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Abstract
In this paper, we propose to represent and classify
complicated objects. In order to represent the ob-
jects, we propose a multi-graph-view model which
uses graphs constructed from multiple graph-views
to represent an object. In addition, a bag based
multi-graph model is further used to relax label-
ing by only requiring one label for a bag of graphs,
which represent one object. In order to learn clas-
sification models, we propose a multi-graph-view
bag learning algorithm (MGVBL), which aims to
explore subgraph features from multiple graph-
views for learning. By enabling a joint regular-
ization across multiple graph-views, and enforc-
ing labeling constraints at the bag and graph lev-
els, MGVBL is able to discover most effective sub-
graph features across all graph-views for learning.
Experiments on real-world learning tasks demon-
strate the performance of MGVBL for complicated
object classification.

1 Introduction
Many real-world objects, such as chemical compounds in bio-
pharmacy [Kong and Yu, 2010], images in webpages [Har-
chaoui and Bach, 2007], brain regions in brain network [Kong
and Yu, 2014] and users in social network [Aggarwal and
Subbian, 2014], contain rich features and structure informa-
tion. In many cases, these objects are represented by using
simple features in vector space. Such a simple feature-vector
representation inherently loses the structure information of
the object, such as chemical bounds regulating the attraction
of atoms for chemical compounds and spatial correlations of
regions inside an image [Morales-Gonzalez et al., 2014]. A
structured representation, i.e., graph, can be used to preserve
structure information of the objects.

When using graphs to represent objects for learning, most
existing methods construct graphs from a single feature view.
For example, for content-based image retrieval, each image
can be represented as a single graph-view graph by using
colour histogram as a feature, with each node denoting a
small region and adjacent regions being connected using an
edge [Morales-Gonzalez et al., 2014]. However, using graphs
from a single view is inadequate to fully describe the content.

For example, colour and texture are different visual channels,
and are both commonly used to represent images. Therefore,
using graphs constructed from multiple feature views can po-
tentially preserve accurate information to describe the struc-
ture and the content of the object. In this paper, we refer
to graphs constructed from different feature views as multi-
graph-view graphs.

In reality, objects may have complicated characteristics,
depending on how the objects are assessed and characterized.
For example, in content-based image retrieval, an image may
be labeled as “tiger” because it contains a tiger inside the im-
age. However, not all regions of the image are relevant to the
tighter and background regions may not be directly related to
the label of the object. This representation and learning com-
plication is known as “multi-instance” learning [Zhou, 2004],
where most existing researches focus on feature-vector repre-
sented instances. In order to preserve the structure informa-
tion of the object, an alternative way is to represent the object
(e.g. an image) as a bag of graphs with each graph represent-
ing the object’s local characteristics. If any region of the im-
age contains an object-of-interest (e.g. a tiger), the bag will
be labeled as positive. If no region inside the image contains
any object-of-interest, the bag is labeled as negative.

The above observations raise a new graph-bag based multi-
graph-view learning, where the object is represented as
a graph-bag, consisting of graphs collected from multiple
graph-views. In order to build effective learning model, the
technical challenge is twofold: (1) multiple graph-view rep-
resentation: how to find effective subgraph features from dif-
ferent graph-views; (2) graph-bag based learning: how to in-
tegrate bag constraints, where labels are only available for a
bag of graphs, for learning.

Intuitively, when objects are represented as bag of multi-
graph-view graphs, a straightforward learning solution is to
propagate a bag’s label to all graphs inside the bag. In this
case, the problem is degraded as a “multi-graph-view graph
learning” [Wu et al., 2014a]. Unfortunately, because not all
graphs in a positive bag are positive, simple bag label prop-
agation may cause some negative graphs being mislabeled
and deteriorate the learning accuracy. Alternatively, one can
first explore some frequent subgraphs to represent graphs into
vector space, and transfer the problem to “multi-view multi-
instance learning” [Mayo and Frank, 2011]. However, this is
still suboptimal because simple frequent subgraph features do
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not have sufficient discriminative ability for learning.
In this paper, we propose a multi-graph-view bag learning

(MGVBL) algorithm for accurate graph-bag classification.
More specially, MGVBL progressively selects the most dis-
criminative subgraph across different graph-views. It not only
achieves maximum margins between labeled graph bags (pos-
itive vs. negative), but also has minimum loss on the graphs in
negative bags. The key contribution of the paper is threefold:

1) We propose a new object representation model which
preserves the structure and the complicated characteris-
tics of the object for learning.

