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 Mining Partially-Ordered Sequential Rules 
Common to Multiple Sequences 

Philippe Fournier-Viger, Cheng-Wei Wu, Vincent S. Tseng, Longbing Cao and Roger Nkambou 

Abstract—Sequential rule mining is an important data mining problem with multiple applications. An important limitation of 

algorithms for mining sequential rules common to multiple sequences is that rules are very specific and therefore many similar 

rules may represent the same situation. This can cause three major problems: (1) similar rules can be rated quite differently, (2) 

rules may not be found because they are individually considered uninteresting, and (3) rules that are too specific are less likely 

to be used for making predictions. To address these issues, we explore the idea of mining “partially-ordered sequential rules” 

(POSR), a more general form of sequential rules such that items in the antecedent and the consequent of each rule are 

unordered. To mine POSR, we propose the RuleGrowth algorithm, which is efficient and easily extendable. In particular, we 

present an extension (TRuleGrowth) that accepts a sliding-window constraint to find rules occurring within a maximum amount 

of time. A performance study with four real-life datasets show that RuleGrowth and TRuleGrowth have excellent performance 

and scalability compared to baseline algorithms and that the number of rules discovered can be several orders of magnitude 

smaller when the sliding-window constraint is applied. Furthermore, we also report results from a real application showing that 

POSR can provide a much higher prediction accuracy than regular sequential rules for  sequence prediction.  

Index Terms— sequential rules, sequential patterns, temporal patterns, pattern mining, sequence, data mining. 

——————————      —————————— 

1 INTRODUCTION

equential pattern mining is an important data mining 
task with wide applications. It consists of discovering 
subsequences that are common to multiple sequences. 

Several algorithms have been proposed for this task such 
as GSP [2], PrefixSpan [14], SPADE [17] and CM-SPADE 
[18]. However, sequential patterns found by these algo-
rithms are often misleading for the user. The reason is 
that patterns are found solely on the basis of their support 
(the percentage of sequences in which they occur). For 
instance, consider the sequential pattern {Vivaldi}, {Han-
del}, {Berlioz} meaning that customer(s) bought the music 
of Vivaldi, Handel and Berlioz in that order. This sequen-
tial pattern is said to have a support of 50 % because it 
appears in sequences 1, 2 and 4 of the following sequence 
database containing six sequences. 

1: {Vivaldi}, {Mozart}, {Handel}, {Berlioz} 
2: {Mozart}, {Bach},{Paganini}, {Vivaldi}, {Handel}, {Berlioz} 
3: {Handel}, {Vivaldi}, {Mozart}, {Ravel}, {Berlioz}  
4: {Vivaldi}, {Mozart}, {Handel}, {Bach}, {Berlioz}  
5: {Mozart}, {Bach}, {Vivaldi}, {Handel}  
6: {Vivaldi}, {Handel}, {Mozart}, {Bach} 

However, this pattern is misleading because despite 

that it appears in 50 % of the sequences, there are also two 
sequences where {Vivaldi}, {Handel} are not followed by 
{Berlioz} (sequences 5 and 6). Therefore, if someone had to 
take decisions on the basis of this pattern, it could lead to 
taking wrong decisions. A solution to this problem would 
be to add a measure of the confidence or probability that 
a pattern will be followed. But adding this information to 
sequential patterns is not straightforward because they 
can contain multiple items and sequential pattern mining 
algorithms have just not been designed for that. An alter-
native that considers the confidence of a sequential pat-
tern is sequential rule mining [4], [5], [8], [9], [12], [13], [16], 
[17], [19], [22]. A sequential rule (also called episode rule, 
temporal rule or prediction rule) indicates that if some 
event(s) occur, some other event(s) are likely to follow 
with a given confidence or probability. Sequential rule 
mining has been applied in several domains such as 
drought management [5], [9], stock market analysis [4], 
[16], weather observation [8], reverse engineering [29], e-
learning [7], [15], and e-commerce [22]. Algorithms for 
sequential rule mining are designed to either discover 
rules appearing in a single sequence [5], [8], [13], [16], 
across sequences [4], [9], [29] or common to multiple se-
quences [12], [17], [19], [22], [25]. In this article, we are 
interested by the task of mining sequential rules common to 
multiple sequences, which is analogous to sequential pat-
tern mining, and is also applied on sequence databases. It 
consists of finding rules of the form X⇒Y in a sequence 
database such that X and Y are sequential patterns [12], 
[17], [19], [22], [25]. Each rule is found on the basis of its 
support (the percentage of sequences that contains the 
rule) and its confidence (the probability that the sequential 
pattern Y will appear after X)1. Those rules are interpreted 

1 Note that some algorithms use variations of these measures and also 
additional constraints.  
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as “if X appears, Y is likely to appear with a given confi-
dence afterward”. An example is the following rule: {Vi-
valdi}, {Mozart}, {Handel} ⇒ {Berlioz}. It means that custom-
er(s) who bought the music of Vivaldi, Mozart and Han-
del in that order, have then bought the music of Berlioz. 
This rule has a support of 33% because it is found in two 
sequences (sequences 1 and 4) out of six sequences. 
Moreover, the rule is said to have a confidence of 100% 
because in each sequence where {Vivaldi}, {Mozart}, {Han-
del} appears in that order, it is followed by {Berlioz}. Min-
ing such rules can be useful to make recommendations, 
predictions or to analyze customers’ behavior. Besides, 
there are many other applications such as: 
 Web traversal patterns. Sequential rules can be mined 

in sequences of webpages visited by users, to make 
recommendations [30]. 

 Educational data. For example, in e-learning, sequen-
tial rules have been mined to understand and predict 
the behavior of learners [6], and to discover patterns 
common to several learners’ solutions [15]. 

 Bioinformatics. In this field, many different kind of 
sequential data need to be analyzed (e.g. protein se-
quences, DNA, microarray data, etc.). Sequential rule 
mining can be applied for example to discover se-
quential relationships between gene expressions of 
various patients using data from microarray experi-
ments (e.g. [26], [28]).  

1.1 Problems with Current Definition 

We note, however, three important problems with the 
definition of a sequential rule as a relationship between 
two sequential patterns: 

1) Rules may have many variations with different 
item ordering. Because sequential patterns specify a strict 
ordering between items, there might be several rules with 
the same items but a different ordering. For example, 
there are 23 variations of {Vivaldi}, {Mozart}, {Handel} ⇒ 
{Berlioz} with the same items ordered differently such as 
the following rules denoted as R1, R2… R6:  
 
    R1: {Vivaldi}, {Mozart}, {Handel} ⇒ {Berlioz}, 

R2: {Mozart}, {Vivaldi}, {Handel} ⇒ {Berlioz}, 
  R3: {Handel}, {Vivaldi}, {Mozart} ⇒ {Berlioz},  
  R4: {Handel, Vivaldi}, {Mozart} ⇒ {Berlioz}, 
  R5: {Handel}, {Vivaldi, Mozart} ⇒ {Berlioz}, 
  R6: {Handel, Vivaldi, Mozart} ⇒ {Berlioz}.  
 
But all these variations describe the same situation 

(customers who bought music from Vivaldi, Mozart and 
Handel in any order, then bought music from Berlioz).  

2) Rules and their variations may have important dif-
ferences in how they are rated by the algorithms. For 
example, rules R1, R2 and R3 respectively have sup-
port/confidence of 33%/100%, 16%/50% and 16%/100%, 
and R4, R5 and R6 do not appear in the database. These 
differences in how variations of the same rules are rated 
can give a wrong impression of the sequential relation-
ships contained in the database to the user. In fact, if all 
the variations of the same rule were taken as a whole, 
their support and confidence could be much higher. For 

example, none of the previous rules has a support higher 
than 33 %. But taken as a whole they appear in four se-
quences out of six (66 %). 

3) Rules are less likely to be useful. Because rules are 
very specific, each rule is less likely to match with a new 
sequence to make predictions. For example, consider that 
a new customer buys {Vivaldi}, {Handel}, {Mozart} in that 
order. None of the previous rules would match that se-
quence to predict that the customer may buy {Berlioz} 
next. If a partial matching is used, a problem would be to 
choose between rules R1, R2 and R3 because they are 
rated quite differently (the support varies from 16% to 
33% and the confidence from 50 % to 100%).  

1.2 Contributions 

Facing these issues, in this article, we explore the idea of 
mining “partially-ordered sequential rules” (POSR), a 
more general form of sequential rules common to multi-
ple sequences such that items in the antecedent and in the 
consequent of each rule are unordered. This definition 
has the benefits of summarizing several rules by single 
rules. For example, the rule {Mozart, Vivaldi, Handel} ⇒ 
{Berlioz} replaces all the previous rules and has a support 
of 75 % and a confidence of 66%.  

