
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

 Mining Partially-Ordered Sequential Rules
Common to Multiple Sequences

Philippe Fournier-Viger, Cheng-Wei Wu, Vincent S. Tseng, Longbing Cao and Roger Nkambou

Abstract—Sequential rule mining is an important data mining problem with multiple applications. An important limitation of

algorithms for mining sequential rules common to multiple sequences is that rules are very specific and therefore many similar

rules may represent the same situation. This can cause three major problems: (1) similar rules can be rated quite differently, (2)

rules may not be found because they are individually considered uninteresting, and (3) rules that are too specific are less likely

to be used for making predictions. To address these issues, we explore the idea of mining “partially-ordered sequential rules”

(POSR), a more general form of sequential rules such that items in the antecedent and the consequent of each rule are

unordered. To mine POSR, we propose the RuleGrowth algorithm, which is efficient and easily extendable. In particular, we

present an extension (TRuleGrowth) that accepts a sliding-window constraint to find rules occurring within a maximum amount

of time. A performance study with four real-life datasets show that RuleGrowth and TRuleGrowth have excellent performance

and scalability compared to baseline algorithms and that the number of rules discovered can be several orders of magnitude

smaller when the sliding-window constraint is applied. Furthermore, we also report results from a real application showing that

POSR can provide a much higher prediction accuracy than regular sequential rules for sequence prediction.

Index Terms— sequential rules, sequential patterns, temporal patterns, pattern mining, sequence, data mining.

—————————— ——————————

1 INTRODUCTION

equential pattern mining is an important data mining
task with wide applications. It consists of discovering
subsequences that are common to multiple sequences.

Several algorithms have been proposed for this task such
as GSP [2], PrefixSpan [14], SPADE [17] and CM-SPADE
[18]. However, sequential patterns found by these algo-
rithms are often misleading for the user. The reason is
that patterns are found solely on the basis of their support
(the percentage of sequences in which they occur). For
instance, consider the sequential pattern {Vivaldi}, {Han-
del}, {Berlioz} meaning that customer(s) bought the music
of Vivaldi, Handel and Berlioz in that order. This sequen-
tial pattern is said to have a support of 50 % because it
appears in sequences 1, 2 and 4 of the following sequence
database containing six sequences.

1: {Vivaldi}, {Mozart}, {Handel}, {Berlioz}
2: {Mozart}, {Bach},{Paganini}, {Vivaldi}, {Handel}, {Berlioz}
3: {Handel}, {Vivaldi}, {Mozart}, {Ravel}, {Berlioz}
4: {Vivaldi}, {Mozart}, {Handel}, {Bach}, {Berlioz}
5: {Mozart}, {Bach}, {Vivaldi}, {Handel}
6: {Vivaldi}, {Handel}, {Mozart}, {Bach}

However, this pattern is misleading because despite

that it appears in 50 % of the sequences, there are also two
sequences where {Vivaldi}, {Handel} are not followed by
{Berlioz} (sequences 5 and 6). Therefore, if someone had to
take decisions on the basis of this pattern, it could lead to
taking wrong decisions. A solution to this problem would
be to add a measure of the confidence or probability that
a pattern will be followed. But adding this information to
sequential patterns is not straightforward because they
can contain multiple items and sequential pattern mining
algorithms have just not been designed for that. An alter-
native that considers the confidence of a sequential pat-
tern is sequential rule mining [4], [5], [8], [9], [12], [13], [16],
[17], [19], [22]. A sequential rule (also called episode rule,
temporal rule or prediction rule) indicates that if some
event(s) occur, some other event(s) are likely to follow
with a given confidence or probability. Sequential rule
mining has been applied in several domains such as
drought management [5], [9], stock market analysis [4],
[16], weather observation [8], reverse engineering [29], e-
learning [7], [15], and e-commerce [22]. Algorithms for
sequential rule mining are designed to either discover
rules appearing in a single sequence [5], [8], [13], [16],
across sequences [4], [9], [29] or common to multiple se-
quences [12], [17], [19], [22], [25]. In this article, we are
interested by the task of mining sequential rules common to
multiple sequences, which is analogous to sequential pat-
tern mining, and is also applied on sequence databases. It
consists of finding rules of the form X⇒Y in a sequence
database such that X and Y are sequential patterns [12],
[17], [19], [22], [25]. Each rule is found on the basis of its
support (the percentage of sequences that contains the
rule) and its confidence (the probability that the sequential
pattern Y will appear after X)1. Those rules are interpreted

1 Note that some algorithms use variations of these measures and also
additional constraints.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

S

————————————————

 Philippe Fournier-Viger is with the Department of Computer Science,
University of Moncton, Moncton, Canada. E-mail: philippe.fv@gmail.com

 Cheng-Wei Wu and Vincent S. Tseng are with the Department of Comput-
er Science and Information Engineering, National Cheng Kung University,
Tainan City, Taiwan. E-mails: tsengsm@mail.ncku.edu.tw,
silvemoonfox@idb.csie.ncku.edu.tw

 L. Cao is with the University of Technology Sydney, Sidney, Australia. E-
mail: lbcao@it.uts.edu.au

 R. Nkambou is with the Department of Computer Science, University of
Quebec at Montreal, Montreal, Canada. E-mail: nkambou.roger@uqam.ca

Manuscript received 5 July 2014.

2 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

as “if X appears, Y is likely to appear with a given confi-
dence afterward”. An example is the following rule: {Vi-
valdi}, {Mozart}, {Handel} ⇒ {Berlioz}. It means that custom-
er(s) who bought the music of Vivaldi, Mozart and Han-
del in that order, have then bought the music of Berlioz.
This rule has a support of 33% because it is found in two
sequences (sequences 1 and 4) out of six sequences.
Moreover, the rule is said to have a confidence of 100%
because in each sequence where {Vivaldi}, {Mozart}, {Han-
del} appears in that order, it is followed by {Berlioz}. Min-
ing such rules can be useful to make recommendations,
predictions or to analyze customers’ behavior. Besides,
there are many other applications such as:
 Web traversal patterns. Sequential rules can be mined

in sequences of webpages visited by users, to make
recommendations [30].

 Educational data. For example, in e-learning, sequen-
tial rules have been mined to understand and predict
the behavior of learners [6], and to discover patterns
common to several learners’ solutions [15].

 Bioinformatics. In this field, many different kind of
sequential data need to be analyzed (e.g. protein se-
quences, DNA, microarray data, etc.). Sequential rule
mining can be applied for example to discover se-
quential relationships between gene expressions of
various patients using data from microarray experi-
ments (e.g. [26], [28]).

1.1 Problems with Current Definition

We note, however, three important problems with the
definition of a sequential rule as a relationship between
two sequential patterns:

1) Rules may have many variations with different
item ordering. Because sequential patterns specify a strict
ordering between items, there might be several rules with
the same items but a different ordering. For example,
there are 23 variations of {Vivaldi}, {Mozart}, {Handel} ⇒
{Berlioz} with the same items ordered differently such as
the following rules denoted as R1, R2… R6:

 R1: {Vivaldi}, {Mozart}, {Handel} ⇒ {Berlioz},

R2: {Mozart}, {Vivaldi}, {Handel} ⇒ {Berlioz},
 R3: {Handel}, {Vivaldi}, {Mozart} ⇒ {Berlioz},
 R4: {Handel, Vivaldi}, {Mozart} ⇒ {Berlioz},
 R5: {Handel}, {Vivaldi, Mozart} ⇒ {Berlioz},
 R6: {Handel, Vivaldi, Mozart} ⇒ {Berlioz}.

But all these variations describe the same situation

(customers who bought music from Vivaldi, Mozart and
Handel in any order, then bought music from Berlioz).

2) Rules and their variations may have important dif-
ferences in how they are rated by the algorithms. For
example, rules R1, R2 and R3 respectively have sup-
port/confidence of 33%/100%, 16%/50% and 16%/100%,
and R4, R5 and R6 do not appear in the database. These
differences in how variations of the same rules are rated
can give a wrong impression of the sequential relation-
ships contained in the database to the user. In fact, if all
the variations of the same rule were taken as a whole,
their support and confidence could be much higher. For

example, none of the previous rules has a support higher
than 33 %. But taken as a whole they appear in four se-
quences out of six (66 %).

3) Rules are less likely to be useful. Because rules are
very specific, each rule is less likely to match with a new
sequence to make predictions. For example, consider that
a new customer buys {Vivaldi}, {Handel}, {Mozart} in that
order. None of the previous rules would match that se-
quence to predict that the customer may buy {Berlioz}
next. If a partial matching is used, a problem would be to
choose between rules R1, R2 and R3 because they are
rated quite differently (the support varies from 16% to
33% and the confidence from 50 % to 100%).

1.2 Contributions

Facing these issues, in this article, we explore the idea of
mining “partially-ordered sequential rules” (POSR), a
more general form of sequential rules common to multi-
ple sequences such that items in the antecedent and in the
consequent of each rule are unordered. This definition
has the benefits of summarizing several rules by single
rules. For example, the rule {Mozart, Vivaldi, Handel} ⇒
{Berlioz} replaces all the previous rules and has a support
of 75 % and a confidence of 66%.

To discover POSR, we propose an efficient algorithm
named RuleGrowth. It uses a novel approach named
“rule expansions” to generate sequential rules and in-
cludes several strategies to perform the search efficiently.
RuleGrowth is easily extendable. Constraints can be add-
ed to the algorithm for the needs of specific applications.
For example, we present an extension named
TRuleGrowth that finds rules occurring with a sliding-
window constraint. This constraint is important for many
real applications because users often only wish to discov-
er patterns occurring within a maximum amount of time
[14], [20], [30].

To evaluate the proposed algorithms, we conduct an
extensive performance study comparing their perfor-
mance with two baseline algorithms on four real-life da-
tasets representing different types of data (protein se-
quences, click-stream data, customer data and language
utterances). Results show that RuleGrowth outperforms
baseline algorithms in all situations in terms of execution
time and memory consumption. Moreover, results show
that the execution time and the number of rules discov-
ered can be reduced by several orders of magnitude when
the sliding-window constraint is used. Experiments also
show that the proposed algorithms have excellent scala-
bility. Furthermore, we also report a real application
where results have shown that the prediction accuracy
obtained using POSR can be much higher than using
sequential rules.