2) MGVBL integrates multiple graph-view subgraph ex-
ploration and learning into a unified framework. This is
inherently different from many graph learning methods,
which treat subgraph exploration and subsequent model
learning in two separated processes [Wu et al., 2014c].

3) An upper bound discriminative score for each subgraph
is derived to effectively prune subgraph search space.

2 Problem Definition and Overall Framework
Definition 1. (Connected Graph) A graph is represented as
G = (V, E,L, l) where V = {v1, · · · , vnv

} denotes vertices,
with E ⊆ V × V as edges, and L represents symbols for the
vertices and edges. l : V ∪ E → L is the function assigning
labels to the vertices and edges. A connected graph must has
a path between any pair of vertices.

Definition 2. (Subgraph) Let G = (V, E,L, l) and gi =
(V ′, E′,L′, l′) each denotes a connected graph. gi is a sub-
graph of G, i.e., gi ⊆ G, iff there exists an injective function
ϕ : V ′ → V s.t. (1)∀v ∈ V ′, l′(v) = l(ϕ(v)); (2) ∀(u, v) ∈
E′, (ϕ(u), ϕ(v)) ∈ E and l′(u, v) = l(ϕ(u), ϕ(v)). If gi is
a subgraph of G, then G is a supergraph of gi. In this paper,
subgraphs and subgraph features are equivalent terms.

Definition 3. (Graph-View) A graph-view denotes a type of
tuple (V, E,L, l) used to represent an object as a graph. Sim-
ilarly, multi-graph-view represents multiple types of tuples
used to represent the same object.

Definition 4. (Multi-Graph-View Graph-Bag) A multi-
graph-view graph-bag Bi = {B1

i , · · · , Bk
i , · · · , Bv

i } con-
sists of some graph-bags, where Bk

i denotes a single-view
graph-bag from the kth view, and eachBk

i contains a number
of graphsGk

j constructed from the kth view. The class label of
the graph bag Bi is denoted by Yi ∈ Y , with Y = {−1,+1}.

The set of all graph-bags is denoted by B. We can also ag-
gregate all graphs in the negative bags as G−. In this paper,
we use Gj to denote a multi-graph-view graph, and use su-
perscript k to denote the kth view.

Given B = {B1, · · · ,Bk, · · · Bv} (i.e., a multi-graph-view
bag set) containing labeled graph-bags from v views, the aim
of multi-graph-view learning for graph-bag classification is
to find the optimal subgraphs from the training graph set B
to train classification models, and predict previously unseen
multi-graph-view graph-bags with a maximum accuracy.

Figure 1: The proposed multi-graph-view learning for graph-
bag classification (MGVBL). In each iteration, MGVBL se-
lects an optimal subgraph g∗ (step a). If the algorithm does
not meet the stopping condition, g∗ will be added to the sub-
graph set g or terminates otherwise (step c). During the loop,
MGVBL solves a liner programming to update the weights
for training graph-bags and graphs. The weights are continu-
ously updated until obtaining the optimal classifier.

2.1 Overall Framework
Our proposed multi-graph-view bag classification framework
is shown in Fig. 1. It consists of three major steps: 1) Op-
timal Subgraph Exploration: In each iteration, MGVBL ex-
plores a discriminative subgraph to improve the discrimina-
tive capability of the graph feature set g 3 g∗; 2) Bag Margin
Maximization: Based on the currently selected subgraphs g,
a linear programming problem is solved to achieve maximum
bag margin for graph bag classification; 3) Updating Bag and
Graph Weights: After the linear programming is solved, the
weight values for training bags and graphs are updated and
repeated until the algorithm converges.

