = 2µ
V 2
X

2K1K2
=

2µ
V 2
x

K1K2
where Vx =

√
RPt is the RMS voltage of the RF

signal x(t).
Since the power is evaluated with 1 Ω load in the above

theoretical analysis, we need to add 17 dB (= 10log(50)) to
convert a power measurement with R = 50 Ω load to the one
with 1 Ω load.

B. Numerical Simulation

The numerical simulation uses a single carrier system with
QPSK modulation and symbol duration Ts = 5 nS. The pulse
shaping filter is an RRC filter with roll-off factor β = 0.25
and hence the stationary autocorrelation function is a raised-
cosine pulse. The carrier frequency is fc = 2.4 GHz. All
RF signals are converted into discrete signals with sampling
period of 0.05 nS. The multi-tap adaptive filter has 8 taps
when spaced at Ts and 16 taps when spaced at Ts

2 so that the
maximum interference channel delay is 8Ts = 40 nS. The LPF
parameter for the ALMS loop is selected as αTs = 1.7655×
10−5 based on ISRLB = 10−13 using (20). The multiplier
dimensional constants are selected as K1K2 = 0.001V 2. The
transmitted signal power is set to 0 dBm with 50 Ω load and
hence A = 10 or 20 dB. We also set the self-interference
power to 25 dB lower than the transmitted signal power and the
combined received signal from remote transmitter plus thermal
noise power to 60 dB lower than the self-interference power.

Two scenarios of interference channel are simulated to
investigate the impacts of transmitted signal autocorrelation
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PRI (t) =
1

K1K2
Ē
{
[z (t)− y (t)]

2
}
=

1

K1K2
Ē


[
Re

{[
Z (t)−

L−1∑
l=0

h∗
lX (t− lT ) +

L−1∑
l=0

u∗
l (t)X (t− lT )

]
ej2πfct

}]2


=
1

2K1K2
Ē


∣∣∣∣∣Z (t)−

L−1∑
l=0

h∗
lX (t− lT ) +

L−1∑
=0

u∗
l (t)X (t− lT )

∣∣∣∣∣
2


=
1

2K1K2
Ē


∣∣∣∣∣Z (t)−

L−1∑
l=0

h∗
lX (t− lT )

∣∣∣∣∣
2
+

1

2K1K2
Ē


∣∣∣∣∣
L−1∑
=0

u∗
l (t)X (t− lT )

∣∣∣∣∣
2


=
1

2
ε2 +

1

2K1K2
Ē

{
L−1∑
l=0

u∗
l (t)X (t− lT )

L−1∑
l′=0

ul′ (t)X
∗ (t− l′T )

}

=
1

2
ε2 +

1

2K1K2
Ē

{
L−1∑
l=0

L−1∑
l′=0

u∗
l (t) Ē {X (τ − lT )X∗ (τ − l′T )}ul′ (t)

}

=
1

2
ε2 +

1

2
Ē

{
L−1∑
l=0

L−1∑
l′=0

u∗
l (t)Φ ((l − l′)T )ul′ (t)

}
(32)

L−1∑
l=0

¯̄u2
l (t) = hHQdiag

{
1

(1 + µλl)
2 +

2µλl

(1 + µλl)
2 e

−(1+µλl)αt +
(µλl)

2

(1 + µλl)
2 e

−2(1+µλl)αt − e−2(1+µλ̄)αt

}
Q−1h (35)

PRI (t) =
1

2
ε2 +

1

2
hHQdiag

{(
λl − λ̄

)( 1

1 + µλl
+

µλl

1 + µλl
e−(1+µλl)αt

)2

+
λ̄

(1 + µλl)
2 +

2µλlλ̄

(1 + µλl)
2 e

−(1+µλl)αt +
µ2λ2

l λ̄

(1 + µλl)
2 e

−2(1+µλl)αt − λ̄e−2(1+µλ̄)αt

}
Q−1h

=
1

2
ε2 +

1

2
hHQdiag

{
λl

(1 + µλl)
2 +

2µλ2
l

(1 + µλl)
2 e

−(1+µλl)αt +
µ2λ3

l

(1 + µλl)
2 e

−2(1+µλl)αt − λ̄e−2(1+µλ̄)αt

}
Q−1h

(36)

on the ALMS loop convergence performance and the inter-
ference channel modeling error on the residual interference
power. For the first scenario, the interference channel is
selected as h(t) = 10

−25
20 {[

√
2
2 − 0.5j]δ(t) − 0.4δ(t − Ts) +

0.3δ(t−3Ts)} = [0.039764−0.028117j]δ(t)−0.022494δ(t−
Ts) + 0.016870δ(t − 3Ts), which means that the delays
of the reflected paths are all integer multiples of Ts. The
normalized interference power (1 Ω load) can be found as
10