The rest of this article is organized as follows. Section 2
and 3 respectively present background and related work.
Section 4 defines the problem of mining partially-ordered
sequential rules common to multiple sequences and ex-
plains the relationship to related work. Section 5 and
Section 6 respectively present RuleGrowth and
TRuleGrowth. Section 7 presents the evaluation. Finally,
the last section draws a conclusion.

AUTHOR: TITLE 3

2 BACKGROUND

A sequence database [2] SD is a set of sequences S={s1,
s2,…sm} and a set of items I={i1, i2,…in} occurring in
these sequences, where each sequence is assigned a
unique SID (Sequence ID). A sequence is an ordered
list of itemsets (sets of items) sx=I1, I2, … In such that I1,
I2, …In ⊆ I. For instance, Table 1 depicts a sequence
database containing four sequences respectively hav-
ing the sids seq1, seq2, seq3 and seq4. In this example,
each single letter represents an item. Item(s) between
curly brackets represent an itemset. For instance, the
sequence seq1 means that items a and b occurred at the
same time, and were followed successively by c, f, g
and e.

TABLE 1
A SEQUENCE DATABASE

SID Sequences
seq1
seq2
seq3
seq4

{a, b},{c},{f},{g},{e}
{a, d},{c},{b},{a, b, e, f}
{a},{b},{f},{e}
{b},{f, g, h}

A sequence where each itemsets is annotated with a

timestamp is called a time-sequence. For example, Fig.1
shows a time-sequence containing 13 itemsets. A window
is a group of consecutive itemsets in a sequence. A slid-
ing-window is a window that is assumed to move from
the beginning of a sequence to its end, one itemset (or one
time unit) at a time. For example, a sliding-window with
a length of 3 time units can move in 15 different positions
w1, w2, … w15 for the sequence depicted in Fig.1 (each
position is said to be a window). Note that some windows
(w1, w2, w14, w15) extend outside the sequence so that each
itemset appears in the same number of windows.

Fig. 1. A time-sequence

3 RELATED WORK

In this section, we systematically review relevant related
work.

Sequential pattern mining. It consists of discovering
subsequences appearing in a sequence database such that
their support is no less than a threshold minsup set by the
user [2], [14], [17], [18]. The support of a subsequence is
defined as the number of sequences that contains it divid-
ed by the total number of sequences. For example, a se-
quential pattern found in the database of Table 1 for min-
sup = 50 % is {a}, {c}, {e}. It has a support of 50% because it
appears in two sequences out of four (seq1 and seq2).

Mining sequential rules in a single sequence. Several
works were done to discover sequential rules in a single
time-sequence. The most famous is the one of Mannila et
al [13], to discover rules of the form X⇒Y such that X and
Y are unordered itemsets. These rules are interpreted as
“if item(s) X appears, item(s) Y will also appear within
that window with a given confidence. To mine these
rules, the user has to specify a sliding-window size, a

minimum support threshold minsup and a minimum
confidence threshold minconf. The support of a rule is the
percentage of windows in which the rule occurs. The
confidence is the number of windows containing the rule
divided by the number of windows containing its ante-
cedent. For example, for the time-sequence depicted in
Fig. 1, the rule {a, b}⇒{g} has a support of 2/15 and a con-
fidence of 2/9 if the sliding-window size is set to 3 time
units. To discover this form of rules, two steps are per-
formed: (1) discovering itemsets that appear in at least
minsup percent of the windows and (2) generating rules
by using pairs of those itemsets [13]. Multiple algorithms
relying on similar definitions have been proposed, for
example, to discover rules with only two items [8] or
where consequents are restricted to a single item [5].

Mining sequential rules across sequences. To mine
sequential rules in sequence databases, two categories of
algorithms have been designed. The first one is algo-
rithms for mining sequential rules across sequences [4, 9,
29]. A representative example is MOWCATL [9], which
discovers rules of the form X⇒Y, where X and Y are un-
ordered itemsets. To mine rules, the user has to provide a
time-sequence database and specify a sliding-window
size, a minimum support threshold and a minimum con-
fidence threshold. The support of a rule X⇒Y is defined
as in Mannila et al [13] except that X and Y are not re-
quired to appear in the same sequence. For example, the
rule {d} ⇒ {f, g, h} is said to appear once in the database of
Table 1 because {d} appears in the first itemset of seq2 and
{f, g, h} appear in the second itemset of seq4. A similar
algorithm was also proposed in [4].

Mining sequential rules common to several sequenc-
es. Several algorithms hae been proposed to mine sequen-
tial rules common to multiple sequences in a sequence data-
base. Most of these algorithms consist of applying a se-
quential pattern mining algorithm and then to perform a
post-processing step to generate rules between two se-
quential patterns [12], [17], [19], [22]. An example is
RuleGen [17]. It discovers rules of the form X⇒Y such
that X and Y are sequential patterns, and that rules re-
spect a minimum support and a minimum confidence
threshold. To mine these rules, RuleGen first discovers
sequential patterns with the SPADE algorithm [17] and
then combines pairs of sequential patterns to generate
rules. For example, the rule {a}, {c} ⇒ {e} can be found by
RuleGen in the database of Table 1. It means that a followed
by c, then followed by e, has a support of 50 % and a confi-
dence of 100%. However, as mentioned in section 1.1, the
definition of a sequential rule as a relationship between
two sequential patterns can cause several problems. Fac-
ing this issue, in this article, we explore the idea of mining
“partially-ordered sequential rules” (POSR), a form of
rules such that items in the antecedent and consequent
are unordered. We show the benefits of this definition in
terms of increased prediction accuracy for a real applica-
tion in section 7.7.

Note that other definitions of sequential rules could al-
so be studied. For example, instead of mining rules with
unordered or with sequentially ordered antecedents and
consequents, an in-between solution could be to mine

{a, b}, {c}, {f}, {g}, {e}, {a, b}, {d}, {g}, {a,b}, {b, e}, {d}, {f}, {g}

 1 2 3 4 5 6 7 8 9 10 11 12 13

w 1 w15 … … w
6
 … w

10

4 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

rules with partial orders as antecedents/consequents akin
to the work of [13]. This is an idea that we consider ex-
ploring in future work. Moreover, other ways of reduc-
ing, summarizing or compressing rules could be studied.
For example, a popular idea in pattern mining is to mine
a representative subset of patterns instead of all patterns
[12], [30]. This idea has been applied for sequential rules
and POSR respectively in [12] and [30] by mining rules
with a minimal antecedent and a maximal consequent.

4 PROBLEM DEFINITION AND RELATIONSHIP TO

RELATED WORK

In this section, we define the problem of mining partially-
ordered sequential rules.

4.1 Problem Definition

Consider a sequence database SD containing a set of se-
quences S and a set of items I, as defined in section 2 and
illustrated in Table 1. A partially-ordered sequential rule
X⇒Y is a relationship between two unordered itemsets X,
Y ⊆ I such that X∩Y = Ø, X ≠ Ø and Y ≠ Ø. The interpreta-
tion of a rule X⇒Y is that if items of X occur in a sequence,
items of Y will occur afterward in the same sequence.
Formally, we say that a rule X⇒Y occurs in a sequence
sx=I1, I2 … In if there exists an integer k such that 1 ≤ k < n,
X ⊆ ⋃ I

 and Y ⊆⋃ I

 . For example, the rule {a, b,

c}⇒{e, f, g} occurs in the sequence {a, b}, {c}, {f}, {g}, {e},
whereas the rule {a, b, f}⇒{c} does not, because item c does
not occur after f. A rule X⇒Y is said to be of size k*m if
|X| = k and |Y| = m. Note that the notation k*m is not a
product. It is simply a short way of writing that the sizes
of the left and right parts of a rule are respectively k and
m. For example, the rules {a, b, c}⇒{e, f, g} and {a}⇒{e, f}
are of size 3*3 and 1*2 respectively. Furthermore, a rule
of size f*g is said to be larger than another rule of size h*i
if f > h and g ≥ i, or alternatively if f ≥ h and g > i.

For a given sequence database and a rule X⇒Y, the no-
tation sids(X⇒Y) represents the sids set (the set of se-
quence ids) of the sequences where the rule occurs. For
instance, for the database illustrated in Table 1,
sids({a}⇒{b}) = {seq2, seq3}. For an itemset X and a sequence
database, the notation sids(X) denotes the sids set corre-
sponding to sequences where all the items of X appears.
For example, sids({a, b, c}) = {seq1, seq2}. For the sake of
brevity, in the rest of this article, curly brackets will be
omitted when using the “sids” notation with itemsets
containing a single item. For instance, we will write
sids(a) instead of sids({a}) and sids(a⇒b) instead of
sids({a}⇒{b}). We define two interestingness measures for
sequential rules, which are based on the measures used in
sequential rule mining. The support of a rule X⇒Y is
defined as sup(X⇒Y) = |sids(X⇒Y)| / |S|. The confidence
is defined as conf(X⇒Y) = |sids(X⇒Y)| / |sids(X)|.

Consider a minimum support threshold minsup and a
minimum confidence threshold minconf set by the user in
the [0,1] interval. A rule is said to be a frequent rule if its
support is no less than minsup. A rule is said to be a valid
rule if it is a frequent rule and its confidence is no less
than minconf.

Problem definition. The problem of mining sequential
rules common to multiple sequences is to find all valid
rules in a sequence database SD, given the thresholds
minsup and minconf set by the user.

Example 1. Table 2 shows some valid rules found in the
database of Table 1 for minsup = 0.5 and minconf = 0.5.
For instance, the rule {a, b, c}⇒{e} has a support of
|sids(X⇒Y)| / |S| = 2 / 4 = 0.5 and a confidence of
|sids(X⇒Y)| / |sids(X)| = 2 / 2 = 1. Because those values
are respectively no less than minsup and minconf, the
rule is deemed valid.

TABLE 2
SOME SEQUENTIAL RULES

ID Rule Support Confidence
r1
r2
r3
r4
r5
r6
r7

{a, b, c}⇒{e}
{a}⇒{c, e, f}
{a, b}⇒{e, f}
{b}⇒{e, f}
{a}⇒{e, f}
{c}⇒{f}
{a}⇒{b}

0.5
0.5
0.75
0.75
0.75
0.5
0.5

1.0
0.66
1.0
0.75
1.0
1.0
0.66

4.2 Relationship to Related Work

The problem of mining partially-ordered sequential rules
common to multiple sequences is different from other
problems discussed in the related work section. The main
differences are as follows. For the problem of mining
sequential rules in a single sequence or the problem of
mining sequential rules across sequences, the support
and confidence of a rule are defined based on how many
windows contain a rule and its antecedent. Algorithms
for these problems take advantage of the fact that adjacent
windows are overlapping (a window of size n shares n-1
itemsets with the next window). The problem that we
address in this paper is different from those problems
because the support and confidence are defined based on
the number of sequences that contains a rule and its ante-
cedent and it cannot be assumed that sequences are over-
lapping.