3 Multi-Graph-View Graph-Bag Learning
3.1 Maximum Bag Margin Formulation
In graph-bag constrained learning, bag labels are asymmet-
ric in the sense that all graphs in a negative bag are negative,
while labels of graphs in positive bag are unknown. Accord-
ingly, we can aggregate the linear constraints from two levels
(bag- and graph- levels) as follows:

min
w,ξ,η

∑

k

mk∑

s

wk
s + C1

∑

i:Bi∈B
ξi + C2

∑

j:Gj∈G−
ηj

s.t. Yi
∑

k

mk∑

s=1

(wB
s )khgs(Bk

i ) ≥ 1− ξi, i = 1, · · · , |B|

∑

k

mk∑

s=1

(wG
s )khgs(Gk

j ) ≤ −1 + ηj , j = 1, · · · , |G−|

wB ≥ 0;wG ≥ 0; ξ ≥ 0;η ≥ 0
(1)

where wk
s = (wB

s )k + (wG
s )k, ξi and ηj are the evaluation of

the misclassification. mk is the number of subgraphs selected
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from the kth graph-view. C1 and C2 are tradeoff between hy-
perplane margin and errors. Because bag labels are known,
the weighted errors are C1

∑
i:Bi∈B ξi. In addition, graphs in

the negative bags are known being negative. Therefore, for
the graph level the weighted errors are C2

∑
j:Gj∈B− ηj .

In Eq. (1), hgs(Bk
i ) is a weak subgraph classifier, which

outputs the class label of the bag Bk
i in the kth view based

on subgraph gs, and hgs(Gk
j ) is a weak subgraph classifier

for the graph Gk
j in the kth view based on subgraph gs. More

specially, for a subgraph gs, we can use it as a decision stump
classifier for graph or bag in the kth view as

{
hgs
(
Bk

i ) = (ψB
s )k

(
2I(gs ⊆ Bk

i )− 1
)

hgs
(
Gk

j ) = (ψG
s )k

(
2I(gs ⊆ Gk

j )− 1
) (2)

where gs ⊆ Bk
i iff gs is a subgraph of any graph G in

bag Bk
i , i.e., ∃G ∈ Bk

i ∧ gs ⊆ G. (ψB
s )k and (ψG

s )k

(ψB
s , ψ

G
s ∈ Ψ = {−1,+1}) are parameters controlling the

label of the classifiers, with I(·) being an indicator function.
(wB

s )(k) and (wG
s )(k) denote the weights of the bag and graph

in the kth view. For a subgraph set with size m =
∑

kmk,
The prediction rule for a graph-bag Bi or is a linear view
combination of the corresponding weak classifiers as

H(Bi) = sign
(∑

k

∑mk

s=1
(wB

s )khgs(Bk
i )
)

(3)

3.2 Linear Programming Optimization
In order to support multi-graph-view graph-bag classifica-
tion, a subgraph feature set g = {g1, · · · , gs, · · · , gm} is re-
quired. One straightforward solution is exhaustive enumera-
tion, which enumerates all subgraphs to find the best ones for
learning. In reality, the number of subgraphs may grow expo-
nentially, so exhaustive enumeration is technically infeasible.
This problem can be solved by column generation technique
[Nash and Sofer, 1996], which works on the Lagrangian dual
problem with respect to Eq. (1). Starting from an empty sub-
graph feature set g, column generation iteratively adds one
subgraph gs, which violates the constraint in the dual prob-
lem, to g. Each time the subgraph set g is updated, column
generation resolves the primal problem in Eq. (1) by solving
the restricted dual problem. This procedure continues until no
more subgraph violates the constraints in the dual problem,
which can be formulated as

max
γ,µ

∑

i:Bi∈B
γi −

∑

j:Gj∈G−
µj

s.t. 0 ≤ γi ≤ C1, i = 1, · · · , |B|
0 ≤ µj ≤ C2, j = 1, · · · , |G−|
∑

k

(∑

i:Bi∈B
γiYihgs(Bk

i )−
∑

j:Gj∈G−
µjhgs(Gk

j )
)
≤ 2v

(4)

where γi and µj are Lagrange multipliers, with
∑

k 1 =
v. Note that, the dual problem has a limited num-
ber of variables, but a large number of constraints.
Among them, each constraint

