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Abstract 
Background: Breast cancer is the most common cancer affecting females worldwide. 

Breast cancer survivability prediction is challenging and a complex research task. Existing 

approaches engage statistical methods or supervised machine learning to assess/predict the 

survival prospects of patients.  

Objective: The main objectives of this paper is to develop a robust data analytical model 

which can assist in (i) a better understanding of breast cancer survivability in presence of 

missing data, (ii) providing better insights into factors associated with patient survivability, 

and (iii) establishing cohorts of patients that share similar properties.  

Methods: Unsupervised data mining methods viz. the self-organising map (SOM) and 

density-based spatial clustering of applications with noise (DBSCAN) is used to create 

patient cohort clusters. These clusters, with associated patterns, were used to train 

multilayer perceptron (MLP) model for improved patient survivability analysis. A large 

dataset available from SEER program is used in this study to identify patterns associated 

with the survivability of breast cancer patients. Information gain was computed for the 

purpose of variable selection. All of these methods are data-driven and require little (if any) 

input from users or experts. 

Results: SOM consolidated patients into cohorts of patients with similar properties. From 

this, DBSCAN identified and extracted nine cohorts (clusters). It is found that patients in 

each of the nine clusters have different survivability time. The separation of patients into 

clusters improved the overall survival prediction accuracy based on MLP and revealed 

intricate conditions that affect the accuracy of a prediction.  

Conclusions: A new, entirely data driven approach based on unsupervised learning 

methods improves understanding and helps identify patterns associated with the 

survivability of patient. The results of the analysis can be used to segment the historical 

patient data into clusters or subsets, which share common variable values and survivability. 

The survivability prediction accuracy of a MLP is improved by using identified patient 

cohorts as opposed to using raw historical data. Analysis of variable values in each cohort 

provide better insights into survivability of a particular subgroup of breast cancer patients.  
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1. Introduction 
 

Prediction of cancer survivability and treatment have been of interest to everyone 

worldwide. World Health Organisation indicated that cancer is the second leading cause of 

death worldwide. There are different treatment modalities for cancer such as surgery; 

chemotherapy, hormonal adjuvant therapy and radiation therapy [1]. 

It was found that early diagnosis of cancer, combined with early treatment will improve 

prognosis for cancer [2]. Prognosis also depends on the spread of cancer, in which cancer 

can spread to lymph node drainage areas (Node), and at different sites (Metastasis). A 

cancer staging system called TNM (Tumor, Node, Metastasis) classification is widely used 

for identifying the status of the cancer. Based on the types and stage of the cancer, treatment 

modalities outcomes could vary. For example, it was found that breast cancer, limited to 

first stage only, 96% of patients will be alive in five years after diagnosis [3]. Spread to 

regional nodes or other nodes and distant metastasis will reduce the survivability. The 

availability of treatments and the high rate of incidents made survivability become a subject 

of much interest to health professionals and researchers.  

 

Data-driven predictive models for survivability of cancer can assist in prognosis and 

management of cancer. This also addresses initiatives such as Learning Healthcare Systems 

as identified by Institute of Medicine (United States). The proposed model is novel and 

provides a decision aid for understanding survivability of cancer patients and evidence-

based cancer management. Evidence based medicine and evidence based healthcare has 

been a focus of modern clinical medicine. This study contributes to cancer management as 

it engages knowledge discovery technologies to cancer patient records. The study will 

identify breast cancer as an exempler and will use the SEER breast cancer dataset. While 

the scope of this paper is limited to cases of breast cancer the proposed methodologies are 

suitable for any other cancer management applications. 

 

Demographics in Breast cancer 

Previous studies on breast cancer indicated that survivability notably varies with the 

variation in different factors. For instance, survival difference based on the age has been 

noted due to not having a recommended guideline therapy [4, 5]. Ethnic background and 

the racial difference play a role in the survivability and noted that survival rate is lower in 

African American than the white women [6]. Madubata et al. identified in their study in 

Missouri that there is a racial difference in Ductal Carcinoma in situ (DCIS) [7]. Their 

study also identified that there is a higher risk of ipsilateral breast cancer in black women 

[7]. In addition, study on DCIS from National Cancer Database reported that there are 

differences in treatment chosen based on ethnicity and geographical region [8]. 

Kheirelseid et al. found that there were no differences in survival rate among those 

with unilateral or bilateral cases. The synchronus bilateral breast cancer has the poorer 

survival rate than the metachronus bilateral cases [9]. Synchronus breast cancer is seen 

more often in the elder women than the metachronus breast cancer [10]. The 15 years of 

follow-up study of 1187 with stage T1-2 N0 breast cancer patients in Sweden identified 

that ipsilateral breast cancer was reduced in patients having radiation therapy after breast 

conserving surgery [11]. 



 

2. Previous research on breast cancer data mining 
 

Previous studies categorized survivability by using a threshold of 5 years [12, 13]. It is said 

that a breast cancer patient has survived if alive for five years since the first diagnoses. 