The problem addressed in this paper is also different
from sequential pattern mining. The main difference is
that a sequential pattern is a list of one or more itemsets
such that items inside each itemset have to appear togeth-
er in a sequence (in the same itemset). Conversely, a par-
tially-ordered sequential rule is a relationship between
only two itemsets where items in each itemset are unor-
dered and are not required to appear in the same itemset
in a sequence.

4.3 Baseline algorithms

In previous works, we proposed two algorithms named
CMRules and CMDeo [7] for mining partially-ordered
sequential rules, which will be used as baseline algo-
rithms in this article.

CMRules is based on the idea that partially-ordered
sequential rules can be seen as a subset of association
rules [7]. CMRules performs two steps to discover se-
quential rules. First it ignores the temporal information
from the sequence database taken as input to mine asso-
ciation rules [1]. Then, to obtain sequential rules from

AUTHOR: TITLE 5

association rules, CMRules scans the original database to
eliminate rules that do not meet minsup and minconf ac-
cording to the sequential ordering. The main benefits of
CMRules is that association rule mining algorithms can
be reused to implement the algorithm and that it per-
forms better than CMDeo for some datasets [7]. Its main
drawback is that its performance depends on the number
of association rules. If this set is large, CMRules becomes
inefficient [7].

CMDeo proceeds by first scanning the database to
generate rules of size 1*1 (containing two items). The
algorithm then recursively find larger candidate rules by
combining frequent rules of smaller size in a level-wise
manner (similar to Apriori [1]). This is done by two sepa-
rate processes. Left-side expansion is the process of taking
two frequent rules X⇒Y and Z⇒Y, where X and Z are
itemsets of size n sharing n-1 items, to generate a larger
candidate rule X∪Z⇒Y. Right-side expansion is the pro-
cess of taking two frequent rules Y⇒X and Y⇒Z, where X
and Z are itemsets of size n sharing n-1 items, to generate
a larger candidate rule Y⇒X∪Z. After candidate rules are
generated, their support and confidence are calculated by
scanning original sequences of the database. To prune the
search space for candidate rules, CMDeo uses the proper-
ty that expanding the left side of a rule not respecting
minsup will not result in valid sequential rules, and that
expanding the right side of a rule not respecting minsup
or minconf will not generate valid sequential rules [7]. In
[7], we extensively compared the performance of CMDeo
and CMRules. It was found that CMDeo performs con-
siderably better than CMRules for some datasets. But for
others, the search space is such that CMDeo generates a
very large number of candidate rules that are invalid,
which makes CMRules more efficient.

5 THE RULEGROWTH ALGORITHM

In this section, we present RuleGrowth, a novel algorithm
that we have designed to mine partially-ordered sequen-
tial rules more efficiently.

5.1 Main Features

A common characteristic of CMRules and CMDeo is that
both use a generate-candidate-and-test approach, which
consists of generating candidate rules and then to scan
the database to determine their support and confidence.
The problem with this approach is that it often produces a
large amount of candidate rules and that a large propor-
tion are invalid or do not appear in the database. There-
fore, these algorithms spend a lot of time to tell apart
valid rules from invalid ones.

The RuleGrowth algorithm that we propose in this arti-
cle avoids this problem of candidate generation by in-
stead relying on a pattern-growth approach partly in-
spired by the one used in the PrefixSpan algorithm [14]
for sequential pattern mining2. RuleGrowth first finds

2 The similarity between RuleGrowth and PrefixSpan is that both algo-
rithms create small patterns and “grow” them by recursively adding an
item at a time to them to find larger patterns, and that items for growing
patterns are selected by scanning the database. However, besides this
similarity, the algorithms are different.

rules of size 1*1 and then recursively grows them by
scanning the sequences containing them to find single
items that can expand their left or right parts. This strate-
gy ensures that only rules occurring in the database are
considered as potential valid rules by the algorithm. We
name the two processes for expanding rules in
RuleGrowth left expansion and right expansion akin to the
homonym processes of CMDeo. Note however that these
processes are different; RuleGrowth finds larger rules by
adding items to rules by scanning sequences containing
the rules (a depth-first search), whereas CMDeo combine
pairs of rules to generate candidates (a breadth-first
search). Another distinctive feature of RuleGrowth is that
it keeps track of the first and last occurrences of each
item, and also of antecedents and consequents to avoid
scanning sequences completely, as will be explained.

5.2 Preliminary definitions and properties

Before presenting the algorithm, we introduce important
definitions and properties. A left expansion is the process
of adding an item i to the left side of a rule X⇒Y to obtain
a larger rule X∪{i}⇒Y. A right expansion is defined as the
process of adding an item i to the right side of a rule X⇒Y
to obtain a larger rule X⇒Y∪{i}. Left and right expansions
have the following four important properties.

Property 1. (left expansion, effect on support) If an item i
is added to the left side of a rule r:X⇒Y, the support of the
resulting rule r’:X∪{i}⇒Y can only be lower or equal to
sup(r).

Proof. The support of r and r’ are respectively
|sids(X⇒Y)| / |S| and |sids(X∪{i}⇒Y)| / |S|. Since
|sids(X⇒Y)| ≥ |sids(X∪{i}⇒Y)|, sup(r) ≥ sup(r’).

Property 2. (right expansion, effect on support) If an item
i is added to the right side of a rule r:X⇒Y, the support of
the resulting rule r’:X⇒Y∪{i} can only be lower or equal to
sup(r).

Proof: The support of r and r’ are respectively
|sids(X⇒Y)| / |S| and |sids(X⇒Y∪{i})| / |S|. Since
|sids(X⇒Y)| ≥ |sids(X⇒Y∪{i})|, sup(r) ≥ sup(r’).

The two previous properties imply that the support is
monotonic with respect to left and right expansions. In
other words, performing any combinations of left/right
expansions of a rule can only result in rules having a
support that is lower or equal to the support of the origi-
nal rule. Therefore, all rules having a support of at least
minsup can be found by recursively performing expan-
sions on frequent rules of size 1*1 and expanding a rule
having a support less than minsup will not result in a
frequent rule. The confidence, however, is not monotonic
with respect to left and right expansions as the next prop-
erties demonstrate.

Property 3. (left expansion, effect on confidence) If an
item i is added to the left side of a rule r:X⇒Y, the confi-
dence of the resulting rule r’: X∪{i}⇒Y can be lower, higher
or equal to the confidence of r.

Proof. The confidence of r and r’ are respectively
|sids(X⇒Y)| / |sids(X)| and |sids(X∪{i}⇒Y)| /

6 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

|sids(X∪{i})|. Because |sids(X⇒Y)| ≥ |sids(X∪{i}⇒Y)|
and |sids(X)| ≥ |sids(X∪{i})|, conf(r) can be lower,
higher or equal to conf(r’).

Property 4. (right expansion, effect on confidence) If an
item i is added to the right side of a rule r:X⇒Y, the confi-
dence of the resulting rule r’: X⇒Y∪{i} is lower or equal to
the confidence of r.

Proof. The confidence of r and r’ are respectively
|sids(X⇒Y)| / |sids(X)| and |sids(X⇒Y∪{i})| / |sids(X)|.
Since |sids(X⇒Y)| ≥ |sids(X⇒Y∪{i})|, conf(r) ≥
conf(r’).

The RuleGrowth algorithm relies on the use of sids sets
(cf. section 4.1) to calculate the support and confidence of
rules obtained by left or right expansions. Sids sets have
two important properties for sequential rules.

Property 5 (sids set of a rule and its itemsets) For any
sequential rule X⇒Y, sids(X⇒Y) ⊆ sids(X) ∩ sids(Y).

Property 6 (sids set of a rule obtained by left or right
expansion) For any sequential rule r’ obtained by a left or
right expansion of a rule r, the relationship sids(r’) ⊆ sids(r)
holds.

RuleGrowth also relies on two additional definitions. The
first occurrence of an itemset X in a sequence s=I1, I2 … In
is the itemset Ik s such that X ⊆ ⋃ I

 and there exist no

g < k such that X ⊆ ⋃ I

 . The last occurrence of an item-

set X in a sequence s=I1, I2 … In is the itemset Ik s such
that X ⊆ ⋃ I

 and there exists no g > k such that X ⊆

⋃ I

 . For example, the first occurrence of {a, b} in the

sequence {a, d}, {b}, {a}, {b}, {e} is the second itemset,
whereas the last occurrence of {a, b} is the third itemset.

5.3 The Algorithm

The RuleGrowth algorithm takes as input a sequence
database S and the minsup and minconf thresholds.

Main procedure. RuleGrowth’s main procedure is
shown in Fig. 2. The algorithm first scans the database
once to calculate sids(c) for each item c (line 1). Then, the
algorithm identifies all items c such that |sids(c)| / |S| ≥
minsup, because only these items can be part of a valid
rule. The algorithm generates all valid rules of size 1*1
using these items (line 2). This is done by considering
each pair of items i, j one by one. The algorithm scans
sequences in sids(i) ∩ sids(j) to calculate sids(i⇒j) and
sids(j⇒i), the sids of sequences where the rule {i}⇒{j} and
{j}⇒{i} occurs, respectively (line 5 to 7; Property 5). After
this, the support of the rule {i}⇒{j} is obtained by dividing
|sids(i⇒j)| by |S| (line 8). If the support is no less than
minsup, the procedure EXPANDLEFT and EX-
PANDRIGHT are called to try to expand the rule’s left
and right parts recursively (line 9 to 10), and the confi-
dence of the rule is calculated by dividing |sids(i⇒j)| by
|sids(i)|. If the confidence is higher than or equal to min-
conf, the rule is valid and the algorithm outputs the rule
(line 11). After this, the same process is repeated for the
rule {j}⇒{i} (line 12 to 16). Then, the algorithm considers
all other pairs of items i,j in the same way.

It can be easily seen that the main procedure of
RuleGrowth outputs all and only the valid rules of size

1*1. We next explain how it can also find all valid rules of
larger size by recursively adding one item at a time to the
left or right side of frequent rules of size 1*1 with the
procedures EXPANDLEFT and EXPANDRIGHT (by left
and right expansions). To develop these two procedures,
the following problems had to be solved.