∑
k(
∑

i:Bi∈B γiYihgs(Bk
i ) −∑

j:Gj∈G− µjhgs(Gk
j )) ≤ 2v indicates a subgraph feature

gs over all multi-graph-view graph-bags B, with the first and
second terms of the left of constraint being the gain on the
labeled graph-bags and graphs in negative bags, respectively.
Intuitively, this constraint provides a metric to access the bag
constraint based discriminative power of a given subgraph gs.
Definition 5. (mgScore: Discriminative score) Given a
graph-bag set B containing multiple graph-view graphs, for
a subgraph gs, its discriminative score can be measured by:

£gs =
∑

k

( ∑

i:Bi∈B
γiYihgs(Bk

i )−
∑

j:Gj∈G−
µjhgs(Gk

j )
)

(5)
To learn the multi-graph-view bag classification model, we

need to find the most discriminative subgraph which consid-
ers each training bag weights and graph weights in negative
bags across all graph-views for future learning.

3.3 Optimal Subgraph Exploration
In order to discover subgraphs for validation, one straight-
forward solution for finding an optimal subgraph set is ex-
haustive enumeration which enumerates all subgraphs and
uses their mgScore scores for ranking. However, the num-
ber of subgraphs grows exponentially with the size of graphs
in each graph-view, which makes the exhaustive enumeration
approach impractical for real-world data.

Alternatively, we employ a Depth-First-Search (DFS) al-
gorithm gSpan [Yan and Han, 2002] to iteratively enumer-
ate subgraphs. The key idea of gSpan is that each subgraph
has a unique DFS Code, defined by a lexicographic order of
the discovery time during the search process. By employing
a depth first search strategy on the tree, gSpan can effectively
find all frequent subgraphs efficiently. In this paper, because
subgraph search for each graph-view is independent, we de-
rive an upper bound for mgScore in order to prune the search
space in the DFS-code tree as follows:
Theorem 1. mgScore Upper Bound: Given two subgraphs
gs and g′s, where g′s is a supergraph of gs (i.e., g′s ⊇ gs). The
mgScore of g′s, £g′s is bounded by £̂gs , i.e., £g′s ≤ £̂gs , with
£̂gs being defined as:

£̂gs = max(£−gs ,£
+
gs) (6)

where

£−gs = 2
∑

k

( ∑

i:Yi=−1,gs⊆Bk
i

γi +
∑

j:gs⊆Gk
j

µj

)

+v
( ∑

i:Bi∈B
γiYi −

∑

j:Gj∈G−
µj

) (7)

£+
gs = 2

∑

k

∑

i:Yi=+1,gs⊆Bk
i

γi − v
(∑

i:Bi∈B
γiYi −

∑

j:Gj∈G−
µj

)
(8)

Proof. Considering decision stumps hgs(Bk
i ) and hgs(Gk

j )
defined in Eq. (2), we have

£g′s
=
∑

k

( ∑

i:Bi∈B
γiYi(ψ

B
s )k

(
2I
(
g′s ⊆ Bk

i

)
− 1
)

−
∑

j:Gj∈G−
µj(ψ

G
s )k

(
2I
(
g′s ⊆ Gk

j

)
− 1
)) (9)
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Algorithm 1 Discriminative Subgraph Exploration
Require:
B = {B1, · · · ,Bk, · · · ,Bv}: A multi-graph-view bag set;
γ = {γ1, · · · , γ|B|}: A bag weight set;
µ = {µ1, · · · , µ|G−|}: A negative graph weight set;
min sup: The threshold of the frequent subgraph;