Previous prediction studies for breast cancer survivability treatment studies are based on 

5-year survivability and they lack detailed explanation of survival years. Those survived 

less than 5 years are considered not survived and those more than 5 years are considered 

as survived [12-14]  The proposed approach allows us to have a flexible method of having 

varying levels of survival years. Thus, allowing medical professionals to identify high risk 

subgroup of cancer patients even within 5-years survivability. Although Boughorbel et al. 

conducted survival prediction for either of 2, 5, 8 and 11 years their target value for 

prediction is considered as the binary value and 4 separate analysis were conducted [15].  

Missing values are dealt differently in different studies. Rathore et al. replaced missing 

value with mean value in their data preprocessing  [16]. In a study from Boughorbel, 

missing values of related subjects were removed [15]. Lotfnezhad Afshar used the multiple 

imputation method for missing value. For each complete dataset, average of each is used 

as a single data [17]. However, in their study, Delen et al. dealt with missing data in dealt 

by combining four different variables for site specific surgery and mapped them into one 

variable. However, missing data was still present for 1000 records so they were removed 

from the study [12]. 

 

Umesh and Ramachandra 2016, analysed the SEER breast cancer dataset [18]. They 

have included an external attribute “Menopause” which is not recorded in the SEER dataset 

by assuming that a female of an age above 50 years implies menopause. 

  

Civcik et al.[19] proposed the use of multistable cellular neural networks in 

microcalcification detection in the early diagnosis of breast cancer. They used their method 

on the MIAS (Mammographic Image Analysis Society) database to provide accuracy, 

sensitivity and specificity values. Several research studies have been proposed in the 

literature related to analysis of image based medical datasets for detection and diagnosis of 

breast cancer. Jalalian et al [20]reviewed extant literature on computer-aided detection and 

diagnosis for breast cancer using ultrasound and mammography datasets. Sokouti et al [21] 

provided a framework for MLP-driven cervical cancer diagnosis based on cell image 

datasets. Similarly, Anousouya Devi et al [22] provided a review of different types of 

artificial neural networks used for cancer diagnosis and prediction. 

Although the SEER dataset was used for most of the studies the variables chosen on 

different studies varied. Table 1 presents the comparison of variables used in the different 

studies. Studies included patient demographic (such as age, race, site, marital status), Site 

and Morphology (such as primary site, laterality, behaviour code, histology), Stage (such 

as Grade, Tumor size, lymph node, extension, TNM stage), Treatment modality such as 

(radiation, Surgery). Several different variables were used in the studies regarding staging. 

For comparison, those were mapped accordingly in Table 1. Attribute selection with 

“Lymph Node Status” being the only attribute that is commonly used in all of these studies.  

 

Table 1: Variables commonly used in breast cancer dataset 
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Different studies indicated factors related to breast cancer prognosis depending on 

different factors. There are several studies regarding breast cancer data analysis. More 

recent studies focused on predicting breast cancer through SVM [23], and on survival since 

the time of first diagnosis [12] [24]. 

It could be seen that breast cancer data analysis is a challenging task. Although several 

studies had been conducted to analyse breast cancer survivability through data mining 

methods, the majority of studies considered target variable as those who lived more than 5 

years as survived and less than that is considered not survived. Prediction accuracies are 

generally lacking although some factors are known to greatly affect the prediction 

accuracy. Those factors are selected by hand and it is not known whether or not other 

factors (or combination of factors) also affect the prediction accuracy. Study on 

characteristics of patients group with similar features have been missing or limited.  

3. Methodology 
 

Machine Learning is the science of developing computer algorithms that give computers 

the ability to learn from observations. Figure 1 conceptually illustrates the overall research 

methodology employed in this paper and its comparison in relation to state-of-the-art 

survivability prediction methods. Figure 1 illustrates the novel inclusion of unsupervised 

learning methods (i) SOM and (ii) DBSCAN for segmenting patient records as the basis 

for improving the survival prediction performances of MLP classifiers. The approach 

implements a divide-and-conquer strategy to predicting survivability of cancer patients. 

The SOM and DBSCAN are engaged to divide patient records into cohorts of patients with 

similar properties. The approach is entirely data driven and has several advantages over 

ad-hoc approaches. While ad-hoc methods often divide records on the basis of single 



attributes such as gender or ethnicity, the proposed approach computes cohorts on the basis 

of all attributes. The significance of attribute combinations is also easily overlooked and 

difficult to capture by ad-hoc methods whereas the SOM method can capture similarities 

of any linear combination of attributes.   

 

 

 
Figure 1: Methodological approach 

 

The proposed methodology starts with a data preprocessing step which involves (i) a data 

driven approach to selecting patient records and data variables for analysis and (ii) 

normalizing selected data variables so that all the variables have a unit norm, which is 

useful in distance computation. More information about the data preprocessing step is 

discussed in Section 4.  