RULEGROWTH(S, minsup, minconf)

1. Scan the database S once. For each item c found, record the

 sids of the sequences that contains c in a variable sids(c).

2. FOR each pair of items i, j such that |sids(i)| / |S| ≥ minsup

3. and |sids(j)| / |S| ≥ minsup {

4. sids(i⇒j) := Ø. sids(j⇒i) := Ø.

5. FOR each sid s ∈ (sids(i) ∩ sids(j)) {

6. IF i occurs before j in s, sids(i⇒j) := sids(i⇒j) ∪ {s}.

7. IF j occurs before i in s, sids(j⇒i) := sids(j⇒ i) ∪ {s}. }

8. IF (|sids(i⇒j)| / |S|) ≥ minsup THEN {

9. EXPANDLEFT({i}⇒{j}, sids(i), sids(i⇒j)).

10. EXPANDRIGHT({i}⇒{j},sids(i), sids(j), sids(i⇒j)).

11. IF (|sids(i⇒j)| / |sids(i)|) ≥ minconf THEN OUTPUT

 rule {i}⇒{j} with its confidence and support. }

12. IF (|sids(j⇒i)| / |S|) ≥ minsup THEN {

13. EXPANDLEFT({j}⇒{i}, sids(j), sids(j⇒i)).

14. EXPANDRIGHT({j}⇒{i},sids(j), sids(i), sids(j⇒i)).

15. IF (|sids(j⇒i)| / |sids(j)|) ≥ minconf THEN OUTPUT

16. rule {j}⇒{i} with its confidence and support. }}

Fig. 2. The RuleGrowth algorithm

How to determine which items to use for performing
left and right expansions and obtain valid rules? The
first problem is how to identify items that can expand a
rule I⇒J left part or right part to produce a valid rule. By
exploiting the fact that any valid rule is also a frequent
rule, this problem is decomposed into two sub-problems,
which are (1) determining items that can expand a rule
I⇒J to produce a frequent rule and (2) assessing if a fre-
quent rule obtained by an expansion is valid.

The first sub-problem is solved as follows. To identify
items that can expand a rule r:I⇒J and produce a frequent
rule, our solution is to scan the sequences from sids(I⇒J)
(Property 6). During this scan, each item c such that c ∉ I, c
∉ J and c occurs before the last occurrence of J in at least
minsup×|S| sequences from sids(I⇒J) is noted. Those
items are the one that will produce a frequent rule by a
left expansion of r. For right expansions, we note each
item c ∉ I such that c ∉ J and c occurs after the first occur-
rence of I in at least minsup×|S| sequences from sids(I⇒J).

The second sub-problem is to determine if a rule ob-
tained by a left or right expansion of a frequent rule I⇒J
with an item c is a valid rule. To do this, the confidence of
the rule has to be calculated. There are two cases. For a
left expansion, the confidence is obtained by dividing
|sids(I∪{c}⇒J)| by |sids(I∪{c})|. The set sids(I∪{c}⇒J) is
determined by noting each sequence where c expand the
rule I⇒J when searching items for the left expansion of
I⇒J, as explained in the previous paragraph. The set
sids(I∪{c}) is calculated by scanning each sequences from
sids(I) to see if c appears in it. For a rule of size 1*1, sids(I)
is determined during the initial database scan of the algo-
rithm (line 1 of Fig.2), and for larger rules, it can be up-
dated after each left expansion. For a right expansion, the

AUTHOR: TITLE 7

confidence is calculated by dividing |sids(I⇒J∪{c})| by
|sids(I)|. The set sids(I⇒J∪{c}) is determined by noting
each sequence where c expand the rule I⇒J when search-
ing items for the right expansion of I⇒J as explained in
the previous paragraph.

How can we guarantee that all valid rules are found
by recursively performing left/right expansions? The
next problem is how to guarantee that all valid rules will
be found by recursively performing left/right expansions
starting from rules of size 1*1. The answer is found in
Properties 1 and 2, which states that the support of a rule
is monotonic with respect to left/right expansions. This
implies that all rules can be discovered by recursively
performing left/right expansions starting from frequent
rules of size 1*1. Moreover, these properties imply that
infrequent rules should not be expanded because they
will not lead to valid rules. However, no similar pruning
can be done for confidence because the confidence of a
rule is not monotonic with respect to left expansion
(Property 3).

How can we guarantee that no rule is found twice?
Previous paragraphs explained how expansions can lead
to the discovery of all and only valid rules. Another chal-
lenge is to ensure that no rule is found twice. To achieve
this, two problems had to be solved. First, if we grow
rules by performing left/right expansions recursively,
some rules can be found by different combinations of
left/right expansions. For example, consider the rule {a, b}
⇒ {c, d}. By performing, a left and then a right expansion
of {a} ⇒ {c}, one can obtain the rule {a, b} ⇒ {c, d}. But this
rule can also be obtained by performing a right and then a
left expansion of {a} ⇒ {c}. This problem is illustrated in
Fig. 3(A). For example, rules of size 2*2 can be found re-
spectively by left expansions of rules of size 1*2 and by
right expansions of rules of size 2*1. A simple solution to
avoid this problem is to not allow performing a right
expansion after a left expansion but to allow performing a
left expansion after a right expansion. This solution is
illustrated in Fig. 3(B). Note that an alternative solution is
to not allow performing a left expansion after a right ex-
pansion but to allow performing a right expansion after a
left expansion.

Second, rules can be found several times by performing
left/right expansions with different items. For example,
consider the rule {b, c} ⇒ {d}. A left expansion of {b} ⇒ {d}
with item c results in {b, c} ⇒ {d}. But that latter rule can
also be found by performing a left expansion of {c} ⇒ {d}
with b. To solve this problem, we chose to only add an
item to an itemset of a rule if the item is greater than each
item in the itemset according to the lexicographic order-
ing. In the previous example, this would mean that item c
would be added to the left itemset of {b} ⇒ {d}. But b
would not be added to the left itemset of {c} ⇒ {d} because
b is not greater than c. By using this strategy and the pre-
vious one, no rule is found twice.
 Pseudo-code of the procedures EXPANDLEFT and
EXPANDRIGHT Fig. 4 and 5 present the pseudo-code of
the EXPANDLEFT and EXPANDRIGHT procedures, which
incorporate all the above ideas.

Fig. 3. The order of rule discovery by left/right expansions

EXPANDLEFT(I⇒J, sids(I), sids(I⇒J))

1. FOR each sid ∈ sids(I⇒J), scan the sequence sid. For each item c

appearing in sequence sid that is lexically larger than all items

in I and appears before J, record sid in a variable sids(I∪{c}⇒J).

2. FOR each item c where |sids(I∪{c}⇒J)| ≥ minsup×|S| {

3. sids(I∪{c}) := Ø.

4. FOR each sid ∈ sids(I) such that sid ∈ sids(c){

5. sids(I∪{c}):= sids(I∪{c}) ∪{sid}. }

6. EXPANDLEFT(I∪{c}⇒J, sids(I∪{c}), sids(I∪{c}⇒J))

7. IF |sids(I∪{c}⇒J)| / | sids(I∪{c})| ≥ minconf

8. THEN OUTPUT rule I∪{c}⇒J. }

Fig. 4. The EXPANDLEFT procedure

EXPANDRIGHT(I⇒J, sids(I), sids(I⇒J))

1. FOR each sid ∈ sids(I⇒J), scan the sequence sid. For each item

 c appearing in sequence sid that is lexically larger than all

 items in J and appear after I, record sid in a variable

 sids(I⇒J∪{c}).

2. FOR each item c such that |sids(I⇒J∪{c})| ≥ minsup×|S| {

3. EXPANDLEFT(I⇒J∪{c}, sids(I), sids(I⇒J∪{c})).

4. EXPANDRIGHT(I⇒J∪{c}, sids(I), sids(I⇒J∪{c})).

5. IF |sids(I⇒J∪{c})| / |sids(I)| ≥ minconf

6. THEN OUTPUT rule I⇒J∪{c}. }

Fig. 5. The EXPANDRIGHT procedure

5.4 Optimizing RuleGrowth by keeping track of first
and last occurrences

This section describes an optimization that considerably
enhances the performance of RuleGrowth. It consists of
calculating the first and last occurrences of items in each
sequence and then to use this information to avoid scan-
ning sequences completely. Three modifications were
done to implement this optimization.

First, RuleGrowth is modified (cf. Fig. 2) so that when
the database is scanned for the first time (line 1 of Fig. 2),
the first and last occurrences of each item in each se-
quence is recorded. We represent the occurrence of an
item in a sequence as an integer indicating the position of
an itemset containing the item. For example, the occur-
rences of a in sequence seq2={a, d},{c},{b},{a, b, e, f} are 1 and
4 (a appears in the first and fourth itemsets), and the oc-
currences of b are 3 and 4 (b appears in the third and
fourth itemsets). In our implementation, the first and last
occurrences of items in sequences are stored in hash ta-
bles to have a quick access to this information.

Second, the generation of frequent rules of size 1*1 is
modified. By using the information about the first and
last occurrences of items, rules of size 1*1 are generated
without scanning the original database. This is done by
looking in the hash tables for each pairs of items i, j if the

8 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

first occurrence of i is before the last occurrence of j and
vice versa in sequences of (sids(i) ∩ sids(j)) to calculate
sids(i⇒j) and sids(j⇒i). For example, to check if b appears
before c in sequence seq1 of Table 1, the first occurrence of
b and the last occurrence of c for sequence seq1 are re-
trieved from the hash tables. These values are respective-
ly 1 and 2. Because 1 < 2, it is concluded that b appears
before c in seq1. Because the database is not scanned for
calculating sids(i⇒j) and sids(j⇒i), generating rules of size
1*1 is much faster.