Ensure:
g∗: The most discriminative subgraph;

1: g∗ = ∅;
2: G = {G1, · · · ,Gk, · · · ,Gv} ← Aggregate all graphs in B;
3: for all graph-views Gk, k = 1, · · · , v in G do
4: while Recursively visit the DFS Code Tree in gSpan do
5: gks ← current visited subgraph in DFS Code Tree;
6: if freq(gks ) < min sup, then
7: return;
8: Compute the mgScore £gks

for subgraph gks using Eq. (5);
9: if £gks

≥ £g∗ or g∗ == ∅ , then
10: g∗ ← gks ;
11: if £̂gks

≥ £g∗ , then
12: Depth-first search the subtree rooted from node gks ;
13: end while
14: end for
15: return g∗;

For any ψs ((ψG
s ) or (ψB

s ) in any view), the value will be -1
or +1. When ψs = −1, £g′s can be rewritten as

£g′s =
∑

k

(
− 2

∑

i:g′s⊆Bk
i

γiYi +
∑

i:Bi∈B
γiYi

+ 2
∑

j:g′s⊆Gk
j

µj −
∑

j:Gj∈G−
µj

)

≤ 2
∑

k

( ∑

i:Yi=−1,g′s⊆Bk
i

γi +
∑

j:g′s⊆Gk
j

µj

)

+ v
( ∑

i:Bi∈B
γiYi −

∑

j:Gj∈G−
µj

)

(10)

Because
∑

i:Yi=−1,g′s⊆Bk
i

γi ≤
∑

i:Yi=−1,gs⊆Bk
i

γi;
∑

j:g′s⊆G
k
j

µj ≤
∑

j:gs⊆Gk
j

µj

We have

£g′s ≤ 2
∑

k

( ∑

i:Yi=−1,gs⊆Bk
i

γi +
∑

j:gs⊆Gk
j

µj

)

+ v
( ∑

i:Bi∈B
γiYi −

∑

j:Gj∈G−
µj

)
= £−gs

(11)

For any g′s ⊇ gs under ψs = −1, we have £g′s
≤ £−gs .

Similarly, £g′s ≤ £+
gs under ψs = +1. In this case, the max-

imum one (i.e. max(£−gs ,£
+
gs)) will be selected as the final

upper bound £̂gs . Once a subgraph gs is generated, all its su-
pergraphs are upper bounded by £̂gs . Therefore, this theorem
can help prune the search space efficiently.

Algorithm 2 MGVBL: Multi-Graph-View Bag Learning
Input:
B = {B1, · · · ,Bk, · · · ,Bv}: A multi-graph-view bag set;
min sup: The threshold of the frequent subgraph;
m: the maximum number of iteration;

Output:
The target class label Yc of a test multi-graph-view bag Bc;
// Training Phase:

1: g ← ∅; t← 0;
2: while t ≤ m do
3: g∗ ← Apply B and min sup to obtain the most discrimina-

tive subgraph ; // Algorithm 1
4: if £g∗/2v ≤ 1 + ε then
5: break;
6: g← g ∪ g∗;
7: Solve Eq. (1) based on g to get wB and wG, and the La-

grange multipliers of Eq. (4) γ and µ;
8: t← t+ 1;
9: end while

// Testing Phase:
10: Yc ← sign

(∑
k

∑
gs∈g

(
wB

s

)k
hgs

(
Bk

c

))
.

11: return Yc.