To discover POSR, we propose an efficient algorithm 
named RuleGrowth. It uses a novel approach named 
“rule expansions” to generate sequential rules and in-
cludes several strategies to perform the search efficiently. 
RuleGrowth is easily extendable. Constraints can be add-
ed to the algorithm for the needs of specific applications. 
For example, we present an extension named 
TRuleGrowth that finds rules occurring with a sliding-
window constraint. This constraint is important for many 
real applications because users often only wish to discov-
er patterns occurring within a maximum amount of time 
[14], [20], [30].  

To evaluate the proposed algorithms, we conduct an 
extensive performance study comparing their perfor-
mance with two baseline algorithms on four real-life da-
tasets representing different types of data (protein se-
quences, click-stream data, customer data and language 
utterances). Results show that RuleGrowth outperforms 
baseline algorithms in all situations in terms of execution 
time and memory consumption. Moreover, results show 
that the execution time and the number of rules discov-
ered can be reduced by several orders of magnitude when 
the sliding-window constraint is used. Experiments also 
show that the proposed algorithms have excellent scala-
bility. Furthermore, we also report a real application 
where results have shown that the prediction accuracy 
obtained using POSR can be much higher than using 
sequential rules. 

The rest of this article is organized as follows. Section 2 
and 3 respectively present background and related work. 
Section 4 defines the problem of mining partially-ordered 
sequential rules common to multiple sequences and ex-
plains the relationship to related work. Section 5 and 
Section 6 respectively present RuleGrowth and 
TRuleGrowth. Section 7 presents the evaluation. Finally, 
the last section draws a conclusion. 
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2 BACKGROUND 

A sequence database [2] SD is a set of sequences S={s1, 
s2,…sm} and a set of items I={i1, i2,…in} occurring in 
these sequences, where each sequence is assigned a 
unique SID (Sequence ID). A sequence is an ordered 
list of itemsets (sets of items) sx=I1, I2, … In such that I1, 
I2, …In ⊆ I. For instance, Table 1 depicts a sequence 
database containing four sequences respectively hav-
ing the sids seq1, seq2, seq3 and seq4. In this example, 
each single letter represents an item. Item(s) between 
curly brackets represent an itemset. For instance, the 
sequence seq1 means that items a and b occurred at the 
same time, and were followed successively by c, f, g 
and e.  

TABLE 1 
A SEQUENCE DATABASE 

SID Sequences 
seq1 
seq2 
seq3 
seq4 

{a, b},{c},{f},{g},{e} 
{a, d},{c},{b},{a, b, e, f} 
{a},{b},{f},{e} 
{b},{f, g, h} 

 
A sequence where each itemsets is annotated with a 

timestamp is called a time-sequence. For example, Fig.1 
shows a time-sequence containing 13 itemsets. A window 
is a group of consecutive itemsets in a sequence. A slid-
ing-window is a window that is assumed to move from 
the beginning of a sequence to its end, one itemset (or one 
time unit) at a time. For example, a sliding-window with 
a length of 3 time units can move in 15 different positions 
w1, w2, … w15 for the sequence depicted in Fig.1 (each 
position is said to be a window). Note that some windows 
(w1, w2, w14, w15) extend outside the sequence so that each 
itemset appears in the same number of windows. 

 
Fig. 1. A time-sequence 

3 RELATED WORK 

In this section, we systematically review relevant related 
work.   

Sequential pattern mining. It consists of discovering 
subsequences appearing in a sequence database such that 
their support is no less than a threshold minsup set by the 
user [2], [14], [17], [18]. The support of a subsequence is 
defined as the number of sequences that contains it divid-
ed by the total number of sequences. For example, a se-
quential pattern found in the database of Table 1 for min-
sup = 50 % is {a}, {c}, {e}. It has a support of 50% because it 
appears in two sequences out of four (seq1 and seq2).  

Mining sequential rules in a single sequence. Several 
works were done to discover sequential rules in a single 
time-sequence. The most famous is the one of Mannila et 
al [13], to discover rules of the form X⇒Y such that X and 
Y are unordered itemsets. These rules are interpreted as 
“if item(s) X appears, item(s) Y will also appear within 
that window with a given confidence. To mine these 
rules, the user has to specify a sliding-window size, a 

minimum support threshold minsup and a minimum 
confidence threshold minconf. The support of a rule is the 
percentage of windows in which the rule occurs. The 
confidence is the number of windows containing the rule 
divided by the number of windows containing its ante-
cedent. For example, for the time-sequence depicted in 
Fig. 1, the rule {a, b}⇒{g} has a support of 2/15 and a con-
fidence of 2/9 if the sliding-window size is set to 3 time 
units. To discover this form of rules, two steps are per-
formed: (1) discovering itemsets that appear in at least 
minsup percent of the windows and (2) generating rules 
by using pairs of those itemsets [13]. Multiple algorithms 
relying on similar definitions have been proposed, for 
example, to discover rules with only two items [8] or 
where consequents are restricted to a single item [5]. 

Mining sequential rules across sequences. To mine 
sequential rules in sequence databases, two categories of 
algorithms have been designed. The first one is algo-
rithms for mining sequential rules across sequences [4, 9, 
29]. A representative example is MOWCATL [9], which 
discovers rules of the form X⇒Y, where X and Y are un-
ordered itemsets. To mine rules, the user has to provide a 
time-sequence database and specify a sliding-window 
size, a minimum support threshold and a minimum con-
fidence threshold. The support of a rule X⇒Y is defined 
as in Mannila et al [13] except that X and Y are not re-
quired to appear in the same sequence. For example, the 
rule {d} ⇒ {f, g, h} is said to appear once in the database of 
Table 1 because {d} appears in the first itemset of seq2 and 
{f, g, h} appear in the second itemset of seq4. A similar 
algorithm was also proposed in [4]. 

Mining sequential rules common to several sequenc-
es. Several algorithms hae been proposed to mine sequen-
tial rules common to multiple sequences in a sequence data-
base. Most of these algorithms consist of applying a se-
quential pattern mining algorithm and then to perform a 
post-processing step to generate rules between two se-
quential patterns [12], [17], [19], [22]. An example is 
RuleGen [17]. It discovers rules of the form X⇒Y such 
that X and Y are sequential patterns, and that rules re-
spect a minimum support and a minimum confidence 
threshold. To mine these rules, RuleGen first discovers 
sequential patterns with the SPADE algorithm [17] and 
then combines pairs of sequential patterns to generate 
rules. For example, the rule {a}, {c} ⇒ {e} can be found by 
RuleGen in the database of Table 1. It means that a followed 
by c, then followed by e, has a support of 50 % and a confi-
dence of 100%. However, as mentioned in section 1.1, the 
definition of a sequential rule as a relationship between 
two sequential patterns can cause several problems. Fac-
ing this issue, in this article, we explore the idea of mining 
“partially-ordered sequential rules” (POSR), a form of 
rules such that items in the antecedent and consequent 
are unordered. We show the benefits of this definition in 
terms of increased prediction accuracy for a real applica-
tion in section 7.7.  

Note that other definitions of sequential rules could al-
so be studied. For example, instead of mining rules with 
unordered or with sequentially ordered antecedents and 
consequents, an in-between solution could be to mine 

{a, b}, {c}, {f}, {g}, {e}, {a, b}, {d}, {g}, {a,b}, {b, e}, {d}, {f}, {g} 

   1      2    3    4     5       6       7     8      9       10     11   12  13 

w 1 w15 … … w
6
 … w

10
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rules with partial orders as antecedents/consequents akin 
to the work of [13]. This is an idea that we consider ex-
ploring in future work. Moreover, other ways of reduc-
ing, summarizing or compressing rules could be studied. 
For example, a popular idea in pattern mining is to mine 
a representative subset of patterns instead of all patterns 
[12], [30]. This idea has been applied for sequential rules 
and POSR respectively in [12] and [30] by mining rules 
with a minimal antecedent and a maximal consequent. 

4 PROBLEM DEFINITION AND RELATIONSHIP TO 

RELATED WORK 

In this section, we define the problem of mining partially-
ordered sequential rules. 

4.1 Problem Definition 

Consider a sequence database SD containing a set of se-
quences S and a set of items I, as defined in section 2 and 
illustrated in Table 1. A partially-ordered sequential rule 
X⇒Y is a relationship between two unordered itemsets X, 
Y ⊆ I such that X∩Y = Ø, X ≠ Ø and Y ≠ Ø. The interpreta-
tion of a rule X⇒Y is that if items of X occur in a sequence, 
items of Y will occur afterward in the same sequence. 
Formally, we say that a rule X⇒Y occurs in a sequence 
sx=I1, I2 … In if there exists an integer k such that 1 ≤ k < n, 
X ⊆ ⋃ I 

 
    and Y ⊆⋃ I 

 
     . For example, the rule {a, b, 

c}⇒{e, f, g} occurs in the sequence {a, b}, {c}, {f}, {g}, {e}, 
whereas the rule {a, b, f}⇒{c} does not, because item c does 
not occur after f. A rule X⇒Y is said to be of size k*m if 
|X| = k and |Y| = m. Note that the notation k*m is not a 
product. It is simply a short way of writing that the sizes 
of the left and right parts of a rule are respectively k and 
m.  For example, the rules {a, b, c}⇒{e, f, g} and {a}⇒{e, f} 
are of size 3*3 and 1*2 respectively.  Furthermore, a rule 
of size f*g is said to be larger than another rule of size h*i 
if f > h and g ≥ i, or alternatively if f ≥ h and g > i. 

