
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



Analog Antenna Array based Sensing in Perceptive
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Abstract — In this paper, we consider an alterna-
tive low-cost and flexible solution of using an analog
antenna array for radio sensing at the base station
receiver in the recently proposed perceptive mobile
networks. We provide receiver beamforming design,
and advanced compressive sensing (CS) signal pro-
cessing techniques for sensing parameter estimation
in a multiuser-MIMO (MU-MIMO) communications
system. Simulation results are provided and validate
the effectiveness of the proposed solution and sens-
ing algorithms.

1 INTRODUCTION

The recently proposed perceptive mobile network
[1] can provide integrated communication and radio
sensing in one system. On a unified sensing plat-
form, extraction of sensing parameters using both
uplink and downlink signals is proposed. In order
to achieve sensing using downlink signals, the trans-
mitter and receiver at a remote radio unit (RRU)
need to be able to operate simultaneously. A sim-
ple solution is to use separated antennas for trans-
mitter and receiver. However, to obtain good es-
timation for sensing parameters, particularly, an-
gle of arrivals of signals, a large number of receiv-
ing antennas, including extra antenna installation
space, and RF chains are also required. In turns,
these can significantly increase the cost of the re-
ceiver, although the transmitter can remain almost
unchanged.

In this paper, we investigate the low-cost option
of using an analog phased antenna array dedicated
to the receiver for sensing and communications, and
develop sensing parameter estimation algorithms,
based on the same MU-MIMO model in [1].

We formulate theoretical framework for sensing
problem in section 2, and we propose 1-D CS al-
gorithm for parameter estimation in section 3. Nu-
merical results are provided and verify the effective-
ness of the proposed scheme.

2 PROBLEM FORMULATION

We here focus on estimating spatial parameters in-
cluding distance, direction, and speed of objects by
extracting the composition of mobile signals.
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2.1 System Model

We consider a typical radio system, similar to
[1], where Q RRUs collaboratively facilitate MU-
MIMO service to K users. Each RRU and each
user have a linear antenna array of M elements
and MT elements, respectively. We used MIMO-
OFDMA type of modulation for both uplink and
downlink. Let N is the number of subcarriers and
B the total bandwidth. Then the subcarrier in-
terval is f0 = B/N and OFDM symbol period is
Ts = N/B + Tp where Tp is the period of cyclic
prefix. The array response vector of a size-M array
for narrowband signals is given by

a(M, θ) = (1, ejκ sin(θ), · · · , ejκ(M−1) sin(θ))T , (1)

where κ = 2πd/λ, d is antenna interval in the array,
λ is the wavelength, and θ is either angle-of-depart
(AoD) or angle-of-arrival (AoA).

For the `-th out of a total of L multipath signals,
let θ` and φ` be the AoD and AoA, respectively, and
b` the amplitude, τ` the propagation delay, and fD,`
the associated Doppler frequency.

The basic task for sensing is to estimate these
spatial parameters {τ`, fD,`, φ`, θ`, b`}, ` = 1, · · · , L
from the received signals. We defined downlink
and uplink sensing, as sensing performed at a RRU
employing downlink transmitted signals from it-
self and other cooperative RRUs and uplink sig-
nals from users, respectively [1], [2]. Whereas they
can have a similar mathematical formation [1]. In
turns, intuitively, from downlink perspective, pro-
cessed received signal model at a RRU at the n-th
subcarrier and the t-th OFDM block can be repre-
sented as

Yn,t =

Q∑
q=1

Lq∑
`=1

bq,`e
−j2πnτq,`f0ej2πtfD,q,`Ts ·

a(M,φq,`)a
T (M, θq,`)xq,n,t + zn,t, (2)

=A(M,φ)CnDtU
Txn,t + zn,t, (3)

where variables with subscript q are for the q-th
RRU, xq,n,t are the transmitted signals at subcar-
rier n from the q-th RRU, zn,t is the noise vector.
Note, A(M,φ) = (A1(M,φ1), · · · ,AQ(M,φQ)),
xn,t = (x1,n,t, · · · ,xQ,n,t)T , U =
diag{A1(M,θ1), · · · ,AQ(M,θQ)}, hence U is



a MQ × L,L =
∑Q
`=1 Lq, block diagonal matrix.

The `-th column in Aq(M,φq) (or Aq(M,θq)) is
a(M,φq,`) (or a(M, θq,`)), Dt and Cn are diagonal

matrices with the
∑q−1
q′=1 Lq′ +`-th diagonal element

being b`e
j2πtfD,q,`Ts and e−j2πnτq,`f0 , respectively.