−25+17−30
10 /K1K2 = 0.1581. Two tap spacings of the multi-

tap adaptive filter, Ts and Ts

2 , are tested to show the impact of
autocorrelation on convergence performance. Fig. 6 shows the
modelled impulse responses of the interference channel with
Ts spacing and Ts

2 spacing respectively. For the Ts spacing
case, the modelling error is 0, whereas for the Ts

2 spacing
case, the normalized modelling error is 8.3507× 10−10. Fig.
7 shows the convergence curves of the first tap coefficient
w0(t) after averaging over 100 realizations when the LNA
gain is set to 26 dB (i.e., µ = 10). We see that for both cases
the simulated results and the theoretical ones obtained using
(31) almost coincide at macro scale. The convergence speed
is slightly slower for the Ts

2 spacing case. At micro scale, the

simulated w̄0(t) and ¯̄w0(t) for the Ts spacing case are shown
in the inset. The fast variations of w̄0(t) at period Ts due
to the cyclostationary property are clearly seen. However, it
also demonstrates some slow variations which are not captured
by the model expressed in (13) due to the independence
assumption for analysis simplicity. This leaves some room
for future research on more accurate mathematical models
for ALMS loop analysis and hence the ISRLB can be further
refined.

Fig. 8 shows the simulated convergence curves of the
residual interference power and the corresponding theoreti-
cal ones obtained using (36) for the ALMS loop with Ts

spacing and Ts

2 spacing respectively. We see that, because
the autocorrelation is zero at integer multiples of Ts offsets,
the ALMS loop with Ts spacing converges faster than that
with Ts

2 spacing. At µ=10, the normalized residual interference
power at t = 5000Ts is 1.7425 × 10−7 and thus the ISR is
1.7425×10−7/0.1581 = 1.1×10−6 (-59.6dB) which is close
to the theoretical value 1

(1+µA2)2
= 0.998 × 10−6. With Ts

2

spacing, the ALMS loop convergence speed is slowed down
due to the correlation between signals at different adaptive
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Fig. 6. Ts spaced interference channel impulse response h(t) (top) and
modelled tap coefficients hl with Ts spacing (middle) and Ts
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Fig. 7. Simulated and theoretical convergence curves for the first tap
weighting coefficient of the ALMS loop with Ts spacing and Ts
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respectively under the interference channel shown in Fig. 6.

filter taps. With larger LNA gain 46 dB (i.e., µ=100), the
convergence speed is increased and the residual interference
power is lowered. However, we also see a gap between the
simulated and theoretical residual interference powers for the
case with Ts spacing. This is because the impact of the signal
from remote transmitter as well as the receiver noise on the
ALMS loop convergence becomes more significant when the
ISR is very low (lower than 10−8 in this case).

For the second scenario, the interference channel is selected
as h(t) = [0.039764−0.028117j]δ(t)−0.022494δ(t−0.9Ts)+
0.016870δ(t − 3.3Ts) to simulate a general condition that
the reflected paths can have arbitrary delays. Though the
amplitude response of each path is the same as that in previous
scenario, the normalized interference power is now calculated
as 0.1428 due to the signal correlation between different paths.
The modelled impulse responses of the interference channel
with Ts spacing and Ts

2 spacing respectively are shown in Fig.
9. In this case, the normalized channel modelling error with Ts

spacing is as large as 0.005, whereas it is only 1.0163× 10−9

with Ts

2 spacing. This is easily understandable from the
Nyquist sampling theorem. Since the signal bandwidth is
larger than 1

Ts
due to RRC pulse shaping, the interference

channel model with Ts spacing can not accurately represent a
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Fig. 8. Simulated and theoretical convergence curves for residual interference
power of the ALMS loop with Ts spacing and Ts
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spacing respectively under

the interference channel shown in Fig. 6.
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Fig. 9. Arbitrary interference channel impulse response h(t) (top) and
modelled tap coefficients hl with Ts spacing (middle) and Ts

2
spacing

(bottom) respectively.

general channel due to signal spectral aliasing.
The modelling error has significant impact on the residual

interference power. As shown in Fig. 10, the ALMS loop with
Ts spacing can only achieve a normalized residual interference
power of about 2.5 × 10−3, whereas with Ts

2 spacing the
ALMS loop still achieves similar levels of self-interference
cancellation to those shown in Fig. 8.