For a given sequence database and a rule X⇒Y, the no-
tation sids(X⇒Y) represents the sids set (the set of se-
quence ids) of the sequences where the rule occurs. For 
instance, for the database illustrated in Table 1, 
sids({a}⇒{b}) = {seq2, seq3}. For an itemset X and a sequence 
database, the notation sids(X) denotes the sids set corre-
sponding to sequences where all the items of X appears. 
For example, sids({a, b, c}) = {seq1, seq2}. For the sake of 
brevity, in the rest of this article, curly brackets will be 
omitted when using the “sids” notation with itemsets 
containing a single item. For instance, we will write 
sids(a) instead of sids({a}) and sids(a⇒b) instead of 
sids({a}⇒{b}). We define two interestingness measures for 
sequential rules, which are based on the measures used in 
sequential rule mining. The support of a rule X⇒Y is 
defined as sup(X⇒Y) = |sids(X⇒Y)| / |S|. The confidence 
is defined as conf(X⇒Y) = |sids(X⇒Y)| / |sids(X)|.  

Consider a minimum support threshold minsup and a 
minimum confidence threshold minconf set by the user in 
the [0,1] interval. A rule is said to be a frequent rule if its 
support is no less than minsup. A rule is said to be a valid 
rule if it is a frequent rule and its confidence is no less 
than minconf.  

Problem definition. The problem of mining sequential 
rules common to multiple sequences is to find all valid 
rules in a sequence database SD, given the thresholds 
minsup and minconf set by the user.  

Example 1. Table 2 shows some valid rules found in the 
database of Table 1 for minsup = 0.5 and minconf = 0.5. 
For instance, the rule {a, b, c}⇒{e} has a support of 
|sids(X⇒Y)| / |S| = 2 / 4 = 0.5 and a confidence of 
|sids(X⇒Y)| / |sids(X)| = 2 / 2 = 1. Because those values 
are respectively no less than minsup and minconf, the 
rule is deemed valid.  

TABLE 2 
SOME SEQUENTIAL RULES  

ID Rule Support Confidence 
r1 
r2 
r3 
r4 
r5 
r6 
r7 

{a, b, c}⇒{e} 
{a}⇒{c, e, f} 
{a, b}⇒{e, f} 
{b}⇒{e, f} 
{a}⇒{e, f} 
{c}⇒{f} 
{a}⇒{b} 

0.5 
0.5 
0.75 
0.75 
0.75 
0.5 
0.5 

1.0 
0.66 
1.0 
0.75 
1.0 
1.0 
0.66 

 

4.2 Relationship to Related Work 

The problem of mining partially-ordered sequential rules 
common to multiple sequences is different from other 
problems discussed in the related work section. The main 
differences are as follows. For the problem of mining 
sequential rules in a single sequence or the problem of 
mining sequential rules across sequences, the support 
and confidence of a rule are defined based on how many 
windows contain a rule and its antecedent. Algorithms 
for these problems take advantage of the fact that adjacent 
windows are overlapping (a window of size n shares n-1 
itemsets with the next window). The problem that we 
address in this paper is different from those problems 
because the support and confidence are defined based on 
the number of sequences that contains a rule and its ante-
cedent and it cannot be assumed that sequences are over-
lapping.  

The problem addressed in this paper is also different 
from sequential pattern mining. The main difference is 
that a sequential pattern is a list of one or more itemsets 
such that items inside each itemset have to appear togeth-
er in a sequence (in the same itemset). Conversely, a par-
tially-ordered sequential rule is a relationship between 
only two itemsets where items in each itemset are unor-
dered and are not required to appear in the same itemset 
in a sequence. 

4.3 Baseline algorithms 

In previous works, we proposed two algorithms named 
CMRules and CMDeo [7] for mining partially-ordered 
sequential rules, which will be used as baseline algo-
rithms in this article.  

CMRules is based on the idea that partially-ordered 
sequential rules can be seen as a subset of association 
rules [7]. CMRules performs two steps to discover se-
quential rules. First it ignores the temporal information 
from the sequence database taken as input to mine asso-
ciation rules [1]. Then, to obtain sequential rules from 
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association rules, CMRules scans the original database to 
eliminate rules that do not meet minsup and minconf ac-
cording to the sequential ordering. The main benefits of 
CMRules is that association rule mining algorithms can 
be reused to implement the algorithm and that it per-
forms better than CMDeo for some datasets [7]. Its main 
drawback is that its performance depends on the number 
of association rules. If this set is large, CMRules becomes 
inefficient [7]. 

CMDeo proceeds by first scanning the database to 
generate rules of size 1*1 (containing two items). The 
algorithm then recursively find larger candidate rules by 
combining frequent rules of smaller size in a level-wise 
manner (similar to Apriori [1]). This is done by two sepa-
rate processes. Left-side expansion is the process of taking 
two frequent rules X⇒Y and Z⇒Y, where X and Z are 
itemsets of size n sharing n-1 items, to generate a larger 
candidate rule X∪Z⇒Y. Right-side expansion is the pro-
cess of taking two frequent rules Y⇒X and Y⇒Z, where X 
and Z are itemsets of size n sharing n-1 items, to generate 
a larger candidate rule Y⇒X∪Z. After candidate rules are 
generated, their support and confidence are calculated by 
scanning original sequences of the database. To prune the 
search space for candidate rules, CMDeo uses the proper-
ty that expanding the left side of a rule not respecting 
minsup will not result in valid sequential rules, and that 
expanding the right side of a rule not respecting minsup 
or minconf will not generate valid sequential rules [7]. In 
[7], we extensively compared the performance of CMDeo 
and CMRules. It was found that CMDeo performs con-
siderably better than CMRules for some datasets. But for 
others, the search space is such that CMDeo generates a 
very large number of candidate rules that are invalid, 
which makes CMRules more efficient.  

5 THE RULEGROWTH ALGORITHM 

In this section, we present RuleGrowth, a novel algorithm 
that we have designed to mine partially-ordered sequen-
tial rules more efficiently.  

5.1 Main Features 

A common characteristic of CMRules and CMDeo is that 
both use a generate-candidate-and-test approach, which 
consists of generating candidate rules and then to scan 
the database to determine their support and confidence. 
The problem with this approach is that it often produces a 
large amount of candidate rules and that a large propor-
tion are invalid or do not appear in the database. There-
fore, these algorithms spend a lot of time to tell apart 
valid rules from invalid ones.  

The RuleGrowth algorithm that we propose in this arti-
cle avoids this problem of candidate generation by in-
stead relying on a pattern-growth approach partly in-
spired by the one used in the PrefixSpan algorithm [14] 
for sequential pattern mining2. RuleGrowth first finds 
 

2 The similarity between RuleGrowth and PrefixSpan  is that both algo-
rithms create small patterns and “grow” them by recursively adding an 
item at a time to them to find larger patterns, and that items for growing 
patterns are selected by scanning the database. However, besides this 
similarity, the algorithms are different. 

rules of size 1*1 and then recursively grows them by 
scanning the sequences containing them to find single 
items that can expand their left or right parts. This strate-
gy ensures that only rules occurring in the database are 
considered as potential valid rules by the algorithm. We 
name the two processes for expanding rules in 
RuleGrowth left expansion and right expansion akin to the 
homonym processes of CMDeo. Note however that these 
processes are different; RuleGrowth finds larger rules by 
adding items to rules by scanning sequences containing 
the rules (a depth-first search), whereas CMDeo combine 
pairs of rules to generate candidates (a breadth-first 
search). Another distinctive feature of RuleGrowth is that 
it keeps track of the first and last occurrences of each 
item, and also of antecedents and consequents to avoid 
scanning sequences completely, as will be explained. 

5.2 Preliminary definitions and properties  

Before presenting the algorithm, we introduce important 
definitions and properties. A left expansion is the process 
of adding an item i to the left side of a rule X⇒Y to obtain 
a larger rule X∪{i}⇒Y. A right expansion is defined as the 
process of adding an item i to the right side of a rule X⇒Y 
to obtain a larger rule X⇒Y∪{i}. Left and right expansions 
have the following four important properties. 

Property 1. (left expansion, effect on support) If an item i 
is added to the left side of a rule r:X⇒Y, the support of the 
resulting rule r’:X∪{i}⇒Y can only be lower or equal to 
sup(r).   

Proof. The support of r and r’ are respectively 
|sids(X⇒Y)| / |S| and |sids(X∪{i}⇒Y)| / |S|. Since 
|sids(X⇒Y)| ≥ |sids(X∪{i}⇒Y)|, sup(r) ≥ sup(r’). 

Property 2. (right expansion, effect on support) If an item 
i is added to the right side of a rule r:X⇒Y, the support of 
the resulting rule r’:X⇒Y∪{i} can only be lower or equal to 
sup(r).  