Third, the way left and right expansions are performed
is also modified to take advantage of the information
about first and last occurrences. Recall that a rule I⇒J is
only expanded by RuleGrowth with items appearing after
the first occurrence of itemset I for a right expansion, and
occurring before the last occurrence of itemset J for a left
expansion. Therefore, if the first occurrences of I and the
last occurrences of J are known, the procedure EX-
PANDLEFT and EXPANDRIGHT could avoid scanning
sequences completely when searching for items to expand
the rule. To provide this information to EXPANDLEFT
and EXPANDRIGHT, we have modified the main
RULEGROWTH procedure so that for each frequent rule
{i}⇒{j} of size 1*1, the last occurrences of j are passed as
parameter to EXPANDLEFT and the first occurrences of i
and last occurrences of j are passed as parameters to EX-
PANDRIGHT (both first and last occurrences are passed
to EXPANDRIGHT because it can call both EX-
PANDLEFT and EXPANDRIGHT). Then, we have modi-
fied EXPANDLEFT so that the last occurrences of J are
passed to each recursive call to EXPANDLEFT. Similarly,
we have modified EXPANDRIGHT so that the first and
last occurrences are passed to each recursive call to EX-
PANDRIGHT and that last occurrences of J are passed to
EXPANDLEFT. But note that before the last occurrences
are passed to EXPANDLEFT by EXPANDRIGHT, last
occurrences of J have to be recalculated because EX-
PANDRIGHT adds an item to J and this can change the
last occurrences of J. This recalculation is done efficiently
by using the hash tables containing the occurrences of
each item for each sequence.

6 TRULEGROWTH: EXTENDING RULEGROWTH TO

D ISCOVER RULES WITH A SLIDING-WINDOW

Because RuleGrowth grows rules one item at a time, con-
straints can be easily added to the algorithm for the needs
of specific applications. For example, it would be easy to
add constraints on the number of items that rules can
contain or to restrict the items that are added to rules.

In this section, we present one particular extension
which is to discover rules occurring within a sliding-
window, i.e. within a maximum number of consecutive
itemsets in each sequence. We present this extension be-
cause applying a sliding-window has shown to be very
useful for the discovery of temporal patterns for many
real-life applications such as analyzing sensor networks
and stock market data, because users often only wish to
discover patterns occurring within a maximum amount of
time [14], [20]. For this reason, several data mining algo-

rithms use a sliding-window (e.g. [4], [5], [9], [13]) or have
been modified to accept one (e.g. [20]). We name
TRuleGrowth the extension of RuleGrowth that discovers
rules while verifying that they occur in a sliding-window.
As it will be shown, discovering rules appearing in a
sliding-window has several important benefits. First, it
can decrease the execution time by several orders of mag-
nitude by pruning the search space. Second, it can pro-
duce a much smaller set of rules, thus reducing the disk
space requirement for storing rules found and making it
easier for the user to analyze results. Third, setting a win-
dow constraint can increase prediction accuracy when
rules are used for prediction (see section 7.7 for results).
Note that adding a sliding-window could also be done
with CMRules/CMDeo. However, it is best done with
RuleGrowth because it can check the window constraint
when it scan sequences to search for items, whereas
CMRules/CMDeo can only verify that rules respect the
the window after rules have been generated (they would
generate many rules not respecting the sliding-window).

6.1 Problem Definition

We define the problem of mining sequential rules com-
mon to multiple sequences with a sliding-window as
being the same as the problem of mining sequential rules
common to multiple sequences except that the definition
of the occurrence of a rule in a sequence is changed so
that rules have to respect the sliding-window (have to
appear within a given number of consecutive itemsets). A
rule X⇒Y is said to occur in a sequence s=I1, I2 … In if there
exist integers j, k, m such that 1 ≤ j ≤ k < m ≤ n, X ⊆ ⋃ I

and Y ⊆ ⋃ I

 and that m – j + 1 ≤ window_size, where

window_size is defined by the user.

Example 2. Table 3 shows sequential rules found in the
database presented in Table 1 for minsup = 0.5, minconf
= 0.5 and window_size = 3. Consider the rule {a}⇒{f}.
Because it occurs in sequence seq1 and seq3, it has a
support of |sids(a⇒f)| / |S| = 2 / 4. The confidence of
{a}⇒{f} is |sids(a⇒f)| / |sids(a)| = 2/3. Note, that
{a}⇒{f} does not occur in seq2 because the parameter
window_size is set to 3. If window_size was set to a value
higher than 3, the rule {a}⇒{f} would occur in seq2 and
thus the support and confidence of {a}⇒{f} would be
3/4 and 3/3, respectively.

TABLE 3
SEQUENTIAL RULES FOUND WITH WINDOW_SIZE = 3

ID Rule Support

r1

r2

r3

r4

r5

r6

r7

{a}⇒{b}

{a}⇒{c}

{a}⇒{f}

{b}⇒{e}

{b}⇒{f}

{c}⇒{f}

{f}⇒{e}

0.5

0.5

0.5

0.5

1.0

0.5

0.5

6.2 The TRuleGrowth Algorithm

TRuleGrowth is a modified version of RuleGrowth. Two
modifications are made to the RULEGROWTH procedure
(cf. Fig. 2) to ensure that the sliding-window constraint is
taken into account when generating rules of size 1*1.

AUTHOR: TITLE 9

First, instead of keeping the first and last occurrences of
each item for each sequence as explained in section 4.3, all
occurrences of each item are now kept for each sequence.
Recall that an occurrence of an item for a sequence is
represented as an integer indicating the position of an
itemset containing the item. For example, the occurrences
of a in sequence seq2 = {a, d},{c},{b},{a, b, e, f} are 1 and 4 (a
appears in the first itemset and the fourth itemset), and
the occurrences of b in seq2 are 3 and 4 (b appears in the
third itemset and the fourth itemset).

The second change is to modify line 6 and 7 of the
RULEGROWTH procedure so that when checking if item
i occurs before item j and if j occurs before i in a sequence,
the check also verifies that it is true within window_size
consecutive itemsets. This check is performed efficiently
by comparing each occurrence of i with each occurrence
of j for the sequence by using the hash tables. If there
exists an occurrence x of i and an occurrence y of j such
that y – x > 0 and y – x + 1 ≤ window_size, then it is con-
cluded that i occurs before j in the sequence while re-
specting the sliding-window. Similarly, if there exists an
occurrence x of j and an occurrence y of i such that y – x >
0 and y – x + 1 ≤ window_size, then it is concluded that j
occurs before i in the sequence while respecting the slid-
ing-window. For example, consider items a and b in se-
quence seq2={a, d},{c},{b},{a, b, e, f} and window_size = 3. By
comparing occurrences of a and b, TRuleGrowth finds
that item a appears before b while respecting the sliding-
window because for the occurrence 1 of a and the occur-
rence 3 of b, 3 – 1 > 0 and 3 – 1 + 1 = 3 ≤ window_size. The
algorithm will also discover that b appears before a while
respecting the sliding-window because 4 – 3 > 0 and 4 – 3
+ 1 = 2 ≤ window_size.

The previous modifications ensure that the sliding-
window constraint is enforced for rules of size 1*1.To take
this constraint into account in the generation of larger
rules, we have modified the EXPANDLEFT and EX-
PANDRIGHT procedures. We present the modified ver-
sion of EXPANDLEFT and EXPANDRIGHT in Fig. 6 and
7 respectively. For convenience of explanations, we ex-
plain these modifications based on the original version of
EXPANDLEFT and EXPANDRIGHT presented in Fig. 4
and 5, without the optimization from section 5.4.

The first modification to EXPANDLEFT (respectively,
EXPANDRIGHT) is to how items are chosen for perform-
ing a left (right) expansion. EXPANDLEFT (EX-
PANDRIGHT) is modified so that the items chosen for a
left (right) expansion are those for which the resulting
rule satisfies minsup while respecting window_size. To
identify efficiently all such items for the left (right) expan-
sion of a rule I⇒J, each sequence from sids(I⇒J) is scanned
once. For each sequence, each time that an itemset X is
read, each item c ∈ I∩X is added to an hash table hashI
together with the position of X in the sequence, and each
item d ∈ J∩X is added to an hash table hashJ together with
the position of X in the sequence. When considering the
next itemset of the sequence, all items that were found
more than window_size - 1 itemsets before are removed
from hashI and hashJ because we consider them to be fall-
ing outside the window defined by the current itemset

and the last window_size -1 itemsets read. When the sum
of the size of hashI and hashJ equals |I |+ |J|, it means that
all items from I and J are in the current window. Howev-
er, to be certain that I occurs before J in the current win-
dow, items should only be added to hashI when |hashJ| =
|J| (to hashJ if |hashI| = |I|) and hashI should be emptied
as soon as hashJ becomes smaller than |J| (hashJ should
be emptied as soon as hashI becomes smaller than |I|). By
doing this modification, when the sum of the size of hashI
and hashJ equals |I |+ |J|, each item c ∉ I∪J occurring
before the first item of J (after the last item of I) such that
the window_size is respected can be added to the set of
items that could expand the rule for this sequence. After
scanning all sequences, the set of items that can expand
I⇒J while respecting minsup is known. An important note
for implementation is that the hash tables hashI and hashJ
should only keep the most recent position for each item.
In the Java programming language, this behavior is the
default behavior for the “HashMap” implementation
when sequences are scanned from the last itemset to the
first one (from the first itemset to the last one).

EXPANDLEFT(I⇒J, sids(I), sids(I⇒J))

1. FOR each sid ∈ sids(I⇒J){

2. hashI := Ø. hashJ := Ø.

3. FOR each itemset X in sequence sid, from the last one to the

 first one. {

4. REMOVE all items from hashI and hashJ seen more

 than window_size – 1 itemsets before.

5. IF |hashJ| was equal to |J| and became smaller after

 removing items THEN |hashI| := Ø.

6. IF |hashJ| = |J| THEN add each item c ∈ I∩X to hashI

 with the position of X in sequence sid.

7. IF |hashJ| < |J| THEN add each item d ∈ J∩X to hashJ

 with the position of X in sequence sid.

8. IF |hashI| = |I| and |hashJ| = |J| THEN add sid to a

 variable sids(I∪{c}⇒J) for each item c ∉ I∪J

 occurring before the first item of J in the window.

9. }}

10. FOR each item c where |sids(I∪{c}⇒J)| / |S| ≥ minsup {

11. sids(I∪{c}) := Ø.

12. FOR each sid ∈ sids(I) such that sid ∈ sids(c) {

13. IF c and I occur within a window of size window_size

 THEN sids(I∪{c}):= sids(I∪{c}) ∪{sid}. }

14. EXPANDLEFT(I∪{c}⇒J, sids(I∪{c}), sids(I∪{c}⇒J)).

15. IF |sids(I∪{c}⇒J)| / | sids(I∪{c})| ≥ minconf THEN

 OUTPUT rule I∪{c}⇒J. }
Fig. 6. The EXPANDLEFT procedure of the TRuleGrowth algorithm

A last modification is done to EXPANDLEFT only. It is

to take the sliding-window into account when recalculat-
ing sids(I∪{c}) for each item c that can expand a rule I⇒J.
To do this, each sequence from sids(I∪{c}) are scanned
while using hash maps to keep track of c occuring within
the same window as J, similarly to what has been
explained in the previous paragraph.