The SOM is deployed after the data-pre-processing step. The SOM maps the data onto 

a low-dimensional display space and, by doing so, consolidates similar samples into denser 

groups. The SOM algorithm hence helps to form clusters although the algorithm cannot 

actually identify or extract the clusters. Clustering methods such as K-means or DBSCAN 

are commonly used to extract clusters from a SOM. Since we cannot assume that the 

clusters of patient cohorts are globular (round) in shape and hence we use DBSCAN with 

our approach. DBSCAN identifies and extracts arbitrary shaped clusters and requires low 

user-defined parameterization. Once, these clusters are identified, these are then used 

individually to perform MLP based survival prediction analysis. Here, we have used MLP 

to test if prediction performances are improved when MLP-classifiers are trained on 

individual clusters (or patient cohorts). The rationale of the approach is that the creation of 

models which are expert in predicting survivability of patients that share similarities this 
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should improve on overall prediction accuracy when compared to a single holistic 

classifier. Also, we have adopted a new strategy of replacing missing values of a patient 

with the most frequent variable value in a patient cluster identified by SOM-DBSCAN (see 

Fig 2). This was done for all the clusters identified using SOM-DBSCAN approach. The 

main advantage of this strategy was to replace missing values of patients in a cluster by the 

variable values from the same cluster. This was done to accurately impute missing values 

as each cluster contains sub-group of patients sharing similar properties. Previous studies, 

while conducting survivability analysis, used overall dataset for missing value imputation 

which could be inaccurate. Figure 2 illustrates this procedure of imputing missing values. 

It was revealed that the MLP performances increased by using abovementioned procedure 

(see Section 6).  

 

 
Figure 2: Missing data imputation using SOM-DBSCAN approach 

 

We wish to emphasize that the objective of this paper is not the classification of cancer 

patient data but rather the development of a methodology that can improve the accuracy of 

classification systems as well as to provide an explanation facility on what factors or 

combination of factors influence the prediction accuracy. The proposed method can hence 

be considered to a precursor to a classification system (such as the MLP). Following section 

details SOM and DBSCAN method in detail.  

3.1 Self-Organizing Maps (SOM) 

Artificial Neural Networks (ANNs) simulate learning capabilities of the mammalian 

biological neural systems. Research on Artificial Neural Networks made great strides in 

recent years, and are being applied very successfully to a very wide range of hard to solve 

problems. MLPs are a type of ANNs which are being trained in a supervised fashion. MLPs 

have been deployed to cancer survivability prediction on a number of occasions [12, 13]. 

This paper will adopt an unsupervised ANN called the SOM. While MLPs are a black box 

method for classification problems, the very purpose of SOMs is to provide greater insights 



into the underlying learning problem. SOMs are also capable of modelling data with 

missing values.  

The SOM is a machine learning algorithm that is popularly applied in Data Mining 

[25]. SOMs are generally suited for tasks that require clustering, dimensionality reduction, 

or the visualization of high dimensional data. The SOM algorithm is unsupervised and 

hence requires little a-priori information about the data. It is thus a great method to help 

researchers in understanding the dataset under consideration. 

The SOM algorithm projects high dimensional data onto a low-dimensional display 

space called the map. The map consists of a regular grid of dimension N where N is 

generally chosen to be much smaller than the input dimension of a given learning problem. 

Associated with each point on the grid is a real valued codebook vector whose dimension 

matches that of the input vectors. Please refer to the supplementary file for understanding 

the details of the SOM learning process.  

 

A particular strength of the SOM algorithm is that the SOM preserves the topology 

when mapping data [25]. Thus, data that are similar to each other in data space remain 

close when projected onto the map whereas dissimilar data will be mapped distant on the 

map. By using a map of two dimensions this allows for the visualization of high 

dimensional data. It is for this reason that two-dimensional SOMs are by far the most 

common.  

Resent research introduced high-resolution SOMs which are able to reveal intricate details 

about the data and also allow SOMs to be applied to limited supervised learning problems 

[26]. The paper will adopt the high resolution SOM for the following reasons: 

(i) It is a scalable method which allows the visualization of data. 

(ii) It is best suited as a tool for developing a better understanding of the data and the 

underlying learning problem and, in particular, 

(iii) It allows an investigation into the existence of correlation of patient descriptive data 

with survivability of breast cancer. 

 

The application of the SOM to the learning problem of breast cancer survivability will 

enable us to answer the following questions: 

(i) What renders breast cancer survivability such a difficult to achieve problem? 

(ii) Are there cohorts of similar cases of patients and, if so, which are these cohorts and 

do they share a similar outcome in terms of survivability of breast cancer? 

(iii) Is breast cancer survivability predictable and, if so, which circumstances contribute 

to the accuracy of the prediction? 

Moreover, the SOM will be deployed to help understand the results of related works, and 

to provide future direction for methods on breast cancer survivability prediction. 

3.2 DBSCAN method 

DBSCAN is an algorithm, which identifies clusters among a set of records by detecting 

areas of high density [27]. There are many advantages of using DBSCAN on the dataset 

[27]: (i) it can detect the number of clusters and does hence not require a predetermined 

number of clusters; (ii) can find arbitrary shaped clusters; (iii) robust to noise and outliers; 

and (iv) requires only two algorithmic parameters (minimum number of records in a 

cluster) which can be easily set. In this study, we have used the resulting two-dimensional 

map from SOM for DBSCAN based clustering for identifying clusters of patient records 



sharing similar characteristics. Supplementary file contains preliminary information on 

DBSCAN based clustering process.   