Proof: The support of r and r’ are respectively 
|sids(X⇒Y)| / |S| and |sids(X⇒Y∪{i})| / |S|. Since 
|sids(X⇒Y)| ≥ |sids(X⇒Y∪{i})|, sup(r) ≥ sup(r’). 

The two previous properties imply that the support is 
monotonic with respect to left and right expansions. In 
other words, performing any combinations of left/right 
expansions of a rule can only result in rules having a 
support that is lower or equal to the support of the origi-
nal rule. Therefore, all rules having a support of at least 
minsup can be found by recursively performing expan-
sions on frequent rules of size 1*1 and expanding a rule 
having a support less than minsup will not result in a 
frequent rule. The confidence, however, is not monotonic 
with respect to left and right expansions as the next prop-
erties demonstrate. 

Property 3. (left expansion, effect on confidence) If an 
item i is added to the left side of a rule r:X⇒Y, the confi-
dence of the resulting rule r’: X∪{i}⇒Y can be lower, higher 
or equal to the confidence of r.  

Proof. The confidence of r and r’ are respectively 
|sids(X⇒Y)| / |sids(X)| and |sids(X∪{i}⇒Y)| / 
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|sids(X∪{i})|. Because |sids(X⇒Y)| ≥ |sids(X∪{i}⇒Y)| 
and |sids(X)| ≥ |sids(X∪{i})|, conf(r) can be lower, 
higher or equal to conf(r’). 

Property 4. (right expansion, effect on confidence) If an 
item i is added to the right side of a rule r:X⇒Y, the confi-
dence of the resulting rule r’: X⇒Y∪{i} is lower or equal to 
the confidence of r.  

Proof. The confidence of r and r’ are respectively 
|sids(X⇒Y)| / |sids(X)| and |sids(X⇒Y∪{i})| / |sids(X)|. 
Since |sids(X⇒Y)| ≥ |sids(X⇒Y∪{i})|, conf(r) ≥ 
conf(r’). 

The RuleGrowth algorithm relies on the use of sids sets 
(cf. section 4.1) to calculate the support and confidence of 
rules obtained by left or right expansions. Sids sets have 
two important properties for sequential rules. 

Property 5 (sids set of a rule and its itemsets) For any 
sequential rule X⇒Y, sids(X⇒Y) ⊆ sids(X) ∩ sids(Y).  

Property 6 (sids set of a rule obtained by left or right 
expansion) For any sequential rule r’ obtained by a left or 
right expansion of a rule r, the relationship sids(r’) ⊆ sids(r) 
holds.  

RuleGrowth also relies on two additional definitions. The 
first occurrence of an itemset X in a sequence s=I1, I2 … In 
is the itemset Ik  s such that X ⊆ ⋃ I 

 
    and there exist no 

g < k such that X ⊆ ⋃ I 
 
   . The last occurrence of an item-

set X in a sequence s=I1, I2 … In is the itemset Ik  s such 
that X ⊆ ⋃ I 

 
    and there exists no g > k such that X ⊆ 

⋃ I 
 
   . For example, the first occurrence of {a, b} in the 

sequence {a, d}, {b}, {a}, {b}, {e} is the second itemset, 
whereas the last occurrence of {a, b} is the third itemset. 

5.3 The Algorithm 

The RuleGrowth algorithm takes as input a sequence 
database S and the minsup and minconf thresholds.   

Main procedure. RuleGrowth’s main procedure is 
shown in Fig. 2. The algorithm first scans the database 
once to calculate sids(c) for each item c (line 1). Then, the 
algorithm identifies all items c such that |sids(c)| / |S| ≥ 
minsup, because only these items can be part of a valid 
rule. The algorithm generates all valid rules of size 1*1 
using these items (line 2). This is done by considering 
each pair of items i, j one by one. The algorithm scans 
sequences in sids(i) ∩ sids(j) to calculate sids(i⇒j) and 
sids(j⇒i), the sids of sequences where the rule {i}⇒{j} and 
{j}⇒{i} occurs, respectively (line 5 to 7; Property 5). After 
this, the support of the rule {i}⇒{j} is obtained by dividing 
|sids(i⇒j)| by |S| (line 8). If the support is no less than 
minsup, the procedure EXPANDLEFT and EX-
PANDRIGHT are called to try to expand the rule’s left 
and right parts recursively (line 9 to 10), and the confi-
dence of the rule is calculated by dividing |sids(i⇒j)| by 
|sids(i)|. If the confidence is higher than or equal to min-
conf, the rule is valid and the algorithm outputs the rule 
(line 11). After this, the same process is repeated for the 
rule {j}⇒{i} (line 12 to 16). Then, the algorithm considers 
all other pairs of items i,j in the same way.  

It can be easily seen that the main procedure of 
RuleGrowth outputs all and only the valid rules of size 

1*1. We next explain how it can also find all valid rules of 
larger size by recursively adding one item at a time to the 
left or right side of frequent rules of size 1*1 with the 
procedures EXPANDLEFT and EXPANDRIGHT (by left 
and right expansions). To develop these two procedures, 
the following problems had to be solved. 

 
RULEGROWTH(S, minsup, minconf) 

1. Scan the database S once. For each item c found, record the  

   sids of the sequences that contains c in a variable sids(c).  

2. FOR each pair of items i, j  such that |sids(i)| / |S| ≥ minsup 

3.    and |sids(j)| / |S| ≥ minsup { 

4.     sids(i⇒j) := Ø.   sids(j⇒i) := Ø.   

5.  FOR each sid s ∈ (sids(i) ∩ sids(j)) { 

6.   IF i occurs before j in s, sids(i⇒j)  := sids(i⇒j) ∪ {s}. 

7.       IF j occurs before i in s, sids(j⇒i) :=  sids(j⇒ i) ∪ {s}. } 

8.  IF (|sids(i⇒j)| / |S|) ≥ minsup THEN { 

9.     EXPANDLEFT({i}⇒{j}, sids(i), sids(i⇒j)).  

10.      EXPANDRIGHT({i}⇒{j},sids(i), sids(j), sids(i⇒j)). 

11.     IF (|sids(i⇒j)| / |sids(i)|) ≥ minconf THEN OUTPUT  

      rule {i}⇒{j} with its confidence and support. } 

12.     IF (|sids(j⇒i)| / |S|) ≥ minsup THEN { 

13.     EXPANDLEFT({j}⇒{i}, sids(j), sids(j⇒i)).  

14.      EXPANDRIGHT({j}⇒{i},sids(j), sids(i), sids(j⇒i)). 

15.     IF (|sids(j⇒i)| / |sids(j)|) ≥ minconf THEN OUTPUT 

16.      rule {j}⇒{i} with its confidence and support.  }} 

Fig. 2. The RuleGrowth algorithm 

How to determine which items to use for performing 
left and right expansions and obtain valid rules? The 
first problem is how to identify items that can expand a 
rule I⇒J left part or right part to produce a valid rule. By 
exploiting the fact that any valid rule is also a frequent 
rule, this problem is decomposed into two sub-problems, 
which are (1) determining items that can expand a rule 
I⇒J to produce a frequent rule and (2) assessing if a fre-
quent rule obtained by an expansion is valid. 

The first sub-problem is solved as follows. To identify 
items that can expand a rule r:I⇒J and produce a frequent 
rule, our solution is to scan the sequences from sids(I⇒J) 
(Property 6). During this scan, each item c such that c ∉ I, c 
∉ J and c occurs before the last occurrence of J in at least 
minsup×|S| sequences from sids(I⇒J) is noted. Those 
items are the one that will produce a frequent rule by a 
left expansion of r. For right expansions, we note each 
item c ∉ I such that c ∉ J and c occurs after the first occur-
rence of I in at least minsup×|S| sequences from sids(I⇒J).  

The second sub-problem is to determine if a rule ob-
tained by a left or right expansion of a frequent rule I⇒J 
with an item c is a valid rule. To do this, the confidence of 
the rule has to be calculated. There are two cases. For a 
left expansion, the confidence is obtained by dividing 
|sids(I∪{c}⇒J)| by |sids(I∪{c})|. The set sids(I∪{c}⇒J) is 
determined by noting each sequence where c expand the 
rule I⇒J when searching items for the left expansion of 
I⇒J, as explained in the previous paragraph. The set 
sids(I∪{c}) is calculated by scanning each sequences from 
sids(I) to see if c appears in it. For a rule of size 1*1, sids(I) 
is determined during the initial database scan of the algo-
rithm (line 1 of Fig.2), and for larger rules, it can be up-
dated after each left expansion. For a right expansion, the 
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confidence is calculated by dividing |sids(I⇒J∪{c})| by 
|sids(I)|. The set sids(I⇒J∪{c}) is determined by noting 
each sequence where c expand the rule I⇒J when search-
ing items for the right expansion of I⇒J as explained in 
the previous paragraph. 