C. Experimental Validation

The experimental setup is shown Fig. 11, where the RF
frontend is composed of two 2.4 GHz single-chip CMOS RF
IC evaluation boards (RFX2401C) with respective Tx and Rx
antennas. One board is set to Tx mode and the other to Rx
mode. The Tx/Rx antenna spacing is 14 cm. The transmitted
baseband signal is generated burst by burst using a high
speed FPGA development platform. Each burst consists of
1247 single carrier QPSK modulated random symbols with
a symbol rate 50 Msps (or Ts = 20 nS) and pulse shaped
by a 0.25 roll-off RRC filter. The baseband signal is sampled
at 2.5 Gsps and shifted to 58 MHz intermediate frequency
(IF) digitally by the FPGA platform. The digital IF signal is
finally filtered by a bandpass filter (CBPFS-2441) to produce
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under the interference channel shown in Fig. 9.

Fig. 11. Experimental setup with single-chip CMOS RF IC evaluation boards
and an FPGA development platform.

the transmitted RF signal with center frequency 2.442 GHz.
The signal amplitude is adjusted such that the RF signal power
after HPA is measured as 0 dBm (50 Ω load). The received
RF signal power is measured as -14.5 dBm at the Rx antenna
and -1 dBm after the LNA, which means that the LNA gain
is 13.5 dB (or µ = 2.3658). Both transmitted and received
RF signal bursts are also captured by the FPGA development
platform for further processing.

The purpose of this experiment is to validate the theoretical
analysis on the ALMS loop performance with a practical
interference channel and demonstrate the impact of the tap
spacing and the number of taps of the adaptive filter on
the residual interference power. Therefore, we assume that
the components of the adaptive filter are ideal without I/Q
imbalance. The multiplier dimensional constants are selected
as K1K2 = 0.001V 2 so that A = 10 or 20 dB. We also
selected the RC constant of the LPF as αTs = 0.0883 based on
ISRLB = 10−9 so that the ALMS loop can converge quickly
in every signal burst.

Fig. 12 shows the interference channel estimated by per-
forming cross-correlation of the received signal burst with the
transmitted signal burst and its 90 degree shifted versions as
well as the weighting coefficients of the ALMS loop with
Ts spacing and Ts

2 spacing respectively converged at the end
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Fig. 12. Measured interference channel impulse response h(t) (top) and
converged weighting coefficients w̄l with Ts spacing (middle) and Ts

2
spacing

(bottom) respectively.
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Fig. 13. Measured PSDs before and after self-interference cancellation with
different tap spacings and numbers of taps in the adaptive filter.

of a signal burst. All the estimates are averaged over 100
signal bursts. We see that with this experimental setup the
interference channel has major reflected paths clustered near
the direct path, but the reflected paths are not resolvable since
the path delays are much less than the symbol duration. The Ts

2
spaced adaptive filter better models the interference channel,
as further verified by the measured power spectral densities
(PSDs) shown in Fig. 13. We see that with Ts

2 spaced adaptive
filter 26 to 33 dB self-interference cancellation is achieved
even with the small LNA gain, whereas with Ts spaced adap-
tive filter only a maximum of 20 dB cancellation is obtained
at the center of the signal band. Given a tap spacing, the self-
interference cancellation performance is generally improved as
the number of taps increases. However, it is also of interest to
see that the Ts

2 spaced adaptive filter with only 2 taps performs
better than the Ts spaced one with 8 taps.

D. Comparison with Existing Methods

Finally we compare the architecture and performance of
the proposed RF self-interference cancellation circuit with
those of some existing ones [12, 13, 19, 21] as summarized
in Table I on top of next page. It is easily seen that our
proposed method is architecturally simpler since the tap weight
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TABLE I
COMPARISON WITH EXISTING RF CANCELLATION CIRCUITS

Circuit Architecture Down-Conversion Tap Weight Control ISR (dB) Comment
[12] Multi-tap filter - Additional digital algorithm -30 Experimental (8 taps)

-48 Experimental (16 taps)
[13] Multi-tap filter with Required Integrator + 2 multipliers per tap -56 Simulation (3 taps, 2 echo paths)

phase shifters
[19] I/Q multi-tap filter Required Integrator + 4 multipliers per tap -33 Experimental (bandwidth 20 MHz)

-18 Experimental (bandwidth 100 MHz)
[21] I/Q multi-tap filter Required LPF + 4 multipliers per tap -39.2 Experimental (bandwidth 5 MHz)

-39.4 Experimental (bandwidth 10 MHz)
Proposed I/Q multi-tap filter Not required LPF + 2 multipliers per tap -59.6 Simulation (loop gain 30 dB )

-33 Experimental (loop gain 23.7 dB )

control is implemented at RF rather than baseband. Both our
simulation and experimental results confirm that the proposed
method is able to approach the cancellation performance as
expected by the theoretical analysis.