After applying DBSCAN, a set of clusters of patient cohorts is identified to analyse 

patient survivability. Each cluster represents cohort of patients, which share similar 

characteristics and survivability. The patient cohorts in each clusters can also be used for 

conducting MLP based classification for improved patient survivability analysis. More 

information about the results of such analysis have been provided in Section 6. 

 

4. Data Description 
 

In this study, the breast cancer incidence dataset (publically available) from the 

Surveillance, Epidemiology and End Results (SEER) program is used 

(http://www.seer.cancer.gov). The data files stored in the Cancer Incidence database for 

the years 1973 -2012 are used. The dataset consists of 740,506 records and 146 variables 

for the breast cancer cases identified in the US. The variables provide detailed information 

about the cancer case including tumor related attributes, staging, patient socio-

demographics, mortality and multiple edition/recode of certain variables (e.g. AJCC cancer 

staging).  

We have first used a set of inclusions to select the data for further analysis. All of the 

inclusions were applied one-by-one to the SEER dataset so that only those records are 

included where the cause of death was due to breast cancer and complete survival history 

is known. These specific inclusions are listed as following:   

(i) Cases were included when the year of birth is known. Records with missing 

values were included except if the year of birth is not known. 

(ii) Cases were included when the site/histology recode or the adapted classification 

scheme for tumors (AYA Site Recode/WHO 2008) is “Carcinoma of breast”.  

(iii) Cases were included when the SEER cause-specific death classification equals 

1, i.e., cases where included only when a person died of the cancer.  

(iv) Cases were included when the complete dates are available and there are more 

than 0 days of survival (i.e. Survival Months Flag = 1) 

(v) Cases were included when the behaviour recodes were Malignant, Only 

malignant in ICD-O-3, Only malignant 2010+ 

All of these inclusions were applied to the dataset and a total of 85,189 cases were 

selected for further analysis. In terms of variable selection, variables such as FIRSTPRM, 

BEHANAL and SRV_TIME_MON_FLAG were removed as they had only 1 unique value 

in the resulting dataset. It could also be noted that although HER2 status has been of interest 

to breast cancer [28, 29], the current dataset includes measurement of HER2 only after 

2010, hence, it was not included for this study. Then, the following procedure was adopted 

to select variables.  

 

Rather than using ad-hoc criteria, which previous studies have adopted, we use a set 

of informed criteria to select records and variables from the SEER data as follows: To 

select relevant variables we have computed the information gain based on entropy for each 

of the 146 attributes in the SEER dataset. We then select the 29 attributes with (i) the 

http://www.seer.cancer.gov/


highest information gain, or (ii) its relevance for survival analysis for the breast cancer 

patients. 

  

 Table 1 shows that age, race, marital status, primary site, histology, cancer staging 

such as tumor size, node status, distant spread or extension of tumor are commonly used 

attributes in previous studies. Laterality also has an impact on breast cancer survivability 

[9, 30]. AJCC staging system provided more comprehensive assessment of breast cancer 

staging than the variables, extent of disease and stage [31], therefore AJCC staging is 

selected as a variable. Finally, we ended up with 26 variables and 85,189 cases for analysis 

(see Table 2). The variables selected are – Registry ID, Marital status at diagnosis, 

ethnicity, Spanish/Hispanic Origin, gender, age at diagnosis, year of birth, sequence of all 

reportable malignant, year of diagnosis, primary site, Laterality, Surgery of Primary Site, 

scope of Regional Lymph Node surgery, reason no cancer-directed surgery, method of 

radiation therapy, Radiation sequence with surgery, Number of primaries, First malignant 

primary indicator, Histology, site/histology recode, tumor marker 1, tumor marker 2, 

Survival Months Flag, Survival Months, Breast Adjusted AJCC 6th T , Breast Adjusted 

AJCC 6th N, Breast Adjusted AJCC 6th M, Breast Adjusted AJCC 6th Stage, behaviour 

recode and SEER cause-specific death classification.  

 

Table 3 lists variables (such as ADJTM_6VALUE, ADJNM_6VALUE, 

ADJM_6VALUE, ADJAJCCSTG and SURGPRIM) which have the most number of 

missing values in the SEER dataset. 

 

The variables containing discrete sequences of values such as AGE_DX, YR_BRTH, 

SEQ_NUM, DATE_yr, NUMPRIMS are scaled to values between 0 and 10. This is done so 

that the difference in the scales of each continuous variable is normalised between 0 and 

10 and also because most of the variables in the selected dataset have ranges between 0 to 

10. We have not considered SRV_TIME_MON for the normalisation process as it is a target 

value and it is not used in the procedure. In case of categorical variables, we utilise a binary 

encoding procedure where each categorical variable is transformed into a set of binary 

variables in such a way that each categorical value is associated with one of the binary 

variable. For e.g. variable LATERAL (having 5 unique categories – 1, 2, 3, 4 and 9) is 

replaced by 5 binary variables each representing unique categories (1 – present, 0 – not 

present). After this transformation, all the nominal variables are then treated as numeric 

variables in the domain of {0,1}.  