7 PERFORMANCE EVALUATION

To evaluate RuleGrowth and TRuleGrowth, we compared
their performance with CMRules and CMDeo. Experi-
ments were performed on a notebook computer with a
2.53 Ghz P8700 Core 2 Duo processor running Windows
XP and 1 GB of free RAM. Algorithms were implemented
in Java. Source code and datasets can be downloaded

10 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

from http://www.philippe-fournier-viger.com/spmf/.
During all experiments, memory measurements were
done with the standard Java memory API.

EXPANDRIGHT(I⇒J, sids(I), sids(I⇒J))

16. FOR each sid ∈ sids(I⇒J) {

17. hashI := Ø. hashJ := Ø.

18. FOR each itemset X in sequence sid, from the first one

 to the last one{

19. REMOVE all items from hashI and hashJ seen more

 than window_size – 1 itemsets before.

20. IF |hashI| was equal to |I| and became smaller than it

 after removing items THEN |hashJ| := Ø.

21. IF |hashI| = |I| THEN add each item c ∈ J∩X to hashJ

 with the position of X in sequence sid.

22. IF |hashI| < |I| THEN add each item d ∈ I∩X to hashI

 with the position of X in sequence sid.

23. IF |hashJ| = |J| and |hashI| = |I| THEN add sid to a

 variable sids(I⇒J∪{c}) for each item c ∉ I∪J

 occurring after the last item of I in the window. }}

24. FOR each item c where |sids(I⇒J∪{c})| / |S| ≥ minsup {

25. EXPANDLEFT(I⇒J∪{c}, sids(I), sids(I⇒J∪{c})).

26. EXPANDRIGHT(I⇒J∪{c}, sids(I), sids(I⇒J∪{c})).

27. IF |sids(I∪{c}⇒J)| / |sids(I∪{c})| ≥ minconf

 THEN OUTPUT rule I∪{c}⇒J. }}

Fig. 7. The EXPANDRIGHT procedure of the TRuleGrowth algo-

rithm

7.1 Characteristics of real-life datasets

Experiments were carried on four datasets. These datasets
were chosen because they are real-life datasets having
varied characteristics and represents four kinds of data.
The first dataset is Kosarak (http://goo.gl/4B6ve5). It con-
tains 990,000 sequences of click-stream data from an
online news portal. To make the experiment faster, we
have used the first 70,000 sequences. Each sequence has
an average length of 7.97 items (σ = 21.14, max=796) from
21,144 different items. The second dataset is BMSWeb-
View1 (BMS1). It contains 59,601 sequences of click-
stream data from an e-commerce
(http://www.ecn.purdue.edu/KDDCUP/). The number of
different items is 497 items and the average sequence
length is 2.51 items (σ =4.85, max = 267). The third dataset
is Snake [10]. It contains 192 protein sequences. We have
kept only sequences containing more than 50 items to
make the dataset more uniform, because a few sequences
are much shorter than all other sequences. This results in
163 long sequences containing an average of 60.61 items
(σ = 0.6, max = 61). Note however, that after performing
these experiments, we have found that experimental re-
sults are similar if all sequences are used. A distinctive
feature of Snake is that it is very dense. Each item occurs
in almost every sequence (there is on average 17.74 differ-
ent items in each sequence, and only 20 different items for
the whole dataset) and each item appearing in a sequence
appears on average 3.39 times in the sequence (σ =2.24).
The fourth dataset is Sign (http://goo.gl/1U61dv). It con-
tains 730 sequences of sign-language utterances tran-
scripted from videos [24]. Sequences contains on average
93.39 items (σ =12.3, max= 94) from 310 items. It is thus a
moderately dense dataset with long sequences.

7.2 Experiment to assess the influence of minsup

The first experiment consists of running RuleGrowth,
CMDeo and CMRules for the four datasets with different
values for minsup and a fixed value for minconf, to assess
the influence of minsup on the relative performance of the
algorithms. Execution times, maximum memory usage of
each algorithm, and the number of rules found are illus-
trated in Fig. 8.

For Kosarak, algorithms were run with minconf=0.2,
while varying minsup from 0.004 to 0.001. Execution
times, maximum memory usage of each algorithm, and
the number of rules found are illustrated in Fig. 8 (A). For
this experiment a time limit of 2,500 seconds was set and
a memory usage of 1 GB. Because of these limits, CMDeo
and CMRules are unable to provide results for minsup
values lower than 0.0025 (13,006 rules) and 0.00175
(100,900 rules) respectively, while RuleGrowth can still
run at 0.001 (2,910,355 rules). For this dataset,
RuleGrowth outperforms CMDeo and CMRules both in
terms of memory consumption and execution time for all
minsup values.

For BMS1, algorithms were run with minconf = 0.2
while varying minsup from 0.00085 to 0.0006. Results are
illustrated on Fig. 8 (B). For this experiment, a time limit
of 2,500 seconds was set and a memory usage of 1 GB.
Again, RuleGrowth outperforms CMDeo and CMRules.

For Snake, algorithms were run with minconf = 0.2 and
minsup = 0.96, 0.94 … 0.7. Results are illustrated on Fig. 8
(C). For this experiment a time limit of 700 seconds was
set and a maximum memory usage of 1 GB. For this ex-
periment, RuleGrowth is also faster and uses less memory
than CMRules and CMDeo.

For Sign, algorithms were run with minconf=0.2 and
minsup = 0.8, 0.7, … 0.2. Results are illustrated on Fig. 8
(D). For this experiment a time limit of 1000 seconds was
set and a maximum memory usage of 1 GB. For this ex-
periment, RuleGrowth is also faster and uses less memory
than CMRules and CMDeo.

Overall, RuleGrowth performs better than CMRules
and CMDeo on all datasets. Furthermore, as minsup is set
lower, the performance gap increases.

7.3 Experiment to assess influence of minconf

The second experiment consists of assessing the algo-
rithms with different minconf values on the four same
datasets. For this experiment, minsup is set to the same
values as in the previous experiment and minconf is set to
0.3 and 0.8. Results are shown in Fig. 9. Since the perfor-
mance of RuleGrowth and CMDeo do not change signifi-
cantly from minconf = 0.3 to minconf=0.8 (because they
don’t use minconf to prune the search space), only their
execution times for minconf = 0.3 are shown in Fig. 9. The
performance of CMRules can however benefit from a
high confidence threshold. For this reason, execution
times of CMRules for minconf = 0.3 and minconf = 0.8 are
shown in Fig. 9. Though, CMRules’ performance increas-
es considerably when the minconf threshold is raised,
RuleGrowth is still the fastest in all situations.

http://www.philippe-fournier-viger.com/spmf/

AUTHOR: TITLE 11

7.4 Experiment to assess influence of window_size

The third experiment compares the performance of
RuleGrowth with TRulegrowth on the same four datasets
with the same parameter values as in the previous exper-
iments. The goal is to compare the performance of
RuleGrowth and TRuleGrowth for different window_size
values. Since choosing an appropriate window_size value
is dataset dependent and task dependent, we have tried
multiple values for each datasets. Fig. 10 shows the re-
sults for Kosarak, BMS1, Snake and Sign. In these charts,
the notation Wx represents TRuleGrowth with win-
dow_size = x. The window_size values shown on the charts
have been selected for each dataset because they were
representative values that illustrate when TRuleGrowth is
faster than RuleGrowth and for which values it is slower.
Thus for each dataset, we have chosen at least a value
where TRuleGrowth is slower and one where it is faster.

In general, we have observed that TRuleGrowth can be
several orders of magnitudes faster than RuleGrowth and
generate several orders of magnitudes less rules. But as
expected, when window_size is set to large values,
TRuleGrowth becomes slower than RuleGrowth. For
example, TRulegrowth is slower than RuleGrowth on the
Snake dataset for window_size ≥ 30, whereas for win-
dow_size ≤ 20, it is faster. This is because TRuleGrowth has
to perform extra calculations for verifying the window
size constraint. When window_size is set above a certain
value, this extra calculation is more costly in terms of
execution time than what is saved by pruning the search
space with the window size constraint. Nonetheless, even
if TRuleGrowth takes more time than RuleGrowth for

large window_size, it generates much less rules. For exam-
ple, running TRuleGrowth with window_size = 60 for the
Snake dataset produces up to 50 times less rules than
RuleGrowth. For memory usage, in general, RuleGrowth
uses slightly less memory than TRuleGrowth because this
latter keeps track of all occurrences of each frequent item
instead of just the first and last occurrences. But in some
case (e.g. minsup < 0.0015 on Kosarak), TRuleGrowth uses
less memory. This is because RuleGrowth finds larger
rules, and therefore RuleGrowth keeps more information
in memory because it performs more levels of recursive
calls to EXPANDRIGHT and EXPANDLEFT.

Fig. 9. Influence of minconf for Kosarak, BMS1, Snake and Sign

0

500

1000

1500

2000

2500

Ex
ec

ut
io

n
 T

im
e

(s
)

minconf

Kosarak

10

100

1000

10000

Ex
ec

ut
io

n
 ti

m
e

(s
)

minconf

BMS1

0

500

1000

0.
96

0.
92

0.
88

0.
84 0
.8

0.
76

0.
72

Ex
e

cu
ti

on
 ti

m
e

(s
)

minconf

Snake

0

500

1000

0.8 0.7 0.6 0.5 0.4 0.3 0.2

Ex
ec

ut
io

n
ti

m
e

(s
)

minconf

Sign

Figure 8. Influence of minsup

0

1000

2000

3000

Ex
ec

ut
io

n
Ti

m
e

(s
)

minsup

0

500

1000

1500

M
em

or
y

(m
b)

minsup

1K

10K

100K

1000K

10000K

R
u

le
 C

o
u

n
t

minsup

Rule count

10

100

1000

10000

Ex
ec

ut
io

n
ti

m
e

(s
)

minsup

0

500

1000

0.
00

08
5

0.
00

08
25

0.
00

08

0.
00

07
75

0.
00

07
5

0.
00

07
25

0.
00

07

0.
00

06
75

0.
00

06
5

0.
00

06
25

0.
00

06

M
em

or
y

(m
b)

minsup

0K

1000K

2000K

3000K

0.
00

4
0.