VI. CONCLUSIONS

We have shown through cyclostationary analysis that there
is always an irreducible residual interference after self-
interference cancellation using the proposed multi-tap adaptive
filter with ALMS loop. Based on the overall self-interference
suppression requirement including further digital domain can-
cellation, the ALMS loop parameter can be determined ac-
cording to the derived interference suppression ratio lower
bound. The performance of the ALMS loop is also char-
acterized through stationary analysis, which shows that the
convergence speed and achievable interference suppression
ratio of the ALMS loop are determined by the loop gain
and the autocorrelation function of the transmitted signal. The
interference channel modelling error with the adaptive filter
also has impact on the residual interference power. Future
work includes cyclostationary analysis for different signaling
schemes such as multicarrier systems to derive the respective
interference suppression ratio lower bounds and stationary
analysis of the self-interference cancellation performance in
presence of practical impairments such as I/Q imbalance in
the ALMS loop circuits.

APPENDIX A: SOLUTIONS OF ūl (t) FOR
CYCLOSTATIONARY ANALYSIS

Firstly, we convert the integral equation (16) into a
differential equation. By re-writing (16) as ūl (t) =

hl − µA2αe−αt
∫ t

0
eατ

(
2β
π cos 2π

Ts
τ + 1

)
ūl (τ) dτ , taking

derivation with respect to t on both sides to have
dūl(t)
dt = µA2α2e−αt

∫ t

0
eατ

(
2β
π cos 2π

Ts
τ + 1

)
ūl (τ) dτ −

µA2αe−αteαt
(

2β
π cos 2π

Ts
t+ 1

)
ūl (t) = α [hl − ūl (t)] −

µA2α
(

2β
π cos 2π

Ts
t+ 1

)
ūl (t), and rearranging the derivation

result, we obtain the ordinary differential equation (ODE)

dūl (t)

dt
+ α

[
1 + µA2

(
2β

π
cos

2π

Ts
t+ 1

)]
ūl (t) = αhl.

(40)
The homogeneous form of the ODE can be expressed as

U ′ (t) + α

[
1 + µA2

(
2β

π
cos

2π

Ts
t+ 1

)]
U (t) = 0 (41)

where (·)
′

denotes the first order derivative for simplicity. By
rearranging (41) as U ′(t)

U(t) = −α
[
1 + µA2

(
2β
π cos 2π

Ts
t+ 1

)]
,

using the fact that
∫ t

0
U ′(τ)
U(τ) dτ = lnU (t) − lnU (0) to

have lnU (t) = −α
∫ t

0

[
1 + µA2

(
2β
π cos 2π

Ts
τ + 1

)]
dτ +

lnU (0) = −
(
1 + µA2

)
αt − µA2αTs

β
π2 sin

2π
Ts
t + lnU (0),

we find the solution of U (t) as

U (t) = U (0) e−(1+µA2)αt−µA2αTs
β

π2 sin 2π
Ts

t. (42)

Replacing U (0) by a function f (t), the solution of the non-
homogeneous ODE can be expressed as

ūl (t) = f (t) e−(1+µA2)αt−µA2αTs
β

π2 sin 2π
Ts

t. (43)

Taking derivation on both sides of (43), we have

dūl (t)

dt
=f ′ (t) e−(1+µA2)αt−µA2αTs

β

π2 sin 2π
Ts

t

+ f (t) e−(1+µA2)αt−µA2αTs
β

π2 sin 2π
Ts

t

·
[
−
(
1 + µA2

)
α− µA2α

2β

π
cos

2π

Ts
t

]
. (44)

Substituting (44) and (43) into (40), we have

f ′ (t) e−(1+µA2)αt−µA2αTs
β

π2 sin 2π
Ts

t

+ f (t) e−(1+µA2)αt−µA2αTs
β

π2 sin 2π
Ts

t

·
[
−
(
1 + µA2

)
α− µA2α

2β

π
cos

2π

Ts
t

]
+ α

[
1 + µA2

(
2β

π
cos

2π

Ts
t+ 1

)]
· f (t) e−(1+µA2)αt−µA2αTs

β

π2 sin 2π
Ts

t = αhl

from which we obtain

f ′ (t) = αhle
(1+µA2)αt+µA2αTs

β

π2 sin 2π
Ts

t.