 

Table 2: Unique values in SEER variables used for the data preparation 

Variable Name Description 
Unique 

Values 

REG Registry ID 8 

MAR_STAT Marital status at diagnosis 6 

RACE Ethnicity 29 

ORIGIN Spanish/Hispanic Origin 10 

SEX Gender 2 

AGE_DX Age at diagnosis 88 

YR_BRTH Year of birth 111 



SEQ_NUM 
Sequence of all reportable 

malignant 
2 

DATE_yr Year of diagnosis 40 

SITEO2V Primary site 9 

LATERAL Laterality 5 

SURGPRIM Surgery of Primary Site 7 

NO_SURG Reason no cancer-directed surgery 8 

RADIATN Method of radiation therapy 10 

RAD_SURG Radiation sequence with surgery 7 

NUMPRIMS Number of primaries 6 

FIRSTPRM First malignant primary indicator 1 

HISTREC Histology 7 

ERSTATUS Tumor marker 1 5 

PRSTATUS Tumor marker 2 5 

SRV_TIME_MON_FLAG Survival Months Flag 1 

BEHANAL Behavior recode 1 

SRV_TIME_MON Survival Months 447 

ADJTM_6VALUE Breast Adjusted AJCC 6th T 16 

ADJNM_6VALUE Breast Adjusted AJCC 6th N 7 

ADJM_6VALUE Breast Adjusted AJCC 6th M 5 

ADJAJCCSTG Breast Adjusted AJCC 6th Stage 12 

 
 

 

 

 

 
 

 

 

 

 

5. Results 
 

The dataset obtained from the pre-processing step is used for training the self-organising 

map (SOM). This paper uses a 2D SOM to aid the visualization of results. SOM is useful 

in present situation as the data variables may be non-linearly related to each other. The 

mappings obtained by a SOM are useful for visualising complex relationship among data 

variables. The missing values in the dataset are retained and encoded by the SOM. We have 

trained SOM by varying parameters (such as size, radius, learning rate and iteration). An 

initial learning rate of 0.32, a radius of size 750, and an iteration of 10000 with 1500 grid 

points for each of the two dimensions is used when training. This parameter setting was 

used as it offered better separation among data vectors within reasonable computational 

time. The mapping (2D-coordinate values) obtained from the trained SOM is then passed 

through DBSCAN for clustering analysis.  
 

 

 

DBSCAN algorithm was run on the dataset with the minimum records in cluster value 

is twice the value of 𝜀. The results of DBSCAN is shown in Figure 3. It can be seen that 

DBSCAN has identified 9 irregular shaped clusters. 

 

 

Table 3: SEER Variables with missing data 



Variable Name 

Frequency 

of Missing 

Values 

SURGPRIM 62696 

ADJTM_6VALUE 37383 

ADJNM_6VALUE 37383 

ADJM_6VALUE 37383 

ADJAJCCSTG 37383 

 

 

 

 
 

Figure 3: DBSCAN results for SOM with size 1500x1500 

 

Given that a SOM maintains a topology preserving mapping and hence it can be 

anticipated that data which are mapped to the same cluster share similar properties. For 

example, when analysing records that share the same cluster on the basis of the property 

on survival time (in months) we found that such records feature a greater similarity in 

survival time then records that belong to different clusters. This is illustrated in Figure 4. 

Figure 4 presents a box plot for the survivability of patients for each of the 9 clusters. It 

can be seen that the survivability differs considerably among 9 clusters. This suggests that 

the attribute values that are selected in the clusters have significant effect on the 

survivability of the breast cancer patients. Table 4 shows the size of clusters obtained by 

using DBSCAN on the SOM. It is seen that some cohorts (i.e. cluster 1) are much larger 

than other cohorts (i.e. cluster 6). It will be found that correspond to the frequency of 

occurrence of patient attributes which differ from cluster to cluster. 

 

Cluster 0:  

Cluster 1:  

Cluster 2:  

Cluster 3:  

Cluster 4:  

Cluster 5:  

Cluster 6:  

Cluster 7:  

Cluster 8:  



 
Figure 4: Survival time for cases in 9 clusters in SOM, cluster with label -1 represents 

outliers which are not attached to any of the 9 clusters 

 

 

Table 4: Cluster sizes based on the results of DBSCAN for SOM size 1500 

Cluster  Size 

Mean Survival 

Time (in 

months) 

Standard 

Deviation (in 

months) 

0 10896 113.17 55.36 

1 48383 66.18 34.23 

2 6626 61.69 31.85 

3 3741 37.01 17.86 

4 5298 29.91 16.14 

5 4198 62.77 34.55 

6 399 71.37 32.23 

7 2756 58.27 28.76 

8 1625 58.82 27.24 

 

It can be seen that Cluster 0 has the highest mean survivability, while the patients in 

cluster 3 and 4 are in the lower end of survivability. When the characteristics of each of 

these clusters were analysed, Cluster 0 has the lowest number of bilateral involvement of 

breast cancer, while the Cluster 4 has the highest numbers of bilateral involvement, 

followed by the cluster 3. Common characteristics from each cluster can be interpreted 

from the results. The results are analysed using the staging definitions from the AJCC 

staging [32]. To illustrate the difference in cluster characteristics, Cluster 0 and 4 is selected 

to be summarized here. Cluster 0 has higher N0 compared to other clusters, which is 

although patients in Cluster 0 are diagnosed with breast cancer, the cluster involves higher 

number of patients with no lymph node involvement. The results indicated that Cluster 0 

accumulates patients with breast cancer in local stage, i.e Stage I and II of TNM 

classification. That indicates that there is less distant metastasis or the local spread to the 



lymph nodes. Cluster 0 has lower number of TIIIS, which indicates the size of the tumor 

is less than 50 mm in greater diameter. Cluster 0 has low number of M1, while clusters 3 

to 6 all have lower M0 and higher M1. However, clusters 3 and 4 have higher M1. This 

may explain why cluster 0 has higher survivability from breast cancer than other clusters.  