The above upper bound can be utilized to prune DFS code
tree in gSpan by using branch-and-bound pruning, where the
complete subgraph feature exploration approach is listed in
Algorithm 1. The algorithm enumerates subgraph features by
searching the whole DFS code tree in each graph-view. If
a current subgraph gks in the kth view is not frequent, both
gks and its related subtree will be discarded (lines 6-7). Oth-
erwise, the mgScore of the gks (i.e. £gk

s
) will be calculated

(line 8). If £gk
s

is greater than the current optimal mgScore
£g∗ or it is the first step (i.e. the optimal subgraph £g∗ is
empty), £gk

s
will be regarded as the current optimal sub-

graph £g∗ (lines 9-10). Subsequently, the upper bound prun-
ing module will check if £̂gk

s
is less than the £g∗ , which

means that the mgScore value of any supergraph gks
′ of gks

(i.e. gks
′ ⊇ gks ) will not be greater than £g∗ . If so, the subtree

rooted from gks will be safely pruned. If £̂gk
s

is indeed greater
than the mgScore of g∗, the search process will sequentially
visit nodes from the subtree of gks (lines 11-12).

3.4 MGVBL
The complete procedures of the proposed subgraph mining
and classification framework MGVBL are listed in Algorithm
2, which iteratively extracts informative subgraphs across dif-
ferent graph-views to expand the candidate subgraph set g, by
using mgScore. Afterm iterations, MGVBL boosts them se-
lected weak classifiers to form a final classification model.

MGVBL starts from an empty subgraph set g = ∅ (line 1),
and iteratively selects the most discriminative subgraph g∗ in
each round (line 3) according to Algorithm 1. If the current
optimal subgraph no longer violates the constraint, the iter-
ation process terminates (lines 4-5). Because the difference
of the optimal values in the last few iterations is relatively
small, a threshold ε is used to relax the stopping condition, so
MGVBL terminates if the difference between two consecu-
tive iterations is less than the threshold ε (we set ε = 0.05 in
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our experiments). After that, MGVBL solves the linear pro-
gramming problem by using the current optimal subgraph set
g to recalculate two groups of weight values: 1)wB andwG:
the weights for bag-level and graph-level weak subgraph de-
cision stumps, respectively; 2) γ and µ: the weights of train-
ing bags and graphs in negative bags for optimal subgraph
mining in the next round, which can be obtained from the La-
grange multipliers of the primal problem (line 7). Once the
algorithm converges or the number of maximum iteration is
reached, the training phase of MGVBL is finished. During the
testing phase, the label Yc of a test bag Bc is determined by
the final classier sign(

∑
k

∑
gs∈g(wB

s )khgs(Bk
c )).

4 Experiments
4.1 Experimental Settings
All reported results are based on 10 times 10-fold cross-
validation. Unless specified otherwise, we set minimum sup-
port threshold min sup = 3% for scientific publication data
(Section 4.3) and min sup = 2% for content-based image
retrieval (Section 4.4).

4.2 Baseline Methods
Because no existing approaches are available to solve the pro-
posed research problem, we use the following two types of
baselines (bag-level and graph-level) for comparison stud-
ies. Bag-level approaches firstly discover some informative
subgraphs to represent graphs in the bag set (i.e. transferring
multi-graph set to a multi-instance set), and then employ the
existing multi-view multi-instance learning MIVBL [Mayo
and Frank, 2011] for classification. Graph level methods
propagate bag labels to all graphs inside the bag, so the prob-
lem is transferred to a recently proposed multi-graph-view
graph learning (MGVGL) [Wu et al., 2014a].

Bag-level approach
A number of top-k frequent subgraphs are explored to repre-
sent graphs as feature-vector instances, and transfer the prob-
lem as multi-view multi-instance learning. After that, MIVBL
is applied to directly train multi-instance boosting classifier
(MIBoost) [Xu and Frank, 2004] by treating each view inde-
pendently and combining classifiers across all views for pre-
diction. Previous research [Mayo and Frank, 2011] has indi-
cated that sophisticated combining approaches, such as stack-
ing [Wolpert, 1992], are possible but their initial experiments
did not yield improved results and the training times were an
order of magnitude greater. So we only use simple combina-
tion in our experiments.