2.2 Generalized Delay-Quantized On-grid
Formulation

We assume N � L to reduce the quantization er-
ror of τ` and the delay estimation can be well ap-
proximated as an on-grid estimation problem. Let
e−j2πnτ`′f0 be quantized to e−j2πn`/(N

′), where N ′

can equal to or be multiple times of N , implies the
minimal resolvable delay as 1/N ′.

Let K and MT denote the total number of
users/RRUs and number of antennas in each
user/RRU, respectively, for either uplink or down-
link sensing. We now convert the multipath signal
models of both uplink and downlink to a general-
ized on-grid (delay only) sparse model, by taking
Np � L,Np ≤ N ′ multipath signals where only L
signals are non-zeros. Referring to (3), after apply-
ing receiver beamforming with Yn,t, the delay-on-
grid received signal model can be represented as

yn,t =gTt A(M,φ)CnDtPUTxn,t + zn,t, (4)

where gt is the M × 1 beamforming vector ap-
plied to the t-th OFDM block, Cn redefined as
Cn = diag{1, e−j2πn/N ′

, · · · , e−j2πn(Np−1)/N ′}, P
is an Np × L rectangular permutation matrix that
maps the signals from a user/RRU to its multi-
path signal, U is an MTK × L matrix while xn,t
is the MTK × 1 symbol vector; the other symbols
have similar expressions with those in (3), with the
columns in A(M,φ) of size M ×Np and the diag-
onal elements in Dt of size Np ×Np are reordered
as well. Here, we allow repeated delay values in
Cn to account for multipath signals with the same
quantized delay but different AoAs and/or AoDs.

The design of beamforming vectors gt depends
on factors such as energy collection and AoA esti-
mation algorithms. Without any prior knowledge
about the AoA, a simple and efficient way is to take
it from equally-spaced columns of an M ×M DFT
matrix

F = {e−j2πmt
′/M},m, t′ = 0, · · · ,M − 1. (5)

Assume that channel parameters are fixed during
T = M/c1 OFDM blocks where c1 is an integer.
Then at the phased array we repeatedly apply T
M × 1 beamforming vectors

gt = {e−j2πm(t0+mod(t,T )c1)/M},m = 0, · · · ,M − 1,

where t0 is an initial offset value, and mod(·, ·) is
the modulus operator.

3 ESTIMATION OF SPATIAL PARAME-
TERS

We now demonstrate a scheme based on 1-D CS for
estimating the spatial parameters. For uplink sens-
ing, symbols xns can be achieved by demodulating
them as sensing can tolerate more delay than com-
munication. On the contrary, for downlink sensing,
they are centrally known. Note, the range of sub-
carriers in downlink and uplink sensing could be
different. RRUs can obtain signals at more subcar-
riers in downlink sensing than uplink, as the total
subcarriers may shared by different group of users.

3.1 Single Multipath for Each Delay

Rewrite (4) as

yTn,t = xTn,t(c
T
n ⊗ IMTK)VtA

T (M,φ)gt, (6)

where ⊗ denotes the Kronecker product, cn =
(1, e−j2πn/N

′
, · · · , e−j2π(Np−1)/N ′

)T , IMTK is an
MTK × MTK identity matrix, and V is a
MTKNp × Np block diagonal matrix with p` be-
ing the `-th column of PT . Note,

Vt = diag{b`ej2πtfD,`TsUp`}`=1,··· ,Np . (7)

We have now separated signals xTn,t(c
T
n ⊗ IMTK)

that are known and dependent on n from others.
Let Ss denote the set of available subcarriers for
sensing and let Ns denote its size. Stacking Ns
yTn,t, n ∈ Ss to a vector generates

yt = WtVtA
T (M,φ)gt, (8)

where Wt is an Ns×MTKNp matrix with its n-th
row being xTn,t(c

T
n ⊗ IMTK).

Inspecting (8), we can see that the estimation
problem can be formulated as a block sparse prob-
lem [3] with Ns× 1 observations yt, sensing matrix
Wt, and block sparse signals VtA

T (M,φ)gt of L-
sparsity. Let Vt = (VT

1 ,V
T
2 , · · · ,VT

Np
)T where V`

denotes the MTK ×Np block signals, and L out of
Np V`s have non-zero elements. A block sparse CS
algorithm can solve (8) and generate estimates for
V`A

T (M,φ)gt, ` = 1, · · · , Np.
We first consider noiseless cases. Once the L

nonzero blocks V`A
T (M,φ)gt are determined, we

can then get the L delay estimates according to the
indexes of the blocks.