00
37

5
0.

00
35

0.
00

32
5

0.
00

3
0.

00
27

5
0.

00
25

0.
00

22
5

0.
00

2
0.

00
17

5

0.
00

15R
ul

e
Co

un
t

minsup

Rule Count

0

500

1000

0.96 0.92 0.88 0.84 0.8 0.76 0.72

Ex
ec

ut
io

n
ti

m
e

(s
)

minsup

1

10

100

1000

0.96 0.92 0.88 0.84 0.8 0.76 0.72

M
em

or
y

(m
b)

minsup

0K

100K

200K

0.96 0.92 0.88 0.84 0.8 0.76 0.72

R
ul

e
Co

un
t

minsup

RuleCount

0

500

0.8 0.7 0.6 0.5 0.4 0.3 0.2Ex
ec

ut
io

n
ti

m
e

(s
)

minsup

0

100

200

0.8 0.7 0.6 0.5 0.4 0.3 0.2M
em

or
y

(m
b)

minsup

0K

100K

200K

300K

R
ul

e
co

un
t

minsup

Rule count

A) Kosarak

B) BMSWebView1

C) Snake

D) Sign

12 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

7.5 Experiment to assess the scalability of the

algorithms

The fourth experiment assesses the scalability of
CMRules, CMDeo, RuleGrowth and TRuleGrowth with
respect to the number of sequences |S|. For this experi-
ment, the original Kosarak dataset was used because it is
a very large dataset containing 700,000 sequences, which
is convenient for varying the size of the dataset easily.
Snake, BMS1 and Sign were not used because they are
much smaller than Kosarak. For the experiment, algo-
rithms were run with minsup = 0.003 and minconf =0.5,
while |S| was varied from 10,000 to 200,000 with an in-
crement of 10,000. For TRuleGrowth, window_size was set
to 10. As for previous experiments, a maximum memory
usage of 1 GB was set. Moreover, a time limit of 1,000
seconds was used. Results of the experiment are shown in
Fig. 11. As it can be seen, CMRules, RuleGrowth and
TRuleGrowth’s execution time and maximum memory
usage grows linearly with the size of |S|. CMDeo also
shows a similar trend. However, as it approaches the
memory limit of 1GB, its performance is negatively af-
fected by the Java garbage collection mechanism. No
results are available for |S|>100,000 for CMDeo as it ex-
ceeded the memory limit.

Fig. 11. Result of the scalability experiment with Kosarak

7.6 Performance analysis

The efficiency of RuleGrowth/TRuleGrowth can be ana-
lyzed as follows.

No candidate generation. RuleGrowth/TRuleGrowth
discover rules by scanning sequences from the database

0

200

400

600

800

1000

10
K

30
K

50
K

70
K

90
K

11
0K

13
0K

15
0K

17
0K

19
0K

Ex
ec

ut
io

n
ti

m
e

(s
)

|S|

CMRules

CMDeo

RuleGrowth

0

500

1 000

1 500

2 000

10K 110K 210K

R
ul

e
co

un
t

|S|

Rule count
W10

0

200

400

600

800

1000

1
0

K

20
K

30
K

4
0

K

5
0

K

6
0

K

7
0

K

8
0

K

9
0

K

10
0K

11
0K

1
20

K

1
30

K

1
40

K

1
50

K

1
60

K

1
70

K

18
0K

19
0K

2
00

K

M
e

m
or

y
(m

b)

|S|

CMRules
CMDeo
RuleGrowth
W10

Figure 10. Influence of window_size

0

500

1000

1500

2000

2500

 E
xe

cu
ti

on
 T

im
e

(s
)

minsup

0K

1K

10K

100K

1000K

10000K

R
ul

e
Co

un
t

minsup

200

300

400

500

600

700

M
em

or
y

(m
b)

minsup

0

50

100

150

200

250

0.96 0.92 0.88 0.84 0.8 0.76 0.72

Ex
ec

ut
io

n
ti

m
e

(s
)

minsup

0K

1K

10K

100K

1000K

10000K

0.
96

0.
94

0.
92 0.

9
0.

88
0.

86
0.

84
0.

82 0.
8

0.
78

0.
76

0.
74

0.
72

R
ul

e
Co

un
t

minsup

4

9

14

19

0.
96

0.
94

0.
92 0.

9
0.

88
0.

86
0.

84
0.

82 0.
8

0.
78

0.
76

0.
74

0.
72

M
em

or
y

(m
b)

minsup

10

100

1000

0.
00

08
5

0.
00

08
25

0.
00

08

0.
00

07
75

0.
00

07
5

0.
00

07
25

0.
00

07

0.
00

06
75

0.
00

06
5

0.
00

06
25

0.
00

06Ex
ec

ut
io

n
ti

m
e

(s
)

minsup

1K

10K

100K

1000K

10000K

0.
00

08
5

0.
00

08
25

0.
00

08

0.
00

07
75

0.
00

07
5

0.
00

07
25

0.
00

07

0.
00

06
75

0.
00

06
5

0.
00

06
25

0.
00

06

R
ul

e
Co

un
t

minsup

55

60

65

70

75

80

0.
00

08
5

0.
00

08
25

0.
00

08

0.
00

07
75

0.
00

07
5

0.
00

07
25

0.
00

07

0.
00

06
75

0.
00

06
5

0.
00

06
25

0.
00

06M
em

or
y

(m
b)

minsup

0

1

10

100

1000

0.8 0.7 0.6 0.5 0.4 0.3 0.2

Ex
ec

ut
io

n
ti

m
e

(s
)

minsup

1

10

100

1000

10000

100000

1000000

0.8 0.7 0.6 0.5 0.4 0.3 0.2

R
ul

e
co

un
t

minsup

10

15

20

25

30

35

40

0.
8

0.
75 0.

7

0.
65 0.

6

0.
55 0.

5

0.
45 0.

4

0.
35 0.

3

0.
25 0.

2

M
em

or
y

(m
b)

minsup

B) BMSWebView1

C) Snake

D) Sign

A) Kosarak

AUTHOR: TITLE 13

to grow rules. The algorithms do not test candidates not
occurring in the database unlike CMRules and CMDeo.

Sids sets keep shrinking. It is easy to see that as rule
grows, the sids sets become smaller and less sequences
need to be scanned. Sids sets generally reduce substan-
tially as rules are grown.

Complexity. RuleGrowth/TRuleGrowth are pseudo-
polynomial algorithms. Their complexity is linear with
respect to the number of sequential rules in a database,
either one or two recursive calls are performed to EX-
PANDLEFT/EXPANDRIGHT for each sequential rule.
The cost of each call is upper bounded by the time of
scanning the database once (in the worst case), and count-
ing the frequency of items.

7.7 Experiment to Assess Prediction Accuracy

The RuleGrowth/TRuleGrowth/CMRules algorithms have
been applied successfully in e-learning [6, 7], manufactur-
ing simulation [31], quality control [27], web page click-
stream analysis [30] and anti-pattern detection in service
based systems [31]. In the next paragraphs, we present
results from the application of TRuleGrowth to webpage
prefetching. In this application, we have compared pre-
diction accuracy using (1) sequential rules (SR) mined by
RuleGen [17] enhanced with a window_size constraint and
(2) partially-ordered sequential rules (POSR) mined by
TRuleGrowth. These experiments were carried with the
Kosarak and BMS1 datasets, which are click-stream da-
tasets. Note that we here only give a summary of the
results. Full results about this experiment can be found in
a dedicated publication [30]. For this experiment, each
dataset was split in a training set and a testing set based
on a training_ratio parameter. The training set was used to
generate SR and POSR, respectively. Then, the testing set
was used to test prediction accuracy using the rules. Each
sequence from the test set was split into prefix and suffix
parts based on some parameters named prefix_size and
suffix_size. The task of prediction for a sequence was to
predict the first item from the suffix using the information
from the prefix. We measured the accuracy (number of
good predictions divided by the size of the test set) and
the coverage (number of sequences where it was possible
to make a prediction). In this experiment, we tuned
RuleGen and TRuleGrowth with the minsup and minconf
values that provided the best results. We varied (1) pre-
fix_size, (2) suffix_size, (3) training_ratio and (4) window_size
to perform measurements.

Overall, we have observed that using POSR always
provide a considerably higher accuracy and coverage (up
to 30 % higher accuracy and up to 60% higher coverage),
depending on the scenario. For example, when setting
minconf = 0.5, training_ratio = 50%, minsup = 0.00055
(BMS1) and minsup = 0.002 (Kosarak), prefix_size = and
suffix_size = 3, window_size = 5, results were as follows. For
BMS1, POSR provided about 25% accuracy / 95% cover-
age, while SR provided about 10% accuracy / 50% cover-
age. For Kosarak, POSR provided about 12 % accuracy /
50 % coverage and SR provided about 5% accuracy / 10%
coverage. The reason why SR have poor coverage is that
rules are too specific as highlighted in Section 1.

The experiment has also shown that using the win-
dow_size constraint is beneficial. For POSR, the best values
of window_size were between 5 and 7 (BMS1) and 7
(Kosarak). For SR, the best values were 5 (BMS1) and 7
(Kosarak). Increasing window_size above these values did
not improve accuracy but increased execution times.

Lastly, another interesting result is that using approx-
imately 1000 to 10,000 rules was enough to provide the
best accuracy for both POSR and SR.

With this experiment, we have presented a real appli-
cation where POSR provides a clear benefit over the use
of SR, and where the window_size constraint is important.

7 Conclusion

This paper presented two algorithms. RuleGrowth is a
novel algorithm for mining sequential rules common to
multiple sequences. Unlike previous algorithms, it uses a
pattern-growth approach for discovering valid rules such
that it avoid considering rules not appearing in the data-
base. The second algorithm (TRuleGrowth) allows the
user to specify a sliding-window constraint on rules to be
mined. To evaluate RuleGrowth and TRuleGrowth, we
performed several experiments on four real-life datasets
having different characteristics. First, the performance of
RuleGrowth was compared with CMRules and CMDeo
while varying the minsup and minconf parameters, to as-
sess their influence on the performance of each algorithm.
Second, RuleGrowth was compared to TRuleGrowth for
different window_size values to evaluate the benefits of
using the window size constraint. Experimental results
shows that RuleGrowth is up to several of magnitudes
faster and uses up to an order of magnitude less memory
than CMRules and CMDeo. Moreover experiment shows
that the execution time and the number of valid rules
found can be reduced by several orders of magnitude
when the window size constraint is used. Lastly, we have
reported results from a real application where using par-
tially-ordered sequential rules and the window_size con-
straint greatly improves accuracy over sequential rules.