Highest number of IIINOS are in cluster 4, and a high number of stage IV are also in 

cluster 4. Cluster 3, 4 and 5 have lesser numbers of TI and TII. Therefore, it could be seen 

that these clusters have less number of people with tumor size less than 2 cm or 5 cm. Both 

Clusters 3 and 4 have low numbers of stage I, IIA and II B and higher number of Stage 

IIIC and IV. That indicates that the tumor has spread to ipsilateral supraclavicular lymph 

nodes, infraclavicular lymph nodes, internal mammary lymph nodes or axillary lymph 

nodes and/or to different organs. Very high number of cases in cluster 4 consists of either 

the patient died before recommended surgery or unknown reason for no surgery or the 

patient or the patient’s guardian refused to have a surgery.  

The aforementioned results indicate that SOM-DBSCAN based approach can help 

explain, through patient attributes, variation among the survivability of breast cancer 

patients. It can be also seen that there are several clusters of similar cases of patients (see 

Fig. 3) and these cohorts share a similar outcome in terms of survivability of breast cancer 

(see Fig. 4 and Table 4).  

Following section discusses the results obtained from clustering approach together with the 

results from obtained by survivability analysis conducted in literature by other researchers 

on the SEER dataset. 

 

6. Discussion 
 

To better visualize the weight vectors across the SOM, we have selected 9 original 

variables (SEQ_NUM, NUMPRIMS, RADIATN, HISTREC, NO_SURG, SURGPRIM, 

AGE_DX, MAR_STAT) to visualise their value distribution on the SOM by grouping 15 by 

15 codebook vectors. The original SOM (shown in Fig 3) is of size 1500 by 1500 but here 

we have used 15 by 15 size to illustrate its effectiveness in mapping multidimensional 

dataset. Figure 5 illustrates the visualization of the node weight vectors (aka codes). The 

node weight vectors are made up of normalised values of the original variables used in 

generating the SOM. Each node in the map (see Figure 5) constitutes the magnitude of each 

variable in the weight vector. By visualizing these weight vectors we can identify patterns 

in the distribution of records and variables. For e.g., top left nodes shows that NO_SURG 

and AGE_DX are similar for the subset of records which are mapped on these nodes. This 

analysis confirms that the SOM is effective in grouping patients according to similarities 

in feature space and, paired with DBSCAN, in obtaining clusters of patients that exhibit 

similar properties. 

 



 
Figure 5: Visualising the weight vectors across the SOM (only selected variables are 

considered for 15 by 15 node map) 

 

Previous studies have shown that the accuracy of cancer survivability prediction 

systems can vary significantly among different cohorts of patients. Existing work use either 

a holistic approach in which a classifier is designed to predict survivability of any patient 

or use classifiers that are designed on a limited number of cohorts (i.e. limited to a particular 

race, or only those who went through the menopause). Systems that specialize on cohorts 

perform generally much better then holistic systems but are limited to predicting outcomes 

only for patients that fit a given cohort. Moreover, the specialized systems group patients 

on the basis of a single attribute. Multiple attributes or combination of attributes are not 

used due to the combinatorial difficulty in studying possible attribute combinations. 

The SOM-DBSCAN methodology presented in this paper allows the development of 

prediction systems that can be deployed to cohorts that share similarities in a combination 

of attributes. This data driven approach detects cohorts without human intervention. Based 

on the work presented in this paper it becomes possible to develop specialized classification 

systems by, for example, training a classifier on each of the detected cohorts (the samples 

that share the same cluster). For any new patient, we would identify the cluster to which 

this new sample would map to and then consult the classifier which corresponds to that 

cluster. 

We verify the effectiveness of such an approach. Multiplayer perceptron (MLP), a 

feedforward artificial neural network, is commonly considered for predicting cancer 

survivability tasks. For simplicity, we train the MLP to map the data into cases with 

survivability of less than 5-year (class 1) and the rest of the cases are to be mapped to class 

0 to represent cases that survive for five or more years. We first used a holistic approach 

to obtain a baseline result by training the MLP on the whole set of data. In the baseline 

MLP training, we have replaced missing values of a variable with the most frequent 

variable value. Table 5 illustrates the performance of baseline MLP on train, test and 

Illustrates the magnitude 
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vector 
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validation data when all 85,189 patients records are used. It can be seen that MLP can 

correctly classify ~ 63% of the patient records. The result is similar to results reported in 

literature. 