How can we guarantee that all valid rules are found 
by recursively performing left/right expansions? The 
next problem is how to guarantee that all valid rules will 
be found by recursively performing left/right expansions 
starting from rules of size 1*1. The answer is found in 
Properties 1 and 2, which states that the support of a rule 
is monotonic with respect to left/right expansions. This 
implies that all rules can be discovered by recursively 
performing left/right expansions starting from frequent 
rules of size 1*1. Moreover, these properties imply that 
infrequent rules should not be expanded because they 
will not lead to valid rules. However, no similar pruning 
can be done for confidence because the confidence of a 
rule is not monotonic with respect to left expansion 
(Property 3).  

How can we guarantee that no rule is found twice? 
Previous paragraphs explained how expansions can lead 
to the discovery of all and only valid rules. Another chal-
lenge is to ensure that no rule is found twice. To achieve 
this, two problems had to be solved. First, if we grow 
rules by performing left/right expansions recursively, 
some rules can be found by different combinations of 
left/right expansions. For example, consider the rule {a, b} 
⇒ {c, d}. By performing, a left and then a right expansion 
of {a} ⇒ {c}, one can obtain the rule {a, b} ⇒ {c, d}. But this 
rule can also be obtained by performing a right and then a 
left expansion of {a} ⇒ {c}. This problem is illustrated in 
Fig. 3(A). For example, rules of size 2*2 can be found re-
spectively by left expansions of rules of size 1*2 and by 
right expansions of rules of size 2*1. A simple solution to 
avoid this problem is to not allow performing a right 
expansion after a left expansion but to allow performing a 
left expansion after a right expansion. This solution is 
illustrated in Fig. 3(B). Note that an alternative solution is 
to not allow performing a left expansion after a right ex-
pansion but to allow performing a right expansion after a 
left expansion.  

Second, rules can be found several times by performing 
left/right expansions with different items. For example, 
consider the rule {b, c} ⇒ {d}. A left expansion of {b} ⇒ {d} 
with item c results in {b, c} ⇒ {d}. But that latter rule can 
also be found by performing a left expansion of {c} ⇒ {d} 
with b. To solve this problem, we chose to only add an 
item to an itemset of a rule if the item is greater than each 
item in the itemset according to the lexicographic order-
ing. In the previous example, this would mean that item c 
would be added to the left itemset of {b} ⇒ {d}. But b 
would not be added to the left itemset of {c} ⇒ {d} because 
b is not greater than c. By using this strategy and the pre-
vious one, no rule is found twice. 
   Pseudo-code of the procedures EXPANDLEFT and 
EXPANDRIGHT Fig. 4 and 5 present the pseudo-code of 
the EXPANDLEFT and EXPANDRIGHT procedures, which 
incorporate all the above ideas. 
 

 
Fig. 3. The order of rule discovery by left/right expansions  

EXPANDLEFT(I⇒J, sids(I), sids(I⇒J)) 

1. FOR each sid ∈ sids(I⇒J), scan the sequence sid. For each item c 

appearing in sequence sid that is lexically larger than all items 

in I and appears before J, record sid in a variable sids(I∪{c}⇒J). 

2. FOR each item c where |sids(I∪{c}⇒J)| ≥ minsup×|S| { 

3.   sids(I∪{c}) := Ø.   

4.   FOR each sid ∈ sids(I) such that sid ∈ sids(c){ 

5.     sids(I∪{c}):= sids(I∪{c}) ∪{sid}. } 

6.   EXPANDLEFT(I∪{c}⇒J, sids(I∪{c}), sids(I∪{c}⇒J)) 

7.   IF |sids(I∪{c}⇒J)| / | sids(I∪{c})| ≥ minconf  

8.    THEN OUTPUT rule I∪{c}⇒J. } 

Fig. 4. The EXPANDLEFT procedure 

  

EXPANDRIGHT(I⇒J, sids(I), sids(I⇒J)) 

1. FOR each sid ∈ sids(I⇒J), scan the sequence sid. For each item  

  c appearing in sequence sid that is lexically larger than all  

 items in J and appear after I, record sid in a variable 

 sids(I⇒J∪{c}).  

2. FOR each item c such that |sids(I⇒J∪{c})| ≥ minsup×|S| { 

3.   EXPANDLEFT(I⇒J∪{c}, sids(I), sids(I⇒J∪{c})). 

4.  EXPANDRIGHT(I⇒J∪{c}, sids(I), sids(I⇒J∪{c})). 

5.   IF |sids(I⇒J∪{c})| / |sids(I)| ≥ minconf  

6.    THEN  OUTPUT rule I⇒J∪{c}.  } 

Fig. 5. The EXPANDRIGHT procedure 

5.4 Optimizing RuleGrowth by keeping track of first 
and last occurrences 

This section describes an optimization that considerably 
enhances the performance of RuleGrowth. It consists of 
calculating the first and last occurrences of items in each 
sequence and then to use this information to avoid scan-
ning sequences completely. Three modifications were 
done to implement this optimization. 

First, RuleGrowth is modified (cf. Fig. 2) so that when 
the database is scanned for the first time (line 1 of Fig. 2), 
the first and last occurrences of each item in each se-
quence is recorded. We represent the occurrence of an 
item in a sequence as an integer indicating the position of 
an itemset containing the item. For example, the occur-
rences of a in sequence seq2={a, d},{c},{b},{a, b, e, f} are 1 and 
4 (a appears in the first and fourth itemsets), and the oc-
currences of b are 3 and 4 (b appears in the third and 
fourth itemsets). In our implementation, the first and last 
occurrences of items in sequences are stored in hash ta-
bles to have a quick access to this information.  

Second, the generation of frequent rules of size 1*1 is 
modified. By using the information about the first and 
last occurrences of items, rules of size 1*1 are generated 
without scanning the original database. This is done by 
looking in the hash tables for each pairs of items i, j if the 
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first occurrence of i is before the last occurrence of j and 
vice versa in sequences of (sids(i) ∩ sids(j)) to calculate 
sids(i⇒j) and sids(j⇒i). For example, to check if b appears 
before c in sequence seq1 of Table 1, the first occurrence of 
b and the last occurrence of c for sequence seq1 are re-
trieved from the hash tables. These values are respective-
ly 1 and 2. Because 1 < 2, it is concluded that b appears 
before c in seq1. Because the database is not scanned for 
calculating sids(i⇒j) and sids(j⇒i), generating rules of size 
1*1 is much faster. 

Third, the way left and right expansions are performed 
is also modified to take advantage of the information 
about first and last occurrences. Recall that a rule I⇒J is 
only expanded by RuleGrowth with items appearing after 
the first occurrence of itemset I for a right expansion, and 
occurring before the last occurrence of itemset J for a left 
expansion. Therefore, if the first occurrences of I and the 
last occurrences of J are known, the procedure EX-
PANDLEFT and EXPANDRIGHT could avoid scanning 
sequences completely when searching for items to expand 
the rule. To provide this information to EXPANDLEFT 
and EXPANDRIGHT, we have modified the main 
RULEGROWTH procedure so that for each frequent rule 
{i}⇒{j} of size 1*1, the last occurrences of j are passed as 
parameter to EXPANDLEFT and the first occurrences of i 
and last occurrences of j are passed as parameters to EX-
PANDRIGHT (both first and last occurrences are passed 
to EXPANDRIGHT because it can call both EX-
PANDLEFT and EXPANDRIGHT). Then, we have modi-
fied EXPANDLEFT so that the last occurrences of J are 
passed to each recursive call to EXPANDLEFT. Similarly, 
we have modified EXPANDRIGHT so that the first and 
last occurrences are passed to each recursive call to EX-
PANDRIGHT and that last occurrences of J are passed to 
EXPANDLEFT. But note that before the last occurrences 
are passed to EXPANDLEFT by EXPANDRIGHT, last 
occurrences of J have to be recalculated because EX-
PANDRIGHT adds an item to J and this can change the 
last occurrences of J. This recalculation is done efficiently 
by using the hash tables containing the occurrences of 
each item for each sequence. 

6 TRULEGROWTH: EXTENDING RULEGROWTH TO 

D ISCOVER RULES WITH A SLIDING-WINDOW 

Because RuleGrowth grows rules one item at a time, con-
straints can be easily added to the algorithm for the needs 
of specific applications. For example, it would be easy to 
add constraints on the number of items that rules can 
contain or to restrict the items that are added to rules. 