Graph-level approach
Because labels are only available for bags, graph-level ap-
proaches directly propagate bag labels to graphs inside each
bag. By doing so, the problem is transferred to a graph learn-
ing task with multiple graph-views. After that, graph-level ap-
proaches first explore an optimal set of subgraphs as features
to transfer multi-graph-view graphs into feature-vectors, with
an AdaBoost [Telgarsky, 2012] classifier being trained for fi-
nal prediction. It is worth noting that we use AdaBoost be-
cause our proposed MGVBL is a boosting formwork, so it
makes sense to compare with a boosting based method.

In addition, we also implement a bMVGBL approach (i.e.
MVGBL without using the graph level constraint) as a base-
line to explore the efficiency of the unified two level (bag-
and graph- level) framework.

4.3 Scientific Publication Text Categorization
A scientific publication can be represented as multi-graph-
view graphs. To build multiple graph-view, we use informa-
tion from (1) abstract; and (2) paper ID, title, and references,
to form two graph-views. More specifically, for abstract view
graphs, each paper is converted into an undirected graph by
using the correlation of keywords in the abstract with edges
denoting keyword correlations. For paper ID, title, and refer-
ence view graph, each node denotes Paper ID or a keyword
in the title and each edge denotes the citation relationship be-
tween papers or keyword relations in the title (detailed in [Pan
et al., 2015]). For each paper, each reference cited by the pa-
per is also a graph, so each paper with its citations, corre-
sponds to a graph bag with two views (i.e., abstract view vs.
reference relationship view). More specifically, assume paper
A cites papers A1, A2, and A3, and the label of A is “Pos-
itive”. For each view, we will first generate one graph from
A, A1, A2, and A3, respectively. After that, we put all four
graphs as one bag, and label the bag as “Positive”.

The Digital Bibliography & Library Project (DBLP) data
set 1 consists of bibliography in computer science. Each
record in DBLP contains information such as abstract, au-
thors, year, title, and references. To build a multi-graph-
view graph-bag, we select papers published in two rele-
vant research fields: Artificial Intelligence (AI: IJCAI, AAAI,
NIPS, UAI, COLT, ACL, KR, ICML, ECML, and IJCNN),
and Database (DB: SIGMOD, KDD, PODS, VLDB, ICDE,
CIKM, DASFAA, ICDT, and SSDBM) to form a multi-
graph-view graph-bag learning task. The objective is to pre-
dict whether a paper belongs to the AI or DB field.

For each abstract in the abstract graph-view, a fuzzy cogni-
tive map (E-FCM) [Luo et al., 2011] based approach is used
to extract a number of keywords and correlations between
keywords, which form nodes (keywords) and edges (keyword
correlations) of each graph. A threshold (0.005) is used to re-
move edges whose correlations are less than the threshold. At
the last step, the graph is converted into an unweighted graph
by setting the weight of all remaining edges as “1”. In the
experiments, we choose 600 papers in total (corresponding
to 600 multiple graph-views bags) to form positive (AI) bags
(300 bags with 1756 graphs) and negative (DB) bags (300
bags with 1738 graphs).

Fig. 2 (A) reports accuracy for multi-graph-view graph-
bag classification. When the number of selected subgraphs is
less than 10, the performances of all algorithms are compara-
bly low, mainly because a small number of subgraph stumps
(i.e. weak classifiers) lead to inferior classification accuracies
in early iterations. By contrast, MGVBL consistently outper-
forms baselines when the number of selected subgraphs is 20
or more. During last a few iterations, MGVGL can obtain a
high accuracy, but this type of baselines still cannot outper-
form the best performance achieved by MGVBL.

1http://dblp.uni-trier.de/xml/
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Figure 2: Experimental results for multi-graph-view graph-
bag learning on (A) DBLP Text and (B) Corel Image data set.

4.4 Content-based Image Retrieval
In this section, we report MGVBL’s performance for con-
tent based image retrieval. The original images [Li and Wang,
2008] from Corel data set2 are preprocessed by using VLFeat
segmentation [Vedaldi and Fulkerson, 2008], with each im-
age being segmented into multiple regions and each region
corresponding to one graph. For each region, Simple Linear
Iterative Clustering (SLIC) [Achanta et al., 2012] is applied
to obtain graph representation, so each node indicates one su-
perpixel and each edge represents the adjacency relationship
between two superpixels [Wu et al., 2014b].