Thus f (t) is determined as

f (t) = αhl

∫ t

0

e(1+µA2)ατ+µA2αTs
β

π2 sin 2π
Ts

τdτ + C

where C is any constant, and hence the solution of ūl (t) is
obtained as

ūl (t) =

[
αhl

∫ t

0

e(1+µA2)ατ+µA2αTs
β

π2 sin 2π
Ts

τdτ + C

]
· e−(1+µA2)αt−µA2αTs

β

π2 sin 2π
Ts

t. (45)
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Eq. (45) still involves an integral which is not
convenient in use. However, by re-writing it as ūl (t) =[
αhl

∫ t

0
e−(1+µA2)α(t−τ)eµA

2αTs
β

π2 sin 2π
Ts

τdτ + Ce−(1+µA2)αt
]

·e−µA2αTs
β

π2 sin 2π
Ts

t and using the approximation∫ t

0
e−(1+µA2)α(t−τ)eµA

2αTs
β

π2 sin 2π
Ts

τdτ ≈ 1
α(1+µA2) which

is valid for t >> 0 and µA2αTs
β
π2 << 1, ūl (t) can be

approximated as

ūl (t) ≈
[

hl

1 + µA2
+ Ce−(1+µA2)αt

]
e−µA2αTs

β

π2 sin 2π
Ts

t.

(46)
From the initial condition ūl (0) = hl, which is easily seen

from (16), we have C = hl
µA2

1+µA2 and finally obtain the
closed-form approximate solution as shown in (17).

APPENDIX B: SOLUTION OF
∑L−1

l=0
¯̄u2
l (t) FOR STATIONARY

ANALYSIS

Firstly, we convert the integral equation (25) into a dif-
ferential equation using the same process as in Appendix A,
resulting in

dul (t)

dt
= α [hl − ul (t)]−

µα

K1K2

[
Z∗ (t)−

L−1∑
l′=0

hl′X
∗ (t− l′T )

+
L−1∑
l′=0

ul′ (t)X
∗ (t− l′T ) + S∗ (t) +N∗ (t)

]
X (t− lT ) .

(47)

Multiplying by 2u∗
l (t) on both sides of (47), we have

2u∗
l (t)

dul (t)

dt
= 2αu∗

l (t)hl − 2α |ul (t)|2 −
2µα

K1K2
u∗

l
(t) [Z∗ (t)

−
L−1∑
l′=0

hl′X
∗ (t− l′T ) +

L−1∑
l′=0

ul′ (t)X
∗ (t− l′T ) + S∗ (t)

+N∗ (t)]X (t− lT ) . (48)

Using the equation d|f(t)|2
dt = 2Re

{
f∗ (t) df(t)

dt

}
for any

complex function f (t), we have

d |ul (t)|2

dt
= 2αRe {u∗

l (t)hl} − 2α |ul (t)|2 −
2µα

K1K2
Re {u∗

l (t)

· [Z∗ (t)−
L−1∑
l′=0

hl′X
∗ (t− l′T ) +

L−1∑
l′=0

ul′ (t)X
∗ (t− l′T )

+S∗ (t) +N∗ (t)]X (t− lT )} . (49)

Performing ensemble expectation and time averaging on both
sides of (49) and applying the principle of orthogonality (22)
and independence assumptions as before, we have

d¯̄u2
l (t)

dt
= 2αRe {¯̄u∗

l (t)hl} − 2α¯̄u2
l (t)− 2µα

·Re{
L−1∑

l′=0,l′ ̸=l

¯̄u∗
l (t)Φ ((l − l′)T ) ¯̄ul′ (t) + Φ (0) ¯̄u2

l (t)}.

(50)

Summing up all equations for l = 0, 1, · · · , L− 1, we have

d
∑L−1

l=0
¯̄u2
l (t)

dt
= 2αRe

{
L−1∑
l=0

¯̄u∗
l (t)hl

}
− 2 (1 + µΦ(0))α

·
L−1∑
l=0

¯̄u2
l (t)− 2µα

L−1∑
l=0

L−1∑
l′=0,l′ ̸=l

¯̄u∗
l (t)Φ ((l − l′)T ) ¯̄ul′ (t) .

(51)

Rearranging (51) and expressing the terms with summation
in matrix form, we obtained the differential equation as shown
in (34).

Denoting b (t) =
∑L−1

l=0
¯̄u2
l (t) and substituting (30) into

(34), we have (52) as shown on top of next page. The solution
of b (t) can be also obtained through Laplace transform.
Performing Laplace transform on both sides of (52), we have
(53) as shown in the second equation on next page from which
B (s), the Laplace transform of b (t), is solved as (54) shown
in the third equation on next page. Taking the inverse Laplace
transform on B (s), b (t) is solved as shown in (35).
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