In this section, we present one particular extension 
which is to discover rules occurring within a sliding-
window, i.e. within a maximum number of consecutive 
itemsets in each sequence. We present this extension be-
cause applying a sliding-window has shown to be very 
useful for the discovery of temporal patterns for many 
real-life applications such as analyzing sensor networks 
and stock market data, because users often only wish to 
discover patterns occurring within a maximum amount of 
time [14], [20]. For this reason, several data mining algo-

rithms use a sliding-window (e.g. [4], [5], [9], [13]) or have 
been modified to accept one (e.g. [20]). We name 
TRuleGrowth the extension of RuleGrowth that discovers 
rules while verifying that they occur in a sliding-window. 
As it will be shown, discovering rules appearing in a 
sliding-window has several important benefits. First, it 
can decrease the execution time by several orders of mag-
nitude by pruning the search space. Second, it can pro-
duce a much smaller set of rules, thus reducing the disk 
space requirement for storing rules found and making it 
easier for the user to analyze results. Third, setting a win-
dow constraint can increase prediction accuracy when 
rules are used for prediction (see section 7.7 for results). 
Note that adding a sliding-window could also be done 
with CMRules/CMDeo. However, it is best done with 
RuleGrowth because it can check the window constraint 
when it scan sequences to search for items, whereas 
CMRules/CMDeo can only verify that rules respect the 
the window after rules have been generated (they would 
generate many rules not respecting the sliding-window). 

6.1 Problem Definition  

We define the problem of mining sequential rules com-
mon to multiple sequences with a sliding-window as 
being the same as the problem of mining sequential rules 
common to multiple sequences except that the definition 
of the occurrence of a rule in a sequence is changed so 
that rules have to respect the sliding-window (have to 
appear within a given number of consecutive itemsets). A 
rule X⇒Y is said to occur in a sequence s=I1, I2 … In if there 
exist integers j, k, m such that 1 ≤ j ≤ k < m ≤ n, X ⊆ ⋃ I 

 
    

and Y ⊆ ⋃ I 
 
      and that m – j + 1 ≤ window_size, where 

window_size is defined by the user.  

Example 2. Table 3 shows sequential rules found in the 
database presented in Table 1 for minsup = 0.5, minconf 
= 0.5 and window_size = 3. Consider the rule {a}⇒{f}. 
Because it occurs in sequence seq1 and seq3, it has a 
support of |sids(a⇒f)| / |S| = 2 / 4. The confidence of 
{a}⇒{f} is |sids(a⇒f)| / |sids(a)| = 2/3. Note, that 
{a}⇒{f} does not occur in seq2 because the parameter 
window_size is set to 3. If window_size was set to a value 
higher than 3, the rule {a}⇒{f} would occur in seq2 and 
thus the support and confidence of {a}⇒{f} would be 
3/4 and 3/3, respectively. 

TABLE 3 
SEQUENTIAL RULES FOUND WITH WINDOW_SIZE = 3 

ID Rule Support 

r1 

r2 

r3 

r4 

r5 

r6 

r7 

{a}⇒{b} 

{a}⇒{c} 

{a}⇒{f} 

{b}⇒{e} 

{b}⇒{f} 

{c}⇒{f} 

{f}⇒{e} 

0.5 

0.5 

0.5 

0.5 

1.0 

0.5 

0.5 

6.2 The TRuleGrowth Algorithm 

TRuleGrowth is a modified version of RuleGrowth. Two 
modifications are made to the RULEGROWTH procedure 
(cf. Fig. 2) to ensure that the sliding-window constraint is 
taken into account when generating rules of size 1*1.  
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First, instead of keeping the first and last occurrences of 
each item for each sequence as explained in section 4.3, all 
occurrences of each item are now kept for each sequence. 
Recall that an occurrence of an item for a sequence is 
represented as an integer indicating the position of an 
itemset containing the item. For example, the occurrences 
of a in sequence seq2 = {a, d},{c},{b},{a, b, e, f} are 1 and 4 (a 
appears in the first itemset and the fourth itemset), and 
the occurrences of b in seq2 are 3 and 4 (b appears in the 
third itemset and the fourth itemset).  

The second change is to modify line 6 and 7 of the 
RULEGROWTH procedure so that when checking if item 
i occurs before item j and if j occurs before i in a sequence, 
the check also verifies that it is true within window_size 
consecutive itemsets. This check is performed efficiently 
by comparing each occurrence of i with each occurrence 
of j for the sequence by using the hash tables. If there 
exists an occurrence x of i and an occurrence y of j such 
that y – x > 0 and y – x + 1 ≤ window_size, then it is con-
cluded that i occurs before j in the sequence while re-
specting the sliding-window. Similarly, if there exists an 
occurrence x of j and an occurrence y of i such that y – x > 
0 and y – x + 1 ≤ window_size, then it is concluded that j 
occurs before i in the sequence while respecting the slid-
ing-window. For example, consider items a and b in se-
quence seq2={a, d},{c},{b},{a, b, e, f} and window_size = 3. By 
comparing occurrences of a and b, TRuleGrowth finds 
that item a appears before b while respecting the sliding-
window because for the occurrence 1 of a and the occur-
rence 3 of b, 3 – 1 > 0 and 3 – 1 + 1 = 3 ≤ window_size. The 
algorithm will also discover that b appears before a while 
respecting the sliding-window because 4 – 3 > 0 and 4 – 3 
+ 1 = 2 ≤ window_size.  

The previous modifications ensure that the sliding-
window constraint is enforced for rules of size 1*1.To take 
this constraint into account in the generation of larger 
rules, we have modified the EXPANDLEFT and EX-
PANDRIGHT procedures. We present the modified ver-
sion of EXPANDLEFT and EXPANDRIGHT in Fig. 6 and 
7 respectively. For convenience of explanations, we ex-
plain these modifications based on the original version of 
EXPANDLEFT and EXPANDRIGHT presented in Fig. 4 
and 5, without the optimization from section 5.4.  

The first modification to EXPANDLEFT (respectively, 
EXPANDRIGHT) is to how items are chosen for perform-
ing a left (right) expansion. EXPANDLEFT (EX-
PANDRIGHT) is modified so that the items chosen for a 
left (right) expansion are those for which the resulting 
rule satisfies minsup while respecting window_size. To 
identify efficiently all such items for the left (right) expan-
sion of a rule I⇒J, each sequence from sids(I⇒J) is scanned 
once. For each sequence, each time that an itemset X is 
read, each item c ∈ I∩X is added to an hash table hashI 
together with the position of X in the sequence, and each 
item d ∈ J∩X is added to an hash table hashJ together with 
the position of X in the sequence. When considering the 
next itemset of the sequence, all items that were found 
more than window_size - 1 itemsets before are removed 
from hashI and hashJ because we consider them to be fall-
ing outside the window defined by the current itemset 

and the last window_size -1 itemsets read. When the sum 
of the size of hashI and hashJ equals |I |+ |J|, it means that 
all items from I and J are in the current window. Howev-
er, to be certain that I occurs before J in the current win-
dow, items should only be added to hashI when |hashJ| = 
|J| (to hashJ if |hashI| = |I|) and hashI should be emptied 
as soon as hashJ becomes smaller than |J| (hashJ should 
be emptied as soon as hashI becomes smaller than |I|). By 
doing this modification, when the sum of the size of hashI 
and hashJ equals |I |+ |J|, each item c ∉ I∪J occurring 
before the first item of J (after the last item of I) such that 
the window_size is respected can be added to the set of 
items that could expand the rule for this sequence. After 
scanning all sequences, the set of items that can expand 
I⇒J while respecting minsup is known. An important note 
for implementation is that the hash tables hashI and hashJ 
should only keep the most recent position for each item. 
In the Java programming language, this behavior is the 
default behavior for the “HashMap” implementation 
when sequences are scanned from the last itemset to the 
first one (from the first itemset to the last one).  
 
EXPANDLEFT(I⇒J, sids(I), sids(I⇒J)) 

1. FOR each sid ∈ sids(I⇒J){ 

2.       hashI := Ø.   hashJ := Ø.   

3.   FOR each itemset X in sequence sid, from the last one to the  

    first one. { 

4.    REMOVE all items from hashI and hashJ  seen more  

    than window_size – 1 itemsets before.  

5.    IF |hashJ| was equal to |J| and became smaller after  

    removing items THEN |hashI| := Ø. 

6.    IF |hashJ| = |J| THEN add each item c ∈ I∩X to hashI  

     with the position of X in sequence sid.  

7.   IF |hashJ| < |J| THEN add each item d ∈ J∩X to hashJ 

      with the position of X in sequence sid. 

8.    IF |hashI| = |I| and |hashJ| = |J| THEN add sid to a  

     variable sids(I∪{c}⇒J) for each item c ∉ I∪J   

     occurring before the first item of J in the window. 

9. }} 

10. FOR each item c where |sids(I∪{c}⇒J)| / |S| ≥ minsup { 

11.   sids(I∪{c}) := Ø.   

12.   FOR each sid ∈ sids(I) such that sid ∈ sids(c) { 

13.    IF c and I occur within a window of size window_size  

    THEN sids(I∪{c}):= sids(I∪{c}) ∪{sid}. } 

14.   EXPANDLEFT(I∪{c}⇒J, sids(I∪{c}), sids(I∪{c}⇒J)). 

15.   IF |sids(I∪{c}⇒J)| / | sids(I∪{c})| ≥ minconf THEN  

    OUTPUT rule I∪{c}⇒J. } 
Fig. 6. The EXPANDLEFT procedure of the TRuleGrowth algorithm 

 
A last modification is done to EXPANDLEFT only. It is 

to take the sliding-window into account when recalculat-
ing sids(I∪{c}) for each item c that can expand a rule I⇒J. 
To do this, each sequence from sids(I∪{c}) are scanned 
while using hash maps to keep track of c occuring within 
the same window as J, similarly to what has been 
explained in the previous paragraph. 