In (7), only the `-th column in V` has non-zero
elements b`e

j2πtfD,`TsUp` if b` 6= 0. Therefore,

V`A
T (M,φ)gt = b`e

j2πtfD,`TsUp`a
T (M,φ`)gt.

(9)

Since p` only has a single non-zero element 1, Up`
will generate a column vector corresponding to one



column in U. As U is a block diagonal matrix,
only 1 out of K MT × 1 vectors in each column is
non-zero.

Now represent V`A
T (M,φ)gt as K MT ×1 sub-

vectors (bT`,1,t, · · · ,bT`,K,t)T . If b`,k,t 6= 0, then this
multipath is from the k-th RRU (user). Hence,

b`,k,t = b`e
j2πtfD,`Tsa(MT , θk,`)a

T (M,φk,`)gt.
(10)

From b`,k,t, calculating the cross-correlation be-
tween rows, we can obtain AoD estimates. The
mean energy of b`,k,t can also be estimated directly
via the cross-correlation output.

When the channel parameters remain fixed over
at least 2T OFDM blocks, we can calculate the
cross correlation and use the following equation to
estimate Doppler shift:

fD,` = ∠(

t1+T−1∑
t=t1

(bH`,k,tb`,k,t+T ))/(2πTsT ), (11)

where we have exploited the fact that TsTfD,` is
practically much smaller than 1 and hence there is
no phase ambiguity here.

For the estimation of AoA, we can exploit b`,k,ts
across T OFDM symbols. We can either ignore the
phase variation caused by Doppler shift and pro-
cess the signals per each transmitter antenna, or
apply the estimated AoD and Doppler shift fD,` to
(10) to improve signal energy. Consider the latter
as an example. For M − T > 1, b`,k,t can be left-
multiplied with ej2πtfD,`TsaH(MT , θk,`) to remove
Doppler shift and AoD terms, and to combine sig-
nals from different transmit antennas. Stacking the
resulted signals over the first T blocks into a T × 1
vector, we get

q`,k = MT b`G
Ta(M,φk,`), (12)

where G is an M ×T matrix with the (mod(t, T )+
1)-th column being gt. The signal q`,k can be fur-
ther averaged over the first and second T blocks.

When T < M , the pseudo-inverse of GT does
not exist, and hence a(M,φk,`) cannot be obtained
directly. We propose to use the following approach
to estimate φk,` instead.

Note that gTt a(M,φk,`) can be computed as

gTt a(M,φk,`)

=

M−1∑
m=0

ej2πm(α−(t0+mod(t,T )c1)/M)

=

T−1∑
t′=0

ej2πt
′(α−t0/M) 1− ej2πM(α−t0/M)

1− ej2πT (α−t0/M)︸ ︷︷ ︸
ρt′

·R (13)

where α , d sin(φk,`)/λ and R = e−j2πt
′mod(t,T )/T .

Note that this is a T-point DFT of ρt′ , and in ρt′ ,
only ej2πt

′(α−t0/M) depends on t′.
Hence, we can apply inverse DFT to q`,k in (12)

and get {ρt′}, t′ = 1, · · · , T , and then get the AoA
estimation through computing

sin(φk,`) =
λ

2πd
∠(ej2πt0/M

T−1∑
t′=1

ρt′+1ρ
∗
t′), (14)

where (·)∗ denotes the conjugate operator. Note
that Mtb` in q`,k is absorbed to ρt′ during this cal-
culation and has no impact on the result through
the angle operation.

Once all other parameters are estimated in (12),
b` can then be obtained too.

In noisy cases, we can sort the blocks
V`A

T (M,φ)gt, ` = 1, · · · , Np according to the en-
ergy of the block signals and use a threshold to pick
up blocks with larger energy and corresponding to
efficient multipath signals. This threshold may be
determined by measuring the mean power across
T OFDM blocks when beamforming completes one
cycle of scanning.