In order to build multiple graph-views, we employ two
types of features, including Hue-Saturation-Value (HSV) in
colour space and Local Binary Patterns (LBP) in the texture
space. Specifically, HSV is a commonly used color model,
where HSV stands for hue, saturation and intensity, and LBP
represents texture in a local region. For HSV feature, we
first extract a 3-channel HSV feature for each pixel. The ex-
tracted HSV representations are fed to k-means clustering
to construct a 256-dimensional codebook. After that, a one-
dimensional code is assigned to each pixel based on the simi-
larity between the pixel representation and the cluster centers.
The HSV-based representation for a superpixel is constructed
as a 256-dimensional histogram-based vector by computing
the statistics of the occurrences of the codes. For LBP, we
adopt the uniform LBP and generate a 59-bin code for each
pixel, where each pixel is assigned to one bin according to the
local texture pattern. Therefore, a 59-dimensional histogram
is constructed for each superpixel encoding its statistics.

To build positive bags, we use category “Cats”, which
consists of “Tiger”, “Lion” and “Leopard”, as positive bags
(300 bags with 2679 graphs) and randomly draw 300 im-
ages of other animals to form negative bags with 2668 graphs
(i.e. image regions). Fig. 2(B) shows the classification re-
sults from 1 to 100 iterations. With the two bag- and graph-
level constraints, MGVBL achieves better performance than
bMGVBL (only considers bag level constraints), indicating
that information in negative bags is very helpful for learn-
ing the model. MIVBL has the worst performance, mainly
because their frequent subgraphs are not carefully selected
and therefore are not discriminative. Although MGVGL is
comparable to bMGVBL, MGVGL is inferior compared to
the proposed MGVBL, due to the fact that MGVGL directly

2https://sites.google.com/site/dctresearch/Home/content-based-
image-retrieval
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Figure 3: Average CPU runtime comparison between
MGVBL v.s. unbounded MGVBL (UMGVBL) with respect
to different min sup values.

propagates bag labels to graphs and cause negative graphs in
positive bags being mislabeled as positive. Overall, the pro-
posed MGVBL has the best learning performance.

4.5 Efficiency of the Pruning Strategy
In order to evaluate the efficiency of the proposed pruning
module for searching subgraphs as described in Section 3.3,
we implement an UMGVBL approach with no pruning mod-
ule and compare its runtime with MGVBL. In our implemen-
tation, UMGVBL first uses gSpan to find a frequent subgraph
set, and then selects the optimal subgraph by using the same
evaluation criteria as MGVBL.

The results in Fig. 3 show that increasing min sup values
decreases the runtime of UMGVBL, mainly because a larger
min sup value reduces the candidate number for valida-
tion. By using pruning strategy (i.e. the constraints including
threshold min sup and upper bound £̂gs = max(£−gs ,£

+
gs)

as shown in Algorithm 1), MGVBL’s runtime performance
is relatively stable w.r.t. different min sup values. Over-
all, MGVBL demonstrates clear advantage compared to un-
bounded UMGVBL, especially when min sup is small.

5 Conclusion
This paper investigated the representation and classifica-
tion of complicated objects by using graph-bag based multi-
graph-view learning. We argued that many real-world ob-
jects contain structure information from different views, and
multi-graph-view graph-bag representation provides an effec-
tive way to preserve structure and complicated features of the
object for learning. To build a learning model for multi-graph-
view classification, we formulated an objective function to
jointly regularize multiple graph-views, and enforce labeling
constraints at bag and graph levels, respectively, so our algo-
rithm can discover most effective subgraph features across all
graph-views to optimize the learning. The key contribution of
the paper, compared to existing works, is threefold: (1) a new
multi-graph-view representation model to represent compli-
cated objects; (2) a cross graph-view search space pruning
strategy; and (3) a combined cross-view subgraph feature ex-
ploration and learning method.
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