7 PERFORMANCE EVALUATION 

To evaluate RuleGrowth and TRuleGrowth, we compared 
their performance with CMRules and CMDeo. Experi-
ments were performed on a notebook computer with a 
2.53 Ghz P8700 Core 2 Duo processor running Windows 
XP and 1 GB of free RAM. Algorithms were implemented 
in Java. Source code and datasets can be downloaded 
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from http://www.philippe-fournier-viger.com/spmf/. 
During all experiments, memory measurements were 
done with the standard Java memory API. 
 
EXPANDRIGHT(I⇒J, sids(I), sids(I⇒J)) 

16. FOR each sid ∈ sids(I⇒J) { 

17.       hashI := Ø.   hashJ := Ø.   

18.   FOR each itemset X in sequence sid, from the first one  

    to the last one{ 

19.    REMOVE all items from hashI and hashJ seen more  

      than window_size – 1 itemsets before.  

20.    IF |hashI| was equal to |I| and became smaller than it    

     after removing items THEN |hashJ| := Ø. 

21.    IF |hashI| = |I| THEN add each item c ∈ J∩X to hashJ  

     with the position of X in sequence sid.  

22.   IF |hashI| < |I| THEN add each  item d ∈ I∩X to hashI  

     with the position of X in sequence sid. 

23.    IF |hashJ| = |J| and |hashI| = |I| THEN add sid to a  

     variable sids(I⇒J∪{c}) for each item c ∉ I∪J  

     occurring after the last item of I in the window. }} 

24. FOR each item c where |sids(I⇒J∪{c})| / |S| ≥ minsup {  

25.   EXPANDLEFT(I⇒J∪{c}, sids(I), sids(I⇒J∪{c})). 

26.   EXPANDRIGHT(I⇒J∪{c}, sids(I), sids(I⇒J∪{c})). 

27.   IF |sids(I∪{c}⇒J)| /  |sids(I∪{c})| ≥ minconf  

    THEN OUTPUT rule I∪{c}⇒J.  }} 

Fig. 7. The EXPANDRIGHT procedure of the TRuleGrowth algo-

rithm 

7.1 Characteristics of real-life datasets 

Experiments were carried on four datasets. These datasets 
were chosen because they are real-life datasets having 
varied characteristics and represents four kinds of data. 
The first dataset is Kosarak (http://goo.gl/4B6ve5). It con-
tains 990,000 sequences of click-stream data from an 
online news portal. To make the experiment faster, we 
have used the first 70,000 sequences. Each sequence has 
an average length of 7.97 items (σ = 21.14, max=796) from 
21,144 different items. The second dataset is BMSWeb-
View1 (BMS1). It contains 59,601 sequences of click-
stream data from an e-commerce 
(http://www.ecn.purdue.edu/KDDCUP/). The number of 
different items is 497 items and the average sequence 
length is 2.51 items (σ =4.85, max = 267). The third dataset 
is Snake [10]. It contains 192 protein sequences. We have 
kept only sequences containing more than 50 items to 
make the dataset more uniform, because a few sequences 
are much shorter than all other sequences. This results in 
163 long sequences containing an average of 60.61 items 
(σ = 0.6, max = 61). Note however, that after performing 
these experiments, we have found that experimental re-
sults are similar if all sequences are used. A distinctive 
feature of Snake is that it is very dense. Each item occurs 
in almost every sequence (there is on average 17.74 differ-
ent items in each sequence, and only 20 different items for 
the whole dataset) and each item appearing in a sequence 
appears on average 3.39 times in the sequence (σ =2.24). 
The fourth dataset is Sign (http://goo.gl/1U61dv). It con-
tains 730 sequences of sign-language utterances tran-
scripted from videos [24]. Sequences contains on average 
93.39 items (σ =12.3, max= 94) from 310 items. It is thus a 
moderately dense dataset with long sequences. 

7.2 Experiment to assess the influence of minsup 

The first experiment consists of running RuleGrowth, 
CMDeo and CMRules for the four datasets with different 
values for minsup and a fixed value for minconf, to assess 
the influence of minsup on the relative performance of the 
algorithms. Execution times, maximum memory usage of 
each algorithm, and the number of rules found are illus-
trated in Fig. 8. 

For Kosarak, algorithms were run with minconf=0.2, 
while varying minsup from 0.004 to 0.001. Execution 
times, maximum memory usage of each algorithm, and 
the number of rules found are illustrated in Fig. 8 (A). For 
this experiment a time limit of 2,500 seconds was set and 
a memory usage of 1 GB. Because of these limits, CMDeo 
and CMRules are unable to provide results for minsup 
values lower than 0.0025 (13,006 rules) and 0.00175 
(100,900 rules) respectively, while RuleGrowth can still 
run at 0.001 (2,910,355 rules). For this dataset, 
RuleGrowth outperforms CMDeo and CMRules both in 
terms of memory consumption and execution time for all 
minsup values. 

For BMS1, algorithms were run with minconf = 0.2 
while varying minsup from 0.00085 to 0.0006. Results are 
illustrated on Fig. 8 (B). For this experiment, a time limit 
of 2,500 seconds was set and a memory usage of 1 GB. 
Again, RuleGrowth outperforms CMDeo and CMRules.  

For Snake, algorithms were run with minconf = 0.2 and 
minsup = 0.96, 0.94 … 0.7. Results are illustrated on Fig. 8 
(C). For this experiment a time limit of 700 seconds was 
set and a maximum memory usage of 1 GB. For this ex-
periment, RuleGrowth is also faster and uses less memory 
than CMRules and CMDeo. 

For Sign, algorithms were run with minconf=0.2 and 
minsup = 0.8, 0.7, … 0.2. Results are illustrated on Fig. 8 
(D). For this experiment a time limit of 1000 seconds was 
set and a maximum memory usage of 1 GB. For this ex-
periment, RuleGrowth is also faster and uses less memory 
than CMRules and CMDeo. 

Overall, RuleGrowth performs better than CMRules 
and CMDeo on all datasets. Furthermore, as minsup is set 
lower, the performance gap increases.  

7.3 Experiment to assess influence of minconf 

The second experiment consists of assessing the algo-
rithms with different minconf values on the four same 
datasets. For this experiment, minsup is set to the same 
values as in the previous experiment and minconf is set to 
0.3 and 0.8. Results are shown in Fig. 9. Since the perfor-
mance of RuleGrowth and CMDeo do not change signifi-
cantly from minconf = 0.3 to minconf=0.8 (because they 
don’t use minconf to prune the search space), only their 
execution times for minconf = 0.3 are shown in Fig. 9. The 
performance of CMRules can however benefit from a 
high confidence threshold. For this reason, execution 
times of CMRules for minconf = 0.3 and minconf = 0.8 are 
shown in Fig. 9. Though, CMRules’ performance increas-
es considerably when the minconf threshold is raised, 
RuleGrowth is still the fastest in all situations. 

http://www.philippe-fournier-viger.com/spmf/
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7.4 Experiment to assess influence of window_size  

The third experiment compares the performance of 
RuleGrowth with TRulegrowth on the same four datasets 
with the same parameter values as in the previous exper-
iments. The goal is to compare the performance of 
RuleGrowth and TRuleGrowth for different window_size 
values. Since choosing an appropriate window_size value 
is dataset dependent and task dependent, we have tried 
multiple values for each datasets. Fig. 10 shows the re-
sults for Kosarak, BMS1, Snake and Sign. In these charts, 
the notation Wx represents TRuleGrowth with win-
dow_size = x. The window_size values shown on the charts 
have been selected for each dataset because they were 
representative values that illustrate when TRuleGrowth is 
faster than RuleGrowth and for which values it is slower.  
Thus for each dataset, we have chosen at least a value 
where TRuleGrowth is slower and one where it is faster. 

In general, we have observed that TRuleGrowth can be 
several orders of magnitudes faster than RuleGrowth and 
generate several orders of magnitudes less rules. But as 
expected, when window_size is set to large values, 
TRuleGrowth becomes slower than RuleGrowth. For 
example, TRulegrowth is slower than RuleGrowth on the 
Snake dataset for window_size ≥ 30, whereas for win-
dow_size ≤ 20, it is faster. This is because TRuleGrowth has 
to perform extra calculations for verifying the window 
size constraint. When window_size is set above a certain 
value, this extra calculation is more costly in terms of 
execution time than what is saved by pruning the search 
space with the window size constraint. Nonetheless, even 
if TRuleGrowth takes more time than RuleGrowth for 

large window_size, it generates much less rules. For exam-
ple, running TRuleGrowth with window_size = 60 for the 
Snake dataset produces up to 50 times less rules than 
RuleGrowth. For memory usage, in general, RuleGrowth 
uses slightly less memory than TRuleGrowth because this 
latter keeps track of all occurrences of each frequent item 
instead of just the first and last occurrences. But in some 
case (e.g. minsup < 0.0015 on Kosarak), TRuleGrowth uses 
less memory. This is because RuleGrowth finds larger 
rules, and therefore RuleGrowth keeps more information 
in memory because it performs more levels of recursive 
calls to EXPANDRIGHT and EXPANDLEFT.   