ACKNOWLEDGEMENTS

The authors thank the Fonds Québécois de la Recherche
sur la Nature et les Technologies for its financial support.

REFERENCES

[1] R. Agrawal, T. Imielminski and A. Swami, “Mining Association Rules

Between Sets of Items in Large Databases,” Proc. 13th ACM SIGMOD In-

tern. Conf. on Management of Data, pp. 207-216, 1993.

[2] R. Agrawal, R. Srikant, “Mining Sequential Patterns,” Proc. 11th Intern.

Conf. on Data Eng., 3-14, 1995.

[3] D.W. Cheung, J. Han, V. Ng. and Y. Wong, “Maintenance of discovered

association rules in large databases: An incremental updating tech-

nique,” Proc. 12th Intern. Conf. on Data Eng.1996, pp. 106-114, 1996.

[4] G. Das, K.-I. Lin, H. Mannila, G. Renganathan and P. Smyth, “Rule

Discovery from Time Series,” Proc. 4th ACM Intern. Conf. Know. Discov-

ery and Data Mining (KDD’98), pp. 16-22, 1998.

[5] J.S. Deogun and L. Jiang, “Prediction Mining – An Approach to Mining

Association Rules for Prediction,” Proc. 10th Intern. Conf. Rough Sets,

14 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 1996

Fuzzy Sets, Data Mining, and Granular Comp., pp. 98-108, 2005.

[6] U. Faghihi, P. Fournier-Viger and R. Nkambou, “The Combination of a

Causal Learning and an Emotional Learning Mechanism in a Cognitive

Tutoring Agent.,” Knowledge Based Systems, in press.

[7] P. Fournier-Viger, U. Faghihi, R. Nkambou and E. Mephu Nguifo,

“CMRules: An Efficient Algorithm for Mining Sequential Rules Com-

mon to Several Sequences,” Knowledge Based Systems, vol. 25, no. 1, pp.

63-76, 2012.

[8] J. H. Hamilton and K. Karimi, “The TIMERS II Algorithm for the Dis-

covery of Causality,” Proc. 9th Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining, pp. 744-750, 2005.

[9] S.K. Harms, J. Deogun and T. Tadesse, “Discovering Sequential Associ-

ation Rules with Constraints and Time Lags in Multiple Sequences,”

Proc. 13th Intern. Symp. Method. Intell. Systems, pp. 373-376., 2002.

[10] I. Jonassen, J.F. Collins and D.G. Higgin. Finding flexible patterns in

unaligned protein sequences. Protein Science, vol. 4, no. 8, pp. 1587-1995.

[11] S. Laxman and P. Sastry, “A survey of temporal data mining,” Sadhana,

vol. 3, pp. 173-198, 2006.

[12] D. Lo, S.-.C. Khoo and L. Wong, “Non-redundant sequential rules –

Theory and algorithm,” Inform. Syst., vol. 34, no. 4-5, pp. 438-453, 2009.

[13] H. Mannila, H. Toivonen and A.I. Verkano, “Discovery of frequent

episodes in event sequences,” Data Mining and Knowledge Discovery, vol.

no. 1, pp. 259-289, 1999.

[14] J. Pei, J. Han et al., “Mining Sequential Patterns by Pattern-Growth: The

PrefixSpan Approach,” IEEE TKDE, vol. 16, no. 10, pp. 1-17, 2004.

[15] P. Fournier-Viger, Knowledge discovery in problem-solving learning

activities, Ph.D. Thesis, Univ. Quebec in Montreal, Montreal, 2010.

[16] Y.L. Hsieh, D.-L. Yang and J. Wu, “Using Data Mining to Study Up-

stream and Downstream Causal Relationship in Stock Market,” Proc.

2006 Joint Conf. Inf. Sc., 2006.

[17] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Se-

quences,”Machine Learning, vol. 42, no.1-2, pp. 31-60, 2001.

[18] P. Fournier-Viger, A. Gomariz, M. Campos and R. Thomas, “Fast

Vertical Sequential Pattern Mining Using Co-occurrence Information,”

Proc. 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining,

Springer, pp. 40-52, 2014.

[19] Y. Zhao, H. Zhang, L. Cao, C. Zhang and H. Bohlscheid, “Mining Both

Positive and Negative Impact-Oriented Sequential Rules From Transac-

tional Data,”Proc. 13th Pacific-Asia Conference on Knowledge Discovery and

Data Mining, Springer, pp. 656-663, 2009.

[20] P. Fournier-Viger and V.S. Tseng, “TNS: Mining Top-K Non-

Redundant Sequential Rules,” Proc. 28th Symposium on Applied Compu-

ting, ACM Press, pp. 164-166, 2013.

[21] P. Fournier-Viger, R. Nkambou and V. S. Tseng, “RuleGrowth: Mining

Sequential Rules Common to Several Sequences by Pattern-Growth,”

Proc. 26th ACM Symp. Applied Computing, pp. 954-959, 2011.

[22] A. Pitman and M. Zanker, “An Empirical Study of Extracting Multidi-

mensional Sequential Rules for Personalization and Recommendation

in Online Commerce,” Proc. Wirtschaftinformatik 2011, pp.180-189, 2011.

[23] P. Papapetrou, G. Kollios, S. Sclaroff and D. Gunopulos, “Discovering

Frequent Arrangements of Temporal Intervals.” Proc. of 5th IEEE Inter-

national Conference on Data Mining, pp. 354-361, 2005.

[24] J. Ayres, J. Flannick, J. Gehrke and T. Yiu, “Sequential PAttern mining

using a bitmap representation,” Proc. 8th ACM Intern. Conf. Know. Dis-

covery and Data Mining (KDD’02), pp. 429-435, 2002.

[25] H. Minqing and B. Lium, "Opinion Feature Extraction Using Class

Sequential Rules," Proc. AAAI Spring Symp. on Computational Approaches

to Analyzing Weblogs, Palo Alto, USA, March 2006.

[26] J.E. McDunn, K.D. Husain, A.D. Polpitiya, A. Burykin and J. Huan,

“Plasticity of the systemic inflammatory response to acute infection

during critical illness: development of the riboleukogram,” PLoS One ,

vol. 13, no. 2, e1564, 2008.

[27] T. Bogon, I. J. Timm, A. D. Lattner, D. Paraskevopoulos, U. Jessen, M.

Schmitz, S. Wenzel, S. Spieckermann, “Towards Assisted Input and

Output Data Analysis in Manufacturing Simulation: The EDASIM Ap-

proach,” Proc. 2012 Winter Simulation Conference, pp. 257,-269 2012.

[28] M.A. Sartor, V. Mahavisno, V. G. Keshamouni, J. Cavalcoli et

al., “ConceptGen: a gene set enrichment and gene set relation mapping

tool,” Bioinformatics, vol. 26, no. 4, pp. 456-463, 2010.

[29] D. Lo, G. Ramalingam, V. P. Ranganath and K. Vaswani, “Mining

Quantified Temporal Rules: Formalism, Algorithms, and Evaluation,”

Proc. 16th Working Conference on Reverse Engineering, pp. 62-71, 2009.

[30] P. Fournier-Viger, T. Gueniche and V. S. Tseng, “Using Partially-

Ordered Sequential Rules to Generate More Accurate Sequence Predic-

tion,” Proc. 8th International Conference on Advanced Data Mining and Ap-

plications (ADMA 2012), Springer, pp.431-442, 2012.

[31] B. Kamsu-Foguem, F. Rigal and F. Mauget, “Mining association rules

for the quality improvement of the production process,” Expert Systems

and Applications, vol. 40, no. 4, p. 1034-1045, 2013.

[32] M. Nayrolles, N. Moha, P. Valtchev, “Improving SOA antipatterns

detection in Service Based Systems by mining execution traces,” Proc.

20th IEEE Working Conference on Reverse Engineering, pp. 321-330, 2013.

Philippe Fournier-Viger (Ph.D.) is an assistant-professor at Univer-
sity of Moncton, Canada. He received a Ph.D. in Cognitive Computer
Science at the University of Quebec in Montreal (2010). He has

published more than 60 research papers in refereed international
conferences and journals. His research interests include data min-
ing, pattern mining, text mining, intelligent tutoring systems,

knowledge representation and cognitive modeling. He is the founder
of the popular SPMF open-source data mining library.

Cheng Wei-Wu received the M.Ss. degree in computer science and
information engineering from Ming Chuan University, Taiwan,

R.O.C., in 2009. He is currently pursuing the Ph.D. degree in the
Department of Computer Science and Information Engineering,
National Cheng Kung University, Taiwan, R.O.C. His research inter-

ests include data mining and its applications.

Vincent S. Tseng (Ph.D) is a professor at National Cheng Kung

University (NCKU), Taiwan, ROC. He has served as the president of
Taiwanese Association for Artificial Intelligence since 2011 and

acted as the director for Institute of Medical Informatics of NCKU
during August 2008 and July 2011. Dr. Tseng received his Ph.D.
degree from National Chiao Tung University, Taiwan, R.O.C., in

1997, majored in computer science. He has a wide variety of re-
search interests covering data mining, biomedical informatics, mult i-
media databases, mobile and Web technologies. He has published

more than 200 research papers in referred journals and international
conferences and also held (or filed), more than 15 patents. Dr.
Tseng has also served as chairs/program committee for a number of

premier international conferences.

Longbing Cao (Ph.D) is a Professor at the University of Technology

Sydney, and the Data Mining Research Leader of the Australian
Capital Markets Cooperative Research Centre. He got one PhD in

Intelligent Sciences and another in Computing Sciences. His re-
search interests include data mining and machine learning and their
applications, behavior informatics, multi-agent technology, open

complex intelligent systems, and agent mining.

Roger Nkambou (Ph.D) is currently a Professor of Computer Sci-

ence at the University of Quebec at Montreal, and Director of the
Graduate Program in Cognitive Computing (http://dic.uqam.ca). He
received his Ph.D. (1996) in Computer Science from the University

of Montreal. His research interests include knowledge representa-
tion, intelligent tutoring systems, intelligent software agents, ontology
engineering, student modeling and affective computing. He also

serves as member of the program committee of the most important
international conferences in Artificial Intelligence and Education.