   

Table 5: Classification performance of MLP on all the data records without clustering 

Data  

MLP 

Training (%) Test (%) Validation (%) 

85,189 68.68 63.27 63.16 

 

 

We then trained one MLP for each of the 9 clusters (as was obtained by the proposed 

SOM-DBSCAN based clustering method). It should be noted that missing value of patient 

in a cluster is replaced with the most frequent variable value in the same cluster. In other 

words, we made this replacement for each of the nine MLPs so that patient attributes from 

the same cohort are used for replacement. Table 6 shows the results obtained after applying 

these MLPs to cases in the validation and test set. It can be seen that for most of the clusters 

(test and validation data), the MLP performance is well above the baseline of ~ 63% (see 

Table 5). For instance, the MLP performance, when considering records identified as 

cluster 0, is 72.98% on train, 73.18% on test and 72.43% on validation data. The 10-fold 

cross validation performances for MLP on cluster 1 (with high mean survivability) and 

cluster 4 (with low mean survivability) is shown in Figure 6. It shows that the proposed 

approach is robust in terms of consistently predicting survivability at an appropriate 

performance level.    

 

Table 6: Classification performance of MLP on the data points mapped in each cluster 

Cluster 
ID 

Cluster 
Size 

Mean 
Survivability 
(months) 

Patients 
surviving 
<5yrs 

Patients 
surviving 
>5yrs 

Ratio 
(<5yrs:Total) 

MLP 

Training 
(%) 

Test 
(%) 

Validation 
(%) 

0 10896 113.17 7245 3651 0.66  72.98 73.18 72.43 

1 48383 66.18 29337 19046 0.61  64.55 62.73 63.51 

2 6626 61.69 4137 2489 0.62  62.82 62.69 62.86 

3 3741 37.01 3008 733 0.80  80.41 80.43 80.43 

4 5298 29.91 4602 696 0.87  86.84 86.96 86.96 

5 4198 62.77 2714 1484 0.65  65.01 64.99 65.61 

6 399 71.37 262 137 0.66  65.45 72.05 71.54 

7 2756 58.27 1831 925 0.66  66.45 66.55 66.58 

8 1625 58.82 1074 551 0.66 66.91 67.59 69.57 

 

 



 
Figure 6: Ten-fold cross validation performance of MLP on clusters 1 and 4 

 

 

The results confirm that the overall classification rate is significantly improved by 

using the proposed SOM-DBSCAN method and missing value replacement strategy. The 

prediction accuracy can be as high as 86.96% for patients who share the properties of 

cluster 4. To the best of our knowledge, the quality of the overall results is better than any 

other method which is capable of predicting breast cancer survivability of any patient and 

including those with missing values. To this end, the proposed approach based on SOM-

DBSCAN can identify or segment raw dataset into several meaningful subgroups, which 

share common attributes and survivability, and these subgroups can also be used to 

improve baseline MLP performances. Thus, it can be construed that the survivability of 

patients mapped to these clusters can be predicted. It should be also noted that we have 

conducted 5-year survivability analysis only to compare our results with the state-of-the-

art survivability prediction algorithms. The proposed methodology can also be applied to 

identify high risk subgroup of cancer patients even within or more than 5-years 

survivability. 

We conducted another set of experiments to analyse situations when the survivability 

cut-off years is considered to be 3 years, 5 years (as discussed above) and 7 years. MLP 

performances on each of the 9 clusters identified by SOM-DBSCAN method is shown in 

Table 7. It can be broadly seen that MLP performances on each of the clusters varies 

considerably when cut-off year for survivability period is changed to 3, 5 and 7 years. Table 

7 shown that MLP performance for 5 years survivability is lower for all the 9 clusters when 

compared against 3 and 7 years survivability. For instance, MLP performance on cluster 1 

(with high mean survivability of ~66 months) is improved in case of 3 and 7 years 

survivability (~70% and ~73%) when compared against 5 years survivability (~65%). 

However, in case of cluster 4 (with low mean survivability of 29.9 months) MLP 

performance increased to ~90% when 7 years survivability is considered. It can be also 

seen that the MLP performances is better even when the class distribution (for e.g. <3 yrs 

or >3yrs) is imbalanced caused due to the changes in cut-off period (3, 5, 7 yrs). In other  
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Table 7: MLP performances in case of 3, 5 and 7 years survivability period 

 

Words, the MLP performances are better than the random classifier (built by assigning classes based on class ratios shown in Table 7). 

Table 7 highlights these class imbalances as well.   

This analysis can also aid decision maker to decide best survivability period to get better survival prediction accuracies. Thus, we can 

conclude that the proposed approach can also be used to identify best cut-off survivability years to further improve survivability 

prediction performances (in comparison to the standard 5 years survivability period). 

In comparison with previous studies, the use of SOM and DBSCAN for survivability studies is novel. The SOM is trained 

unsupervised whereas all other studies consider various types of supervised methods. We are only aware of one study which considers 

an unsupervised component: A semi-supervised learning (SSL) approach in [13]. They compute a smoothed similarity measure of k-

nearest neighbour for each of the input samples. A key difference to the SOM is that the SSL does not consider the relationship of 

samples that are outside the k-nearest neighbourhood. It is reported in [13] that their method can achieve a prediction accuracy of 73%, 

and when combined with a supervised methods the results improve to about 78%. One may argue that a random classifier would achieve 

the same accuracy because the dataset is unbalanced (79% of cases are in the positive class). However, they use random sampling to 

obtain a class-balanced dataset and hence their method boasts a 28% improvement over a random classifier. 