 

 

 
Fig. 9. Influence of minconf for Kosarak, BMS1, Snake and Sign 
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0

1000

2000

3000

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

minsup 

0

500

1000

1500

M
em

or
y 

(m
b)

 

minsup 

1K

10K

100K

1000K

10000K

R
u

le
 C

o
u

n
t 

minsup 

Rule count

10

100

1000

10000

Ex
ec

ut
io

n 
ti

m
e 

(s
) 

minsup 

0

500

1000

0.
00

08
5

0.
00

08
25

0.
00

08

0.
00

07
75

0.
00

07
5

0.
00

07
25

0.
00

07

0.
00

06
75

0.
00

06
5

0.
00

06
25

0.
00

06

M
em

or
y 

(m
b)

 

minsup 

0K

1000K

2000K

3000K

0.
00

4
0.

00
37

5
0.

00
35

0.
00

32
5

0.
00

3
0.

00
27

5
0.

00
25

0.
00

22
5

0.
00

2
0.

00
17

5

0.
00

15R
ul

e 
Co

un
t 

minsup 

Rule Count

0

500

1000

0.96 0.92 0.88 0.84 0.8 0.76 0.72

Ex
ec

ut
io

n 
ti

m
e 

(s
) 

minsup 

1

10

100

1000

0.96 0.92 0.88 0.84 0.8 0.76 0.72

M
em

or
y 

(m
b)

 

minsup 

0K

100K

200K

0.96 0.92 0.88 0.84 0.8 0.76 0.72

R
ul

e 
Co

un
t 

minsup 

RuleCount

0

500

0.8 0.7 0.6 0.5 0.4 0.3 0.2Ex
ec

ut
io

n 
ti

m
e 

(s
) 

minsup 

0

100

200

0.8 0.7 0.6 0.5 0.4 0.3 0.2M
em

or
y 

(m
b)

 

minsup 

0K

100K

200K

300K

R
ul

e 
co

un
t 

minsup 

Rule count

A) Kosarak 

B) BMSWebView1 

C) Snake 

D) Sign 



12 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX,  VOL.  #,  NO.  #,  MMMMMMMM  1996 

 

 
7.5 Experiment to assess the scalability of the 

algorithms 

The fourth experiment assesses the scalability of 
CMRules, CMDeo, RuleGrowth and TRuleGrowth with 
respect to the number of sequences |S|. For this experi-
ment, the original Kosarak dataset was used because it is 
a very large dataset containing 700,000 sequences, which 
is convenient for varying the size of the dataset easily. 
Snake, BMS1 and Sign were not used because they are 
much smaller than Kosarak. For the experiment, algo-
rithms were run with minsup = 0.003 and minconf =0.5, 
while |S| was varied from 10,000 to 200,000 with an in-
crement of 10,000. For TRuleGrowth, window_size was set 
to 10. As for previous experiments, a maximum memory 
usage of 1 GB was set. Moreover, a time limit of 1,000 
seconds was used. Results of the experiment are shown in 
Fig. 11. As it can be seen, CMRules, RuleGrowth and 
TRuleGrowth’s execution time and maximum memory 
usage grows linearly with the size of |S|. CMDeo also 
shows a similar trend. However, as it approaches the 
memory limit of 1GB, its performance is negatively af-
fected by the Java garbage collection mechanism. No 
results are available for |S|>100,000 for CMDeo as it ex-
ceeded the memory limit. 

 
Fig. 11. Result of the scalability experiment with Kosarak  

7.6 Performance analysis 

The efficiency of RuleGrowth/TRuleGrowth can be ana-
lyzed as follows.   

No candidate generation. RuleGrowth/TRuleGrowth 
discover rules by scanning sequences from the database 
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Figure 10. Influence of window_size 
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to grow rules. The algorithms do not test candidates not 
occurring in the database unlike CMRules and CMDeo. 

Sids sets keep shrinking.  It is easy to see that as rule 
grows, the sids sets become smaller and less sequences 
need to be scanned. Sids sets generally reduce substan-
tially as rules are grown. 

Complexity. RuleGrowth/TRuleGrowth are pseudo-
polynomial algorithms. Their complexity is linear with 
respect to the number of sequential rules in a database, 
either one or two recursive calls are performed to EX-
PANDLEFT/EXPANDRIGHT for each sequential rule. 
The cost of each call is upper bounded by the time of 
scanning the database once (in the worst case), and count-
ing the frequency of items. 

7.7 Experiment to Assess Prediction Accuracy 

The RuleGrowth/TRuleGrowth/CMRules algorithms have 
been applied successfully in e-learning [6, 7], manufactur-
ing simulation [31], quality control [27], web page click-
stream analysis [30] and anti-pattern detection in service 
based systems [31]. In the next paragraphs, we present 
results from the application of TRuleGrowth to webpage 
prefetching. In this application, we have compared pre-
diction accuracy using (1) sequential rules (SR) mined by 
RuleGen [17] enhanced with a window_size constraint and 
(2) partially-ordered sequential rules (POSR) mined by 
TRuleGrowth. These experiments were carried with the 
Kosarak and BMS1 datasets, which are click-stream da-
tasets. Note that we here only give a summary of the 
results. Full results about this experiment can be found in 
a dedicated publication [30]. For this experiment, each 
dataset was split in a training set and a testing set based 
on a training_ratio parameter. The training set was used to 
generate SR and POSR, respectively. Then, the testing set 
was used to test prediction accuracy using the rules. Each 
sequence from the test set was split into prefix and suffix 
parts based on some parameters named prefix_size and 
suffix_size. The task of prediction for a sequence was to 
predict the first item from the suffix using the information 
from the prefix. We measured the accuracy (number of 
good predictions divided by the size of the test set) and 
the coverage (number of sequences where it was possible 
to make a prediction). In this experiment, we tuned 
RuleGen and TRuleGrowth with the minsup and minconf 
values that provided the best results. We varied (1) pre-
fix_size, (2) suffix_size, (3) training_ratio and (4) window_size 
to perform measurements.  

Overall, we have observed that using POSR always 
provide a considerably higher accuracy and coverage (up 
to 30 % higher accuracy and up to 60% higher coverage), 
depending on the scenario. For example, when setting 
minconf = 0.5, training_ratio = 50%, minsup = 0.00055 
(BMS1) and minsup = 0.002 (Kosarak), prefix_size = and 
suffix_size = 3, window_size = 5, results were as follows. For 
BMS1, POSR provided about 25% accuracy / 95% cover-
age, while SR provided about 10% accuracy / 50% cover-
age. For Kosarak, POSR provided about 12 % accuracy / 
50 % coverage and SR provided about 5% accuracy / 10% 
coverage.  The reason why SR have poor coverage is that 
rules are too specific as highlighted in Section 1. 

The experiment has also shown that using the win-
dow_size constraint is beneficial. For POSR, the best values 
of window_size were between 5 and 7 (BMS1) and 7 
(Kosarak). For SR, the best values were 5 (BMS1) and 7 
(Kosarak). Increasing window_size above these values did 
not improve accuracy but increased execution times. 

Lastly, another interesting result is that using approx-
imately 1000 to 10,000 rules was enough to provide the 
best accuracy for both POSR and SR. 

With this experiment, we have presented a real appli-
cation where POSR provides a clear benefit over the use 
of SR, and where the window_size constraint is important.  

7 Conclusion 

This paper presented two algorithms. RuleGrowth is a 
novel algorithm for mining sequential rules common to 
multiple sequences. Unlike previous algorithms, it uses a 
pattern-growth approach for discovering valid rules such 
that it avoid considering rules not appearing in the data-
base. The second algorithm (TRuleGrowth) allows the 
user to specify a sliding-window constraint on rules to be 
mined. To evaluate RuleGrowth and TRuleGrowth, we 
performed several experiments on four real-life datasets 
having different characteristics. First, the performance of 
RuleGrowth was compared with CMRules and CMDeo 
while varying the minsup and minconf parameters, to as-
sess their influence on the performance of each algorithm. 
Second, RuleGrowth was compared to TRuleGrowth for 
different window_size values to evaluate the benefits of 
using the window size constraint. Experimental results 
shows that RuleGrowth is up to several of magnitudes 
faster and uses up to an order of magnitude less memory 
than CMRules and CMDeo. Moreover experiment shows 
that the execution time and the number of valid rules 
found can be reduced by several orders of magnitude 
when the window size constraint is used.  Lastly, we have 
reported results from a real application where using par-
tially-ordered sequential rules and the window_size con-
straint greatly improves accuracy over sequential rules. 
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