3.2 Multiple Multipath Signals with the
Same Delay

Similar to those shown for MIMO systems in [1], if
` ∈ Sd multipath signals have the same delays but
different AoAs or AoDs, we will get

V`A
T (M,φ)gt

=
∑
`∈Sd

b`e
−j2πtfD,`TsUp`a

T (M,φ`)gt (15)

If these multipath signals are from different
RRUs (users), multiple b`,k,ts will be non-zero.
Hence, these multipath signals can be estimated
straightforwardly, by applying the results from (10)
to the end of Subsection 3.1 to each user separately.
To determine which users’ multipath signals are lo-
cated in one delay bin, both the largest power of
blocks in one delay bin and average powers across
the delays bins for a particular user may be ex-
ploited. Detailed design remains as an open ques-
tion. In simulations we use a threshold correspond-
ing to 50% of the mean signal energy in each delay
bin identified containing efficient multipath signals.

A very challenging scenario is when L`,k > 1 mul-
tipath signals are from the same RRU (user). So,

b`,k,t =
∑
`∈Sd

b`e
−j2πtfD,`Tsa(MT , θk,`)a

T (M,φk,`)gt

= ATDAT
Rgt, (16)



where AT is an MT × L`,k matrix with columns
a(MT , θk,`), AR is anM×L`,k matrix with columns
a(M,φk,`), D is a diagonal matrix with diagonal
elements b`e

−j2πtfD,`Ts , all with ` ∈ Sd.
When the numbers of antennas MT and M are

large, it is possible to apply CS technique to es-
timate both AoA and AoD, by working over T
OFDM blocks and ignoring the change of Doppler
shift between them. When MT and M are not very
large but are larger than two times of the mul-
tipath number, the AoD can be estimated using
spectrum analysis techniques such as ESPRIT or
MUSIC using individual b`,k,t or across T b`,k,ts.
However, there seems no efficient spectrum analy-
sis techniques or other techniques to accurately es-
timating AoA for the signals in (16), when T < M .
A qualitative approach is to determine a coarse
AoA according to the signal energy of b`,k,t and
the beamforming scanning direction.

When T ≥M beamforming scanning over a sta-
ble channel period is possible (phase variation due
to Doppler is ignored), we can stack T b`,k,ts into
an matrix and remove gts impact via right multi-
plying the matrix with the (pseudo) inverse of the
M × T matrix {gt}. Then, we get a standard ex-
pression for which conventional spectrum analysis
techniques or 2-D DFT analysis can be applied.

4 SIMULATION RESULTS

We present simulation results using the block
Bayesian Sparse Learning algorithm [3] to vali-
date the effectiveness of our parameter estimation
scheme. We consider a system with 4 RRUs, each
with a 8-element antenna array, providing connec-
tion to 4 users, each with 2 antennas. The carrier
frequency is 2.35 GHz, N = 256, d = λ/2, and
B = 100 MHz. No radar cross-section information
is used. The total thermal noise in the receiver is
−97 dBm, the transmission power is 25 dBm and
the used pathloss model is same to [2]. Multipath
signals for each RRU/MS are formed randomly in a
cluster, mimicking reflected/scattered signals from
objects. Each cluster is generated following uni-
form distributions of [3, 5] for the total multipath
number and AoAs, AoDs and Doppler frequencies
are randomly generated within a given range. De-
lays, from the same RRU/MS are different while
same between RRUs/MSs. On-grid delay interval
of 10 ns refers to a distance resolution of 3 m.

Figure 1 displays the simulation results for pa-
rameter estimation with T = 4. For downlink sens-
ing, in (a), (b), all subcarriers are used. It shows
that AOD and AOA estimates are accurately placed
with the actual ones. For uplink sensing, in (c),
(d), 64 randomly selected subcarriers are used by 4
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Figure 1: Parameter estimation for downlink sensing
shows in (a), (b), while (c) and (d) refers to uplink sens-
ing. Every star/circle refers parameters for one mul-
tipath; Stars and circles are for estimated and actual
ones, respectively. Different colors represent multipath
from different RRUs in (a), (b) and users in (c), (d).

users simultaneously. Estimates for this are with a
few mismatched cases, especially the AOA (Figure
1(d)) with three circles. It reveals that, downlink
sensing exploits centrally available signals at more
subcarriers at static RRUs with larger arrays. How-
ever, in uplink, diverse resource allocation with ran-
dom multiuser access draws an overall impact on
estimation accuracy.

5 CONCLUSIONS

This paper presents a basic spatial parameter es-
timation method based on analog antenna array
for a sensing system unified with communication.
A compressive scheme is developed for estimation,
and its effectiveness is validated by simulation re-
sults. Our work here provides a step forward in
demonstrating the feasibility of analog array in re-
ceiver cost minimization for perceptive network.
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