Cluster 
ID 

Cluster 
Size 

Mean 
Survivability 
(months) 

Ratio 
(<3yrs:Total) 

Ratio 
(<5yrs:Total) 

Ratio 
(<7yrs:Total) 

MLP  MLP  MLP  

(survival = 3yrs) (survival = 5yrs) (survival = 7yrs) 

Training 
(%) 

Test 
(%) 

Training 
(%) 

Test 
(%) 

Training 
(%) 

Test 
(%) 

0 10896 113.17 0.19 0.66 0.46 83.24% 85.13% 73.40% 75.56% 69.00% 70.13% 

1 48383 66.18 0.41 0.61 0.73 70.24% 70.04% 68.14% 65.22% 73.88% 72.90% 

2 6626 61.69 0.42 0.62 0.75 66.05% 66.42% 69.03% 66.29% 76.64% 74.38% 

3 3741 37.01 0.68 0.80 0.87 76.29% 75.56% 82.82% 80.90% 87.51% 87.13% 

4 5298 29.91 0.73 0.87 0.93 76.33% 75.23% 88.10% 85.74% 93.53% 90.48% 

5 4198 62.77 0.49 0.65 0.74 70.00% 70.30% 68.80% 68.31% 76.02% 74.93% 

6 399 71.37 0.48 0.66 0.72 70.88% 69.87% 75.92% 71.95% 82.06% 77.93% 

7 2756 58.27 0.47 0.66 0.77 69.22% 64.98% 72.91% 71.25% 78.49% 77.52% 

8 1625 58.82 0.48 0.66 0.77 69.93% 72.19% 76.19% 72.86% 82.42% 74.76% 



Nevertheless, the study in [13] as well as all other studies on this research question use 

a holistic approach in that they study the dataset as a whole rather than segmenting 

(clustering) the samples then addressing the simpler sub-problems. 

 

7. Conclusions 
Understanding cancer survivability for patients based on historical medical records is of 

significant interest among researchers. Challenges associated with missing data, large 

number of data variables, selection of cut-off survivability period and holistically applying 

one prediction model over all dataset renders the survivability analysis difficult to resolve. 

This paper introduced a novel approach to addressing breast cancer survivability by (i) 

using the information gain or data-driven method for variable selection instead of manual 

variable selection methods used in prior studies, (ii) using a unsupervised learning method, 

SOM, which can handle missing values and map raw patient records onto lower dimensions 

and (iii) finally using DBSCAN to segment the lower dimensional mapped data into subsets 

of patient cohorts (or clusters) which share commonalities in value as well as in 

survivability. Hence, the proposed method created multiple patient subgroups with 

different properties which helps in improving the baseline accuracy of MLP classifiers after 

missing data imputation. Also, MLP analysis showed that selection of cut-off survivability 

period significantly impacts MLP performances. This means that decision makers can 

select appropriate MLP classifier and survivability years for new patients, mapped onto 

one of these clusters, to have better survivability prediction accuracies. It is hence 

interesting to study and refine these methods in future work to improve the prediction 

capabilities of classifiers for cancer survivability analysis.  

In terms of limitations, the SOM presented in this paper is only two dimensional which 

causes a very significant compression of the data and hence carries the risk of information 

loss. The 2D SOM is used to help with the visualization of results whereas in practical 

systems it should be advisable to consider higher dimensional SOMS (i.e. 3D or 4D) for 

further improvements in results. Moreover, DBSCAN is a partitional cluster analysis 

algorithm, which cannot detect sub clusters. Hierarchical cluster analysis algorithms can 

be considered to obtain more finely granulated cohorts of patient for improving the 

accuracy of prediction systems even further. In fact, hierarchical clustering can create sub 

clusters at any granularity and hence it would be possible to develop very personalized 

classification systems. Nevertheless, this paper has shown that the general principle of 

projection and clustering introduces a data driven approach to obtaining patient cohorts for 

the development of accurate classifications systems. The future work can focus on using 

the proposed approach for classification other databases (such as MIAS) for classification.   
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Abbreviations 

AJCC: American Joint Committee on Cancer 

ALL-AML: Acute Lymphocytic leukemia and Acute Myeloid Leukemia 

ANN: artificial neural networks 

DBSCAN: density-based clustering Algorithm 

DLBCL: diffuse large B cell Lymphoma 

DT: decision trees 

KRBM: Kent Ridge Bio-Medical 

LYMLLEUK: Lymphoma of all sites and leukemia 

M: Metastsis (distant spread) 

MAR: multiple association rules 

MLP: Multi Layered Perception 

N: local lymph node involvement 

NB: Naïve Bayes 

RBF: radial basis function 

RNN: recurrent neural network 

SEER: Surveillance, Epidemiology, and End Results program 

SOM: self-organising Map  

SSL Semi-supervised Learning 

SVM: support vector machine 

T1-4: Size of tumor in greatest dimension 

TNM: Tumor, Node, Metastasis 
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